Recursive Exponentially Weighted N-way Partial Least Squares Regression with Recursive-Validation of Hyper-Parameters in Brain-Computer Interface Applications
A tensor-input/tensor-output Recursive Exponentially Weighted N-Way Partial Least Squares (REW-NPLS) regression algorithm is proposed for high dimension multi-way (tensor) data treatment and adaptive modeling of complex processes in real-time. The method unites fast and efficient calculation schemes...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 7; číslo 1; s. 16281 - 15 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
24.11.2017
Nature Publishing Group |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A tensor-input/tensor-output Recursive Exponentially Weighted N-Way Partial Least Squares (REW-NPLS) regression algorithm is proposed for high dimension multi-way (tensor) data treatment and adaptive modeling of complex processes in real-time. The method unites fast and efficient calculation schemes of the Recursive Exponentially Weighted PLS with the robustness of tensor-based approaches. Moreover, contrary to other multi-way recursive algorithms, no loss of information occurs in the REW-NPLS. In addition, the Recursive-Validation method for recursive estimation of the hyper-parameters is proposed instead of conventional cross-validation procedure. The approach was then compared to state-of-the-art methods. The efficiency of the methods was tested in electrocorticography (ECoG) and magnetoencephalography (MEG) datasets. The algorithms are implemented in software suitable for real-time operation. Although the Brain-Computer Interface applications are used to demonstrate the methods, the proposed approaches could be efficiently used in a wide range of tasks beyond neuroscience uniting complex multi-modal data structures, adaptive modeling, and real-time computational requirements. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC5701264 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-017-16579-9 |