An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques

This paper presents a novel robust adaptive filtering scheme based on the interactive use of statistical noise information and the ideas developed originally for efficient algorithmic solutions to the convex feasibility problems. The statistical noise information is quantitatively formulated as stoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 50; H. 5; S. 1091 - 1101
Hauptverfasser: Yamada, I., Slavakis, K., Yamada, K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.05.2002
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a novel robust adaptive filtering scheme based on the interactive use of statistical noise information and the ideas developed originally for efficient algorithmic solutions to the convex feasibility problems. The statistical noise information is quantitatively formulated as stochastic property closed convex sets by the simple design formulae developed in this paper. A simple set-theoretic inspection also leads to an important statistical reason for the sensitivity to noise of the affine projection algorithm (APA). The proposed adaptive algorithm is computationally efficient and robust to noise because it requires only an iterative parallel projection onto a series of closed half spaces that are highly expected to contain the unknown system to be identified and is free from the computational load of solving a system of linear equations. The numerical examples show that the proposed adaptive filtering scheme realizes dramatically fast and stable convergence for highly colored excited speech like input signals in severe noise situations.
AbstractList This paper presents a novel robust adaptive filtering scheme based on the interactive use of statistical noise information and the ideas developed originally for efficient algorithmic solutions to the convex feasibility problems. The statistical noise information is quantitatively formulated as stochastic property closed convex sets by the simple design formulae developed in this paper. A simple set-theoretic inspection also leads to an important statistical reason for the sensitivity to noise of the affine projection algorithm (APA). The proposed adaptive algorithm is computationally efficient and robust to noise because it requires only an iterative parallel projection onto a series of closed half spaces that are highly expected to contain the unknown system to be identified and is free from the computational load of solving a system of linear equations. The numerical examples show that the proposed adaptive filtering scheme realizes dramatically fast and stable convergence for highly colored excited speech like input signals in severe noise situations.
This paper presents a novel robust adaptive filtering scheme based on the interactive use of statistical noise information and the ideas developed originally for efficient algorithmic solutions to the convex feasibility problems. The statistical noise information is quantitatively formulated as stochastic property closed convex sets by the simple design formulae developed in this paper. A simple set-theoretic inspection also leads to an important statistical reason for the sensitivity to noise of the affine projection algorithm (APA). The proposed adaptive algorithm is computationally efficient and robust to noise because it requires only an iterative parallel projection onto a series of closed half spaces that are highly expected to contain the unknown system to be identified and is free from the computational load of solving a system of linear equations. The numerical examples show that the proposed adaptive filtering scheme realizes dramatically fast and stable convergence for highly colored excited speech like input signals in severe noise situations
The proposed adaptive algorithm is computationally efficient and robust to noise because it requires only an iterative parallel projection onto a series of closed half spaces that are highly expected to contain the unknown system to be identified and is free from the computational load of solving a system of linear equations.
Author Yamada, I.
Slavakis, K.
Yamada, K.
Author_xml – sequence: 1
  givenname: I.
  surname: Yamada
  fullname: Yamada, I.
  organization: Dept. of Commun. & Integrated Syst., Tokyo Inst. of Technol., Japan
– sequence: 2
  givenname: K.
  surname: Slavakis
  fullname: Slavakis, K.
– sequence: 3
  givenname: K.
  surname: Yamada
  fullname: Yamada, K.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13603351$$DView record in Pascal Francis
BookMark eNqF0c9rHCEUB3ApCTQ_eui1Jym0oYdJ_DmOxxCaNhDoJYfe5I2jGxfX2aoT6H9fN7vkEEp7Unif99Wnp-gozckh9J6SS0qJvlLDpdaS9PINOqFa0I4I1R-1PZG8k4P6-RadlrImhAqh-xM0XSfsvA82uFRxnselVAwTbGt4ctiHWF0OaYUhruYc6uMGj1DchOeEt5AhRhdxWcZVhuk5YZvntbM1tHp19jGFX4sr5-jYQyzu3WE9Qw-3Xx9uvnf3P77d3Vzfd1YSVTtgVCtmFXDOuNfKCjFpbccJBEhvoR-ZsmyUarTKjsxr4JY6wQcmNSWcn6GLfWy7xO7YajahWBcjJDcvxWiitFa9Ek1-_qdkg6CEkv7_UMkWJ3aJH1_B9bzk1KY1wyC4poNgDX06ICgWos-QbChmm8MG8m9Ded-mkLS5q72zeS4lO29sqLB71JohREOJ2X22UYPZf3br-PKq4yX0L_bD3gbn3Is7FP8ApK-z_g
CODEN ITPRED
CitedBy_id crossref_primary_10_1002_eej_20369
crossref_primary_10_1016_j_automatica_2023_111501
crossref_primary_10_1007_s00034_024_02843_7
crossref_primary_10_1109_TNNLS_2011_2178321
crossref_primary_10_1016_j_automatica_2021_110059
crossref_primary_10_1109_LSP_2009_2027638
crossref_primary_10_1109_LSP_2016_2598615
crossref_primary_10_1109_TSP_2003_812846
crossref_primary_10_1587_transfun_E100_A_236
crossref_primary_10_1109_TSP_2006_881225
crossref_primary_10_4304_jnw_9_01_210_215
crossref_primary_10_1016_j_jmaa_2008_03_028
crossref_primary_10_1109_TSP_2018_2868040
crossref_primary_10_1016_j_aeue_2012_07_007
crossref_primary_10_1109_TSP_2015_2472365
crossref_primary_10_1137_100807004
crossref_primary_10_1109_TSP_2009_2018648
crossref_primary_10_1109_TSP_2023_3263255
crossref_primary_10_1109_TSP_2015_2437835
crossref_primary_10_1109_TSP_2009_2027397
crossref_primary_10_1002_acs_1237
crossref_primary_10_1016_j_compeleceng_2008_11_012
crossref_primary_10_1081_NFA_200045806
crossref_primary_10_1109_TCSII_2011_2158162
crossref_primary_10_1155_2008_735351
crossref_primary_10_1109_TNNLS_2013_2247626
crossref_primary_10_1109_TCNS_2023_3336833
crossref_primary_10_1109_TSP_2012_2200889
crossref_primary_10_1109_JSTSP_2007_910264
crossref_primary_10_1109_JSTSP_2011_2114325
crossref_primary_10_1080_01630560600884661
crossref_primary_10_1109_TSP_2013_2296881
crossref_primary_10_1109_TSP_2016_2563401
crossref_primary_10_1016_j_sigpro_2015_11_001
crossref_primary_10_4304_jnw_9_01_216_222
crossref_primary_10_1109_TSP_2007_893197
crossref_primary_10_1081_NFA_200045815
crossref_primary_10_1109_TSP_2008_917376
crossref_primary_10_1007_s11117_007_2066_x
crossref_primary_10_1109_TSP_2009_2032450
crossref_primary_10_1007_s00034_010_9170_z
crossref_primary_10_1109_TSP_2009_2020747
crossref_primary_10_1016_j_sigpro_2015_06_019
crossref_primary_10_1016_j_sigpro_2009_05_025
crossref_primary_10_1007_s10957_014_0659_7
crossref_primary_10_1109_TSP_2008_2009022
crossref_primary_10_1109_TSP_2018_2846271
crossref_primary_10_1109_TASL_2007_896655
crossref_primary_10_1109_TWC_2020_2969669
crossref_primary_10_1109_TSP_2009_2027771
crossref_primary_10_1007_s11228_006_0027_3
crossref_primary_10_1155_ASP_2006_84797
crossref_primary_10_1109_TSP_2007_907896
crossref_primary_10_1137_14096267X
crossref_primary_10_1109_TSP_2010_2090874
crossref_primary_10_1109_TSP_2020_3029884
crossref_primary_10_1109_MSP_2010_938752
crossref_primary_10_1007_s11075_005_9010_6
crossref_primary_10_1109_LSP_2024_3402343
crossref_primary_10_1155_2009_589260
crossref_primary_10_1109_TASL_2008_916059
crossref_primary_10_1109_JSTSP_2013_2246766
Cites_doi 10.1109/78.205720
10.1109/78.485923
10.1016/0165-1684(96)00022-9
10.1007/BF02612715
10.1109/78.827542
10.1016/0041-5553(67)90113-9
10.1016/S1570-579X(01)80028-8
10.1109/83.563316
10.1109/ICASSP.2000.862007
10.1007/978-1-4757-6288-4
10.1109/5.214546
10.1109/TASSP.1980.1163432
10.1109/ICASSP.1995.479482
10.1109/78.533719
10.1016/S1570-579X(01)80003-3
10.1109/TASSP.1984.1164297
10.1109/89.736333
10.1080/01630569808816822
10.1137/S0036144593251710
10.1002/ecja.4400670503
10.1109/78.661344
10.1109/ICASSP.1996.543281
10.1109/TMI.1982.4307555
10.1109/TAC.1967.1098599
10.1109/TASSP.1984.1164334
10.1109/78.506609
10.1002/acs.4480090103
10.1109/78.134400
ContentType Journal Article
Copyright 2002 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002
Copyright_xml – notice: 2002 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002
DBID RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/78.995065
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database
Technology Research Database
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 1101
ExternalDocumentID 2430274521
13603351
10_1109_78_995065
995065
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c507t-a21972c7a3323f97c44d99cbda4a5fca6b27c2b57bc7cb2f9a3c1e4382591033
IEDL.DBID RIE
ISICitedReferencesCount 104
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000174935200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sat Sep 27 17:05:15 EDT 2025
Sun Sep 28 05:24:34 EDT 2025
Sun Sep 28 01:35:15 EDT 2025
Sun Oct 05 00:27:39 EDT 2025
Wed Apr 02 07:17:11 EDT 2025
Sat Nov 29 08:07:21 EST 2025
Tue Nov 18 22:16:43 EST 2025
Tue Aug 26 16:34:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Projection method
Adaptive algorithm
Adaptive filtering
Parallel processing
Signal processing
Iterative method
Set theory
Adaptive estimation
Gradient method
Least mean squares methods
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-a21972c7a3323f97c44d99cbda4a5fca6b27c2b57bc7cb2f9a3c1e4382591033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 884391842
PQPubID 23500
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_78_995065
proquest_miscellaneous_28410106
proquest_journals_884391842
proquest_miscellaneous_27574344
proquest_miscellaneous_907997674
pascalfrancis_primary_13603351
ieee_primary_995065
crossref_primary_10_1109_78_995065
PublicationCentury 2000
PublicationDate 2002-05-01
PublicationDateYYYYMMDD 2002-05-01
PublicationDate_xml – month: 05
  year: 2002
  text: 2002-05-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2002
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Yamada (ref38) 2000; 83
Bregman (ref39) 1965; 6
ref34
ref15
ref37
ref14
Golub (ref19) 1996
ref30
ref11
ref33
ref10
ref32
ref2
ref18
Nashed (ref40) 1976
Deutsch (ref36) 1998; 19
Porat (ref24) 1994
ref23
ref26
ref20
ref42
Kurosawa (ref31) 1988; 71-A
ref41
Hinamoto (ref1) 1975; 95
ref22
ref21
ref43
Furukawa (ref3) 1988; 71-A
ref27
Cramer (ref25) 1946
ref29
ref8
Luenberger (ref28) 1969
ref7
ref4
Censor (ref12) 1997
ref6
ref5
Haykin (ref9) 1996
Yamada (ref16)
Stark (ref17) 1998
References_xml – ident: ref10
  doi: 10.1109/78.205720
– ident: ref41
  doi: 10.1109/78.485923
– volume-title: Vector Space Projections-A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics
  year: 1998
  ident: ref17
– ident: ref42
  doi: 10.1016/0165-1684(96)00022-9
– ident: ref15
  doi: 10.1007/BF02612715
– volume: 19
  start-page: 33
  issue: 1 and 2
  year: 1998
  ident: ref36
  article-title: Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings
  publication-title: Numer. Funct. Anal. Optim
– volume-title: Generalized Inverse and Applications
  year: 1976
  ident: ref40
– ident: ref4
  doi: 10.1109/78.827542
– ident: ref33
  doi: 10.1016/0041-5553(67)90113-9
– ident: ref37
  doi: 10.1016/S1570-579X(01)80028-8
– ident: ref14
  doi: 10.1109/83.563316
– ident: ref6
  doi: 10.1109/ICASSP.2000.862007
– volume: 83
  start-page: 616
  issue: 3
  volume-title: J. IEICE
  year: 2000
  ident: ref38
  article-title: Convex projection algorithm from POCS to Hybrid steepest descent method
– ident: ref23
  doi: 10.1007/978-1-4757-6288-4
– ident: ref22
  doi: 10.1109/5.214546
– ident: ref30
  doi: 10.1109/TASSP.1980.1163432
– ident: ref5
  doi: 10.1109/ICASSP.1995.479482
– ident: ref11
  doi: 10.1109/78.533719
– ident: ref29
  doi: 10.1016/S1570-579X(01)80003-3
– volume: 95
  start-page: 227
  issue: 10
  volume-title: Trans. Inst. Elect. Eng. Jpn.
  year: 1975
  ident: ref1
  article-title: Extended theory of learning identifi-cation
– volume-title: Proc. IEEE ICASSP
  ident: ref16
  article-title: An efficient robust adaptive filtering scheme based on parallel sub gradient projection techniques
– volume-title: Mathematical Methods of Statistics
  year: 1946
  ident: ref25
– ident: ref26
  doi: 10.1109/TASSP.1984.1164297
– ident: ref7
  doi: 10.1109/89.736333
– ident: ref35
  doi: 10.1080/01630569808816822
– ident: ref13
  doi: 10.1137/S0036144593251710
– volume-title: Optimization by Vector Space Methods
  year: 1969
  ident: ref28
– ident: ref2
  doi: 10.1002/ecja.4400670503
– volume: 6
  start-page: 688
  year: 1965
  ident: ref39
  article-title: The method of successive projections for finding a common point of convex sets
  publication-title: Sov. Math. Dokl
– ident: ref18
  doi: 10.1109/78.661344
– ident: ref20
  doi: 10.1109/ICASSP.1996.543281
– volume: 71-A
  start-page: 343
  issue: 2
  volume-title: IEICE Trans
  year: 1988
  ident: ref31
  article-title: A geometric interpretation of adaptive algorithms
– ident: ref34
  doi: 10.1109/TMI.1982.4307555
– ident: ref8
  doi: 10.1109/TAC.1967.1098599
– ident: ref32
  doi: 10.1109/TASSP.1984.1164334
– volume-title: Adaptive Filter Theory
  year: 1996
  ident: ref9
– volume-title: Matrix Computations
  year: 1996
  ident: ref19
– ident: ref43
  doi: 10.1109/78.506609
– volume-title: Digital Processing of Random Sign a 1st Theory and Methods
  year: 1994
  ident: ref24
– volume: 71-A
  start-page: 2138
  issue: 12
  volume-title: IEICE Trans
  year: 1988
  ident: ref3
  article-title: Orthogonal projection algorithm for block adaptive signal processing and some properties
– ident: ref21
  doi: 10.1002/acs.4480090103
– volume-title: Parallel Optimization: Theory, Algorithm, and Optimization
  year: 1997
  ident: ref12
– ident: ref27
  doi: 10.1109/78.134400
SSID ssj0014496
Score 2.0991192
Snippet This paper presents a novel robust adaptive filtering scheme based on the interactive use of statistical noise information and the ideas developed originally...
The proposed adaptive algorithm is computationally efficient and robust to noise because it requires only an iterative parallel projection onto a series of...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1091
SubjectTerms Adaptive algorithm
Adaptive filters
Algorithms
Applied sciences
Computational efficiency
Concurrent computing
Convergence of numerical methods
Detection, estimation, filtering, equalization, prediction
Equations
Exact sciences and technology
Filtering algorithms
Half spaces
Information, signal and communications theory
Inspection
Linear equations
Mathematical models
Noise
Noise robustness
Projection
Projection algorithms
Signal and communications theory
Signal, noise
Stochastic resonance
Studies
Telecommunications and information theory
Title An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques
URI https://ieeexplore.ieee.org/document/995065
https://www.proquest.com/docview/884391842
https://www.proquest.com/docview/27574344
https://www.proquest.com/docview/28410106
https://www.proquest.com/docview/907997674
Volume 50
WOSCitedRecordID wos000174935200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RigMceBRQQ6FYiAOXtBs_YvtYISpOFYce9hbZY6esFJIqD34_tpMNVBQkblEylkae2DPjGX8fwAejpPUhLMipMTrnrixzSzcmL4xC9E6I0qtENiGvrtR2q78uONvpLoz3PjWf-bP4mGr5rsMpHpWday2CxzyAAynL-arWWjDgPFFxhWiB5ULJ7QIiVGz0uVRn88A7ridxqcROSDOEyahnFos_NuTkZS6f_pd-z-DJEkySi9n6z-GBb4_g8W8Qgy_AXbTEJ5iIMJT0nZ2GkRhnbuM2R-pdLJYHQWKam67fjd--k-jXHOlaElHBm8Y3ZJjsTZ9aw0aynNwEa5IV_nV4CdeXn68_fckXZoUcQ_w35oZGtjGUhjHKai2Rc6c1Wme4ETWa0lKJ1AppUaKltTYMCx9rhiKEF4y9gsO2a_0xEIdKcc_1xtbIDXNKhrS0LpjzFmktMIOP-zmvcEEdj-QXTZWyj42upKrmecvg_Sp6O0Nt3Cd0FOd9Fdi_Pb1jx1_jWRnUFUUGJ3vDVssiHaqgOdMhw6UZvFu_htUVSyam9d00VFSKEGJx_g8JxYuYV2dA_iKhN1LriJn0-l7dT-BRYphJTZRv4HDsJ_8WHuKPcTf0p-kv_wmZaP-k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQQIOPAqIUGgtxIFL2sSP2D5WiKqIsuKwh71FfqVdKSRVHvx-bCcbqChI3KJkLI08sWfGM_4-gPdKcO18WJBipWRKbVGkGmcqzZUwxlnGCici2QRfrcRmI7_NONvxLoxzLjafuePwGGv5tjVjOCo7kZJ5j3kX7jFKcTZd1lpKBpRGMi4fL5CUCb6ZYYTyTJ5wcTwNveF8IptK6IVUvZ-OauKx-GNLjn7m7Ml_afgUHs_hJDqd7P8M7rhmHx79BjL4HOxpg1wEivBDUdfqsR-Qsuo6bHSo2oZyuRdEqr5su-1w9R0Fz2ZR26CAC17Xrkb9qC-72Bw2oPnsxtsTLQCw_QtYn31afzxPZ26F1PgIcEgVDnxjhitCMKkkN5RaKY22iipWGVVozA3WjGvDjcaVVMTkLlQNmQ8wCHkJe03buFeArBGCOiozXRmqiBXcJ6ZVTqzTBlfMJPBhN-elmXHHA_1FXcb8I5MlF-U0bwm8W0SvJ7CN24T2w7wvAru3hzfs-Gs8Kby6LE_gYGfYcl6mfek1J9LnuDiBo-WrX1-haKIa1459iTnzQRal_5AQNA-ZdQLoLxIy41IG1KTXt-p-BA_O118vyovPqy8H8DDyzcSWyjewN3Sjewv3zY9h23eH8Y__Cf4pAvo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+robust+adaptive+filtering+algorithm+based+on+parallel+subgradient+projection+techniques&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Yamada%2C+I.&rft.au=Slavakis%2C+K.&rft.au=Yamada%2C+K.&rft.date=2002-05-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=50&rft.issue=5&rft.spage=1091&rft.epage=1101&rft_id=info:doi/10.1109%2F78.995065&rft.externalDocID=995065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon