Model-Free Dual Heuristic Dynamic Programming

Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 26; no. 8; pp. 1834 - 1839
Main Authors: Zhen Ni, Haibo He, Xiangnan Zhong, Prokhorov, Danil V.
Format: Journal Article
Language:English
Published: United States IEEE 01.08.2015
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) design based on finite-difference technique. In particular, we adopt multilayer perceptron with one hidden layer for both the action and the critic networks design, and use delayed objective functions to train both the action and the critic networks online over time. We test both the MF-DHP and MB-DHP approaches with a discrete time example and a continuous time example under the same parameter settings. Our simulation results demonstrate that the MF-DHP approach can obtain a control performance competitive with that of the traditional MB-DHP approach while requiring less computational resources.
AbstractList Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) design based on finite-difference technique. In particular, we adopt multilayer perceptron with one hidden layer for both the action and the critic networks design, and use delayed objective functions to train both the action and the critic networks online over time. We test both the MF-DHP and MB-DHP approaches with a discrete time example and a continuous time example under the same parameter settings. Our simulation results demonstrate that the MF-DHP approach can obtain a control performance competitive with that of the traditional MB-DHP approach while requiring less computational resources.
Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) design based on finite-difference technique. In particular, we adopt multilayer perceptron with one hidden layer for both the action and the critic networks design, and use delayed objective functions to train both the action and the critic networks online over time. We test both the MF-DHP and MB-DHP approaches with a discrete time example and a continuous time example under the same parameter settings. Our simulation results demonstrate that the MF-DHP approach can obtain a control performance competitive with that of the traditional MB-DHP approach while requiring less computational resources.Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) design based on finite-difference technique. In particular, we adopt multilayer perceptron with one hidden layer for both the action and the critic networks design, and use delayed objective functions to train both the action and the critic networks online over time. We test both the MF-DHP and MB-DHP approaches with a discrete time example and a continuous time example under the same parameter settings. Our simulation results demonstrate that the MF-DHP approach can obtain a control performance competitive with that of the traditional MB-DHP approach while requiring less computational resources.
Author Haibo He
Zhen Ni
Xiangnan Zhong
Prokhorov, Danil V.
Author_xml – sequence: 1
  surname: Zhen Ni
  fullname: Zhen Ni
  email: ni@ele.uri.edu
  organization: Dept. of Electr., Univ. of Rhode Island, Kingston, RI, USA
– sequence: 2
  surname: Haibo He
  fullname: Haibo He
  email: he@ele.uri.edu
  organization: Dept. of Electr., Univ. of Rhode Island, Kingston, RI, USA
– sequence: 3
  surname: Xiangnan Zhong
  fullname: Xiangnan Zhong
  email: xzhong@ele.uri.edu
  organization: Dept. of Electr., Univ. of Rhode Island, Kingston, RI, USA
– sequence: 4
  givenname: Danil V.
  surname: Prokhorov
  fullname: Prokhorov, Danil V.
  email: dvprokhorov@gmail.com
  organization: Toyota Tech. Center, Toyota Res. Inst. of North America, Ann Arbor, MI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25955997$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtPwzAQhC0EolD6B0BCPXJJ8bpxnD0iChSpPCRA4mY5zqYyygPs5MC_J6WPAwf2MivtfCPtHLP9uqmJsVPgEwCOl6-Pj4uXieAgJyIWMSrYY0cCEhGJaZru73b1PmCjED54PwmXSYyHbCAkSomojlj00ORURreeaDzrTDmeU-ddaJ0dz75rU_X67JulN1Xl6uUJOyhMGWi00SF7u715vZ5Hi6e7--urRWQlV21ECaYG0CpE5LkEzDIUWY6QW8Upm1qjpjEnCapQqJI8s2kMRVYUeWFjIDUdsot17qdvvjoKra5csFSWpqamCxoSVEIIQNFbzzfWLqso15_eVcZ_6-2LvSFdG6xvQvBUaOta07qmbr1xpQauV4Xq30L1qlC9KbRHxR90m_4vdLaGHBHtAAUc0v76A_s1f7A
CODEN ITNNAL
CitedBy_id crossref_primary_10_1002_rnc_5419
crossref_primary_10_1109_TCYB_2016_2586082
crossref_primary_10_1016_j_ast_2019_105537
crossref_primary_10_1016_j_jfranklin_2017_08_030
crossref_primary_10_1016_j_neunet_2021_08_025
crossref_primary_10_1109_TAI_2024_3443004
crossref_primary_10_1109_TNNLS_2016_2522098
crossref_primary_10_1007_s11071_024_10477_2
crossref_primary_10_1109_TNNLS_2019_2946913
crossref_primary_10_1109_TNNLS_2021_3071545
crossref_primary_10_1109_TSMC_2016_2606479
crossref_primary_10_1016_j_neucom_2015_04_014
crossref_primary_10_1109_TAC_2016_2550518
crossref_primary_10_1016_j_engappai_2024_108033
crossref_primary_10_1109_TSMC_2015_2492941
crossref_primary_10_3390_app9091807
crossref_primary_10_1016_j_engappai_2025_110625
crossref_primary_10_1109_JSEN_2025_3569151
crossref_primary_10_1109_TNNLS_2019_2919614
crossref_primary_10_1002_rob_22053
crossref_primary_10_1109_TNNLS_2019_2919338
crossref_primary_10_1109_TNNLS_2020_2967871
crossref_primary_10_1002_rnc_6418
crossref_primary_10_1109_TNNLS_2017_2654324
crossref_primary_10_1016_j_neucom_2017_08_036
crossref_primary_10_1109_TSMC_2017_2758849
crossref_primary_10_1016_j_sigpro_2024_109547
crossref_primary_10_1109_TIV_2024_3458894
crossref_primary_10_1109_TCYB_2018_2830820
crossref_primary_10_1109_TCYB_2016_2598282
crossref_primary_10_1109_TCYB_2019_2906694
crossref_primary_10_1109_TNNLS_2016_2585520
crossref_primary_10_1177_01423312231156946
crossref_primary_10_1016_j_eswa_2024_123280
crossref_primary_10_1109_TNNLS_2017_2728622
crossref_primary_10_1016_j_neucom_2018_09_097
crossref_primary_10_1109_TNNLS_2015_2490698
crossref_primary_10_1007_s10479_016_2366_2
crossref_primary_10_1080_00207721_2023_2209846
crossref_primary_10_1109_TSMC_2019_2957000
crossref_primary_10_1007_s12555_020_0812_z
crossref_primary_10_1016_j_arcontrol_2019_01_003
crossref_primary_10_1109_TNNLS_2021_3053269
crossref_primary_10_1109_TNNLS_2023_3334764
crossref_primary_10_1109_TNNLS_2020_3030127
crossref_primary_10_1109_TNNLS_2016_2638863
crossref_primary_10_1109_TNNLS_2018_2875870
crossref_primary_10_1016_j_automatica_2019_01_018
crossref_primary_10_1109_TSMC_2018_2814018
crossref_primary_10_1109_TCYB_2018_2856907
crossref_primary_10_1016_j_ast_2020_106013
crossref_primary_10_1016_j_isatra_2018_01_014
crossref_primary_10_4108_ew_7500
crossref_primary_10_1109_TFUZZ_2019_2912349
crossref_primary_10_1109_TNNLS_2016_2593743
crossref_primary_10_1109_TCYB_2017_2712617
crossref_primary_10_1109_TCYB_2016_2523878
crossref_primary_10_1016_j_neucom_2020_06_106
crossref_primary_10_1016_j_neucom_2017_05_026
crossref_primary_10_1109_TSMC_2019_2907991
crossref_primary_10_1080_00207721_2025_2480192
crossref_primary_10_1007_s11071_022_07438_y
crossref_primary_10_1016_j_conengprac_2017_12_011
crossref_primary_10_1016_j_ins_2020_01_020
crossref_primary_10_1109_TCSI_2017_2771437
crossref_primary_10_1007_s11432_015_5462_z
crossref_primary_10_1016_j_sysconle_2018_03_001
crossref_primary_10_1016_j_automatica_2016_05_003
crossref_primary_10_3390_sym14091883
crossref_primary_10_1109_TNNLS_2016_2516948
crossref_primary_10_1016_j_engappai_2023_106242
crossref_primary_10_1109_TNNLS_2022_3164727
crossref_primary_10_1109_TCYB_2021_3108034
crossref_primary_10_1109_TSG_2023_3288277
Cites_doi 10.1109/TNNLS.2013.2292704
10.1109/TNNLS.2013.2280013
10.1109/72.914523
10.1002/9780470182963
10.1109/TPWRS.2014.2305977
10.1016/j.neunet.2012.02.005
10.1007/s00500-013-1112-9
10.1016/j.neucom.2011.03.058
10.1016/j.ins.2012.07.006
10.1109/CIASG.2014.7011566
10.1109/TSMCB.2008.924141
10.1109/TNNLS.2013.2247627
10.1109/TSMCB.2012.2216523
10.1109/TNN.2009.2027233
10.1109/TNNLS.2013.2281663
10.1109/TSG.2014.2346740
10.1103/PhysRevD.28.2485
10.1049/iet-cta.2012.0486
10.1109/TASE.2014.2300532
10.1109/TIA.2003.809438
10.1109/IJCNN.2012.6252524
10.1109/9780470544785
10.1049/iet-cta.2013.0472
10.1109/MCAS.2009.933854
10.1109/TNNLS.2013.2271454
10.1109/TCYB.2014.2357896
10.1109/TNN.2008.2000446
10.1016/j.neucom.2011.05.031
10.1109/TNNLS.2014.2305841
10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8
10.1109/MCI.2009.932261
10.1016/j.neucom.2012.11.021
10.1002/9781118453988.ch4
10.23919/ACC.1989.4790360
10.1109/TSMC.2013.2295351
10.1002/9781118453988.ch3
10.1016/j.automatica.2012.05.049
10.1109/TIE.2014.2301770
10.1016/j.neucom.2012.07.046
10.1016/j.neunet.2012.02.027
10.1049/iet-cta.2011.0783
10.1016/j.neucom.2013.04.006
10.1109/72.623201
10.1016/0893-6080(95)00042-9
10.1109/ADPRL.2013.6614987
10.1109/TCYB.2014.2354377
10.1109/TNN.2003.813839
10.1109/TSMCB.2008.923157
10.1109/TNN.2008.2003290
10.1109/TNNLS.2014.2329942
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2015.2424971
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1839
ExternalDocumentID 25955997
10_1109_TNNLS_2015_2424971
7101871
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: Division of Electrical, Communications and Cyber Systems through the National Science Foundation
  grantid: ECCS 1053717
  funderid: 10.13039/100000148
– fundername: U.S. Army Research Office
  grantid: W911NF-12-1-0378
  funderid: 10.13039/100000183
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c507t-e698a19c79990d519bb92bd91dc70eb3ca7340e517f7976dbc841fbffdfc41e73
IEDL.DBID RIE
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358224200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 21:50:00 EDT 2025
Thu Apr 03 07:10:28 EDT 2025
Tue Nov 18 22:30:52 EST 2025
Sat Nov 29 01:39:52 EST 2025
Tue Aug 26 16:37:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords adaptive critic designs (ACDs)
Action-dependent dual heuristic dynamic programming (DHP)
adaptive dynamic programming (ADP)
online learning
reinforcement learning
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-e698a19c79990d519bb92bd91dc70eb3ca7340e517f7976dbc841fbffdfc41e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://digitalcommons.uri.edu/ele_facpubs/501
PMID 25955997
PQID 1697222192
PQPubID 23479
PageCount 6
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2015_2424971
pubmed_primary_25955997
ieee_primary_7101871
crossref_primary_10_1109_TNNLS_2015_2424971
proquest_miscellaneous_1697222192
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref53
ref11
ref10
ref17
liu (ref24) 2014; 25
ref16
bertsekas (ref1) 1995
ref51
ref50
liu (ref18) 2013; 43
ni (ref33) 2013; 24
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
li (ref46) 1989
ref8
ref7
ref9
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref32
ref2
ref38
ge (ref52) 2008; 19
liu (ref22) 2014; 25
ref23
ref26
ref25
ref20
xu (ref19) 2014; 25
ref21
ni (ref39) 2015
ref28
ref27
ref29
lewis (ref4) 2013
References_xml – volume: 25
  start-page: 635
  year: 2014
  ident: ref19
  article-title: Reinforcement learning output feedback NN control using deterministic learning technique
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2292704
– volume: 25
  start-page: 418
  year: 2014
  ident: ref22
  article-title: Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approach
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2280013
– ident: ref11
  doi: 10.1109/72.914523
– ident: ref3
  doi: 10.1002/9780470182963
– ident: ref42
  doi: 10.1109/TPWRS.2014.2305977
– ident: ref12
  doi: 10.1016/j.neunet.2012.02.005
– ident: ref37
  doi: 10.1007/s00500-013-1112-9
– ident: ref26
  doi: 10.1016/j.neucom.2011.03.058
– year: 2013
  ident: ref4
  publication-title: Reinforcement Learning and Approximate Dynamic Programming for Feedback Control
– ident: ref28
  doi: 10.1016/j.ins.2012.07.006
– ident: ref45
  doi: 10.1109/CIASG.2014.7011566
– ident: ref5
  doi: 10.1109/TSMCB.2008.924141
– ident: ref32
  doi: 10.1109/TNNLS.2013.2247627
– volume: 43
  start-page: 779
  year: 2013
  ident: ref18
  article-title: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2216523
– ident: ref7
  doi: 10.1109/TNN.2009.2027233
– volume: 25
  start-page: 621
  year: 2014
  ident: ref24
  article-title: Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2281663
– ident: ref41
  doi: 10.1109/TSG.2014.2346740
– year: 1995
  ident: ref1
  publication-title: Dynamic Programming and Optimal Control
– ident: ref50
  doi: 10.1103/PhysRevD.28.2485
– ident: ref31
  doi: 10.1049/iet-cta.2012.0486
– ident: ref21
  doi: 10.1109/TASE.2014.2300532
– ident: ref6
  doi: 10.1109/TIA.2003.809438
– ident: ref35
  doi: 10.1109/IJCNN.2012.6252524
– ident: ref2
  doi: 10.1109/9780470544785
– ident: ref25
  doi: 10.1049/iet-cta.2013.0472
– ident: ref10
  doi: 10.1109/MCAS.2009.933854
– volume: 24
  start-page: 2038
  year: 2013
  ident: ref33
  article-title: Goal representation heuristic dynamic programming on maze navigation
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2271454
– ident: ref16
  doi: 10.1109/TCYB.2014.2357896
– volume: 19
  start-page: 1599
  year: 2008
  ident: ref52
  article-title: Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2000446
– ident: ref34
  doi: 10.1016/j.neucom.2011.05.031
– ident: ref40
  doi: 10.1109/TNNLS.2014.2305841
– ident: ref49
  doi: 10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8
– start-page: 1
  year: 2015
  ident: ref39
  article-title: A boundedness theoretical analysis for GrADP design: A case study on maze navigation
  publication-title: Proc IEEE Int Joint Conf Neural Netw (IJCNN)
– ident: ref9
  doi: 10.1109/MCI.2009.932261
– ident: ref30
  doi: 10.1016/j.neucom.2012.11.021
– ident: ref36
  doi: 10.1002/9781118453988.ch4
– start-page: 1136
  year: 1989
  ident: ref46
  article-title: neural network control of unknown nonlinear systems
  publication-title: 1989 American Control Conference ACC
  doi: 10.23919/ACC.1989.4790360
– ident: ref20
  doi: 10.1109/TSMC.2013.2295351
– ident: ref51
  doi: 10.1002/9781118453988.ch3
– ident: ref47
  doi: 10.1016/j.automatica.2012.05.049
– ident: ref23
  doi: 10.1109/TIE.2014.2301770
– ident: ref15
  doi: 10.1016/j.neucom.2012.07.046
– ident: ref27
  doi: 10.1016/j.neunet.2012.02.027
– ident: ref29
  doi: 10.1049/iet-cta.2011.0783
– ident: ref48
  doi: 10.1016/j.neucom.2013.04.006
– ident: ref8
  doi: 10.1109/72.623201
– ident: ref43
  doi: 10.1016/0893-6080(95)00042-9
– ident: ref38
  doi: 10.1109/ADPRL.2013.6614987
– ident: ref17
  doi: 10.1109/TCYB.2014.2354377
– ident: ref14
  doi: 10.1109/TNN.2003.813839
– ident: ref13
  doi: 10.1109/TSMCB.2008.923157
– ident: ref53
  doi: 10.1109/TNN.2008.2003290
– ident: ref44
  doi: 10.1109/TNNLS.2014.2329942
SSID ssj0000605649
Score 2.478644
Snippet Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1834
SubjectTerms Action-dependent dual heuristic dynamic programming (DHP)
adaptive critic designs (ACDs)
adaptive dynamic programming (ADP)
Approximation methods
Computational modeling
Convergence
Dynamic programming
Learning systems
Linear programming
Mathematical model
online learning
reinforcement learning
Title Model-Free Dual Heuristic Dynamic Programming
URI https://ieeexplore.ieee.org/document/7101871
https://www.ncbi.nlm.nih.gov/pubmed/25955997
https://www.proquest.com/docview/1697222192
Volume 26
WOSCitedRecordID wos000358224200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6oePDiqOMyblTwptGkS9IcRR08SBEcobfSLAVBZ2Rm6u_3JV1AUMFbD1nKW3hfkvfeB3DOtDUqTiyJk4qSmOuKpFEUklhQzWiJAFxRTzYhsizNc_m0Apd9LYy11ief2Sv36d_yzUzX7qrsWrj2Uq5gfFUI3tRq9fcpFHE592g3ZDwkYSTyrkaGyutJlj0-u0Su5MrVQ0jhGGIQ-bt-W-JbSPIcK7_DTR92xoP__fAWbLbwMrhp7GEbVux0BwYddUPQevIQiONAeyPjubXBXY0zHmzd9GwO7hqO-uCpydx6x9i2Cy_j-8ntA2mZE4hGfLcklsu0ZFILhH_UIEhTSobKSGa0oHh81qWIYmoTJiqBeMQoncasUlVlKh0zK6I9WJvOpvYAAoZKdjWFPGE6NpWRQiU84ikuVKK3qxGwTniFbtuKO3aLt8IfL6gsvOwLJ_uilf0ILvo5H01TjT9HD51k-5GtUEdw1umoQJdw7xzl1M7qRcG4FAh7ELuOYL9RXj-50_nhz4sewYbbusnwO4a15by2J7CuP5evi_kp2l2ennq7-wJmeM-F
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFfRi1fqozxW8adpkX9kcxVoq1qVghd6WzWNBqK20XX-_SfYBggrecsiEMJNhviQz8wFcE6Ek9wOF_CDDyA9FhiLPc5FPsSA41QCcY0s2QeM4mk7ZuAG3dS2MUsomn6muGdq_fLkQuXkq61HTXsoUjG8Y5qyyWqt-UcEamYcW77okdJHr0WlVJYNZbxLHoxeTyhV0TUUEo4YjRmN_03GLfgtKlmXld8BpA8-g9b8t78JOCTCdu-JE7EFDzfehVZE3OKUvtwEZFrQZGiyVcvq5lhiqvOja7PQLlnpnXORuvevodgCvg4fJ_RCV3AlIaIS3RipkUUqYoBoAYqlhGufM5ZIRKSjWF2iRUs_HKiA0oxqRSC4in2Q8y2QmfKKodwjN-WKujsEh2symqjAMiPBlJhnlQeiFkV4o1f7OO0Aq5SWibCxu-C1mib1gYJZY3SdG90mp-w7c1DIfRVuNP2e3jWbrmaVSO3BV2SjRTmF-OtK5WuSrhISMauCj0WsHjgrj1cKVzU9-XvQStoaT51EyeoyfTmHbbKPI9zuD5nqZq3PYFJ_rt9Xywp6-L3640eY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Free+Dual+Heuristic+Dynamic+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhen+Ni&rft.au=Haibo+He&rft.au=Xiangnan+Zhong&rft.au=Prokhorov%2C+Danil+V.&rft.date=2015-08-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=26&rft.issue=8&rft.spage=1834&rft.epage=1839&rft_id=info:doi/10.1109%2FTNNLS.2015.2424971&rft_id=info%3Apmid%2F25955997&rft.externalDocID=7101871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon