Multi-period planning, design, and strategic models for long-term, quality-sensitive shale gas development
In this work we address the long‐term, quality‐sensitive shale gas development problem. This problem involves planning, design, and strategic decisions such as where, when, and how many shale gas wells to drill, where to lay out gathering pipelines, as well as which delivery agreements to arrange. O...
Gespeichert in:
| Veröffentlicht in: | AIChE journal Jg. 62; H. 7; S. 2296 - 2323 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Blackwell Publishing Ltd
01.07.2016
American Institute of Chemical Engineers |
| Schlagworte: | |
| ISSN: | 0001-1541, 1547-5905 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this work we address the long‐term, quality‐sensitive shale gas development problem. This problem involves planning, design, and strategic decisions such as where, when, and how many shale gas wells to drill, where to lay out gathering pipelines, as well as which delivery agreements to arrange. Our objective is to use computational models to identify the most profitable shale gas development strategies. For this purpose we propose a large‐scale, nonconvex, mixed‐integer nonlinear programming model. We rely on generalized disjunctive programming to systematically derive the building blocks of this model. Based on a tailor‐designed solution strategy we identify near‐global solutions to the resulting large‐scale problems. Finally, we apply the proposed modeling framework to two case studies based on real data to quantify the value of optimization models for shale gas development. Our results suggest that the proposed models can increase upstream operators’ profitability by several million U.S. dollars. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2296–2323, 2016 |
|---|---|
| AbstractList | In this work we address the long-term, quality-sensitive shale gas development problem. This problem involves planning, design, and strategic decisions such as where, when, and how many shale gas wells to drill, where to lay out gathering pipelines, as well as which delivery agreements to arrange. Our objective is to use computational models to identify the most profitable shale gas development strategies. For this purpose we propose a large-scale, nonconvex, mixed-integer nonlinear programming model. We rely on generalized disjunctive programming to systematically derive the building blocks of this model. Based on a tailor-designed solution strategy we identify near-global solutions to the resulting large-scale problems. Finally, we apply the proposed modeling framework to two case studies based on real data to quantify the value of optimization models for shale gas development. Our results suggest that the proposed models can increase upstream operators' profitability by several million U.S. dollars. copyright 2016 American Institute of Chemical Engineers AIChE J, 62: 2296-2323, 2016 In this work we address the long‐term, quality‐sensitive shale gas development problem. This problem involves planning, design, and strategic decisions such as where, when, and how many shale gas wells to drill, where to lay out gathering pipelines, as well as which delivery agreements to arrange. Our objective is to use computational models to identify the most profitable shale gas development strategies. For this purpose we propose a large‐scale, nonconvex, mixed‐integer nonlinear programming model. We rely on generalized disjunctive programming to systematically derive the building blocks of this model. Based on a tailor‐designed solution strategy we identify near‐global solutions to the resulting large‐scale problems. Finally, we apply the proposed modeling framework to two case studies based on real data to quantify the value of optimization models for shale gas development. Our results suggest that the proposed models can increase upstream operators’ profitability by several million U.S. dollars. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2296–2323, 2016 |
| Author | Drouven, Markus G. Grossmann, Ignacio E. |
| Author_xml | – sequence: 1 givenname: Markus G. surname: Drouven fullname: Drouven, Markus G. organization: Dept. of Chemical Engineering, Carnegie Mellon University, PA, 15213, Pittsburgh – sequence: 2 givenname: Ignacio E. surname: Grossmann fullname: Grossmann, Ignacio E. email: grossmann@cmu.edu organization: Dept. of Chemical Engineering, Carnegie Mellon University, PA, 15213, Pittsburgh |
| BookMark | eNqNkUFv1DAQhS1UJLaFA__AEpdW2rR2EsfJsVqVUmkpQloK4mI5ziR4ceys7RT23-OywKESiNNoRt97mpl3jI6ss4DQS0rOKSH5hdTqnDLKyydoQVnJM9YQdoQWhBCapQF9ho5D2KYu53W-QNu3s4k6m8Br1-HJSGu1HZa4g6AHu8TSdjhELyMMWuHRdWAC7p3Hxtkhi-DHJd7N0ui4zwLYoKO-Bxy-SAN4kCH53INx0wg2PkdPe2kCvPhVT9CH11eb1Zts_e76ZnW5zhQjdZkx2fGCkp4BLXJKuqKtWduUbV-BbIscVFso6PpKtRV0lexU2ZSNKmlfMeAlVMUJOj34Tt7tZghRjDooMOk2cHMQtM7TYyqWk_9ASc3TUvzB9dUjdOtmb9MhgvKmYHXV8DJRZwdKeReCh15MXo_S7wUl4iEgkQISPwNK7MUjVukoo3Y2_Vubfym-aQP7v1uLy5vVb0V2UOgQ4fsfhfRfRcULzsTH22ux-bT5vH5_dyvuih9vS7Pi |
| CODEN | AICEAC |
| CitedBy_id | crossref_primary_10_1016_j_compchemeng_2019_03_035 crossref_primary_10_1002_aic_17195 crossref_primary_10_1016_j_apenergy_2019_114439 crossref_primary_10_1007_s11081_022_09775_8 crossref_primary_10_1016_j_compchemeng_2021_107443 crossref_primary_10_1080_02286203_2021_1983074 crossref_primary_10_1016_j_compchemeng_2019_05_004 crossref_primary_10_1061_JPSEA2_PSENG_1884 crossref_primary_10_1002_aic_16933 crossref_primary_10_3390_en10020246 crossref_primary_10_1002_aic_15804 crossref_primary_10_1016_j_jclepro_2020_123171 crossref_primary_10_1016_j_enconman_2019_04_001 crossref_primary_10_1016_j_compchemeng_2019_04_028 crossref_primary_10_1016_j_coche_2018_12_009 crossref_primary_10_1016_j_compchemeng_2023_108317 crossref_primary_10_1016_j_enconman_2018_12_023 crossref_primary_10_1016_j_apenergy_2021_117487 crossref_primary_10_1016_j_compchemeng_2017_04_023 crossref_primary_10_1007_s11081_017_9365_2 crossref_primary_10_1016_j_compchemeng_2024_108738 crossref_primary_10_1007_s11750_022_00635_3 crossref_primary_10_3390_pr5030034 crossref_primary_10_1016_j_cherd_2019_08_013 crossref_primary_10_3390_pr11113101 crossref_primary_10_3390_pr12112567 crossref_primary_10_1016_j_compchemeng_2017_03_006 crossref_primary_10_15302_J_FEM_2017049 crossref_primary_10_1016_j_compchemeng_2018_05_016 crossref_primary_10_1016_j_applthermaleng_2019_114622 crossref_primary_10_1016_j_compchemeng_2017_01_032 crossref_primary_10_3390_pr13041233 crossref_primary_10_1016_j_petrol_2022_110287 crossref_primary_10_1002_cite_201600114 crossref_primary_10_1007_s13202_022_01495_0 crossref_primary_10_1016_j_cie_2020_106479 crossref_primary_10_1016_j_petrol_2017_06_032 crossref_primary_10_23736_S0022_4707_24_15971_3 crossref_primary_10_1002_aic_15330 crossref_primary_10_1002_aic_17058 crossref_primary_10_1002_aic_16762 crossref_primary_10_1016_j_petrol_2017_07_026 crossref_primary_10_1002_aic_17435 |
| Cites_doi | 10.2307/1883722 10.1021/ie000755e 10.1016/j.energy.2014.09.076 10.1021/ie9906619 10.1016/S0167-188X(86)80025-8 10.1086/259293 10.1016/0098-1354(90)87085-4 10.1002/aic.14405 10.1021/ie2030486 10.1021/ie0513144 10.1002/aic.14526 10.1002/aic.11385 10.1016/j.compchemeng.2003.10.005 10.1007/BF02592064 10.1021/acssuschemeng.5b00122 10.1021/ie970532x 10.1002/aic.14804 10.1016/j.compchemeng.2013.04.002 10.1023/A:1025154322278 10.1016/j.compchemeng.2013.05.022 10.1016/j.compchemeng.2014.02.005 10.1002/aic.14088 10.1016/0098-1354(94)00123-5 |
| ContentType | Journal Article |
| Copyright | 2016 American Institute of Chemical Engineers |
| Copyright_xml | – notice: 2016 American Institute of Chemical Engineers |
| DBID | BSCLL AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
| DOI | 10.1002/aic.15174 |
| DatabaseName | Istex CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Technology Research Database Environment Abstracts Solid State and Superconductivity Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1547-5905 |
| EndPage | 2323 |
| ExternalDocumentID | 4076793671 10_1002_aic_15174 AIC15174 ark_67375_WNG_TXTZLQVN_V |
| Genre | article |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHQN AAIHA AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJIA ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYN AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PHGZM PHGZT PQGLB PQQKQ PRG PROAC PTHSS PUEGO PYCSY Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 S0X SAMSI SUPJJ TAE TN5 TUS UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT 3V. AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RBB RWI UAO WRC WSB AAYXX AFFHD CITATION O8X 7ST 7U5 8FD C1K L7M SOI |
| ID | FETCH-LOGICAL-c5084-5ad7310f5e13210d3b85b94bf6eab32ecb3cedf6cb6ed6adc4949c41f65e74e63 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377274600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-1541 |
| IngestDate | Thu Oct 02 11:33:35 EDT 2025 Tue Oct 07 07:51:39 EDT 2025 Mon Nov 10 02:59:45 EST 2025 Sat Nov 29 07:20:19 EST 2025 Tue Nov 18 21:15:00 EST 2025 Wed Jan 22 17:06:55 EST 2025 Tue Sep 09 05:32:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5084-5ad7310f5e13210d3b85b94bf6eab32ecb3cedf6cb6ed6adc4949c41f65e74e63 |
| Notes | istex:C67FCC8DBE4B47CA3A1FE9FAE25C7742CC5F2A36 ArticleID:AIC15174 ark:/67375/WNG-TXTZLQVN-V ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1793586974 |
| PQPubID | 7879 |
| PageCount | 28 |
| ParticipantIDs | proquest_miscellaneous_1825476520 proquest_miscellaneous_1808708476 proquest_journals_1793586974 crossref_primary_10_1002_aic_15174 crossref_citationtrail_10_1002_aic_15174 wiley_primary_10_1002_aic_15174_AIC15174 istex_primary_ark_67375_WNG_TXTZLQVN_V |
| PublicationCentury | 2000 |
| PublicationDate | July 2016 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: July 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | AIChE journal |
| PublicationTitleAlternate | AIChE J |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd American Institute of Chemical Engineers |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: American Institute of Chemical Engineers |
| References | Quesada I, Grossmann IE. Global optimization of bilinear process networks with multicomponent flows. Comp Chem Eng. 1995;19(12):1219-1242. Gao J, You F. Shale gas supply chain design and operations toward better economic and life cycle environmental performance: MINLP model and global optimization algorithm. ACS Sustain Chem Eng. 2015;3:1282-1291. van den Heever SA, Grossmann IE. An iterative aggregation/disaggregation approach for the solution of a mixed-integer nonlinear oilfield infrastructure planning model. Ind Eng Chem Res. 2000;39(6):1955-1971. Yang L, Grossmann IE, Mauter MS. Investment optimization model for freshwater acquisition and wastewater handling in shale gas production. AIChE J. 2015;61(6):1770-1782. Moore FT. Economies of scale: some statistical evidence. Quarter J Econ. 1959;73:232-245. van den Heever SA, Grossmann IE, Vasantharajan S, Edwards K. A Lagrangean decomposition heuristic for the design and planning of offshore hydrocarbon field infastructures with complex economic objectives. Ind Eng Chem Res. 2001;40(13):2857-2875. Viswanathan J, Grossmann IE. A combined penalty function and outer approximation method for MINLP optimization. Comp Chem Eng. 1990;14:769-782. Cafaro DC, Grossmann IE. Strategic planning, design, and development of the shale gas supply chain network. AIChE J. 2014;60:2122-2142. Tribe MA, Alpine RLW. Scale economies and the "0.6 rule". Eng Cost Prod Econ. 1986;10(4):271-278. Park M, Park S, Mele FD, Grossmann IE. Modeling of purchase and sales contracts in supply chain optimization. Ind Eng Chem Res. 2006;45(14):5013-5026. Knudsen BR, Whitson CH, Foss B. Shale-gas scheduling for natural-gas supply in electric power production. Energy. 2014;78:165-182. Yang L, Grossmann IE, Manno J. Optimization models for shale gas water management. AIChE J. 2014;60(10):3490-3501. Goel V, Grossmann IE. A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves. Comp Chem Eng. 2004;28(8):1409-1429. Knudsen BR, Grossmann IE, Foss B, Conn AR. Lagrangian relaxation based decomposition for well scheduling in shale-gas systems. Comp Chem Eng. 2014; 63:234-249. Castro PM, Grossmann IE. Generalized disjunctive programming as a systematic modeling framework to derive scheduling formulations. Ind Eng Chem Res. 2012;51:5781-5792. Tavallali MS, Karimi IA, Teo KM, Baxendale D, Ayatollahi S. Optimal producer well placement and production planning in an oil reservoir. Computers & Chemical Engineering. 2013; 55:109-125. Grossmann IE, Trespalacios F. Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AIChE J. 2013;59(9):3276-3295. Duran MA, Grossmann IE. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Prog. 1986;36(3):307-339. Goellner JF. Expanding the shale gas infrastructure. Chem Eng Prog. 2012;108(8):49-52. Haldi J, Whitcomb D. Economies of scale in industrial plants. J Polit Econ. 1967;373-385. Iyer RR, Grossmann IE, Vasantharajan S, Cullick AS. Optimal planning and scheduling of offshore oil field infrastructure investment and operations. Ind Eng Chem Res. 1998;37(4):1380-1397. Selot A, Kuok LK, Robinson M, Barton PI. A short-term operational planning model for natural gas production systems. AIChE J. 2008;54(2):495-515. Grossmann IE, Lee S. Generalized convex disjunctive programming: nonlinear convex hull relaxation. Comp Optim Appl. 2003;26:466-486. Knudsen BR, Foss B. Shut-in based production optimization of shale-gas systems. Comp Chem Eng. 2013;58:54-67. 1998; 37 1959; 73 2013; 59 2013; 58 2000; 39 2015; 3 1990; 14 2013; 55 2006; 45 1986; 10 2004; 28 2015; 61 1986; 36 2003; 26 2008; 54 1995; 19 2014; 63 2014; 60 2001; 40 2014; 78 2012; 108 1967 2012; 51 e_1_2_16_26_1 e_1_2_16_25_1 e_1_2_16_24_1 e_1_2_16_23_1 e_1_2_16_29_1 e_1_2_16_28_1 e_1_2_16_27_1 Goellner JF. (e_1_2_16_3_1) 2012; 108 e_1_2_16_2_1 e_1_2_16_22_1 e_1_2_16_21_1 e_1_2_16_20_1 e_1_2_16_15_1 e_1_2_16_14_1 e_1_2_16_13_1 e_1_2_16_12_1 e_1_2_16_19_1 e_1_2_16_18_1 e_1_2_16_17_1 e_1_2_16_16_1 e_1_2_16_11_1 e_1_2_16_10_1 e_1_2_16_8_1 e_1_2_16_7_1 e_1_2_16_9_1 e_1_2_16_4_1 e_1_2_16_6_1 e_1_2_16_5_1 |
| References_xml | – reference: Grossmann IE, Lee S. Generalized convex disjunctive programming: nonlinear convex hull relaxation. Comp Optim Appl. 2003;26:466-486. – reference: Castro PM, Grossmann IE. Generalized disjunctive programming as a systematic modeling framework to derive scheduling formulations. Ind Eng Chem Res. 2012;51:5781-5792. – reference: Haldi J, Whitcomb D. Economies of scale in industrial plants. J Polit Econ. 1967;373-385. – reference: Knudsen BR, Whitson CH, Foss B. Shale-gas scheduling for natural-gas supply in electric power production. Energy. 2014;78:165-182. – reference: Knudsen BR, Grossmann IE, Foss B, Conn AR. Lagrangian relaxation based decomposition for well scheduling in shale-gas systems. Comp Chem Eng. 2014; 63:234-249. – reference: Yang L, Grossmann IE, Mauter MS. Investment optimization model for freshwater acquisition and wastewater handling in shale gas production. AIChE J. 2015;61(6):1770-1782. – reference: van den Heever SA, Grossmann IE. An iterative aggregation/disaggregation approach for the solution of a mixed-integer nonlinear oilfield infrastructure planning model. Ind Eng Chem Res. 2000;39(6):1955-1971. – reference: Viswanathan J, Grossmann IE. A combined penalty function and outer approximation method for MINLP optimization. Comp Chem Eng. 1990;14:769-782. – reference: Iyer RR, Grossmann IE, Vasantharajan S, Cullick AS. Optimal planning and scheduling of offshore oil field infrastructure investment and operations. Ind Eng Chem Res. 1998;37(4):1380-1397. – reference: Grossmann IE, Trespalacios F. Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AIChE J. 2013;59(9):3276-3295. – reference: Quesada I, Grossmann IE. Global optimization of bilinear process networks with multicomponent flows. Comp Chem Eng. 1995;19(12):1219-1242. – reference: Park M, Park S, Mele FD, Grossmann IE. Modeling of purchase and sales contracts in supply chain optimization. Ind Eng Chem Res. 2006;45(14):5013-5026. – reference: Moore FT. Economies of scale: some statistical evidence. Quarter J Econ. 1959;73:232-245. – reference: Goellner JF. Expanding the shale gas infrastructure. Chem Eng Prog. 2012;108(8):49-52. – reference: Selot A, Kuok LK, Robinson M, Barton PI. A short-term operational planning model for natural gas production systems. AIChE J. 2008;54(2):495-515. – reference: Knudsen BR, Foss B. Shut-in based production optimization of shale-gas systems. Comp Chem Eng. 2013;58:54-67. – reference: Gao J, You F. Shale gas supply chain design and operations toward better economic and life cycle environmental performance: MINLP model and global optimization algorithm. ACS Sustain Chem Eng. 2015;3:1282-1291. – reference: Cafaro DC, Grossmann IE. Strategic planning, design, and development of the shale gas supply chain network. AIChE J. 2014;60:2122-2142. – reference: Tribe MA, Alpine RLW. Scale economies and the "0.6 rule". Eng Cost Prod Econ. 1986;10(4):271-278. – reference: Yang L, Grossmann IE, Manno J. Optimization models for shale gas water management. AIChE J. 2014;60(10):3490-3501. – reference: Duran MA, Grossmann IE. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Prog. 1986;36(3):307-339. – reference: van den Heever SA, Grossmann IE, Vasantharajan S, Edwards K. A Lagrangean decomposition heuristic for the design and planning of offshore hydrocarbon field infastructures with complex economic objectives. Ind Eng Chem Res. 2001;40(13):2857-2875. – reference: Goel V, Grossmann IE. A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves. Comp Chem Eng. 2004;28(8):1409-1429. – reference: Tavallali MS, Karimi IA, Teo KM, Baxendale D, Ayatollahi S. Optimal producer well placement and production planning in an oil reservoir. Computers & Chemical Engineering. 2013; 55:109-125. – volume: 3 start-page: 1282 year: 2015 end-page: 1291 article-title: Shale gas supply chain design and operations toward better economic and life cycle environmental performance: MINLP model and global optimization algorithm publication-title: ACS Sustain Chem Eng. – volume: 10 start-page: 271 issue: 4 year: 1986 end-page: 278 article-title: Scale economies and the “0.6 rule publication-title: Eng Cost Prod Econ. – volume: 51 start-page: 5781 year: 2012 end-page: 5792 article-title: Generalized disjunctive programming as a systematic modeling framework to derive scheduling formulations publication-title: Ind Eng Chem Res. – volume: 108 start-page: 49 issue: 8 year: 2012 end-page: 52 article-title: Expanding the shale gas infrastructure publication-title: Chem Eng Prog. – volume: 39 start-page: 1955 issue: 6 year: 2000 end-page: 1971 article-title: An iterative aggregation/disaggregation approach for the solution of a mixed‐integer nonlinear oilfield infrastructure planning model publication-title: Ind Eng Chem Res. – volume: 54 start-page: 495 issue: 2 year: 2008 end-page: 515 article-title: A short‐term operational planning model for natural gas production systems publication-title: AIChE J. – volume: 78 start-page: 165 year: 2014 end-page: 182 article-title: Shale‐gas scheduling for natural‐gas supply in electric power production publication-title: Energy. – volume: 60 start-page: 2122 year: 2014 end-page: 2142 article-title: Strategic planning, design, and development of the shale gas supply chain network publication-title: AIChE J. – start-page: 373 year: 1967 end-page: 385 article-title: Economies of scale in industrial plants publication-title: J Polit Econ. – volume: 63 start-page: 234 year: 2014 end-page: 249 article-title: Lagrangian relaxation based decomposition for well scheduling in shale‐gas systems publication-title: Comp Chem Eng. – volume: 61 start-page: 1770 issue: 6 year: 2015 end-page: 1782 article-title: Investment optimization model for freshwater acquisition and wastewater handling in shale gas production publication-title: AIChE J. – volume: 36 start-page: 307 issue: 3 year: 1986 end-page: 339 article-title: An outer‐approximation algorithm for a class of mixed‐integer nonlinear programs publication-title: Math Prog. – volume: 45 start-page: 5013 issue: 14 year: 2006 end-page: 5026 article-title: Modeling of purchase and sales contracts in supply chain optimization publication-title: Ind Eng Chem Res. – volume: 14 start-page: 769 year: 1990 end-page: 782 article-title: A combined penalty function and outer approximation method for MINLP optimization publication-title: Comp Chem Eng. – volume: 40 start-page: 2857 issue: 13 year: 2001 end-page: 2875 article-title: A Lagrangean decomposition heuristic for the design and planning of offshore hydrocarbon field infastructures with complex economic objectives publication-title: Ind Eng Chem Res. – volume: 55 start-page: 109 year: 2013 end-page: 125 article-title: Optimal producer well placement and production planning in an oil reservoir publication-title: Computers & Chemical Engineering. – volume: 60 start-page: 3490 issue: 10 year: 2014 end-page: 3501 article-title: Optimization models for shale gas water management publication-title: AIChE J. – volume: 28 start-page: 1409 issue: 8 year: 2004 end-page: 1429 article-title: A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves publication-title: Comp Chem Eng. – volume: 37 start-page: 1380 issue: 4 year: 1998 end-page: 1397 article-title: Optimal planning and scheduling of offshore oil field infrastructure investment and operations publication-title: Ind Eng Chem Res. – volume: 58 start-page: 54 year: 2013 end-page: 67 article-title: Shut‐in based production optimization of shale‐gas systems publication-title: Comp Chem Eng. – volume: 26 start-page: 466 year: 2003 end-page: 486 article-title: Generalized convex disjunctive programming: nonlinear convex hull relaxation publication-title: Comp Optim Appl. – volume: 19 start-page: 1219 issue: 12 year: 1995 end-page: 1242 article-title: Global optimization of bilinear process networks with multicomponent flows publication-title: Comp Chem Eng. – volume: 59 start-page: 3276 issue: 9 year: 2013 end-page: 3295 article-title: Systematic modeling of discrete‐continuous optimization models through generalized disjunctive programming publication-title: AIChE J. – volume: 73 start-page: 232 year: 1959 end-page: 245 article-title: Economies of scale: some statistical evidence publication-title: Quarter J Econ. – ident: e_1_2_16_21_1 doi: 10.2307/1883722 – ident: e_1_2_16_7_1 doi: 10.1021/ie000755e – ident: e_1_2_16_4_1 – ident: e_1_2_16_13_1 doi: 10.1016/j.energy.2014.09.076 – ident: e_1_2_16_6_1 doi: 10.1021/ie9906619 – ident: e_1_2_16_2_1 – ident: e_1_2_16_23_1 doi: 10.1016/S0167-188X(86)80025-8 – ident: e_1_2_16_22_1 doi: 10.1086/259293 – ident: e_1_2_16_27_1 doi: 10.1016/0098-1354(90)87085-4 – ident: e_1_2_16_16_1 doi: 10.1002/aic.14405 – ident: e_1_2_16_29_1 doi: 10.1021/ie2030486 – ident: e_1_2_16_19_1 doi: 10.1021/ie0513144 – ident: e_1_2_16_14_1 doi: 10.1002/aic.14526 – ident: e_1_2_16_9_1 doi: 10.1002/aic.11385 – ident: e_1_2_16_8_1 doi: 10.1016/j.compchemeng.2003.10.005 – ident: e_1_2_16_26_1 doi: 10.1007/BF02592064 – volume: 108 start-page: 49 issue: 8 year: 2012 ident: e_1_2_16_3_1 article-title: Expanding the shale gas infrastructure publication-title: Chem Eng Prog. – ident: e_1_2_16_17_1 doi: 10.1021/acssuschemeng.5b00122 – ident: e_1_2_16_5_1 doi: 10.1021/ie970532x – ident: e_1_2_16_15_1 doi: 10.1002/aic.14804 – ident: e_1_2_16_20_1 – ident: e_1_2_16_10_1 doi: 10.1016/j.compchemeng.2013.04.002 – ident: e_1_2_16_28_1 doi: 10.1023/A:1025154322278 – ident: e_1_2_16_11_1 doi: 10.1016/j.compchemeng.2013.05.022 – ident: e_1_2_16_12_1 doi: 10.1016/j.compchemeng.2014.02.005 – ident: e_1_2_16_24_1 – ident: e_1_2_16_18_1 doi: 10.1002/aic.14088 – ident: e_1_2_16_25_1 doi: 10.1016/0098-1354(94)00123-5 |
| SSID | ssj0012782 |
| Score | 2.4116647 |
| Snippet | In this work we address the long‐term, quality‐sensitive shale gas development problem. This problem involves planning, design, and strategic decisions such as... In this work we address the long-term, quality-sensitive shale gas development problem. This problem involves planning, design, and strategic decisions such as... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2296 |
| SubjectTerms | Chemical engineering Chemical engineers Decisions Design engineering Development strategies Mathematical models mixed-integer programming Natural gas exploration Nonlinear programming Oil shale Petroleum engineering planning scheduling Shale gas Shales Strategy |
| Title | Multi-period planning, design, and strategic models for long-term, quality-sensitive shale gas development |
| URI | https://api.istex.fr/ark:/67375/WNG-TXTZLQVN-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.15174 https://www.proquest.com/docview/1793586974 https://www.proquest.com/docview/1808708476 https://www.proquest.com/docview/1825476520 |
| Volume | 62 |
| WOSCitedRecordID | wos000377274600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXQ5w4I1YKMgghDhsaF52HHGqCgtI1QrQtqy4WH6lVFTZ1aZFcOMn8Bv5Jcw42bSVACFxS5Rx5Niemc_xzDcAjxPpM-l4HBlEy1FeiSqShuvIZrxMqlSgS5Sh2EQxncr5vHy7Ac_XuTAtP0T_w400I9hrUnBtmq1T0lB9aJ8lxLN8AYYprtt8AMMX7yd7u_0hQlrIliwcd8yIFJI1sVCcbvWNz7mjIY3s13NY8yxiDS5ncvW_OnsNrnRIk223S-M6bPj6Blw-wz94E5Yh_fbn9x9Ed7xwbNlVMBozFwI7xkzXjjUdga1loWxOwxDnsqNFfYANybCPWZuZ-Q3vG4qHJwvKmk_oetiBbpg7jUu6BXuTl7Od11FXgiGyiNzyiGtXIACsuE8o2cdlRnJT5qYSXpss9dZk1rtKWCO8E9pZIruxeVIJ7ovci-w2DOpF7e8AoyrXwseZTnOBMlVJmzmN64Fr6V0uR_B0PRPKdvzkVCbjSLXMyqnCQVRhEEfwqBddtqQcvxN6Eqazl9CrzxTFVnD1YfpKzeazj7vv9qdqfwSb6_lWnQI3iuwWl6Kk9zzsH6Pq0XmKrv3iBGVkjNYO3bv4mwzuwAvB0xi_L6yQP_dYbb_ZCRd3_130HlxCCCfaAOJNGByvTvx9uGi_HB82qwedRvwCV_UR_w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXSTgwBuxUMAghDhsaF52HIlLVVhasawAbcuKi-XYTqmosqtNi-DGT-A38kuYcbJpKwFC4pYo4yix5_HZHn8D8DiSLpGWh0GBaDlIS1EGsuA6MAnPozIWGBKlLzaRTSZyNsvfrsHz1VmYhh-iW3Ajy_D-mgycFqQ3TlhD9YF5FhHR8jnop6hGvAf9F-9Hu-NuFyHOZMMWjlNmhArRilkojDe6xmfiUZ-69usZsHkasvqYM7ryf197FS63WJNtNspxDdZcdR0unWIgvAELfwD35_cfRHg8t2zR1jAaMutTO4ZMV5bVLYWtYb5wTs0Q6bLDebWPDcm1D1lzNvMb3teUEU8-lNWfMPiwfV0ze5KZdBN2Ry-nW9tBW4QhMIjd0oBrmyEELLmL6LiPTQrJizwtSuF0kcTOFIlxthSmEM4KbQ3R3Zg0KgV3WepEcgt61bxyt4FRnWvhwkTHqUCZMqfpnEaN4Fo6m8oBPF0NhTItQzkVyjhUDbdyrLATle_EATzqRBcNLcfvhJ748ewk9PIz5bFlXH2YvFLT2fTj-N3eRO0NYH014Ko14VqR5-JS5PSeh91jND7aUdGVmx-jjAzR32GAF3-TwTl4Jngc4v95FfnzF6vNnS1_ceffRR_Ahe3pm7Ea70xe34WLCOhEk068Dr2j5bG7B-fNl6ODenm_NY9fqukV7w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLkJw4FnULQUMQojDps3LjiNxqVoWKlZRQduy4mI5frQVVXa1aSu48RP4jfwSxk42bSVASNwSZRw5tmfmczzzDcCLiJuEaxoGJaLlILXMBrykMlAJzSMbM3SJ3BebyIqCTyb53hK8XuTCNPwQ3Q83pxneXjsFNzNtNy9YQ-Wx2ogc0fI16KU0Z6iWvZ2Pw_1Rd4oQZ7xhC8ctM0KFaMEsFMabXeMr_qjnhvbrFbB5GbJ6nzO883-9vQu3W6xJtprFcQ-WTHUfbl1iIHwAM5-A-_P7D0d4PNVk1tYwGhDtQzsGRFaa1C2FrSK-cE5NEOmSk2l1iA2daR-QJjfzG97XLiLe2VBSH6HzIYeyJvoiMmkF9odvxtvvgrYIQ6AQu6UBlTpDCGipiVy6j05KTss8LS0zskxio8pEGW2ZKpnRTGrl6G5UGllGTZYaljyE5WpamVUgrs41M2Ei45ShjM3ddk7iiqCSG53yPrxaTIVQLUO5K5RxIhpu5VjgIAo_iH143onOGlqO3wm99PPZScj5FxfHllHxqXgrxpPx59GHg0Ic9GF9MeGiVeFaOMtFOcvde551j1H53ImKrMz0DGV4iPYOHTz7mwzuwTNG4xC_zy-RP_dYbO1u-4u1fxd9Cjf2doZitFu8fwQ3Ec-xJpp4HZZP52fmMVxX56fH9fxJqx2_ABeAFWo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90period+planning%2C+design%2C+and+strategic+models+for+long%E2%80%90term%2C+quality%E2%80%90sensitive+shale+gas+development&rft.jtitle=AIChE+journal&rft.au=Drouven%2C+Markus+G.&rft.au=Grossmann%2C+Ignacio+E.&rft.date=2016-07-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=62&rft.issue=7&rft.spage=2296&rft.epage=2323&rft_id=info:doi/10.1002%2Faic.15174&rft.externalDBID=10.1002%252Faic.15174&rft.externalDocID=AIC15174 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |