Model-Free Dual Heuristic Dynamic Programming
Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) d...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 26; no. 8; pp. 1834 - 1839 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.08.2015
|
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) design based on finite-difference technique. In particular, we adopt multilayer perceptron with one hidden layer for both the action and the critic networks design, and use delayed objective functions to train both the action and the critic networks online over time. We test both the MF-DHP and MB-DHP approaches with a discrete time example and a continuous time example under the same parameter settings. Our simulation results demonstrate that the MF-DHP approach can obtain a control performance competitive with that of the traditional MB-DHP approach while requiring less computational resources. |
|---|---|
| AbstractList | Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) design based on finite-difference technique. In particular, we adopt multilayer perceptron with one hidden layer for both the action and the critic networks design, and use delayed objective functions to train both the action and the critic networks online over time. We test both the MF-DHP and MB-DHP approaches with a discrete time example and a continuous time example under the same parameter settings. Our simulation results demonstrate that the MF-DHP approach can obtain a control performance competitive with that of the traditional MB-DHP approach while requiring less computational resources. Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) design based on finite-difference technique. In particular, we adopt multilayer perceptron with one hidden layer for both the action and the critic networks design, and use delayed objective functions to train both the action and the critic networks online over time. We test both the MF-DHP and MB-DHP approaches with a discrete time example and a continuous time example under the same parameter settings. Our simulation results demonstrate that the MF-DHP approach can obtain a control performance competitive with that of the traditional MB-DHP approach while requiring less computational resources.Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires offline training for the model network, and thus resulting in extra computational cost. In this brief, we propose a model-free DHP (MF-DHP) design based on finite-difference technique. In particular, we adopt multilayer perceptron with one hidden layer for both the action and the critic networks design, and use delayed objective functions to train both the action and the critic networks online over time. We test both the MF-DHP and MB-DHP approaches with a discrete time example and a continuous time example under the same parameter settings. Our simulation results demonstrate that the MF-DHP approach can obtain a control performance competitive with that of the traditional MB-DHP approach while requiring less computational resources. |
| Author | Haibo He Zhen Ni Xiangnan Zhong Prokhorov, Danil V. |
| Author_xml | – sequence: 1 surname: Zhen Ni fullname: Zhen Ni email: ni@ele.uri.edu organization: Dept. of Electr., Univ. of Rhode Island, Kingston, RI, USA – sequence: 2 surname: Haibo He fullname: Haibo He email: he@ele.uri.edu organization: Dept. of Electr., Univ. of Rhode Island, Kingston, RI, USA – sequence: 3 surname: Xiangnan Zhong fullname: Xiangnan Zhong email: xzhong@ele.uri.edu organization: Dept. of Electr., Univ. of Rhode Island, Kingston, RI, USA – sequence: 4 givenname: Danil V. surname: Prokhorov fullname: Prokhorov, Danil V. email: dvprokhorov@gmail.com organization: Toyota Tech. Center, Toyota Res. Inst. of North America, Ann Arbor, MI, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25955997$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kEtPwzAQhC0EolD6B0BCPXJJ8bpxnD0iChSpPCRA4mY5zqYyygPs5MC_J6WPAwf2MivtfCPtHLP9uqmJsVPgEwCOl6-Pj4uXieAgJyIWMSrYY0cCEhGJaZru73b1PmCjED54PwmXSYyHbCAkSomojlj00ORURreeaDzrTDmeU-ddaJ0dz75rU_X67JulN1Xl6uUJOyhMGWi00SF7u715vZ5Hi6e7--urRWQlV21ECaYG0CpE5LkEzDIUWY6QW8Upm1qjpjEnCapQqJI8s2kMRVYUeWFjIDUdsot17qdvvjoKra5csFSWpqamCxoSVEIIQNFbzzfWLqso15_eVcZ_6-2LvSFdG6xvQvBUaOta07qmbr1xpQauV4Xq30L1qlC9KbRHxR90m_4vdLaGHBHtAAUc0v76A_s1f7A |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1002_rnc_5419 crossref_primary_10_1109_TCYB_2016_2586082 crossref_primary_10_1016_j_ast_2019_105537 crossref_primary_10_1016_j_jfranklin_2017_08_030 crossref_primary_10_1016_j_neunet_2021_08_025 crossref_primary_10_1109_TAI_2024_3443004 crossref_primary_10_1109_TNNLS_2016_2522098 crossref_primary_10_1007_s11071_024_10477_2 crossref_primary_10_1109_TNNLS_2019_2946913 crossref_primary_10_1109_TNNLS_2021_3071545 crossref_primary_10_1109_TSMC_2016_2606479 crossref_primary_10_1016_j_neucom_2015_04_014 crossref_primary_10_1109_TAC_2016_2550518 crossref_primary_10_1016_j_engappai_2024_108033 crossref_primary_10_1109_TSMC_2015_2492941 crossref_primary_10_3390_app9091807 crossref_primary_10_1016_j_engappai_2025_110625 crossref_primary_10_1109_JSEN_2025_3569151 crossref_primary_10_1109_TNNLS_2019_2919614 crossref_primary_10_1002_rob_22053 crossref_primary_10_1109_TNNLS_2019_2919338 crossref_primary_10_1109_TNNLS_2020_2967871 crossref_primary_10_1002_rnc_6418 crossref_primary_10_1109_TNNLS_2017_2654324 crossref_primary_10_1016_j_neucom_2017_08_036 crossref_primary_10_1109_TSMC_2017_2758849 crossref_primary_10_1016_j_sigpro_2024_109547 crossref_primary_10_1109_TIV_2024_3458894 crossref_primary_10_1109_TCYB_2018_2830820 crossref_primary_10_1109_TCYB_2016_2598282 crossref_primary_10_1109_TCYB_2019_2906694 crossref_primary_10_1109_TNNLS_2016_2585520 crossref_primary_10_1177_01423312231156946 crossref_primary_10_1016_j_eswa_2024_123280 crossref_primary_10_1109_TNNLS_2017_2728622 crossref_primary_10_1016_j_neucom_2018_09_097 crossref_primary_10_1109_TNNLS_2015_2490698 crossref_primary_10_1007_s10479_016_2366_2 crossref_primary_10_1080_00207721_2023_2209846 crossref_primary_10_1109_TSMC_2019_2957000 crossref_primary_10_1007_s12555_020_0812_z crossref_primary_10_1016_j_arcontrol_2019_01_003 crossref_primary_10_1109_TNNLS_2021_3053269 crossref_primary_10_1109_TNNLS_2023_3334764 crossref_primary_10_1109_TNNLS_2020_3030127 crossref_primary_10_1109_TNNLS_2016_2638863 crossref_primary_10_1109_TNNLS_2018_2875870 crossref_primary_10_1016_j_automatica_2019_01_018 crossref_primary_10_1109_TSMC_2018_2814018 crossref_primary_10_1109_TCYB_2018_2856907 crossref_primary_10_1016_j_ast_2020_106013 crossref_primary_10_1016_j_isatra_2018_01_014 crossref_primary_10_4108_ew_7500 crossref_primary_10_1109_TFUZZ_2019_2912349 crossref_primary_10_1109_TNNLS_2016_2593743 crossref_primary_10_1109_TCYB_2017_2712617 crossref_primary_10_1109_TCYB_2016_2523878 crossref_primary_10_1016_j_neucom_2020_06_106 crossref_primary_10_1016_j_neucom_2017_05_026 crossref_primary_10_1109_TSMC_2019_2907991 crossref_primary_10_1080_00207721_2025_2480192 crossref_primary_10_1007_s11071_022_07438_y crossref_primary_10_1016_j_conengprac_2017_12_011 crossref_primary_10_1016_j_ins_2020_01_020 crossref_primary_10_1109_TCSI_2017_2771437 crossref_primary_10_1007_s11432_015_5462_z crossref_primary_10_1016_j_sysconle_2018_03_001 crossref_primary_10_1016_j_automatica_2016_05_003 crossref_primary_10_3390_sym14091883 crossref_primary_10_1109_TNNLS_2016_2516948 crossref_primary_10_1016_j_engappai_2023_106242 crossref_primary_10_1109_TNNLS_2022_3164727 crossref_primary_10_1109_TCYB_2021_3108034 crossref_primary_10_1109_TSG_2023_3288277 |
| Cites_doi | 10.1109/TNNLS.2013.2292704 10.1109/TNNLS.2013.2280013 10.1109/72.914523 10.1002/9780470182963 10.1109/TPWRS.2014.2305977 10.1016/j.neunet.2012.02.005 10.1007/s00500-013-1112-9 10.1016/j.neucom.2011.03.058 10.1016/j.ins.2012.07.006 10.1109/CIASG.2014.7011566 10.1109/TSMCB.2008.924141 10.1109/TNNLS.2013.2247627 10.1109/TSMCB.2012.2216523 10.1109/TNN.2009.2027233 10.1109/TNNLS.2013.2281663 10.1109/TSG.2014.2346740 10.1103/PhysRevD.28.2485 10.1049/iet-cta.2012.0486 10.1109/TASE.2014.2300532 10.1109/TIA.2003.809438 10.1109/IJCNN.2012.6252524 10.1109/9780470544785 10.1049/iet-cta.2013.0472 10.1109/MCAS.2009.933854 10.1109/TNNLS.2013.2271454 10.1109/TCYB.2014.2357896 10.1109/TNN.2008.2000446 10.1016/j.neucom.2011.05.031 10.1109/TNNLS.2014.2305841 10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 10.1109/MCI.2009.932261 10.1016/j.neucom.2012.11.021 10.1002/9781118453988.ch4 10.23919/ACC.1989.4790360 10.1109/TSMC.2013.2295351 10.1002/9781118453988.ch3 10.1016/j.automatica.2012.05.049 10.1109/TIE.2014.2301770 10.1016/j.neucom.2012.07.046 10.1016/j.neunet.2012.02.027 10.1049/iet-cta.2011.0783 10.1016/j.neucom.2013.04.006 10.1109/72.623201 10.1016/0893-6080(95)00042-9 10.1109/ADPRL.2013.6614987 10.1109/TCYB.2014.2354377 10.1109/TNN.2003.813839 10.1109/TSMCB.2008.923157 10.1109/TNN.2008.2003290 10.1109/TNNLS.2014.2329942 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TNNLS.2015.2424971 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 1839 |
| ExternalDocumentID | 25955997 10_1109_TNNLS_2015_2424971 7101871 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GrantInformation_xml | – fundername: Division of Electrical, Communications and Cyber Systems through the National Science Foundation grantid: ECCS 1053717 funderid: 10.13039/100000148 – fundername: U.S. Army Research Office grantid: W911NF-12-1-0378 funderid: 10.13039/100000183 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c507t-e698a19c79990d519bb92bd91dc70eb3ca7340e517f7976dbc841fbffdfc41e73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 82 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358224200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sat Sep 27 21:50:00 EDT 2025 Thu Apr 03 07:10:28 EDT 2025 Tue Nov 18 22:30:52 EST 2025 Sat Nov 29 01:39:52 EST 2025 Tue Aug 26 16:37:37 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Keywords | adaptive critic designs (ACDs) Action-dependent dual heuristic dynamic programming (DHP) adaptive dynamic programming (ADP) online learning reinforcement learning |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c507t-e698a19c79990d519bb92bd91dc70eb3ca7340e517f7976dbc841fbffdfc41e73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://digitalcommons.uri.edu/ele_facpubs/501 |
| PMID | 25955997 |
| PQID | 1697222192 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2015_2424971 pubmed_primary_25955997 ieee_primary_7101871 crossref_primary_10_1109_TNNLS_2015_2424971 proquest_miscellaneous_1697222192 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08-01 |
| PublicationDateYYYYMMDD | 2015-08-01 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref53 ref11 ref10 ref17 liu (ref24) 2014; 25 ref16 bertsekas (ref1) 1995 ref51 ref50 liu (ref18) 2013; 43 ni (ref33) 2013; 24 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 li (ref46) 1989 ref8 ref7 ref9 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref2 ref38 ge (ref52) 2008; 19 liu (ref22) 2014; 25 ref23 ref26 ref25 ref20 xu (ref19) 2014; 25 ref21 ni (ref39) 2015 ref28 ref27 ref29 lewis (ref4) 2013 |
| References_xml | – volume: 25 start-page: 635 year: 2014 ident: ref19 article-title: Reinforcement learning output feedback NN control using deterministic learning technique publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2292704 – volume: 25 start-page: 418 year: 2014 ident: ref22 article-title: Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approach publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2280013 – ident: ref11 doi: 10.1109/72.914523 – ident: ref3 doi: 10.1002/9780470182963 – ident: ref42 doi: 10.1109/TPWRS.2014.2305977 – ident: ref12 doi: 10.1016/j.neunet.2012.02.005 – ident: ref37 doi: 10.1007/s00500-013-1112-9 – ident: ref26 doi: 10.1016/j.neucom.2011.03.058 – year: 2013 ident: ref4 publication-title: Reinforcement Learning and Approximate Dynamic Programming for Feedback Control – ident: ref28 doi: 10.1016/j.ins.2012.07.006 – ident: ref45 doi: 10.1109/CIASG.2014.7011566 – ident: ref5 doi: 10.1109/TSMCB.2008.924141 – ident: ref32 doi: 10.1109/TNNLS.2013.2247627 – volume: 43 start-page: 779 year: 2013 ident: ref18 article-title: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems publication-title: IEEE Trans Cybern doi: 10.1109/TSMCB.2012.2216523 – ident: ref7 doi: 10.1109/TNN.2009.2027233 – volume: 25 start-page: 621 year: 2014 ident: ref24 article-title: Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2281663 – ident: ref41 doi: 10.1109/TSG.2014.2346740 – year: 1995 ident: ref1 publication-title: Dynamic Programming and Optimal Control – ident: ref50 doi: 10.1103/PhysRevD.28.2485 – ident: ref31 doi: 10.1049/iet-cta.2012.0486 – ident: ref21 doi: 10.1109/TASE.2014.2300532 – ident: ref6 doi: 10.1109/TIA.2003.809438 – ident: ref35 doi: 10.1109/IJCNN.2012.6252524 – ident: ref2 doi: 10.1109/9780470544785 – ident: ref25 doi: 10.1049/iet-cta.2013.0472 – ident: ref10 doi: 10.1109/MCAS.2009.933854 – volume: 24 start-page: 2038 year: 2013 ident: ref33 article-title: Goal representation heuristic dynamic programming on maze navigation publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2271454 – ident: ref16 doi: 10.1109/TCYB.2014.2357896 – volume: 19 start-page: 1599 year: 2008 ident: ref52 article-title: Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2000446 – ident: ref34 doi: 10.1016/j.neucom.2011.05.031 – ident: ref40 doi: 10.1109/TNNLS.2014.2305841 – ident: ref49 doi: 10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 – start-page: 1 year: 2015 ident: ref39 article-title: A boundedness theoretical analysis for GrADP design: A case study on maze navigation publication-title: Proc IEEE Int Joint Conf Neural Netw (IJCNN) – ident: ref9 doi: 10.1109/MCI.2009.932261 – ident: ref30 doi: 10.1016/j.neucom.2012.11.021 – ident: ref36 doi: 10.1002/9781118453988.ch4 – start-page: 1136 year: 1989 ident: ref46 article-title: neural network control of unknown nonlinear systems publication-title: 1989 American Control Conference ACC doi: 10.23919/ACC.1989.4790360 – ident: ref20 doi: 10.1109/TSMC.2013.2295351 – ident: ref51 doi: 10.1002/9781118453988.ch3 – ident: ref47 doi: 10.1016/j.automatica.2012.05.049 – ident: ref23 doi: 10.1109/TIE.2014.2301770 – ident: ref15 doi: 10.1016/j.neucom.2012.07.046 – ident: ref27 doi: 10.1016/j.neunet.2012.02.027 – ident: ref29 doi: 10.1049/iet-cta.2011.0783 – ident: ref48 doi: 10.1016/j.neucom.2013.04.006 – ident: ref8 doi: 10.1109/72.623201 – ident: ref43 doi: 10.1016/0893-6080(95)00042-9 – ident: ref38 doi: 10.1109/ADPRL.2013.6614987 – ident: ref17 doi: 10.1109/TCYB.2014.2354377 – ident: ref14 doi: 10.1109/TNN.2003.813839 – ident: ref13 doi: 10.1109/TSMCB.2008.923157 – ident: ref53 doi: 10.1109/TNN.2008.2003290 – ident: ref44 doi: 10.1109/TNNLS.2014.2329942 |
| SSID | ssj0000605649 |
| Score | 2.478644 |
| Snippet | Model-based dual heuristic dynamic programming (MB-DHP) is a popular approach in approximating optimal solutions in control problems. Yet, it usually requires... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1834 |
| SubjectTerms | Action-dependent dual heuristic dynamic programming (DHP) adaptive critic designs (ACDs) adaptive dynamic programming (ADP) Approximation methods Computational modeling Convergence Dynamic programming Learning systems Linear programming Mathematical model online learning reinforcement learning |
| Title | Model-Free Dual Heuristic Dynamic Programming |
| URI | https://ieeexplore.ieee.org/document/7101871 https://www.ncbi.nlm.nih.gov/pubmed/25955997 https://www.proquest.com/docview/1697222192 |
| Volume | 26 |
| WOSCitedRecordID | wos000358224200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH6oePDiqOMyblTwptGkS9IcRR08SBEcobfSLAVBZ2Rm6u_3JV1AUMFbD1nKW3hfkvfeB3DOtDUqTiyJk4qSmOuKpFEUklhQzWiJAFxRTzYhsizNc_m0Apd9LYy11ief2Sv36d_yzUzX7qrsWrj2Uq5gfFUI3tRq9fcpFHE592g3ZDwkYSTyrkaGyutJlj0-u0Su5MrVQ0jhGGIQ-bt-W-JbSPIcK7_DTR92xoP__fAWbLbwMrhp7GEbVux0BwYddUPQevIQiONAeyPjubXBXY0zHmzd9GwO7hqO-uCpydx6x9i2Cy_j-8ntA2mZE4hGfLcklsu0ZFILhH_UIEhTSobKSGa0oHh81qWIYmoTJiqBeMQoncasUlVlKh0zK6I9WJvOpvYAAoZKdjWFPGE6NpWRQiU84ikuVKK3qxGwTniFbtuKO3aLt8IfL6gsvOwLJ_uilf0ILvo5H01TjT9HD51k-5GtUEdw1umoQJdw7xzl1M7qRcG4FAh7ELuOYL9RXj-50_nhz4sewYbbusnwO4a15by2J7CuP5evi_kp2l2ennq7-wJmeM-F |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFfRi1fqozxW8adpkX9kcxVoq1qVghd6WzWNBqK20XX-_SfYBggrecsiEMJNhviQz8wFcE6Ek9wOF_CDDyA9FhiLPc5FPsSA41QCcY0s2QeM4mk7ZuAG3dS2MUsomn6muGdq_fLkQuXkq61HTXsoUjG8Y5qyyWqt-UcEamYcW77okdJHr0WlVJYNZbxLHoxeTyhV0TUUEo4YjRmN_03GLfgtKlmXld8BpA8-g9b8t78JOCTCdu-JE7EFDzfehVZE3OKUvtwEZFrQZGiyVcvq5lhiqvOja7PQLlnpnXORuvevodgCvg4fJ_RCV3AlIaIS3RipkUUqYoBoAYqlhGufM5ZIRKSjWF2iRUs_HKiA0oxqRSC4in2Q8y2QmfKKodwjN-WKujsEh2symqjAMiPBlJhnlQeiFkV4o1f7OO0Aq5SWibCxu-C1mib1gYJZY3SdG90mp-w7c1DIfRVuNP2e3jWbrmaVSO3BV2SjRTmF-OtK5WuSrhISMauCj0WsHjgrj1cKVzU9-XvQStoaT51EyeoyfTmHbbKPI9zuD5nqZq3PYFJ_rt9Xywp6-L3640eY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Free+Dual+Heuristic+Dynamic+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhen+Ni&rft.au=Haibo+He&rft.au=Xiangnan+Zhong&rft.au=Prokhorov%2C+Danil+V.&rft.date=2015-08-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=26&rft.issue=8&rft.spage=1834&rft.epage=1839&rft_id=info:doi/10.1109%2FTNNLS.2015.2424971&rft_id=info%3Apmid%2F25955997&rft.externalDocID=7101871 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |