The Clinician and Dataset Shift in Artificial Intelligence

This letter outlines how to identify, and potentially mitigate, common sources of “dataset shift” in machine-learning systems. This occurs when the model “training data” differ from the data used by the model to provide diagnostic, prognostic, or treatment advice.

Uloženo v:
Podrobná bibliografie
Vydáno v:The New England journal of medicine Ročník 385; číslo 3; s. 283 - 286
Hlavní autoři: Finlayson, Samuel G, Subbaswamy, Adarsh, Singh, Karandeep, Bowers, John, Kupke, Annabel, Zittrain, Jonathan, Kohane, Isaac S, Saria, Suchi
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Massachusetts Medical Society 15.07.2021
Témata:
ISSN:0028-4793, 1533-4406, 1533-4406
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This letter outlines how to identify, and potentially mitigate, common sources of “dataset shift” in machine-learning systems. This occurs when the model “training data” differ from the data used by the model to provide diagnostic, prognostic, or treatment advice.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
content type line 14
ObjectType-Article-2
content type line 23
Dr. Finlayson and Mr. Subbaswamy contributed equally to this letter.
ISSN:0028-4793
1533-4406
1533-4406
DOI:10.1056/NEJMc2104626