Multi-period planning, design, and strategic models for long-term, quality-sensitive shale gas development

In this work we address the long‐term, quality‐sensitive shale gas development problem. This problem involves planning, design, and strategic decisions such as where, when, and how many shale gas wells to drill, where to lay out gathering pipelines, as well as which delivery agreements to arrange. O...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIChE journal Ročník 62; číslo 7; s. 2296 - 2323
Hlavní autoři: Drouven, Markus G., Grossmann, Ignacio E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Blackwell Publishing Ltd 01.07.2016
American Institute of Chemical Engineers
Témata:
ISSN:0001-1541, 1547-5905
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work we address the long‐term, quality‐sensitive shale gas development problem. This problem involves planning, design, and strategic decisions such as where, when, and how many shale gas wells to drill, where to lay out gathering pipelines, as well as which delivery agreements to arrange. Our objective is to use computational models to identify the most profitable shale gas development strategies. For this purpose we propose a large‐scale, nonconvex, mixed‐integer nonlinear programming model. We rely on generalized disjunctive programming to systematically derive the building blocks of this model. Based on a tailor‐designed solution strategy we identify near‐global solutions to the resulting large‐scale problems. Finally, we apply the proposed modeling framework to two case studies based on real data to quantify the value of optimization models for shale gas development. Our results suggest that the proposed models can increase upstream operators’ profitability by several million U.S. dollars. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2296–2323, 2016
AbstractList In this work we address the long-term, quality-sensitive shale gas development problem. This problem involves planning, design, and strategic decisions such as where, when, and how many shale gas wells to drill, where to lay out gathering pipelines, as well as which delivery agreements to arrange. Our objective is to use computational models to identify the most profitable shale gas development strategies. For this purpose we propose a large-scale, nonconvex, mixed-integer nonlinear programming model. We rely on generalized disjunctive programming to systematically derive the building blocks of this model. Based on a tailor-designed solution strategy we identify near-global solutions to the resulting large-scale problems. Finally, we apply the proposed modeling framework to two case studies based on real data to quantify the value of optimization models for shale gas development. Our results suggest that the proposed models can increase upstream operators' profitability by several million U.S. dollars. copyright 2016 American Institute of Chemical Engineers AIChE J, 62: 2296-2323, 2016
In this work we address the long-term, quality-sensitive shale gas development problem. This problem involves planning, design, and strategic decisions such as where, when, and how many shale gas wells to drill, where to lay out gathering pipelines, as well as which delivery agreements to arrange. Our objective is to use computational models to identify the most profitable shale gas development strategies. For this purpose we propose a large-scale, nonconvex, mixed-integer nonlinear programming model. We rely on generalized disjunctive programming to systematically derive the building blocks of this model. Based on a tailor-designed solution strategy we identify near-global solutions to the resulting large-scale problems. Finally, we apply the proposed modeling framework to two case studies based on real data to quantify the value of optimization models for shale gas development. Our results suggest that the proposed models can increase upstream operators' profitability by several million U.S. dollars. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2296-2323, 2016
Author Drouven, Markus G.
Grossmann, Ignacio E.
Author_xml – sequence: 1
  givenname: Markus G.
  surname: Drouven
  fullname: Drouven, Markus G.
  organization: Dept. of Chemical Engineering, Carnegie Mellon University, PA, 15213, Pittsburgh
– sequence: 2
  givenname: Ignacio E.
  surname: Grossmann
  fullname: Grossmann, Ignacio E.
  email: grossmann@cmu.edu
  organization: Dept. of Chemical Engineering, Carnegie Mellon University, PA, 15213, Pittsburgh
BookMark eNqNkUFv1DAQhS1UJLaFA__AEpdW2rR2EsfJsVqVUmkpQloK4mI5ziR4ceys7RT23-OywKESiNNoRt97mpl3jI6ss4DQS0rOKSH5hdTqnDLKyydoQVnJM9YQdoQWhBCapQF9ho5D2KYu53W-QNu3s4k6m8Br1-HJSGu1HZa4g6AHu8TSdjhELyMMWuHRdWAC7p3Hxtkhi-DHJd7N0ui4zwLYoKO-Bxy-SAN4kCH53INx0wg2PkdPe2kCvPhVT9CH11eb1Zts_e76ZnW5zhQjdZkx2fGCkp4BLXJKuqKtWduUbV-BbIscVFso6PpKtRV0lexU2ZSNKmlfMeAlVMUJOj34Tt7tZghRjDooMOk2cHMQtM7TYyqWk_9ASc3TUvzB9dUjdOtmb9MhgvKmYHXV8DJRZwdKeReCh15MXo_S7wUl4iEgkQISPwNK7MUjVukoo3Y2_Vubfym-aQP7v1uLy5vVb0V2UOgQ4fsfhfRfRcULzsTH22ux-bT5vH5_dyvuih9vS7Pi
CODEN AICEAC
CitedBy_id crossref_primary_10_1016_j_compchemeng_2019_03_035
crossref_primary_10_1002_aic_17195
crossref_primary_10_1016_j_apenergy_2019_114439
crossref_primary_10_1007_s11081_022_09775_8
crossref_primary_10_1016_j_compchemeng_2021_107443
crossref_primary_10_1080_02286203_2021_1983074
crossref_primary_10_1016_j_compchemeng_2019_05_004
crossref_primary_10_1061_JPSEA2_PSENG_1884
crossref_primary_10_1002_aic_16933
crossref_primary_10_3390_en10020246
crossref_primary_10_1002_aic_15804
crossref_primary_10_1016_j_jclepro_2020_123171
crossref_primary_10_1016_j_enconman_2019_04_001
crossref_primary_10_1016_j_compchemeng_2019_04_028
crossref_primary_10_1016_j_coche_2018_12_009
crossref_primary_10_1016_j_compchemeng_2023_108317
crossref_primary_10_1016_j_enconman_2018_12_023
crossref_primary_10_1016_j_apenergy_2021_117487
crossref_primary_10_1016_j_compchemeng_2017_04_023
crossref_primary_10_1007_s11081_017_9365_2
crossref_primary_10_1016_j_compchemeng_2024_108738
crossref_primary_10_1007_s11750_022_00635_3
crossref_primary_10_3390_pr5030034
crossref_primary_10_1016_j_cherd_2019_08_013
crossref_primary_10_3390_pr11113101
crossref_primary_10_3390_pr12112567
crossref_primary_10_1016_j_compchemeng_2017_03_006
crossref_primary_10_15302_J_FEM_2017049
crossref_primary_10_1016_j_compchemeng_2018_05_016
crossref_primary_10_1016_j_applthermaleng_2019_114622
crossref_primary_10_1016_j_compchemeng_2017_01_032
crossref_primary_10_3390_pr13041233
crossref_primary_10_1016_j_petrol_2022_110287
crossref_primary_10_1002_cite_201600114
crossref_primary_10_1007_s13202_022_01495_0
crossref_primary_10_1016_j_cie_2020_106479
crossref_primary_10_1016_j_petrol_2017_06_032
crossref_primary_10_23736_S0022_4707_24_15971_3
crossref_primary_10_1002_aic_15330
crossref_primary_10_1002_aic_17058
crossref_primary_10_1002_aic_16762
crossref_primary_10_1016_j_petrol_2017_07_026
crossref_primary_10_1002_aic_17435
Cites_doi 10.2307/1883722
10.1021/ie000755e
10.1016/j.energy.2014.09.076
10.1021/ie9906619
10.1016/S0167-188X(86)80025-8
10.1086/259293
10.1016/0098-1354(90)87085-4
10.1002/aic.14405
10.1021/ie2030486
10.1021/ie0513144
10.1002/aic.14526
10.1002/aic.11385
10.1016/j.compchemeng.2003.10.005
10.1007/BF02592064
10.1021/acssuschemeng.5b00122
10.1021/ie970532x
10.1002/aic.14804
10.1016/j.compchemeng.2013.04.002
10.1023/A:1025154322278
10.1016/j.compchemeng.2013.05.022
10.1016/j.compchemeng.2014.02.005
10.1002/aic.14088
10.1016/0098-1354(94)00123-5
ContentType Journal Article
Copyright 2016 American Institute of Chemical Engineers
Copyright_xml – notice: 2016 American Institute of Chemical Engineers
DBID BSCLL
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.15174
DatabaseName Istex
CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 2323
ExternalDocumentID 4076793671
10_1002_aic_15174
AIC15174
ark_67375_WNG_TXTZLQVN_V
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHQN
AAIHA
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJIA
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PRG
PROAC
PTHSS
PUEGO
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
3V.
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RBB
RWI
UAO
WRC
WSB
AAYXX
AFFHD
CITATION
O8X
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c5084-5ad7310f5e13210d3b85b94bf6eab32ecb3cedf6cb6ed6adc4949c41f65e74e63
IEDL.DBID DRFUL
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377274600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-1541
IngestDate Thu Oct 02 11:33:35 EDT 2025
Tue Oct 07 07:51:39 EDT 2025
Mon Nov 10 02:59:45 EST 2025
Sat Nov 29 07:20:19 EST 2025
Tue Nov 18 21:15:00 EST 2025
Wed Jan 22 17:06:55 EST 2025
Tue Sep 09 05:32:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5084-5ad7310f5e13210d3b85b94bf6eab32ecb3cedf6cb6ed6adc4949c41f65e74e63
Notes istex:C67FCC8DBE4B47CA3A1FE9FAE25C7742CC5F2A36
ArticleID:AIC15174
ark:/67375/WNG-TXTZLQVN-V
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1793586974
PQPubID 7879
PageCount 28
ParticipantIDs proquest_miscellaneous_1825476520
proquest_miscellaneous_1808708476
proquest_journals_1793586974
crossref_primary_10_1002_aic_15174
crossref_citationtrail_10_1002_aic_15174
wiley_primary_10_1002_aic_15174_AIC15174
istex_primary_ark_67375_WNG_TXTZLQVN_V
PublicationCentury 2000
PublicationDate July 2016
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: July 2016
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2016
Publisher Blackwell Publishing Ltd
American Institute of Chemical Engineers
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Institute of Chemical Engineers
References Quesada I, Grossmann IE. Global optimization of bilinear process networks with multicomponent flows. Comp Chem Eng. 1995;19(12):1219-1242.
Gao J, You F. Shale gas supply chain design and operations toward better economic and life cycle environmental performance: MINLP model and global optimization algorithm. ACS Sustain Chem Eng. 2015;3:1282-1291.
van den Heever SA, Grossmann IE. An iterative aggregation/disaggregation approach for the solution of a mixed-integer nonlinear oilfield infrastructure planning model. Ind Eng Chem Res. 2000;39(6):1955-1971.
Yang L, Grossmann IE, Mauter MS. Investment optimization model for freshwater acquisition and wastewater handling in shale gas production. AIChE J. 2015;61(6):1770-1782.
Moore FT. Economies of scale: some statistical evidence. Quarter J Econ. 1959;73:232-245.
van den Heever SA, Grossmann IE, Vasantharajan S, Edwards K. A Lagrangean decomposition heuristic for the design and planning of offshore hydrocarbon field infastructures with complex economic objectives. Ind Eng Chem Res. 2001;40(13):2857-2875.
Viswanathan J, Grossmann IE. A combined penalty function and outer approximation method for MINLP optimization. Comp Chem Eng. 1990;14:769-782.
Cafaro DC, Grossmann IE. Strategic planning, design, and development of the shale gas supply chain network. AIChE J. 2014;60:2122-2142.
Tribe MA, Alpine RLW. Scale economies and the "0.6 rule". Eng Cost Prod Econ. 1986;10(4):271-278.
Park M, Park S, Mele FD, Grossmann IE. Modeling of purchase and sales contracts in supply chain optimization. Ind Eng Chem Res. 2006;45(14):5013-5026.
Knudsen BR, Whitson CH, Foss B. Shale-gas scheduling for natural-gas supply in electric power production. Energy. 2014;78:165-182.
Yang L, Grossmann IE, Manno J. Optimization models for shale gas water management. AIChE J. 2014;60(10):3490-3501.
Goel V, Grossmann IE. A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves. Comp Chem Eng. 2004;28(8):1409-1429.
Knudsen BR, Grossmann IE, Foss B, Conn AR. Lagrangian relaxation based decomposition for well scheduling in shale-gas systems. Comp Chem Eng. 2014; 63:234-249.
Castro PM, Grossmann IE. Generalized disjunctive programming as a systematic modeling framework to derive scheduling formulations. Ind Eng Chem Res. 2012;51:5781-5792.
Tavallali MS, Karimi IA, Teo KM, Baxendale D, Ayatollahi S. Optimal producer well placement and production planning in an oil reservoir. Computers & Chemical Engineering. 2013; 55:109-125.
Grossmann IE, Trespalacios F. Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AIChE J. 2013;59(9):3276-3295.
Duran MA, Grossmann IE. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Prog. 1986;36(3):307-339.
Goellner JF. Expanding the shale gas infrastructure. Chem Eng Prog. 2012;108(8):49-52.
Haldi J, Whitcomb D. Economies of scale in industrial plants. J Polit Econ. 1967;373-385.
Iyer RR, Grossmann IE, Vasantharajan S, Cullick AS. Optimal planning and scheduling of offshore oil field infrastructure investment and operations. Ind Eng Chem Res. 1998;37(4):1380-1397.
Selot A, Kuok LK, Robinson M, Barton PI. A short-term operational planning model for natural gas production systems. AIChE J. 2008;54(2):495-515.
Grossmann IE, Lee S. Generalized convex disjunctive programming: nonlinear convex hull relaxation. Comp Optim Appl. 2003;26:466-486.
Knudsen BR, Foss B. Shut-in based production optimization of shale-gas systems. Comp Chem Eng. 2013;58:54-67.
1998; 37
1959; 73
2013; 59
2013; 58
2000; 39
2015; 3
1990; 14
2013; 55
2006; 45
1986; 10
2004; 28
2015; 61
1986; 36
2003; 26
2008; 54
1995; 19
2014; 63
2014; 60
2001; 40
2014; 78
2012; 108
1967
2012; 51
e_1_2_16_26_1
e_1_2_16_25_1
e_1_2_16_24_1
e_1_2_16_23_1
e_1_2_16_29_1
e_1_2_16_28_1
e_1_2_16_27_1
Goellner JF. (e_1_2_16_3_1) 2012; 108
e_1_2_16_2_1
e_1_2_16_22_1
e_1_2_16_21_1
e_1_2_16_20_1
e_1_2_16_15_1
e_1_2_16_14_1
e_1_2_16_13_1
e_1_2_16_12_1
e_1_2_16_19_1
e_1_2_16_18_1
e_1_2_16_17_1
e_1_2_16_16_1
e_1_2_16_11_1
e_1_2_16_10_1
e_1_2_16_8_1
e_1_2_16_7_1
e_1_2_16_9_1
e_1_2_16_4_1
e_1_2_16_6_1
e_1_2_16_5_1
References_xml – reference: Grossmann IE, Lee S. Generalized convex disjunctive programming: nonlinear convex hull relaxation. Comp Optim Appl. 2003;26:466-486.
– reference: Castro PM, Grossmann IE. Generalized disjunctive programming as a systematic modeling framework to derive scheduling formulations. Ind Eng Chem Res. 2012;51:5781-5792.
– reference: Haldi J, Whitcomb D. Economies of scale in industrial plants. J Polit Econ. 1967;373-385.
– reference: Knudsen BR, Whitson CH, Foss B. Shale-gas scheduling for natural-gas supply in electric power production. Energy. 2014;78:165-182.
– reference: Knudsen BR, Grossmann IE, Foss B, Conn AR. Lagrangian relaxation based decomposition for well scheduling in shale-gas systems. Comp Chem Eng. 2014; 63:234-249.
– reference: Yang L, Grossmann IE, Mauter MS. Investment optimization model for freshwater acquisition and wastewater handling in shale gas production. AIChE J. 2015;61(6):1770-1782.
– reference: van den Heever SA, Grossmann IE. An iterative aggregation/disaggregation approach for the solution of a mixed-integer nonlinear oilfield infrastructure planning model. Ind Eng Chem Res. 2000;39(6):1955-1971.
– reference: Viswanathan J, Grossmann IE. A combined penalty function and outer approximation method for MINLP optimization. Comp Chem Eng. 1990;14:769-782.
– reference: Iyer RR, Grossmann IE, Vasantharajan S, Cullick AS. Optimal planning and scheduling of offshore oil field infrastructure investment and operations. Ind Eng Chem Res. 1998;37(4):1380-1397.
– reference: Grossmann IE, Trespalacios F. Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AIChE J. 2013;59(9):3276-3295.
– reference: Quesada I, Grossmann IE. Global optimization of bilinear process networks with multicomponent flows. Comp Chem Eng. 1995;19(12):1219-1242.
– reference: Park M, Park S, Mele FD, Grossmann IE. Modeling of purchase and sales contracts in supply chain optimization. Ind Eng Chem Res. 2006;45(14):5013-5026.
– reference: Moore FT. Economies of scale: some statistical evidence. Quarter J Econ. 1959;73:232-245.
– reference: Goellner JF. Expanding the shale gas infrastructure. Chem Eng Prog. 2012;108(8):49-52.
– reference: Selot A, Kuok LK, Robinson M, Barton PI. A short-term operational planning model for natural gas production systems. AIChE J. 2008;54(2):495-515.
– reference: Knudsen BR, Foss B. Shut-in based production optimization of shale-gas systems. Comp Chem Eng. 2013;58:54-67.
– reference: Gao J, You F. Shale gas supply chain design and operations toward better economic and life cycle environmental performance: MINLP model and global optimization algorithm. ACS Sustain Chem Eng. 2015;3:1282-1291.
– reference: Cafaro DC, Grossmann IE. Strategic planning, design, and development of the shale gas supply chain network. AIChE J. 2014;60:2122-2142.
– reference: Tribe MA, Alpine RLW. Scale economies and the "0.6 rule". Eng Cost Prod Econ. 1986;10(4):271-278.
– reference: Yang L, Grossmann IE, Manno J. Optimization models for shale gas water management. AIChE J. 2014;60(10):3490-3501.
– reference: Duran MA, Grossmann IE. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Prog. 1986;36(3):307-339.
– reference: van den Heever SA, Grossmann IE, Vasantharajan S, Edwards K. A Lagrangean decomposition heuristic for the design and planning of offshore hydrocarbon field infastructures with complex economic objectives. Ind Eng Chem Res. 2001;40(13):2857-2875.
– reference: Goel V, Grossmann IE. A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves. Comp Chem Eng. 2004;28(8):1409-1429.
– reference: Tavallali MS, Karimi IA, Teo KM, Baxendale D, Ayatollahi S. Optimal producer well placement and production planning in an oil reservoir. Computers & Chemical Engineering. 2013; 55:109-125.
– volume: 3
  start-page: 1282
  year: 2015
  end-page: 1291
  article-title: Shale gas supply chain design and operations toward better economic and life cycle environmental performance: MINLP model and global optimization algorithm
  publication-title: ACS Sustain Chem Eng.
– volume: 10
  start-page: 271
  issue: 4
  year: 1986
  end-page: 278
  article-title: Scale economies and the “0.6 rule
  publication-title: Eng Cost Prod Econ.
– volume: 51
  start-page: 5781
  year: 2012
  end-page: 5792
  article-title: Generalized disjunctive programming as a systematic modeling framework to derive scheduling formulations
  publication-title: Ind Eng Chem Res.
– volume: 108
  start-page: 49
  issue: 8
  year: 2012
  end-page: 52
  article-title: Expanding the shale gas infrastructure
  publication-title: Chem Eng Prog.
– volume: 39
  start-page: 1955
  issue: 6
  year: 2000
  end-page: 1971
  article-title: An iterative aggregation/disaggregation approach for the solution of a mixed‐integer nonlinear oilfield infrastructure planning model
  publication-title: Ind Eng Chem Res.
– volume: 54
  start-page: 495
  issue: 2
  year: 2008
  end-page: 515
  article-title: A short‐term operational planning model for natural gas production systems
  publication-title: AIChE J.
– volume: 78
  start-page: 165
  year: 2014
  end-page: 182
  article-title: Shale‐gas scheduling for natural‐gas supply in electric power production
  publication-title: Energy.
– volume: 60
  start-page: 2122
  year: 2014
  end-page: 2142
  article-title: Strategic planning, design, and development of the shale gas supply chain network
  publication-title: AIChE J.
– start-page: 373
  year: 1967
  end-page: 385
  article-title: Economies of scale in industrial plants
  publication-title: J Polit Econ.
– volume: 63
  start-page: 234
  year: 2014
  end-page: 249
  article-title: Lagrangian relaxation based decomposition for well scheduling in shale‐gas systems
  publication-title: Comp Chem Eng.
– volume: 61
  start-page: 1770
  issue: 6
  year: 2015
  end-page: 1782
  article-title: Investment optimization model for freshwater acquisition and wastewater handling in shale gas production
  publication-title: AIChE J.
– volume: 36
  start-page: 307
  issue: 3
  year: 1986
  end-page: 339
  article-title: An outer‐approximation algorithm for a class of mixed‐integer nonlinear programs
  publication-title: Math Prog.
– volume: 45
  start-page: 5013
  issue: 14
  year: 2006
  end-page: 5026
  article-title: Modeling of purchase and sales contracts in supply chain optimization
  publication-title: Ind Eng Chem Res.
– volume: 14
  start-page: 769
  year: 1990
  end-page: 782
  article-title: A combined penalty function and outer approximation method for MINLP optimization
  publication-title: Comp Chem Eng.
– volume: 40
  start-page: 2857
  issue: 13
  year: 2001
  end-page: 2875
  article-title: A Lagrangean decomposition heuristic for the design and planning of offshore hydrocarbon field infastructures with complex economic objectives
  publication-title: Ind Eng Chem Res.
– volume: 55
  start-page: 109
  year: 2013
  end-page: 125
  article-title: Optimal producer well placement and production planning in an oil reservoir
  publication-title: Computers & Chemical Engineering.
– volume: 60
  start-page: 3490
  issue: 10
  year: 2014
  end-page: 3501
  article-title: Optimization models for shale gas water management
  publication-title: AIChE J.
– volume: 28
  start-page: 1409
  issue: 8
  year: 2004
  end-page: 1429
  article-title: A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves
  publication-title: Comp Chem Eng.
– volume: 37
  start-page: 1380
  issue: 4
  year: 1998
  end-page: 1397
  article-title: Optimal planning and scheduling of offshore oil field infrastructure investment and operations
  publication-title: Ind Eng Chem Res.
– volume: 58
  start-page: 54
  year: 2013
  end-page: 67
  article-title: Shut‐in based production optimization of shale‐gas systems
  publication-title: Comp Chem Eng.
– volume: 26
  start-page: 466
  year: 2003
  end-page: 486
  article-title: Generalized convex disjunctive programming: nonlinear convex hull relaxation
  publication-title: Comp Optim Appl.
– volume: 19
  start-page: 1219
  issue: 12
  year: 1995
  end-page: 1242
  article-title: Global optimization of bilinear process networks with multicomponent flows
  publication-title: Comp Chem Eng.
– volume: 59
  start-page: 3276
  issue: 9
  year: 2013
  end-page: 3295
  article-title: Systematic modeling of discrete‐continuous optimization models through generalized disjunctive programming
  publication-title: AIChE J.
– volume: 73
  start-page: 232
  year: 1959
  end-page: 245
  article-title: Economies of scale: some statistical evidence
  publication-title: Quarter J Econ.
– ident: e_1_2_16_21_1
  doi: 10.2307/1883722
– ident: e_1_2_16_7_1
  doi: 10.1021/ie000755e
– ident: e_1_2_16_4_1
– ident: e_1_2_16_13_1
  doi: 10.1016/j.energy.2014.09.076
– ident: e_1_2_16_6_1
  doi: 10.1021/ie9906619
– ident: e_1_2_16_2_1
– ident: e_1_2_16_23_1
  doi: 10.1016/S0167-188X(86)80025-8
– ident: e_1_2_16_22_1
  doi: 10.1086/259293
– ident: e_1_2_16_27_1
  doi: 10.1016/0098-1354(90)87085-4
– ident: e_1_2_16_16_1
  doi: 10.1002/aic.14405
– ident: e_1_2_16_29_1
  doi: 10.1021/ie2030486
– ident: e_1_2_16_19_1
  doi: 10.1021/ie0513144
– ident: e_1_2_16_14_1
  doi: 10.1002/aic.14526
– ident: e_1_2_16_9_1
  doi: 10.1002/aic.11385
– ident: e_1_2_16_8_1
  doi: 10.1016/j.compchemeng.2003.10.005
– ident: e_1_2_16_26_1
  doi: 10.1007/BF02592064
– volume: 108
  start-page: 49
  issue: 8
  year: 2012
  ident: e_1_2_16_3_1
  article-title: Expanding the shale gas infrastructure
  publication-title: Chem Eng Prog.
– ident: e_1_2_16_17_1
  doi: 10.1021/acssuschemeng.5b00122
– ident: e_1_2_16_5_1
  doi: 10.1021/ie970532x
– ident: e_1_2_16_15_1
  doi: 10.1002/aic.14804
– ident: e_1_2_16_20_1
– ident: e_1_2_16_10_1
  doi: 10.1016/j.compchemeng.2013.04.002
– ident: e_1_2_16_28_1
  doi: 10.1023/A:1025154322278
– ident: e_1_2_16_11_1
  doi: 10.1016/j.compchemeng.2013.05.022
– ident: e_1_2_16_12_1
  doi: 10.1016/j.compchemeng.2014.02.005
– ident: e_1_2_16_24_1
– ident: e_1_2_16_18_1
  doi: 10.1002/aic.14088
– ident: e_1_2_16_25_1
  doi: 10.1016/0098-1354(94)00123-5
SSID ssj0012782
Score 2.4117484
Snippet In this work we address the long‐term, quality‐sensitive shale gas development problem. This problem involves planning, design, and strategic decisions such as...
In this work we address the long-term, quality-sensitive shale gas development problem. This problem involves planning, design, and strategic decisions such as...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2296
SubjectTerms Chemical engineering
Chemical engineers
Decisions
Design engineering
Development strategies
Mathematical models
mixed-integer programming
Natural gas exploration
Nonlinear programming
Oil shale
Petroleum engineering
planning
scheduling
Shale gas
Shales
Strategy
Title Multi-period planning, design, and strategic models for long-term, quality-sensitive shale gas development
URI https://api.istex.fr/ark:/67375/WNG-TXTZLQVN-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.15174
https://www.proquest.com/docview/1793586974
https://www.proquest.com/docview/1808708476
https://www.proquest.com/docview/1825476520
Volume 62
WOSCitedRecordID wos000377274600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-Nlgf2MMY_rduYDEKIh5Y1ie044mka60CqKkDdqHix_C_btCmtmm2Ct32EfUY-CWcnzTYJEBJviXK2HJ_v_LN99zPAqzz2pG0Zrk5i5XerGOtpHTF0hom1OU-4yEKi8DAdjcRkkn1agneLXJiKH6LZcPOWEfy1N3Cly-0b0lB1Yt5Gnmf5HrRjHLe0Be33XwYHw-YQIU5FRRaOK2ZECtGCWKgfbzeF70xHbd-z3-9gzduINUw5g4f_1dhVWKmRJtmphsYjWHLFY1i-xT_4BGYh_fbn1bWnO55aMqtvMOoSGwI7ukQVlpQ1ga0h4dqckiDOJWfT4ggLesfeJVVm5g98L308vPegpDzGqYccqZLYm7ikp3Aw2BvvfujVVzD0DCI32mPKpggAc-Yin-xjEy2YzqjOuVM6iZ3RiXGoU6O5s1xZ48luDI1yzlxKHU-eQauYFm4NiMFaBFU0RZBCXSa0yE3EXJY6qpnhUQfeLDQhTc1P7q_JOJMVs3IssRNl6MQOvGxEZxUpx--EXgd1NhJqfuqj2FImv4725Xgy_jb8fDiShx3YXOhb1gZcSu-3mOCZr-dF8xlNz5-nqMJNL1BG9NHb4fTO_yaDK_CUs7iP_xdGyJ9bLHc-7oaH9X8X3YAHCOF4FUC8Ca3z-YV7DvfN5flJOd-qLeIXb3kSTA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VXSTgwD9ioYBBCHHYpZvEdhyJS1VYWhEiQNuy4mL5L6Wiyq42LYIbj8Az8iSMnWzaSoCQuCXK2HI8nvFne-YzwOMy9qRtGa5OYuV3qxgbaR0xdIaJtSVPuMhConCeFoWYzbK3a_B8lQvT8EN0G27eMoK_9gbuN6Q3TlhD1YF5Fnmi5XPQpziMWA_6L95PdvPuFCFORcMWjktmhArRilloHG90hc_MR33ftV_PgM3TkDXMOZMr_9faq3C5xZpksxkc12DNVdfh0ikGwhuwCAm4P7__8ITHc0sW7R1GQ2JDaMeQqMqSuqWwNSRcnFMTRLrkcF7tY0Hv2oekyc38hu-1j4j3PpTUn3DyIfuqJvYkMukm7E5eTre2R-0lDCOD2I2OmLIpQsCSucin-9hEC6YzqkvulE5iZ3RiHGrVaO4sV9Z4uhtDo5Izl1LHk1vQq-aVuw3EYC2CKpoiTKEuE1qUJmIuSx3VzPBoAE9XqpCmZSj3F2UcyoZbOZbYiTJ04gAedaKLhpbjd0JPgj47CbX87OPYUiY_FK_kdDb9mL_bK-TeANZXCpetCdfSey4meObredh9RuPzJyqqcvNjlBFj9Hc4wfO_yeAaPOUsHuP_hSHy5xbLzZ2t8HDn30UfwIXt6Ztc5jvF67twEQEdb8KJ16F3tDx29-C8-XJ0UC_vt-bxC8W5Fjw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLkJw4LeoWwoYhBCH3XaT2I4jcalaFipWUUHbsuJi-S9tRZVdbdoKbjwCz8iTMHayaSsBQuKWKGPL8XjGn-2ZzwAvitiTtmW4OomV361irK91xNAZJtYWPOEiC4nCozTPxWSS7S3B60UuTM0P0W64ecsI_tobuJvZYvOCNVQdm43IEy1fgw5lGUez7Ox8HO6P2lOEOBU1WzgumREqRAtmoUG82Ra-Mh91fNd-vQI2L0PWMOcM7_xfa-_C7QZrkq16cNyDJVfeh1uXGAgfwCwk4P78_sMTHk8tmTV3GPWIDaEdPaJKS6qGwtaQcHFORRDpkpNpeYgFvWvvkTo38xu-Vz4i3vtQUh3h5EMOVUXsRWTSCuwP34y33_WbSxj6BrEb7TNlU4SABXORT_exiRZMZ1QX3CmdxM7oxDjUqtHcWa6s8XQ3hkYFZy6ljicPYbmclm4ViMFaBFU0RZhCXSa0KEzEXJY6qpnhURdeLVQhTcNQ7i_KOJE1t3IssRNl6MQuPG9FZzUtx--EXgZ9thJq_sXHsaVMfsrfyvFk_Hn04SCXB11YXyhcNiZcSe-5mOCZr-dZ-xmNz5-oqNJNz1BGDNDf4QTP_yaDa_CUs3iA_xeGyJ9bLLd2t8PD2r-LPoUbeztDOdrN3z-Cm4jneB1NvA7Lp_Mz9xium_PT42r-pLGOXzIDFbc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-period+planning%2C+design%2C+and+strategic+models+for+long-term%2C+quality-sensitive+shale+gas+development&rft.jtitle=AIChE+journal&rft.au=Drouven%2C+Markus+G&rft.au=Grossmann%2C+Ignacio+E&rft.date=2016-07-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=62&rft.issue=7&rft.spage=2296&rft_id=info:doi/10.1002%2Faic.15174&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4076793671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon