Recognizing apple leaf diseases using a novel parallel real‐time processing framework based on MASK RCNN and transfer learning: An application for smart agriculture

Effective recognition of fruit leaf diseases has a substantial impact on agro‐based economies. Several fruit diseases exist that badly impact the yield and quality of fruits. A naked‐eye inspection of an infected region is a difficult and tedious process; therefore, it is required to have an automat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET image processing Jg. 15; H. 10; S. 2157 - 2168
Hauptverfasser: Rehman, Zia ur, Khan, Muhammad Attique, Ahmed, Fawad, Damaševičius, Robertas, Naqvi, Syed Rameez, Nisar, Wasif, Javed, Kashif
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Wiley 01.08.2021
Schlagworte:
ISSN:1751-9659, 1751-9667
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Effective recognition of fruit leaf diseases has a substantial impact on agro‐based economies. Several fruit diseases exist that badly impact the yield and quality of fruits. A naked‐eye inspection of an infected region is a difficult and tedious process; therefore, it is required to have an automated system for accurate recognition of the disease. It is widely understood that low contrast images affect identification and classification accuracy. Here a parallel framework for real‐time apple leaf disease identification and classification is proposed. Initially, a hybrid contrast stretching method to increase the visual impact of an image is proposed and then the MASK RCNN is configured to detect the infected regions. In parallel, the enhanced images are utilized for training a pre‐trained CNN model for features extraction. The Kapur's entropy along MSVM (EaMSVM) approach‐based selection method is developed to select strong features for the final classification. The Plant Village dataset is employed for the experimental process and achieve the best accuracy of 96.6% on the ensemble subspace discriminant analysis (ESDA) classifier. A comparison with the previous techniques illustrates the superiority of the proposed framework.
AbstractList Abstract Effective recognition of fruit leaf diseases has a substantial impact on agro‐based economies. Several fruit diseases exist that badly impact the yield and quality of fruits. A naked‐eye inspection of an infected region is a difficult and tedious process; therefore, it is required to have an automated system for accurate recognition of the disease. It is widely understood that low contrast images affect identification and classification accuracy. Here a parallel framework for real‐time apple leaf disease identification and classification is proposed. Initially, a hybrid contrast stretching method to increase the visual impact of an image is proposed and then the MASK RCNN is configured to detect the infected regions. In parallel, the enhanced images are utilized for training a pre‐trained CNN model for features extraction. The Kapur's entropy along MSVM (EaMSVM) approach‐based selection method is developed to select strong features for the final classification. The Plant Village dataset is employed for the experimental process and achieve the best accuracy of 96.6% on the ensemble subspace discriminant analysis (ESDA) classifier. A comparison with the previous techniques illustrates the superiority of the proposed framework.
Effective recognition of fruit leaf diseases has a substantial impact on agro‐based economies. Several fruit diseases exist that badly impact the yield and quality of fruits. A naked‐eye inspection of an infected region is a difficult and tedious process; therefore, it is required to have an automated system for accurate recognition of the disease. It is widely understood that low contrast images affect identification and classification accuracy. Here a parallel framework for real‐time apple leaf disease identification and classification is proposed. Initially, a hybrid contrast stretching method to increase the visual impact of an image is proposed and then the MASK RCNN is configured to detect the infected regions. In parallel, the enhanced images are utilized for training a pre‐trained CNN model for features extraction. The Kapur's entropy along MSVM (EaMSVM) approach‐based selection method is developed to select strong features for the final classification. The Plant Village dataset is employed for the experimental process and achieve the best accuracy of 96.6% on the ensemble subspace discriminant analysis (ESDA) classifier. A comparison with the previous techniques illustrates the superiority of the proposed framework.
Author Rehman, Zia ur
Ahmed, Fawad
Naqvi, Syed Rameez
Damaševičius, Robertas
Javed, Kashif
Khan, Muhammad Attique
Nisar, Wasif
Author_xml – sequence: 1
  givenname: Zia ur
  surname: Rehman
  fullname: Rehman, Zia ur
  organization: HITEC University Taxila
– sequence: 2
  givenname: Muhammad Attique
  surname: Khan
  fullname: Khan, Muhammad Attique
  organization: HITEC University Taxila
– sequence: 3
  givenname: Fawad
  surname: Ahmed
  fullname: Ahmed, Fawad
  organization: HITEC University Taxila
– sequence: 4
  givenname: Robertas
  surname: Damaševičius
  fullname: Damaševičius, Robertas
  email: robertas.damasevicius@polsl.pl
  organization: Silesian University of Technology
– sequence: 5
  givenname: Syed Rameez
  surname: Naqvi
  fullname: Naqvi, Syed Rameez
  organization: COMSATS University Islamabad
– sequence: 6
  givenname: Wasif
  surname: Nisar
  fullname: Nisar, Wasif
  organization: COMSATS University Islamabad
– sequence: 7
  givenname: Kashif
  surname: Javed
  fullname: Javed, Kashif
  organization: SMME Nust
BookMark eNp9Uc1uEzEQtlCRaAsXnsBnpBT_7XrNLYr4iSgFBThbXu84cnHslb2hKiceoU_RB-NJcDbAASFOHs18f-M5QycxRUDoKSUXlAj13I-ZXVBGO_4AnVLZ0IVqW3nyp27UI3RWyjUhjSJdc4ruN2DTNvpvPm6xGccAOIBxePAFTIGC92We4Ji-QsCjySaEWmQw4cf3u8nvAI85WSgzzmWzg5uUv-C-sgecIn63_PgWb1ZXV9jEAU_ZxOIgH1xyrJQXeBlnY2_N5CvepYzLzuQJm232dh-mfYbH6KEzocCTX-85-vzq5afVm8Xl-9fr1fJyYRvS8YV0wrWddZJCP9RG7zhVkrVcMCIM4YpQxiXrgUrHSF_nqgUl3UBdqwQofo7WR90hmWs9Zl-D3OpkvJ4bKW91TeZtAM2JoNAKQi3hQnXQVdWWVxMnBauuVYsctWxOpWRw2vpp3rF-gg-aEn24mT7cTM83q5Rnf1F-R_gnmB7BNz7A7X-Qev1hw46cn78Wq8E
CitedBy_id crossref_primary_10_32604_cmc_2023_032005
crossref_primary_10_1016_j_compag_2022_106864
crossref_primary_10_3390_agronomy13061503
crossref_primary_10_3390_agronomy15051246
crossref_primary_10_3390_ai6030052
crossref_primary_10_1007_s11042_023_14980_3
crossref_primary_10_1109_ACCESS_2022_3216285
crossref_primary_10_1109_ACCESS_2023_3306423
crossref_primary_10_32604_cmc_2023_028743
crossref_primary_10_1155_2022_5102290
crossref_primary_10_1016_j_ijpe_2024_109204
crossref_primary_10_2478_prolas_2022_0074
crossref_primary_10_1016_j_compag_2025_110128
crossref_primary_10_1038_s41598_025_04479_2
crossref_primary_10_1016_j_microc_2023_109790
crossref_primary_10_3390_app12020593
crossref_primary_10_1177_03611981221105066
crossref_primary_10_1007_s11042_023_17695_7
crossref_primary_10_1049_ipr2_12449
crossref_primary_10_1002_cpe_7946
crossref_primary_10_1007_s11042_023_17463_7
crossref_primary_10_1016_j_jksuci_2022_07_004
crossref_primary_10_1109_ACCESS_2025_3569213
crossref_primary_10_1016_j_compag_2022_106703
crossref_primary_10_1007_s10462_023_10628_8
crossref_primary_10_1007_s11042_023_16238_4
crossref_primary_10_1109_ACCESS_2022_3201338
crossref_primary_10_1080_0954898X_2024_2435492
crossref_primary_10_1109_ACCESS_2025_3564355
crossref_primary_10_1039_D5FB00011D
crossref_primary_10_32604_cmc_2024_055038
crossref_primary_10_1007_s10341_024_01239_w
crossref_primary_10_1016_j_bspc_2023_105038
crossref_primary_10_1109_JSTARS_2023_3339297
crossref_primary_10_3390_s21113830
crossref_primary_10_4018_JCIT_296721
crossref_primary_10_1016_j_compag_2025_110531
crossref_primary_10_1109_ACCESS_2021_3134196
crossref_primary_10_3390_agriculture13020240
crossref_primary_10_1007_s00521_024_10816_9
crossref_primary_10_1016_j_eswa_2023_122807
crossref_primary_10_1371_journal_pone_0322750
crossref_primary_10_1007_s11042_024_18963_w
crossref_primary_10_1155_2022_2948506
crossref_primary_10_1007_s42979_023_02076_6
crossref_primary_10_1016_j_heliyon_2024_e29035
crossref_primary_10_1016_j_ins_2021_12_071
crossref_primary_10_1109_ACCESS_2025_3536701
crossref_primary_10_1016_j_engappai_2023_107193
crossref_primary_10_1049_ipr2_12855
crossref_primary_10_1002_agj2_21341
crossref_primary_10_1016_j_engappai_2022_105210
crossref_primary_10_1109_TCBB_2022_3191854
crossref_primary_10_1007_s12229_024_09299_z
crossref_primary_10_1080_03235408_2024_2347966
crossref_primary_10_1111_exsy_12746
crossref_primary_10_1111_exsy_12982
crossref_primary_10_1002_cpe_70276
crossref_primary_10_1007_s10723_024_09766_2
crossref_primary_10_20965_jaciii_2023_p0035
crossref_primary_10_1109_ACCESS_2025_3596451
crossref_primary_10_3390_s22031211
crossref_primary_10_1155_2022_3452413
crossref_primary_10_3390_drones7020097
crossref_primary_10_1371_journal_pone_0286732
crossref_primary_10_3389_fpls_2022_927424
crossref_primary_10_3390_plants12152806
crossref_primary_10_1109_ACCESS_2024_3453664
crossref_primary_10_32604_cmc_2023_035183
crossref_primary_10_1142_S0219467825500159
crossref_primary_10_1016_j_asoc_2021_107537
crossref_primary_10_1002_cpe_7674
crossref_primary_10_1109_ACCESS_2022_3232917
crossref_primary_10_1109_ACCESS_2022_3187203
crossref_primary_10_1109_ACCESS_2025_3583793
crossref_primary_10_3390_diagnostics11050811
crossref_primary_10_3390_diagnostics11071212
crossref_primary_10_1007_s41348_022_00601_y
crossref_primary_10_1109_JSTARS_2021_3109900
crossref_primary_10_32604_cmc_2023_035324
crossref_primary_10_1109_JSTARS_2024_3494258
crossref_primary_10_1002_cpe_7357
crossref_primary_10_1016_j_dsp_2024_104770
crossref_primary_10_1038_s41598_025_85486_1
crossref_primary_10_1007_s11042_024_19047_5
crossref_primary_10_1109_ACCESS_2022_3232751
crossref_primary_10_1155_2021_6868592
crossref_primary_10_1007_s11760_023_02612_0
crossref_primary_10_1016_j_scitotenv_2022_158103
crossref_primary_10_3390_s22218311
crossref_primary_10_3390_app12167960
crossref_primary_10_3390_s23073752
Cites_doi 10.3390/app9224898
10.13031/trans.11700
10.1109/ICMLA.2016.0178
10.1016/j.compag.2018.07.032
10.1016/j.dib.2019.104340
10.1016/j.micpro.2021.104027
10.1109/CDMA47397.2020.00031
10.1007/s11263-013-0620-5
10.1016/j.suscom.2019.08.002
10.3390/su12125037
10.32604/cmc.2020.012945
10.1016/j.compag.2018.04.023
10.1016/j.compind.2018.02.005
10.1002/jemt.23320
10.1007/s12571-012-0200-5
10.1007/978-3-319-59063-9_44
10.1111/exsy.12746
10.1109/ICPR.2006.479
10.1111/exsy.12569
10.1007/s11760-015-0821-1
10.1155/2017/2917536
10.1007/s11042-020-08726-8
10.1016/j.compag.2018.01.009
10.1016/j.compag.2018.10.013
10.3390/sym10010011
10.1109/ACCESS.2019.2908040
10.1007/978-3-319-27863-6_59
10.32604/cmc.2020.012257
10.1007/s10658-016-1007-6
10.1109/ICIIP.2013.6707647
10.1109/CVPR.2009.5206848
10.1155/2017/7361042
10.1109/ACCESS.2020.3034217
10.3389/fpls.2016.01419
10.1016/j.neunet.2017.10.009
10.1016/j.measurement.2014.05.033
10.1109/CVPR.2017.106
10.1109/ACCESS.2019.2914929
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.12183
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Agriculture
EISSN 1751-9667
EndPage 2168
ExternalDocumentID oai_doaj_org_article_3041e6401c03498e8be163a03f742197
10_1049_ipr2_12183
IPR212183
Genre article
GroupedDBID .DC
0R~
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OCL
OK1
P2P
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
ZL0
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c5083-7f4f68cf71ebd083bf31972634204a039012372be17f20b3bf96e97fd1f694e93
IEDL.DBID 24P
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000631687600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Fri Oct 03 12:51:16 EDT 2025
Wed Oct 29 21:26:26 EDT 2025
Tue Nov 18 21:51:40 EST 2025
Wed Jan 22 16:29:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5083-7f4f68cf71ebd083bf31972634204a039012372be17f20b3bf96e97fd1f694e93
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12183
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_3041e6401c03498e8be163a03f742197
crossref_citationtrail_10_1049_ipr2_12183
crossref_primary_10_1049_ipr2_12183
wiley_primary_10_1049_ipr2_12183_IPR212183
PublicationCentury 2000
PublicationDate August 2021
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2021
Publisher Wiley
Publisher_xml – name: Wiley
References 2019; 7
2019; 9
2017; 60
2021; 66
2012
2017; 2017
2018; 145
2013; 104
2016; 10
2009
2006
2020; 79
2020; 12
2016; 13
2018; 24
2018; 153
2020; 8
2020; 7
2018; 155
2016; 7
2019; 82
2018; 150
2021
2020
2019; 24
2017; 10
2019; 26
2019
2017
2016
2015
2017; 10245
2013
2018; 98
2018; 10
2017; 147
2014; 55
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_46_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
e_1_2_5_42_1
Chuanlei Z. (e_1_2_5_7_1) 2017; 10
e_1_2_5_20_1
e_1_2_5_41_1
Khan M.A. (e_1_2_5_34_1) 2019
Wang G. (e_1_2_5_47_1) 2017; 2017
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_36_1
Akiba T. (e_1_2_5_40_1) 2017
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
Sun Y. (e_1_2_5_23_1) 2017; 2017
Malūkas U. (e_1_2_5_26_1) 2018; 24
e_1_2_5_35_1
e_1_2_5_6_1
Capizzi G. (e_1_2_5_11_1) 2016; 13
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
Oyewola D.O. (e_1_2_5_4_1) 2020; 7
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Jaderberg M. (e_1_2_5_39_1) 2015
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 66
  start-page: 1949
  year: 2021
  end-page: 1962
  article-title: Deep learning‐based classification of fruit diseases: An application for precision agriculture
  publication-title: CMC‐Computers Materials & Continua
– start-page: 248
  year: 2009
  end-page: 255
  article-title: Imagenet: A large‐scale hierarchical image database
– volume: 155
  start-page: 220
  year: 2018
  end-page: 236
  article-title: CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features
  publication-title: Comput. Electron. Agric.
– volume: 82
  start-page: 1542
  year: 2019
  end-page: 1556
  article-title: Intelligent microscopic approach for identification and recognition of citrus deformities
  publication-title: Microsc. Res. Tech.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 8
  article-title: Automatic image‐based plant disease severity estimation using deep learning
  publication-title: Comput. Intell. Neurosci.
– volume: 98
  start-page: 23
  year: 2018
  end-page: 33
  article-title: Visual features based boosted classification of weeds for real‐time selective herbicide sprayer systems
  publication-title: Comput. Ind.
– start-page: 521
  year: 2013
  end-page: 526
  article-title: Image processing for smart farming: Detection of disease and fruit grading
– year: 2019
  article-title: Skin lesion segmentation and classification: A unified framework of deep neural network features fusion and selection
  publication-title: Expert Systems
– start-page: 2117
  year: 2017
  end-page: 2125
  article-title: Feature pyramid networks for object detection
– start-page: 850
  year: 2006
  end-page: 855
  article-title: Efficient non‐maximum suppression
– volume: 24
  start-page: 475
  issue: 4
  year: 2018
  end-page: 487
  article-title: Real time path finding for assisted living using deep learning
  publication-title: Journal of Universal Computer Science
– volume: 55
  start-page: 512
  year: 2014
  end-page: 519
  article-title: Potential of radial basis function‐based support vector regression for apple disease detection
  publication-title: Measurement
– volume: 7
  start-page: 1419
  year: 2016
  article-title: Using deep learning for image‐based plant disease detection
  publication-title: Front. Plant Sci.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 6
  article-title: Deep learning for plant identification in natural environment
  publication-title: Comput. Intell. and Neuroscience
– volume: 12
  start-page: 5037
  year: 2020
  article-title: A sustainable deep learning framework for object recognition using multi‐layers deep features fusion and selection
  publication-title: Sustainability
– volume: 60
  start-page: 303
  year: 2017
  end-page: 312
  article-title: Detection of apple marssonina blotch disease using particle swarm optimization
  publication-title: Trans. ASABE
– year: 2012
– volume: 10
  start-page: 74
  year: 2017
  end-page: 83
  article-title: Apple leaf disease identification using genetic algorithm and correlation based feature selection method
  publication-title: International Journal of Agricultural and Biol. Eng.
– start-page: 638
  year: 2015
  end-page: 645
  article-title: Basic study of automated diagnosis of viral plant diseases using convolutional neural networks
– volume: 10
  start-page: 819
  year: 2016
  end-page: 826
  article-title: Apple disease classification using color, texture and shape features from images
  publication-title: Signal, Image and Video Processing
– volume: 7
  issue: 2
  year: 2020
  article-title: Detecting cassava mosaic disease using a deep residual convolutional neural network with distinct block processing
  publication-title: PeerJ Computer Science
– volume: 13
  start-page: 45
  issue: 2
  year: 2016
  end-page: 60
  article-title: A novel neural networks‐based texture image processing algorithm for orange defects classification
  publication-title: International Journal of Computer Science and Applications
– volume: 150
  start-page: 220
  year: 2018
  end-page: 234
  article-title: Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection
  publication-title: Comput. Electron. Agric.
– year: 2021
  article-title: Recognition of apple leaf diseases using deep learning and variances‐controlled features reduction
  publication-title: Microprocess. Microsyst.
– volume: 7
  start-page: 46261
  year: 2019
  end-page: 46277
  article-title: An optimized method for segmentation and classification of apple diseases based on strong correlation and genetic algorithm based feature selection
  publication-title: IEEE Access
– volume: 26
  year: 2019
  article-title: A citrus fruits and leaves dataset for detection and classification of citrus diseases through machine learning
  publication-title: Data in Brief
– year: 2017
  publication-title: arXiv:1711.04325
– start-page: 989
  year: 2016
  end-page: 992
  article-title: Basic investigation on a robust and practical plant diagnostic system
– volume: 153
  start-page: 12
  year: 2018
  end-page: 32
  article-title: An automated detection and classification of citrus plant diseases using image processing techniques: A review
  publication-title: Comput. Electron. Agric.
– volume: 79
  start-page: 18627
  year: 2020
  end-page: 18656
  article-title: An automated system for cucumber leaf diseased spot detection and classification using improved saliency method and deep features selection
  publication-title: Multimedia Tools and Applications
– volume: 9
  start-page: 4898
  year: 2019
  article-title: Automated identification of wood veneer surface defects using faster region‐based convolutional neural network with data augmentation and transfer learning
  publication-title: Appl. Sci.
– volume: 24
  year: 2019
  article-title: Diagnosis and recognition of grape leaf diseases: An automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusion
  publication-title: Sustainable Computing: Informatics and Systems
– volume: 10245
  start-page: 497
  year: 2017
  end-page: 506
  article-title: The image classification with different types of image features
  publication-title: Lect. Notes Comput. Sci.
– start-page: 2017
  year: 2015
  end-page: 2025
– volume: 98
  start-page: 16
  year: 2018
  end-page: 33
  article-title: Adaptive neuro‐heuristic hybrid model for fruit peel defects detection
  publication-title: Neural Networks
– year: 2017
– year: 2020
  article-title: Entropy‐controlled deep features selection framework for grape leaf diseases recognition
  publication-title: Expert Systems
– volume: 7
  start-page: 59069
  year: 2019
  end-page: 59080
  article-title: Real‐time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks
  publication-title: IEEE Access
– volume: 66
  start-page: 2199
  year: 2021
  end-page: 2216
  article-title: Severity recognition of aloe vera diseases using AI in tensor flow domain
  publication-title: CMC‐Computers Materials & Continua
– volume: 147
  start-page: 349
  year: 2017
  end-page: 364
  article-title: A new automatic method for disease symptom segmentation in digital photographs of plant leaves
  publication-title: European Journal of Plant Pathol.
– volume: 10
  start-page: 11
  year: 2018
  article-title: Identification of apple leaf diseases based on deep convolutional neural networks
  publication-title: Symmetry
– year: 2021
  article-title: Cassava disease recognition from low quality images using enhanced data augmentation model and deep learning
  publication-title: Expert Systems
– volume: 104
  start-page: 154
  year: 2013
  end-page: 171
  article-title: Selective search for object recognition
  publication-title: Int. J. Comput. Vision
– volume: 145
  start-page: 311
  year: 2018
  end-page: 318
  article-title: Deep learning models for plant disease detection and diagnosis
  publication-title: Comput. Electron. Agric.
– start-page: 146
  year: 2020
  end-page: 151
  article-title: Advanced Machine Learning Algorithm Based System for Crops Leaf Diseases Recognition
– volume: 8
  start-page: 197969
  year: 2020
  end-page: 197981
  article-title: StomachNet: Optimal deep learning features fusion for stomach abnormalities classification
  publication-title: IEEE Access
– ident: e_1_2_5_18_1
  doi: 10.3390/app9224898
– ident: e_1_2_5_32_1
  doi: 10.13031/trans.11700
– ident: e_1_2_5_46_1
  doi: 10.1109/ICMLA.2016.0178
– ident: e_1_2_5_6_1
  doi: 10.1016/j.compag.2018.07.032
– ident: e_1_2_5_9_1
  doi: 10.1016/j.dib.2019.104340
– volume: 13
  start-page: 45
  issue: 2
  year: 2016
  ident: e_1_2_5_11_1
  article-title: A novel neural networks‐based texture image processing algorithm for orange defects classification
  publication-title: International Journal of Computer Science and Applications
– ident: e_1_2_5_14_1
  doi: 10.1016/j.micpro.2021.104027
– volume: 24
  start-page: 475
  issue: 4
  year: 2018
  ident: e_1_2_5_26_1
  article-title: Real time path finding for assisted living using deep learning
  publication-title: Journal of Universal Computer Science
– ident: e_1_2_5_15_1
  doi: 10.1109/CDMA47397.2020.00031
– volume: 10
  start-page: 74
  year: 2017
  ident: e_1_2_5_7_1
  article-title: Apple leaf disease identification using genetic algorithm and correlation based feature selection method
  publication-title: International Journal of Agricultural and Biol. Eng.
– ident: e_1_2_5_37_1
  doi: 10.1007/s11263-013-0620-5
– year: 2017
  ident: e_1_2_5_40_1
  publication-title: arXiv:1711.04325
– ident: e_1_2_5_10_1
  doi: 10.1016/j.suscom.2019.08.002
– ident: e_1_2_5_25_1
  doi: 10.3390/su12125037
– ident: e_1_2_5_27_1
  doi: 10.32604/cmc.2020.012945
– ident: e_1_2_5_5_1
  doi: 10.1016/j.compag.2018.04.023
– ident: e_1_2_5_13_1
  doi: 10.1016/j.compind.2018.02.005
– ident: e_1_2_5_29_1
  doi: 10.1002/jemt.23320
– ident: e_1_2_5_2_1
  doi: 10.1007/s12571-012-0200-5
– ident: e_1_2_5_17_1
  doi: 10.1007/978-3-319-59063-9_44
– ident: e_1_2_5_19_1
  doi: 10.1111/exsy.12746
– ident: e_1_2_5_38_1
  doi: 10.1109/ICPR.2006.479
– ident: e_1_2_5_20_1
  doi: 10.1111/exsy.12569
– ident: e_1_2_5_30_1
  doi: 10.1007/s11760-015-0821-1
– volume: 2017
  start-page: 1
  year: 2017
  ident: e_1_2_5_47_1
  article-title: Automatic image‐based plant disease severity estimation using deep learning
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2017/2917536
– ident: e_1_2_5_16_1
  doi: 10.1007/s11042-020-08726-8
– volume: 7
  issue: 2
  year: 2020
  ident: e_1_2_5_4_1
  article-title: Detecting cassava mosaic disease using a deep residual convolutional neural network with distinct block processing
  publication-title: PeerJ Computer Science
– start-page: 2017
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: e_1_2_5_39_1
– ident: e_1_2_5_22_1
  doi: 10.1016/j.compag.2018.01.009
– ident: e_1_2_5_3_1
  doi: 10.1016/j.compag.2018.10.013
– ident: e_1_2_5_35_1
– ident: e_1_2_5_45_1
  doi: 10.3390/sym10010011
– ident: e_1_2_5_8_1
  doi: 10.1109/ACCESS.2019.2908040
– ident: e_1_2_5_44_1
  doi: 10.1007/978-3-319-27863-6_59
– ident: e_1_2_5_28_1
  doi: 10.32604/cmc.2020.012257
– ident: e_1_2_5_33_1
  doi: 10.1007/s10658-016-1007-6
– ident: e_1_2_5_43_1
  doi: 10.1109/ICIIP.2013.6707647
– ident: e_1_2_5_41_1
  doi: 10.1109/CVPR.2009.5206848
– volume: 2017
  start-page: 1
  year: 2017
  ident: e_1_2_5_23_1
  article-title: Deep learning for plant identification in natural environment
  publication-title: Comput. Intell. and Neuroscience
  doi: 10.1155/2017/7361042
– ident: e_1_2_5_24_1
  doi: 10.1109/ACCESS.2020.3034217
– ident: e_1_2_5_42_1
  doi: 10.3389/fpls.2016.01419
– ident: e_1_2_5_12_1
  doi: 10.1016/j.neunet.2017.10.009
– ident: e_1_2_5_31_1
  doi: 10.1016/j.measurement.2014.05.033
– ident: e_1_2_5_36_1
  doi: 10.1109/CVPR.2017.106
– ident: e_1_2_5_21_1
  doi: 10.1109/ACCESS.2019.2914929
– year: 2019
  ident: e_1_2_5_34_1
  article-title: Skin lesion segmentation and classification: A unified framework of deep neural network features fusion and selection
  publication-title: Expert Systems
SSID ssj0059085
Score 2.5796363
Snippet Effective recognition of fruit leaf diseases has a substantial impact on agro‐based economies. Several fruit diseases exist that badly impact the yield and...
Abstract Effective recognition of fruit leaf diseases has a substantial impact on agro‐based economies. Several fruit diseases exist that badly impact the...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 2157
SubjectTerms Agriculture
Computer vision and image processing techniques
Optical, image and video signal processing
Other topics in statistics
Products and commodities
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQ1UM5QCkglj-NVC4gRd04TmxzWyoqUGFVLSD1FiXxuKqUZlfZpQdOPEKfog_GkzDjeEsrIbj0Ztmj2PKMM2PN-PuEeKXJyWqHLsnJ-yTKeDpSxqWJJOdXWcadHND1P-np1Bwf26NrVF9cEzbAAw8bt0fX7RQLugU0jKRi0NRIIUQ1zjxd6lIb3pGPtV1fpoZ_MBN55-EpJJPIF7ldA5Mqu3e66CVjKpjshisKiP03I9TgYg62xb0YG8JkWNMDcQe7HXF3ctJHfAzcEfdj1AjxTC4fisvZUAP0g5wQcD4aocXKQ0y9LIFL22kEuvk5tsBY321LDYoW218_L5hcHhbDcwGW8-tqLWAH52DewefJl0OY7U-nUHUOViHUxR4i4cTJW5h0cC0RDhQHw_KMthaqP2t_JL4dvP-6_yGJ7AtJwxDxifbKF6bxOsXaUUftM6YoKzIlx4r233I0piWpQ3s5rmncFmi1d6kvrEKbPRYb3bzDJwJq0l-W0vcq36g8r0zllWww96lzhUQzEq_XiiibCE3ODBltGVLkypastDIobSR2r2QXAyDHX6XesT6vJBhEO3SQaZXRtMr_mdZIvAnW8I95yo9HMxlaT29jxmdiS3LNTCgwfC42Vv13fCE2m_PV6bJ_GUz8NzyK_iQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Recognizing apple leaf diseases using a novel parallel real‐time processing framework based on MASK RCNN and transfer learning: An application for smart agriculture
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12183
https://doaj.org/article/3041e6401c03498e8be163a03f742197
Volume 15
WOSCitedRecordID wos000631687600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZK4cCFlj91Ka1GggtIERvHiW3EZVu1ogKi1QKit8hJ7FWlkF1llx564hF4Ch6MJ2HGcRYqISTEJbLsSWJrZjwjz_gbxp5KNLKytnWUovWJhHKoUqqOI47Gz2jCnezR9d_KPFfn53q6xV4Nd2F6fIjNgRtpht-vScFN2VchQacWmXix7DhhI6jkBrsZx4kkmeZiOuzDVMw79dchqZB8luoBnFToF7_evWaOPGr_dS_Vm5nTnf-b4C67E9xLmPTycJdt2fYe2wmuJgRFXt1n32d94tAVWi6gILaFxhoHIV6zAsqHxxFoF5e2AQIIbxpsoIvZ_Pj6jSrSw7K_Y0B0bkjxArKKNSxaeDd5_wZmx3kOpq1h7f1j20GoUjF_CZMWfoueAzrPsPqMggxm3gVAEPuAfTw9-XD8OgolG6KKcOUj6YTLVOVkbMsaO0qXUF2zLBF8LMyYDlh4InlpY-n4uMRxnVktXR27TAurk4dsu120do9BmQnccPB7xlUiTY0yTvDKpi6u64xbNWLPBs4VVcAzp7IaTeHj6kIXxIDCM2DEnmxolz2Kxx-pjkgANhSEvO07Ft28CIpcJGMRW5xaXBGyj7IK15IluDQnBe7-csSee6H4y3-Ks-mM-9ajfyHeZ7c5JdT47MPHbHvdfbEH7FZ1ub5YdYde9g_9kQI-P53lPwGHKgm4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagINEL5VddKDASXECK2DhObPe2VFStuo1WS5F6i5LYXlUK2VV220NPPAJPwYPxJMw43oVKCAlxs-xJYsvzF8_4G8beSDSy0lgTpWh9IqEcipQyccTR-JWacCd7dP2xzHN1fq4nITeH7sL0-BCbAzeSDK-vScDpQLr_4RQEknmx6DiBI6jkNrsj0MxQAQMuJmtFTNW8U38fkirJZ6leo5MK_f7XszfskYftv-mmejtzuPOfM3zA7gcHE0Y9Rzxkt2z7iO0EZxOCKC8fs-_TPnXoGm0XUBjbQmNLByFiswTKiMcRaOdXtgGCCG8abKCT2fz4-o1q0sOiv2VAdG6d5AVkFw3MWzgdfTqB6UGeQ9kaWHkP2XYQ6lTM9mHUwm_xc0D3GZZfkJWhnHUBEsQ-YZ8PP54dHEWhaENUE7J8JJ1wmaqdjG1lsKNyCVU2yxLBh6Ic0hELTySvbCwdH1Y4rjOrpTOxy7SwOnnKttp5a3cZVJlAlYPvK10t0rRUpRO8tqmLjcm4VQP2dr11RR0QzamwRlP4yLrQBW1A4TdgwF5vaBc9jscfqT4QB2woCHvbd8y7WRFEuUiGIrY4tbgmbB9lFa4lS3BpTgrU_3LA3nmu-Mt3iuPJlPvWs38hfsXuHZ2djovxcX7ynG1zSq_xuYh7bGvVXdoX7G59tbpYdi-9IPwEuW8Llg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZgQYgLy68ovyPBBaSIxnHimFtZqFjtElUFpL1FSTyuVgpplZY9cOIReAoejCdhxnELKyEkxM2yJ4ktz18842-EeKrJyGqLNkrJ-kQqdyRSuY0jScavMow7OaDrH-uiyE9OzCzk5vBdmAEfYnfgxpLh9TULOK6sG344FYNknq56yeAIeXJRXFIpKVkGdlazrSLmat6pvw_JleSz1GzRSZV58evZc_bIw_afd1O9nZnu_-cMr4trwcGEycARN8QF7G6K_eBsQhDl9S3xfT6kDn0h2wUcxkZosXIQIjZr4Ix4GoFueYYtMER421KDnMz2x9dvXJMeVsMtA6Zz2yQvYLtoYdnBu8n7I5gfFAVUnYWN95Cxh1CnYvESJh38Fj8Hcp9h_YlYGapFHyBB8Lb4OH3z4eBtFIo2RA0jy0faKZfljdMx1pY6apdwZbMsUXKsqjEfschEyxpj7eS4pnGTodHOxi4zCk1yR-x1yw7vCqgzRSqH3le5RqVplVdOyQZTF1ubScxH4tl268omIJpzYY229JF1ZUregNJvwEg82dGuBhyPP1K9Yg7YUTD2tu9Y9osyiHKZjFWMNLW4YWyfHHNaS5bQ0pxWpP_1SDz3XPGX75SHs7n0rXv_QvxYXJm9npbHh8XRfXFVcnaNT0V8IPY2_Wd8KC43Z5vTdf_Iy8FPTpELGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognizing+apple+leaf+diseases+using+a+novel+parallel+real%E2%80%90time+processing+framework+based+on+MASK+RCNN+and+transfer+learning%3A+An+application+for+smart+agriculture&rft.jtitle=IET+image+processing&rft.au=Rehman%2C+Zia+ur&rft.au=Khan%2C+Muhammad+Attique&rft.au=Ahmed%2C+Fawad&rft.au=Dama%C5%A1evi%C4%8Dius%2C+Robertas&rft.date=2021-08-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=15&rft.issue=10&rft.spage=2157&rft.epage=2168&rft_id=info:doi/10.1049%2Fipr2.12183&rft.externalDBID=10.1049%252Fipr2.12183&rft.externalDocID=IPR212183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon