Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms

Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years. Pl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental pollution (1987) Ročník 262; s. 114297
Hlavní autoři: Kik, Kinga, Bukowska, Bożena, Sicińska, Paulina
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.07.2020
Témata:
ISSN:0269-7491, 1873-6424, 1873-6424
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years. Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge. One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by “protein corona” that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2). Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels. [Display omitted] •The studies suggest that polystyrene nanoparticles may penetrate organisms.•Polystyrene nanoparticles accumulate along the food chain.•Nanoparticles are surrounded by a protein corona that allows penetrating membranes.•In vitro and in vivo studies suggest that polystyrene nanoparticles could be toxic.•Currently there are no studies focused on their effect on human organism. PS-NPs are widely spread in the environment, penetrate living organisms and are toxic.
AbstractList Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years. Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge. One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by "protein corona" that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2). Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels.
Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years. Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge. One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by “protein corona” that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2). Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels. [Display omitted] •The studies suggest that polystyrene nanoparticles may penetrate organisms.•Polystyrene nanoparticles accumulate along the food chain.•Nanoparticles are surrounded by a protein corona that allows penetrating membranes.•In vitro and in vivo studies suggest that polystyrene nanoparticles could be toxic.•Currently there are no studies focused on their effect on human organism. PS-NPs are widely spread in the environment, penetrate living organisms and are toxic.
Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years.Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge.One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by “protein corona” that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2).Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels.
Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years. Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge. One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by "protein corona" that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2). Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels.Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years. Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge. One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by "protein corona" that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2). Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels.
ArticleNumber 114297
Author Bukowska, Bożena
Sicińska, Paulina
Kik, Kinga
Author_xml – sequence: 1
  givenname: Kinga
  surname: Kik
  fullname: Kik, Kinga
– sequence: 2
  givenname: Bożena
  surname: Bukowska
  fullname: Bukowska, Bożena
– sequence: 3
  givenname: Paulina
  surname: Sicińska
  fullname: Sicińska, Paulina
  email: paulina.sicinska@biol.uni.lodz.pl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32155552$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS3Uik4Lb4CQlyyaqX-TuAukquJPqgQSsLYc5wY8SuzBdkbMK_DUeCaFRRetN7Z8v3Pv1Tnn6MQHDwi9omRNCa2vNmvwu20Y14yw8kUFU80ztKJtw6taMHGCVoTVqmqEomfoPKUNIURwzp-jM86oLIet0J8vYdynvI_gAXvjw9bE7OwI6Rp_DXO0kC5xsHaOhbCAncf5J-Ay2sXgJ_D5Evcu5ei6Obvgj4BLaT7oTNFN82iOBeN7nMNvZ13elwfemejCnHCIP4x3aUov0OlgxgQv7-8L9P39u2-3H6u7zx8-3d7cVVaSJldKSGBdZwcgg7K8qTk1QvBaqd4MvG8G1TLDeG9BSC5pb2Vj5NBI2nWlaAi_QG-WvtsYfpU9s55csjCOxkNZSDPBacsVbeXTaBnPKGOqLejre3TuJuj1NrrJxL3-Z3UBxALYGFKKMPxHKNGHRPVGL4nqQ6J6SbTIrh_IioFHR3M0bnxK_HYRQ_Fz5yDqZN0hx95FsFn3wT3e4C9nisI4
CitedBy_id crossref_primary_10_3389_ftox_2025_1530209
Cites_doi 10.1016/j.nano.2011.12.001
10.1021/jz402234c
10.1016/j.aquatox.2017.06.017
10.1021/acs.est.8b04848
10.1016/j.jconrel.2017.12.015
10.1093/mutage/ger033
10.1146/annurev-environ-102016-060700
10.1016/j.envpol.2017.10.057
10.1021/nn700256c
10.1021/acs.est.6b04048
10.1021/ac300771z
10.1007/s12013-015-0705-6
10.1016/0272-0590(85)90168-X
10.1289/ehp.9209
10.1111/j.1749-6632.1988.tb30112.x
10.1021/nn9005973
10.1109/TNB.2011.2175745
10.1126/science.aad6359
10.3389/fmars.2018.00313
10.1371/journal.pone.0108025
10.1080/10611860410001693706
10.1016/j.scitotenv.2016.05.041
10.1021/nn103077k
10.3762/bjnano.5.250
10.1016/j.marpolbul.2011.05.030
10.1039/C5EM00227C
10.1016/j.marpolbul.2010.08.005
10.1002/etc.2611
10.1016/j.envpol.2018.10.024
10.1039/C8EN00412A
10.1016/j.coesh.2017.10.003
10.1038/srep46687
10.1021/es502569w
10.1016/j.maturitas.2018.06.010
10.1016/j.tiv.2015.11.006
10.1023/A:1004908110793
10.1126/science.1260352
10.5620/eht.e2018013
10.1007/s004200000185
10.1039/C8NA00210J
10.1016/j.cub.2017.02.060
10.1016/j.polymdegradstab.2007.11.008
10.1021/acs.estlett.7b00187
10.1136/ebmed-2015-110374
10.1128/aem.38.3.551-553.1979
10.1039/C1CS15233E
10.1146/annurev-anchem-062011-143134
10.1016/j.marpolbul.2013.12.035
10.1016/j.watres.2019.02.054
10.1098/rsif.2009.0272.focus
10.1021/es401288x
10.1080/10937400252972162
10.1016/j.biomaterials.2013.06.052
10.1021/es401932b
10.1016/j.scitotenv.2019.134455
10.1007/978-3-319-16510-3_12
10.1016/j.nano.2011.03.005
10.1021/jp1054759
10.1016/j.eng.2018.09.007
10.1126/science.1192321
10.1016/j.tiv.2019.104610
10.1016/j.chemosphere.2015.11.078
10.1186/1477-3155-2-12
10.1016/j.biomaterials.2011.08.085
10.1016/j.scitotenv.2018.06.186
10.1016/j.envres.2017.08.043
10.1039/C4NR06849A
10.5271/sjweh.2754
10.1093/toxsci/64.2.151
10.3390/ijms10093722
10.1006/taap.2001.9240
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2020.114297
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 32155552
10_1016_j_envpol_2020_114297
S026974911933595X
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
29G
4.4
457
53G
5GY
5VS
6I.
6TJ
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XJT
XOL
XPP
ZMT
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c507t-945e2bbcfe0f9c37631a443699daf3d7f982a23dce45351dc57a5f751bbd7fa03
ISICitedReferencesCount 404
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000533524300114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-7491
1873-6424
IngestDate Sun Nov 09 14:44:37 EST 2025
Sun Sep 28 08:52:22 EDT 2025
Wed Feb 19 02:30:59 EST 2025
Sat Nov 29 07:22:11 EST 2025
Tue Nov 18 22:29:01 EST 2025
Fri Feb 23 02:46:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Polystyrene nanoparticles
Polystyrene toxicity
Degradation of plastic
Protein corona
Food chain
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c507t-945e2bbcfe0f9c37631a443699daf3d7f982a23dce45351dc57a5f751bbd7fa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.envpol.2020.114297
PMID 32155552
PQID 2376212298
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2431839185
proquest_miscellaneous_2376212298
pubmed_primary_32155552
crossref_primary_10_1016_j_envpol_2020_114297
crossref_citationtrail_10_1016_j_envpol_2020_114297
elsevier_sciencedirect_doi_10_1016_j_envpol_2020_114297
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
2020-Jul
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Johannaber, Michaeli (bib36) 2004
Mohr, Sommer, Baier, Schottler, Okwieka, Tenzer, Landfester, Mailander, Schmidt, Meyer (bib57) 2014; 5
Prata, da Costa, Lopes, Duarte, Rocha-Santos (bib69) 2020; 702
Andrady (bib1) 2011; 62
Desforges, Galbraith, Dangerfield, Ross (bib20) 2014; 79
Della Torre, Bergami, Salvati, Faleri, Cirino, Dawson, Corsi (bib18) 2014; 48
Pitt, Trevisan, Massarsky, Kozal, Levin, Di Giulio (bib65) 2018; 1
Yooeun, Dokyung, Shin, Youn-Joo (bib90) 2018; 8
Revel, Chatel, Mouneyrac (bib70) 2018; 1
(bib66) 2017
Tokiwa, Calabia, Ugwu, Aiba (bib80) 2009; 10
Cox, Covernton, Davies, Dower, Juanes, Dudas (bib15) 2019; 1–10
Park, Neigh, Vermeulen, Fonteyne, Verharen, Briedé, Loveren, Jong (bib64) 2011; 32
De Falco, Gullo, Gentile, Di Pace, Cocca, Gelabert, Brouta-Agnésa, Rovira, Escudero, Villalba, Mossotti, Montarsolo, Gavignano, Tonin, Avella (bib17) 2018; 236
Lee, Shim, Kwon, Kang (bib45) 2013; 47
Singh, Sharma (bib77) 2008; 93
Salvati, Aberg, dos Santos, Varela, Pinto, Lynch (bib72) 2011; 7
Anguissola, Garry, Salvati, O’Brien, Dawson (bib2) 2014; 9
Murali, Kenesei, Li, Demeter, Korneyi, Madarasz (bib59) 2015; 7
Snopczyński, Góralczyk, Czaja, Struciński, Hernik, Korcz, Ludwicki (bib78) 2009; 60
Loss, Syrovets, Musyanovych, Mailander, Landfester, Nienhaus, Simmet (bib49) 2014; 5
Jambeck, Geyer, Wilcox, Siegler, Perryman, Andrady, Narayan, Law (bib34) 2015; 347
Shahbazi, Hamidi, Mäkilä, Zhang, Almeida, Kaasalainen, Salonen, Hirvonen, Santos (bib74) 2013; 34
Midwoud, Janse, Merema, Groothuis, Verpoorte (bib56) 2012; 84
Zettler, Mincer, Amaral-Zettler (bib92) 2013; 47
Costa, Santos, Duarte, Rocha-Santos (bib14) 2016; 566–567
Schirinzi, Perez-Pomeda, Sanchis, Rossini, Farre, Barcelo (bib73) 2017; 159
Moore, Lattin, Zellers (bib58) 2005
Zhao, Qu, Wong, Wang (bib93) 2017; 4
Law, Moret-Ferguson, Maximenko, Proskurowski, Peacock, Hafner, Reddy (bib44) 2010
Cui, Kim, An (bib16) 2017; 1–10
Domininghaus, Eyerer, Elsner, Hirth (bib21) 2005
Florence (bib25) 2004; 12
Habib, Locke, Cannone (bib29) 1998; 103
Shang, Nienhaus, Nienhaus (bib75) 2014; 12
Tornero-Velez, Rappaport (bib81) 2001; 64
Xia, Kovochich, Liong, Zink, Nel (bib89) 2008; 2
Esch, Southard, Tako (bib24) 2012; 1–8
WHO (bib86) 2000
Cohen, Carlson, Charnley, Coggon, Delzell, Graham, Greim, Krewski, Medinsky, Monson, Paustenbach, Petersen, Rappaport, Rhomberg, Ryan, Thompson (bib12) 2002; 5
Pomerena, Bruna, Peijnenburga, Vijvera (bib67) 2017; 190
Kang, Park, Kwon, Lee, Jeong, Ju, Kwon (bib37) 2018; 33
Lee, Kim, Huh, Lee (bib46) 2019
Meng, Xia, George, Nel (bib55) 2009; 3
Thompson, Quigley, Halfpenny, Scott, Hawkins (bib79) 2016; 21
Koelman, Besseling, Shim (bib40) 2015
Chae, Kim, Kim, An (bib11) 2018
Mahon, O’Connell, Healy, O’Connor, Officer, Nash, Morrison (bib52) 2017; 51
Bhattacharya, Lin, Turner, Ke (bib8) 2010; 114
Koelmans, Nor, Hermsen, Kooi, Mintenig, De France (bib41) 2019; 155
Mutti, Buzio, Perazzoli, Bergamaschi, Bocchi, Selis, Mineo, Franchini (bib60) 1992; 83
Hoet, Bruske-Hohlfeld, Salata (bib32) 2004; 8
Wang, Zhang, Zhang, Mu, Ding, Mao, Cao, Jin, Cong, Wang, Zhang, Wang (bib84) 2019; 244
Zhao, Sun, Zhang, Trewyn, Slowing, Lin (bib94) 2011; 5
Love, Maurer-Jones, Thompson, Lin, Haynes (bib50) 2012; 5
Wünsch (bib88) 2000
Lambert, Wagner (bib43) 2016; 145
O’Brine, Thompson (bib61) 2010; 60
Lei, Liu, Song, Lu, Hu, Cao, Xie, Shi, He (bib47) 2018; 5
Lickly, Breder, Rainey (bib48) 1995; 21
Kashiwada (bib39) 2006; 114
Zhou, Peng, Seven, Leblanc (bib95) 2018; 270
Ma, Yao, Li, Ding, He, Chen, Zhou, Yuan (bib51) 2018; 4
Gurman, Baier, Levin (bib28) 1987; 11
Beliles, Butala, Stack, Makris (bib7) 1985; 5
Yoshida, Hiraga, Takehana, Taniguchi (bib91) 2016; 351
Barshtein, Livshits, Shvartsman, Shlomai, Yedgar, Arbell (bib6) 2016; 74
Huff, Infante (bib33) 2011; 26
Oslakovic, Cedervall, Linse, Dahlbäck (bib63) 2012; 8
Waring, Harris, Mitchell (bib85) 2018; 115
Ekvall, Lundqvist, Kelpsiene, Sileikis, Gunnarsson, Cedervall (bib23) 2019; 1
FDA (Food and Drug Administration) (bib26) 2002
Shim, Hong, Eo (bib76) 2018
Forte, Iachetta, Tussellino, Carotenuto, Prisco, De Falco, Laforgia, Valiante (bib27) 2016; 31
Ponomarkov, Tomatis (bib68) 1978; 4
Mattsson, Johnson, Malmendal, Linse, Hannson, Cedervall (bib54) 2017; 7
Hesler, Aengenheister, Ellinger, Drexel, Straskraba, Jost, Wagner, Meier, von Briesen, Buchel, Wick, Buerki-Thurnherr, Kohl (bib31) 2019; 61
Rossi, Barnoud, Monticelli (bib71) 2014; 5
Bombelli, Howe, Bertocchini (bib9) 2017; 27
Hernandez, Yousefi, Tufenkji (bib30) 2017; 4
Worm, Lotze, Jubinville, Wilcox, Jambeck (bib87) 2017; 42
Deng, Zhang, Lemos, Ren (bib19) 2017; 7
Mattsson, Hansson, Cedervall (bib53) 2015; 17
Walkey, Warren (bib83) 2012; 41
Ašmonaitė, Sundh, Asker, Almroth (bib3) 2018; 52
Efimova, Bagaeva, Bagaev, Kileso, Chubarenko (bib22) 2018; 5
Awet, Kohl, Meier, Straskraba, Grün, Ruf, Jost, Drexel, Tunc, Emmerling (bib4) 2018; 30
Barshtein, Arbell, Yedgar (bib5) 2011; 10
Brown, Wilson, MacNee, Stone, Donaldson (bib10) 2001; 175
Conti, Maltoni, Perino, Ciliberti (bib13) 1988; 534
Kokkinopoulou, Simon, Mailaender, Lieberwirth, Ladfester (bib42) 2012
Oberdorster (bib62) 2001; 74
Jiang, Weise, Hafner, Rocker, Zhang, Wolfgang (bib35) 2010; 7
Velzeboer, Quik, van de Meent, Koelmans (bib82) 2014; 33
Kaplan, Hartenstein, Sutter (bib38) 1979; 38
Forte (10.1016/j.envpol.2020.114297_bib27) 2016; 31
Costa (10.1016/j.envpol.2020.114297_bib14) 2016; 566–567
Loss (10.1016/j.envpol.2020.114297_bib49) 2014; 5
Kang (10.1016/j.envpol.2020.114297_bib37) 2018; 33
Cox (10.1016/j.envpol.2020.114297_bib15) 2019; 1–10
Koelman (10.1016/j.envpol.2020.114297_bib40) 2015
Lambert (10.1016/j.envpol.2020.114297_bib43) 2016; 145
Park (10.1016/j.envpol.2020.114297_bib64) 2011; 32
Esch (10.1016/j.envpol.2020.114297_bib24) 2012; 1–8
Waring (10.1016/j.envpol.2020.114297_bib85) 2018; 115
Johannaber (10.1016/j.envpol.2020.114297_bib36) 2004
Desforges (10.1016/j.envpol.2020.114297_bib20) 2014; 79
Hesler (10.1016/j.envpol.2020.114297_bib31) 2019; 61
Walkey (10.1016/j.envpol.2020.114297_bib83) 2012; 41
Della Torre (10.1016/j.envpol.2020.114297_bib18) 2014; 48
Snopczyński (10.1016/j.envpol.2020.114297_bib78) 2009; 60
Wünsch (10.1016/j.envpol.2020.114297_bib88) 2000
Anguissola (10.1016/j.envpol.2020.114297_bib2) 2014; 9
Singh (10.1016/j.envpol.2020.114297_bib77) 2008; 93
Kokkinopoulou (10.1016/j.envpol.2020.114297_bib42) 2012
Velzeboer (10.1016/j.envpol.2020.114297_bib82) 2014; 33
Awet (10.1016/j.envpol.2020.114297_bib4) 2018; 30
Oberdorster (10.1016/j.envpol.2020.114297_bib62) 2001; 74
Worm (10.1016/j.envpol.2020.114297_bib87) 2017; 42
Chae (10.1016/j.envpol.2020.114297_bib11) 2018
Lickly (10.1016/j.envpol.2020.114297_bib48) 1995; 21
Ponomarkov (10.1016/j.envpol.2020.114297_bib68) 1978; 4
Koelmans (10.1016/j.envpol.2020.114297_bib41) 2019; 155
Law (10.1016/j.envpol.2020.114297_bib44) 2010
Ma (10.1016/j.envpol.2020.114297_bib51) 2018; 4
Mohr (10.1016/j.envpol.2020.114297_bib57) 2014; 5
Jambeck (10.1016/j.envpol.2020.114297_bib34) 2015; 347
O’Brine (10.1016/j.envpol.2020.114297_bib61) 2010; 60
Prata (10.1016/j.envpol.2020.114297_bib69) 2020; 702
Mattsson (10.1016/j.envpol.2020.114297_bib53) 2015; 17
Oslakovic (10.1016/j.envpol.2020.114297_bib63) 2012; 8
Zhao (10.1016/j.envpol.2020.114297_bib94) 2011; 5
Florence (10.1016/j.envpol.2020.114297_bib25) 2004; 12
Beliles (10.1016/j.envpol.2020.114297_bib7) 1985; 5
Schirinzi (10.1016/j.envpol.2020.114297_bib73) 2017; 159
Shahbazi (10.1016/j.envpol.2020.114297_bib74) 2013; 34
FDA (Food and Drug Administration) (10.1016/j.envpol.2020.114297_bib26) 2002
Gurman (10.1016/j.envpol.2020.114297_bib28) 1987; 11
Hernandez (10.1016/j.envpol.2020.114297_bib30) 2017; 4
Salvati (10.1016/j.envpol.2020.114297_bib72) 2011; 7
Habib (10.1016/j.envpol.2020.114297_bib29) 1998; 103
Revel (10.1016/j.envpol.2020.114297_bib70) 2018; 1
Efimova (10.1016/j.envpol.2020.114297_bib22) 2018; 5
Jiang (10.1016/j.envpol.2020.114297_bib35) 2010; 7
Tokiwa (10.1016/j.envpol.2020.114297_bib80) 2009; 10
Zhou (10.1016/j.envpol.2020.114297_bib95) 2018; 270
Yoshida (10.1016/j.envpol.2020.114297_bib91) 2016; 351
Kashiwada (10.1016/j.envpol.2020.114297_bib39) 2006; 114
Murali (10.1016/j.envpol.2020.114297_bib59) 2015; 7
Yooeun (10.1016/j.envpol.2020.114297_bib90) 2018; 8
Bombelli (10.1016/j.envpol.2020.114297_bib9) 2017; 27
Zettler (10.1016/j.envpol.2020.114297_bib92) 2013; 47
Lee (10.1016/j.envpol.2020.114297_bib45) 2013; 47
Brown (10.1016/j.envpol.2020.114297_bib10) 2001; 175
(10.1016/j.envpol.2020.114297_bib66) 2017
Love (10.1016/j.envpol.2020.114297_bib50) 2012; 5
Barshtein (10.1016/j.envpol.2020.114297_bib5) 2011; 10
Zhao (10.1016/j.envpol.2020.114297_bib93) 2017; 4
Ašmonaitė (10.1016/j.envpol.2020.114297_bib3) 2018; 52
Kaplan (10.1016/j.envpol.2020.114297_bib38) 1979; 38
Pomerena (10.1016/j.envpol.2020.114297_bib67) 2017; 190
Shang (10.1016/j.envpol.2020.114297_bib75) 2014; 12
Mutti (10.1016/j.envpol.2020.114297_bib60) 1992; 83
Cohen (10.1016/j.envpol.2020.114297_bib12) 2002; 5
Meng (10.1016/j.envpol.2020.114297_bib55) 2009; 3
Deng (10.1016/j.envpol.2020.114297_bib19) 2017; 7
Andrady (10.1016/j.envpol.2020.114297_bib1) 2011; 62
WHO (10.1016/j.envpol.2020.114297_bib86) 2000
Xia (10.1016/j.envpol.2020.114297_bib89) 2008; 2
Mattsson (10.1016/j.envpol.2020.114297_bib54) 2017; 7
Lei (10.1016/j.envpol.2020.114297_bib47) 2018; 5
Conti (10.1016/j.envpol.2020.114297_bib13) 1988; 534
De Falco (10.1016/j.envpol.2020.114297_bib17) 2018; 236
Wang (10.1016/j.envpol.2020.114297_bib84) 2019; 244
Domininghaus (10.1016/j.envpol.2020.114297_bib21) 2005
Ekvall (10.1016/j.envpol.2020.114297_bib23) 2019; 1
Midwoud (10.1016/j.envpol.2020.114297_bib56) 2012; 84
Moore (10.1016/j.envpol.2020.114297_bib58) 2005
Shim (10.1016/j.envpol.2020.114297_bib76) 2018
Cui (10.1016/j.envpol.2020.114297_bib16) 2017; 1–10
Tornero-Velez (10.1016/j.envpol.2020.114297_bib81) 2001; 64
Huff (10.1016/j.envpol.2020.114297_bib33) 2011; 26
Rossi (10.1016/j.envpol.2020.114297_bib71) 2014; 5
Bhattacharya (10.1016/j.envpol.2020.114297_bib8) 2010; 114
Mahon (10.1016/j.envpol.2020.114297_bib52) 2017; 51
Hoet (10.1016/j.envpol.2020.114297_bib32) 2004; 8
Barshtein (10.1016/j.envpol.2020.114297_bib6) 2016; 74
Thompson (10.1016/j.envpol.2020.114297_bib79) 2016; 21
Lee (10.1016/j.envpol.2020.114297_bib46) 2019
Pitt (10.1016/j.envpol.2020.114297_bib65) 2018; 1
References_xml – volume: 8
  start-page: 12
  year: 2004
  ident: bib32
  article-title: Nanoparticles- known and unknown health risk
  publication-title: J. Nanobiotechnol.
– volume: 9
  start-page: 1
  year: 2014
  end-page: 16
  ident: bib2
  article-title: High content analysis provides mechanistic in sights on the pathways of toxicity induced by amine-modified polystyrene nanoparticles
  publication-title: PloS One
– volume: 62
  start-page: 1596
  year: 2011
  end-page: 1605
  ident: bib1
  article-title: Microplastics in the marine environment
  publication-title: Mar. Pollut. Bull.
– volume: 30
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib4
  article-title: Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil
  publication-title: Environ. Sci. Eur.
– volume: 17
  start-page: 1712
  year: 2015
  end-page: 1721
  ident: bib53
  article-title: Nano-plastics in the aquatic environment
  publication-title: Environ. Sci. Process Impacts
– volume: 155
  start-page: 410
  year: 2019
  end-page: 422
  ident: bib41
  article-title: Microplastics in freshwaters and drinking water: critical review and assessment of data quality
  publication-title: Water Res.
– volume: 159
  start-page: 579
  year: 2017
  end-page: 587
  ident: bib73
  article-title: Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells
  publication-title: Environ. Res.
– volume: 347
  start-page: 768
  year: 2015
  end-page: 771
  ident: bib34
  article-title: Plastic waste inputs from land into ocean
  publication-title: Science
– start-page: 1269
  year: 2004
  end-page: 1273
  ident: bib36
  article-title: HandbuchSpritzgießen
– start-page: 1
  year: 2019
  end-page: 13
  ident: bib46
  article-title: Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in
  publication-title: Nanoscale
– start-page: 1
  year: 2018
  end-page: 26
  ident: bib76
  article-title: Microplastic contamination in aquatic environments. Marine microplastics
  publication-title: Emerg. Matter Environ. Urg.
– volume: 270
  start-page: 290
  year: 2018
  end-page: 303
  ident: bib95
  article-title: Crossing the blood-brain barrier with nanoparticles
  publication-title: J. Contr. Release
– volume: 351
  start-page: 1196
  year: 2016
  end-page: 1199
  ident: bib91
  article-title: A bacterium that degrades and assimilates poly(ethylene terephthalate)
  publication-title: Science
– volume: 42
  start-page: 1
  year: 2017
  end-page: 26
  ident: bib87
  article-title: Plastic as a persistent marine pollutant
  publication-title: Annu. Rev. Environ. Resour.
– start-page: 1185
  year: 2010
  end-page: 1188
  ident: bib44
  article-title: Plastic accumulation in the North Atlantic subtropical gyre
  publication-title: Science
– volume: 3
  start-page: 1620
  year: 2009
  end-page: 1627
  ident: bib55
  article-title: A predictive toxicological paradigm for the safety assessment of nanomaterials
  publication-title: ACS Nano
– volume: 64
  start-page: 151
  year: 2001
  end-page: 161
  ident: bib81
  article-title: Physiological modeling of the relative contributions of styrene-7,8-oxide derived from direct inhalation and from styrene metabolism to the systemic dose in humans
  publication-title: Toxicol. Sci.
– volume: 534
  start-page: 203
  year: 1988
  end-page: 234
  ident: bib13
  article-title: Long-term carcinogenicity bioassays on styrene administered by inhalation, ingestion and injection and styrene oxide administered by ingestion in Sprague-Dawley rats, and para-methyl styrene administered by ingestion in Sprague-Dawley rats and Swiss mice
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 1–8
  year: 2012
  ident: bib24
  article-title: Oral exposure to polystyrene nanoparticles affects iron absorption
  publication-title: Nat. Nanotechnol.
– start-page: 325
  year: 2015
  end-page: 340
  ident: bib40
  article-title: Nanoplastics in the aquatic environment. Critical review
  publication-title: Mar. Anthr. Litt.
– year: 2018
  ident: bib11
  article-title: Trophic Transfer and Individual Impact of Nano-Sized Polystyrene in a Four-Species Freshwater Food Chain
– volume: 702
  start-page: 134455
  year: 2020
  ident: bib69
  article-title: Environmental exposure to microplastics: an overview on possible human health effects
  publication-title: Sci. Total Environ.
– volume: 8
  start-page: 981
  year: 2012
  end-page: 986
  ident: bib63
  article-title: Polystyrene nanoparticles affecting blood coagulation
  publication-title: Nanomedicine
– volume: 74
  start-page: 19
  year: 2016
  end-page: 27
  ident: bib6
  article-title: Polystyrene nanoparticles activate erythrocyte aggregation and adhesion to endothelial cells
  publication-title: Cell Biochem. Biophys.
– volume: 236
  start-page: 916
  year: 2018
  end-page: 925
  ident: bib17
  article-title: Evaluation of microplastic release caused by textile washing processes of synthetic fabrics
  publication-title: Environ. Pollut.
– volume: 84
  start-page: 3938
  year: 2012
  end-page: 3944
  ident: bib56
  article-title: Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models
  publication-title: Anal. Chem.
– volume: 1
  start-page: 324
  year: 2018
  end-page: 334
  ident: bib65
  article-title: Maternal transfer of nanoplastic to offspring in zebrafish (
  publication-title: Sci. Total Environ.
– volume: 5
  start-page: 2403
  year: 2014
  end-page: 2412
  ident: bib49
  article-title: Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions
  publication-title: Beilstein J. Nanotechnol.
– volume: 103
  start-page: 1
  year: 1998
  end-page: 8
  ident: bib29
  article-title: Synthetic fibres as indicators of municipal sewage sludge, sludge products, and sewage treatment plant effluents
  publication-title: Water Air Soil Pollut.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib54
  article-title: Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain
  publication-title: Sci. Rep.
– volume: 7
  start-page: 818
  year: 2011
  end-page: 826
  ident: bib72
  article-title: Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 33
  start-page: 1766
  year: 2014
  end-page: 1773
  ident: bib82
  article-title: Rapid settling of nanomaterials due to hetero-aggregation with suspended sediment
  publication-title: Environ. Toxicol. Chem.
– volume: 47
  start-page: 7137
  year: 2013
  end-page: 7146
  ident: bib92
  article-title: Life in the „plastisphere” : microbial communities on plastic marine debris
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 280
  year: 2017
  end-page: 285
  ident: bib30
  article-title: Are there nanoplastics in your personal care products?
  publication-title: Environ. Sci. Technol. Lett.
– volume: 4
  start-page: 888
  year: 2018
  end-page: 893
  ident: bib51
  article-title: Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering
  publication-title: Engineering
– volume: 60
  start-page: 101
  year: 2009
  end-page: 111
  ident: bib78
  article-title: Nanotechnology - possibilities of danger. [in polish] roczn
  publication-title: PZH
– volume: 11
  start-page: 109
  year: 1987
  end-page: 130
  ident: bib28
  article-title: Polystyrenes: a review of the literature on the products of thermal decomposition and toxicity
  publication-title: Int. J.
– volume: 51
  start-page: 810
  year: 2017
  end-page: 818
  ident: bib52
  article-title: Microplastics in sewage sludge: effects of treatment
  publication-title: Environ. Sci. Technol.
– volume: 32
  start-page: 9810
  year: 2011
  end-page: 9817
  ident: bib64
  article-title: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles
  publication-title: Biomaterials
– volume: 27
  start-page: R283
  year: 2017
  end-page: R293
  ident: bib9
  article-title: Polyethylene bio-degradation by caterpillars of the wax moth
  publication-title: Curr. Biol.
– volume: 1
  start-page: 1055
  year: 2019
  end-page: 1061
  ident: bib23
  article-title: Nanoplastic formed during the mechanical breakdown of daily-use polystyrene products
  publication-title: Nanoscale Adv.
– volume: 7
  start-page: S5
  year: 2010
  end-page: S13
  ident: bib35
  article-title: Quantitative analysis of the protein corona on FePt nanoparticles fordem by trasferrin binding
  publication-title: J. R. Soc. Interface
– volume: 1–10
  year: 2019
  ident: bib15
  article-title: Human consumption of microplastics
  publication-title: Environ. Sci. Technol.
– volume: 74
  start-page: 1
  year: 2001
  end-page: 8
  ident: bib62
  article-title: Pulmonary effects of inhaled ultrafine particles
  publication-title: Int. Arch. Occup. Environ. Health
– volume: 5
  start-page: 1
  year: 2002
  end-page: 265
  ident: bib12
  article-title: A comprehensive evaluation of the potential health risks associated with occupational and environmental exposure to styrene
  publication-title: Toxicol. Environ. Health Part B
– volume: 61
  year: 2019
  ident: bib31
  article-title: Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models
  publication-title: Toxicol. Vitro
– volume: 190
  start-page: 40
  year: 2017
  end-page: 45
  ident: bib67
  article-title: Exploring uptake and biodistribution of polystyrene (nano) particles in zebrafish embryos AT different development alstages
  publication-title: Aquat. Toxicol.
– volume: 48
  start-page: 12302
  year: 2014
  end-page: 12311
  ident: bib18
  article-title: Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 55
  year: 2016
  end-page: 59
  ident: bib79
  article-title: Importance and methods of searching for E-publications ahead of print in systematic reviews
  publication-title: Evid. Based Med.
– volume: 244
  start-page: 715
  year: 2019
  end-page: 722
  ident: bib84
  article-title: Effects of ingested polystyrene microplastics on brine shrimp, Artemia parthenogenetica
  publication-title: Environ. Pollut.
– volume: 1–10
  year: 2017
  ident: bib16
  article-title: Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean
  publication-title: Sci. Rep.
– volume: 12
  start-page: 65
  year: 2004
  end-page: 70
  ident: bib25
  article-title: Issues in oral nanoparticle drug carrier uptake and targeting
  publication-title: J. Drug Target.
– volume: 10
  start-page: 3722
  year: 2009
  end-page: 3742
  ident: bib80
  article-title: Biodegradability of plastics
  publication-title: Int. J. Mol. Sci.
– volume: 5
  start-page: 181
  year: 2012
  end-page: 205
  ident: bib50
  article-title: Assessing nanoparticle toxicity
  publication-title: Annu. Rev. Anal. Chem.
– start-page: 1
  year: 2000
  end-page: 28
  ident: bib88
  article-title: Polystyrene: Synthesis, Production and Applications
– volume: 5
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib57
  article-title: Aggregation behavior of polystyrene – nanopartciles in human blood serum and its impact on the in vivo distribution in mice
  publication-title: J. Nanomed. Nanotechnol.
– volume: 93
  start-page: 561
  year: 2008
  end-page: 584
  ident: bib77
  article-title: Mechanistic implications of plastic degradation
  publication-title: Polym. Degrad. Stabil.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib90
  article-title: Trophic transfer and individual impact of Nano-sized polystyrene in a four-species freshwater food chain
  publication-title: Sci. Rep.
– start-page: 71
  year: 2012
  end-page: 72
  ident: bib42
  article-title: Physical Chemistry of Polymers
– year: 2017
  ident: bib66
  article-title: An Analysis of European Plastics Production, Demand and Waste Data
– volume: 7
  start-page: 46687
  year: 2017
  ident: bib19
  article-title: Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure
  publication-title: Sci. Rep.
– volume: 79
  start-page: 94
  year: 2014
  end-page: 99
  ident: bib20
  article-title: Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean
  publication-title: Mar. Pollut. Bull.
– volume: 5
  start-page: 241
  year: 2014
  end-page: 246
  ident: bib71
  article-title: Polystyrene nanopraticles pertrub lipid membranes
  publication-title: J. Phys. Chem. Lett.
– year: 2002
  ident: bib26
  article-title: The Safety of Styrene-Based Polymers for Food-Contact Use
– volume: 5
  year: 2018
  ident: bib47
  article-title: Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans
  publication-title: Environ. Sci. Nano.
– volume: 83
  start-page: 167
  year: 1992
  end-page: 177
  ident: bib60
  article-title: Lymphocyte subpopulations in workers exposed occupationally to styrene
  publication-title: Med. Lavoro
– volume: 34
  start-page: 7776
  year: 2013
  end-page: 7789
  ident: bib74
  article-title: The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility
  publication-title: Biomaterials
– volume: 10
  start-page: 259
  year: 2011
  end-page: 261
  ident: bib5
  article-title: Hemolytic effect of polymeric nanoparticles: role of albumin
  publication-title: IEEE Trans. NanoBioscience
– volume: 33
  year: 2018
  ident: bib37
  article-title: Occurrence of microplastics in municipal sewage treatment plants: a review
  publication-title: Environ. Health Toxicol.
– volume: 12
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib75
  article-title: Engineered nanoparticles interacting with cells: size matters
  publication-title: J. Nanobiotechnol.
– volume: 26
  start-page: 583
  year: 2011
  end-page: 584
  ident: bib33
  article-title: Styrene exposure and risk cancer
  publication-title: Mutagenesis
– volume: 21
  start-page: 406
  year: 1995
  end-page: 417
  ident: bib48
  article-title: A model for estimating the daily dietary intake of a substance from food contact articles: styrene from polystyrene food contact polymers Regul
  publication-title: Toxicol. Pharmacol.
– volume: 145
  start-page: 265
  year: 2016
  end-page: 268
  ident: bib43
  article-title: Characterisation of nanoplastic during the degradation of polystyrene
  publication-title: Chemosphere
– volume: 114
  start-page: 1697
  year: 2006
  end-page: 1702
  ident: bib39
  article-title: Distribution of nanoparticles in the see-through Medaka (
  publication-title: Environ. Health Perspect.
– volume: 115
  start-page: 64
  year: 2018
  end-page: 68
  ident: bib85
  article-title: Plastic contamination of the food chain: a threat to human health?
  publication-title: Maturitas
– volume: 1
  start-page: 17
  year: 2018
  end-page: 23
  ident: bib70
  article-title: Micro (nano) plastics: a threat to human health?
  publication-title: Curr. Opin. Environ. Sci. Health
– volume: 2
  start-page: 85
  year: 2008
  end-page: 96
  ident: bib89
  article-title: Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways
  publication-title: ACS Nano
– volume: 47
  start-page: 11278
  year: 2013
  end-page: 11283
  ident: bib45
  article-title: Size-dependent effects of micro polystyrene nanoparticles in the marine copepod
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 4199
  year: 2015
  end-page: 4210
  ident: bib59
  article-title: Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells
  publication-title: Nanoscale
– volume: 114
  start-page: 16556
  year: 2010
  end-page: 16561
  ident: bib8
  article-title: Physical adsorption of charged plastic nanoparticles affects algal photosynthesis
  publication-title: J. Phys. Chem.
– volume: 38
  start-page: 551
  year: 1979
  end-page: 553
  ident: bib38
  article-title: Biodegradation of polystyrene, poly(metnyl methacrylate), and phenol formaldehyde
  publication-title: J. Appl. Environ. Microbiol.
– volume: 52
  start-page: 14392
  year: 2018
  end-page: 14401
  ident: bib3
  article-title: Rainbow trout maintain intestinal transport and barrier functions following exposure to polystyrene microplastics
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 855
  year: 1985
  end-page: 868
  ident: bib7
  article-title: Chronic toxicity and three- generation reproduction study of styrene monomer in the drinking, water of rats
  publication-title: Fund. Appl. Toxicol.
– volume: 4
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib93
  article-title: Transgenerational toxicity of nanopolystyrene particles in the range of μg L
  publication-title: Environ. Sci.: Nano
– volume: 4
  start-page: 127
  year: 1978
  end-page: 135
  ident: bib68
  article-title: Effects of long-term oral administration of styrene to mice and rats
  publication-title: Scand. J. Work. Environ. Health
– start-page: 1549
  year: 2005
  ident: bib21
  article-title: Die Kunststoffe Und IhreEigenschaften
– volume: 5
  year: 2018
  ident: bib22
  article-title: Secondary microplastics generation in the sea swash zone with coarse bottom sediments: laboratory experiments
  publication-title: Frontiers in Marine Science
– volume: 5
  start-page: 1366
  year: 2011
  end-page: 1375
  ident: bib94
  article-title: Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects
  publication-title: ACS Nano
– volume: 566–567
  start-page: 15
  year: 2016
  end-page: 26
  ident: bib14
  article-title: Nano) plastics in the environment – sources, fates and effects
  publication-title: Sci. Total Environ.
– volume: 175
  start-page: 191
  year: 2001
  end-page: 199
  ident: bib10
  article-title: Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface are and oxidative stress in the enhanced activity of ultrafines
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 31
  start-page: 126
  year: 2016
  end-page: 136
  ident: bib27
  article-title: Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells
  publication-title: Toxicol. In Vitro
– year: 2005
  ident: bib58
  article-title: Density of plastic particles found in zooplankton trawls from coastal waters of California to the North pacific central gyre
  publication-title: Proceedings of the Plastic Debris Rivers to Sea Conference
– start-page: 1
  year: 2000
  end-page: 288
  ident: bib86
  article-title: Styrene. Air Quality Guidelines for Europe
– volume: 60
  start-page: 2279
  year: 2010
  end-page: 2283
  ident: bib61
  article-title: Degradation of plastic carrier bags in the marine environment
  publication-title: Mar. Pollut. Bull.
– volume: 41
  start-page: 2780
  year: 2012
  end-page: 2799
  ident: bib83
  article-title: Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment
  publication-title: Chem. Soc. Rev.
– start-page: 1269
  year: 2004
  ident: 10.1016/j.envpol.2020.114297_bib36
– volume: 8
  start-page: 981
  issue: 6
  year: 2012
  ident: 10.1016/j.envpol.2020.114297_bib63
  article-title: Polystyrene nanoparticles affecting blood coagulation
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2011.12.001
– year: 2002
  ident: 10.1016/j.envpol.2020.114297_bib26
– volume: 5
  start-page: 241
  issue: 1
  year: 2014
  ident: 10.1016/j.envpol.2020.114297_bib71
  article-title: Polystyrene nanopraticles pertrub lipid membranes
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz402234c
– volume: 190
  start-page: 40
  year: 2017
  ident: 10.1016/j.envpol.2020.114297_bib67
  article-title: Exploring uptake and biodistribution of polystyrene (nano) particles in zebrafish embryos AT different development alstages
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2017.06.017
– volume: 52
  start-page: 14392
  year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib3
  article-title: Rainbow trout maintain intestinal transport and barrier functions following exposure to polystyrene microplastics
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b04848
– volume: 270
  start-page: 290
  year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib95
  article-title: Crossing the blood-brain barrier with nanoparticles
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2017.12.015
– volume: 26
  start-page: 583
  issue: 5
  year: 2011
  ident: 10.1016/j.envpol.2020.114297_bib33
  article-title: Styrene exposure and risk cancer
  publication-title: Mutagenesis
  doi: 10.1093/mutage/ger033
– volume: 5
  start-page: 1
  year: 2014
  ident: 10.1016/j.envpol.2020.114297_bib57
  article-title: Aggregation behavior of polystyrene – nanopartciles in human blood serum and its impact on the in vivo distribution in mice
  publication-title: J. Nanomed. Nanotechnol.
– volume: 42
  start-page: 1
  year: 2017
  ident: 10.1016/j.envpol.2020.114297_bib87
  article-title: Plastic as a persistent marine pollutant
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev-environ-102016-060700
– volume: 236
  start-page: 916
  year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib17
  article-title: Evaluation of microplastic release caused by textile washing processes of synthetic fabrics
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.10.057
– volume: 2
  start-page: 85
  year: 2008
  ident: 10.1016/j.envpol.2020.114297_bib89
  article-title: Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways
  publication-title: ACS Nano
  doi: 10.1021/nn700256c
– volume: 51
  start-page: 810
  year: 2017
  ident: 10.1016/j.envpol.2020.114297_bib52
  article-title: Microplastics in sewage sludge: effects of treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04048
– volume: 84
  start-page: 3938
  issue: 9
  year: 2012
  ident: 10.1016/j.envpol.2020.114297_bib56
  article-title: Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models
  publication-title: Anal. Chem.
  doi: 10.1021/ac300771z
– volume: 83
  start-page: 167
  issue: 2
  year: 1992
  ident: 10.1016/j.envpol.2020.114297_bib60
  article-title: Lymphocyte subpopulations in workers exposed occupationally to styrene
  publication-title: Med. Lavoro
– volume: 74
  start-page: 19
  year: 2016
  ident: 10.1016/j.envpol.2020.114297_bib6
  article-title: Polystyrene nanoparticles activate erythrocyte aggregation and adhesion to endothelial cells
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-015-0705-6
– start-page: 1
  year: 2000
  ident: 10.1016/j.envpol.2020.114297_bib86
– volume: 5
  start-page: 855
  issue: 5
  year: 1985
  ident: 10.1016/j.envpol.2020.114297_bib7
  article-title: Chronic toxicity and three- generation reproduction study of styrene monomer in the drinking, water of rats
  publication-title: Fund. Appl. Toxicol.
  doi: 10.1016/0272-0590(85)90168-X
– volume: 7
  start-page: 1
  issue: 11452
  year: 2017
  ident: 10.1016/j.envpol.2020.114297_bib54
  article-title: Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain
  publication-title: Sci. Rep.
– volume: 114
  start-page: 1697
  issue: 11
  year: 2006
  ident: 10.1016/j.envpol.2020.114297_bib39
  article-title: Distribution of nanoparticles in the see-through Medaka (Oryzias latipes)
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.9209
– volume: 534
  start-page: 203
  year: 1988
  ident: 10.1016/j.envpol.2020.114297_bib13
  article-title: Long-term carcinogenicity bioassays on styrene administered by inhalation, ingestion and injection and styrene oxide administered by ingestion in Sprague-Dawley rats, and para-methyl styrene administered by ingestion in Sprague-Dawley rats and Swiss mice
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1988.tb30112.x
– volume: 3
  start-page: 1620
  year: 2009
  ident: 10.1016/j.envpol.2020.114297_bib55
  article-title: A predictive toxicological paradigm for the safety assessment of nanomaterials
  publication-title: ACS Nano
  doi: 10.1021/nn9005973
– volume: 21
  start-page: 406
  year: 1995
  ident: 10.1016/j.envpol.2020.114297_bib48
  article-title: A model for estimating the daily dietary intake of a substance from food contact articles: styrene from polystyrene food contact polymers Regul
  publication-title: Toxicol. Pharmacol.
– volume: 10
  start-page: 259
  issue: 4
  year: 2011
  ident: 10.1016/j.envpol.2020.114297_bib5
  article-title: Hemolytic effect of polymeric nanoparticles: role of albumin
  publication-title: IEEE Trans. NanoBioscience
  doi: 10.1109/TNB.2011.2175745
– volume: 351
  start-page: 1196
  issue: 6278
  year: 2016
  ident: 10.1016/j.envpol.2020.114297_bib91
  article-title: A bacterium that degrades and assimilates poly(ethylene terephthalate)
  publication-title: Science
  doi: 10.1126/science.aad6359
– volume: 5
  year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib22
  article-title: Secondary microplastics generation in the sea swash zone with coarse bottom sediments: laboratory experiments
  publication-title: Frontiers in Marine Science
  doi: 10.3389/fmars.2018.00313
– volume: 9
  start-page: 1
  issue: 9
  year: 2014
  ident: 10.1016/j.envpol.2020.114297_bib2
  article-title: High content analysis provides mechanistic in sights on the pathways of toxicity induced by amine-modified polystyrene nanoparticles
  publication-title: PloS One
  doi: 10.1371/journal.pone.0108025
– volume: 12
  start-page: 65
  year: 2004
  ident: 10.1016/j.envpol.2020.114297_bib25
  article-title: Issues in oral nanoparticle drug carrier uptake and targeting
  publication-title: J. Drug Target.
  doi: 10.1080/10611860410001693706
– volume: 566–567
  start-page: 15
  year: 2016
  ident: 10.1016/j.envpol.2020.114297_bib14
  article-title: Nano) plastics in the environment – sources, fates and effects
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.05.041
– volume: 5
  start-page: 1366
  year: 2011
  ident: 10.1016/j.envpol.2020.114297_bib94
  article-title: Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects
  publication-title: ACS Nano
  doi: 10.1021/nn103077k
– volume: 30
  start-page: 1
  issue: 11
  year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib4
  article-title: Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil
  publication-title: Environ. Sci. Eur.
– volume: 5
  start-page: 2403
  year: 2014
  ident: 10.1016/j.envpol.2020.114297_bib49
  article-title: Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.5.250
– volume: 62
  start-page: 1596
  issue: 8
  year: 2011
  ident: 10.1016/j.envpol.2020.114297_bib1
  article-title: Microplastics in the marine environment
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.05.030
– volume: 17
  start-page: 1712
  issue: 10
  year: 2015
  ident: 10.1016/j.envpol.2020.114297_bib53
  article-title: Nano-plastics in the aquatic environment
  publication-title: Environ. Sci. Process Impacts
  doi: 10.1039/C5EM00227C
– volume: 60
  start-page: 2279
  issue: 12
  year: 2010
  ident: 10.1016/j.envpol.2020.114297_bib61
  article-title: Degradation of plastic carrier bags in the marine environment
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2010.08.005
– volume: 11
  start-page: 109
  year: 1987
  ident: 10.1016/j.envpol.2020.114297_bib28
  article-title: Polystyrenes: a review of the literature on the products of thermal decomposition and toxicity
  publication-title: Int. J.
– volume: 33
  start-page: 1766
  year: 2014
  ident: 10.1016/j.envpol.2020.114297_bib82
  article-title: Rapid settling of nanomaterials due to hetero-aggregation with suspended sediment
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.2611
– volume: 244
  start-page: 715
  year: 2019
  ident: 10.1016/j.envpol.2020.114297_bib84
  article-title: Effects of ingested polystyrene microplastics on brine shrimp, Artemia parthenogenetica
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.10.024
– volume: 5
  issue: 8
  year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib47
  article-title: Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans
  publication-title: Environ. Sci. Nano.
  doi: 10.1039/C8EN00412A
– start-page: 71
  year: 2012
  ident: 10.1016/j.envpol.2020.114297_bib42
– volume: 1
  start-page: 17
  year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib70
  article-title: Micro (nano) plastics: a threat to human health?
  publication-title: Curr. Opin. Environ. Sci. Health
  doi: 10.1016/j.coesh.2017.10.003
– volume: 7
  start-page: 46687
  year: 2017
  ident: 10.1016/j.envpol.2020.114297_bib19
  article-title: Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure
  publication-title: Sci. Rep.
  doi: 10.1038/srep46687
– volume: 48
  start-page: 12302
  issue: 20
  year: 2014
  ident: 10.1016/j.envpol.2020.114297_bib18
  article-title: Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es502569w
– volume: 115
  start-page: 64
  year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib85
  article-title: Plastic contamination of the food chain: a threat to human health?
  publication-title: Maturitas
  doi: 10.1016/j.maturitas.2018.06.010
– year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib11
– volume: 31
  start-page: 126
  year: 2016
  ident: 10.1016/j.envpol.2020.114297_bib27
  article-title: Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells
  publication-title: Toxicol. In Vitro
  doi: 10.1016/j.tiv.2015.11.006
– volume: 103
  start-page: 1
  issue: 1–4
  year: 1998
  ident: 10.1016/j.envpol.2020.114297_bib29
  article-title: Synthetic fibres as indicators of municipal sewage sludge, sludge products, and sewage treatment plant effluents
  publication-title: Water Air Soil Pollut.
  doi: 10.1023/A:1004908110793
– volume: 347
  start-page: 768
  issue: 6223
  year: 2015
  ident: 10.1016/j.envpol.2020.114297_bib34
  article-title: Plastic waste inputs from land into ocean
  publication-title: Science
  doi: 10.1126/science.1260352
– volume: 33
  issue: 3
  year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib37
  article-title: Occurrence of microplastics in municipal sewage treatment plants: a review
  publication-title: Environ. Health Toxicol.
  doi: 10.5620/eht.e2018013
– volume: 74
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.envpol.2020.114297_bib62
  article-title: Pulmonary effects of inhaled ultrafine particles
  publication-title: Int. Arch. Occup. Environ. Health
  doi: 10.1007/s004200000185
– start-page: 1
  year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib76
  article-title: Microplastic contamination in aquatic environments. Marine microplastics
  publication-title: Emerg. Matter Environ. Urg.
– volume: 1–10
  year: 2019
  ident: 10.1016/j.envpol.2020.114297_bib15
  article-title: Human consumption of microplastics
  publication-title: Environ. Sci. Technol.
– volume: 1
  start-page: 1055
  year: 2019
  ident: 10.1016/j.envpol.2020.114297_bib23
  article-title: Nanoplastic formed during the mechanical breakdown of daily-use polystyrene products
  publication-title: Nanoscale Adv.
  doi: 10.1039/C8NA00210J
– volume: 1–8
  year: 2012
  ident: 10.1016/j.envpol.2020.114297_bib24
  article-title: Oral exposure to polystyrene nanoparticles affects iron absorption
  publication-title: Nat. Nanotechnol.
– volume: 27
  start-page: R283
  year: 2017
  ident: 10.1016/j.envpol.2020.114297_bib9
  article-title: Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.02.060
– start-page: 1549
  year: 2005
  ident: 10.1016/j.envpol.2020.114297_bib21
– volume: 93
  start-page: 561
  issue: 3
  year: 2008
  ident: 10.1016/j.envpol.2020.114297_bib77
  article-title: Mechanistic implications of plastic degradation
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2007.11.008
– volume: 4
  start-page: 1
  year: 2017
  ident: 10.1016/j.envpol.2020.114297_bib93
  article-title: Transgenerational toxicity of nanopolystyrene particles in the range of μg L−1 in the nematode Caenorhabditis elegans
  publication-title: Environ. Sci.: Nano
– volume: 4
  start-page: 280
  issue: 7
  year: 2017
  ident: 10.1016/j.envpol.2020.114297_bib30
  article-title: Are there nanoplastics in your personal care products?
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.7b00187
– volume: 21
  start-page: 55
  issue: 2
  year: 2016
  ident: 10.1016/j.envpol.2020.114297_bib79
  article-title: Importance and methods of searching for E-publications ahead of print in systematic reviews
  publication-title: Evid. Based Med.
  doi: 10.1136/ebmed-2015-110374
– volume: 38
  start-page: 551
  year: 1979
  ident: 10.1016/j.envpol.2020.114297_bib38
  article-title: Biodegradation of polystyrene, poly(metnyl methacrylate), and phenol formaldehyde
  publication-title: J. Appl. Environ. Microbiol.
  doi: 10.1128/aem.38.3.551-553.1979
– volume: 41
  start-page: 2780
  issue: 7
  year: 2012
  ident: 10.1016/j.envpol.2020.114297_bib83
  article-title: Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15233E
– volume: 5
  start-page: 181
  year: 2012
  ident: 10.1016/j.envpol.2020.114297_bib50
  article-title: Assessing nanoparticle toxicity
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-062011-143134
– start-page: 1
  year: 2000
  ident: 10.1016/j.envpol.2020.114297_bib88
– volume: 79
  start-page: 94
  issue: 1–2
  year: 2014
  ident: 10.1016/j.envpol.2020.114297_bib20
  article-title: Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2013.12.035
– volume: 155
  start-page: 410
  year: 2019
  ident: 10.1016/j.envpol.2020.114297_bib41
  article-title: Microplastics in freshwaters and drinking water: critical review and assessment of data quality
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.02.054
– volume: 7
  start-page: S5
  year: 2010
  ident: 10.1016/j.envpol.2020.114297_bib35
  article-title: Quantitative analysis of the protein corona on FePt nanoparticles fordem by trasferrin binding
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2009.0272.focus
– volume: 47
  start-page: 7137
  issue: 13
  year: 2013
  ident: 10.1016/j.envpol.2020.114297_bib92
  article-title: Life in the „plastisphere” : microbial communities on plastic marine debris
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401288x
– volume: 5
  start-page: 1
  year: 2002
  ident: 10.1016/j.envpol.2020.114297_bib12
  article-title: A comprehensive evaluation of the potential health risks associated with occupational and environmental exposure to styrene
  publication-title: Toxicol. Environ. Health Part B
  doi: 10.1080/10937400252972162
– volume: 34
  start-page: 7776
  year: 2013
  ident: 10.1016/j.envpol.2020.114297_bib74
  article-title: The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.06.052
– volume: 47
  start-page: 11278
  year: 2013
  ident: 10.1016/j.envpol.2020.114297_bib45
  article-title: Size-dependent effects of micro polystyrene nanoparticles in the marine copepod Tigriopus japonicus
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401932b
– volume: 702
  start-page: 134455
  year: 2020
  ident: 10.1016/j.envpol.2020.114297_bib69
  article-title: Environmental exposure to microplastics: an overview on possible human health effects
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134455
– start-page: 325
  year: 2015
  ident: 10.1016/j.envpol.2020.114297_bib40
  article-title: Nanoplastics in the aquatic environment. Critical review
  publication-title: Mar. Anthr. Litt.
  doi: 10.1007/978-3-319-16510-3_12
– volume: 7
  start-page: 818
  year: 2011
  ident: 10.1016/j.envpol.2020.114297_bib72
  article-title: Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2011.03.005
– volume: 114
  start-page: 16556
  issue: 39
  year: 2010
  ident: 10.1016/j.envpol.2020.114297_bib8
  article-title: Physical adsorption of charged plastic nanoparticles affects algal photosynthesis
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp1054759
– volume: 4
  start-page: 888
  issue: 6
  year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib51
  article-title: Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.09.007
– year: 2005
  ident: 10.1016/j.envpol.2020.114297_bib58
  article-title: Density of plastic particles found in zooplankton trawls from coastal waters of California to the North pacific central gyre
– start-page: 1185
  year: 2010
  ident: 10.1016/j.envpol.2020.114297_bib44
  article-title: Plastic accumulation in the North Atlantic subtropical gyre
  publication-title: Science
  doi: 10.1126/science.1192321
– volume: 61
  year: 2019
  ident: 10.1016/j.envpol.2020.114297_bib31
  article-title: Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro
  publication-title: Toxicol. Vitro
  doi: 10.1016/j.tiv.2019.104610
– volume: 145
  start-page: 265
  year: 2016
  ident: 10.1016/j.envpol.2020.114297_bib43
  article-title: Characterisation of nanoplastic during the degradation of polystyrene
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.11.078
– volume: 8
  start-page: 12
  issue: 2
  year: 2004
  ident: 10.1016/j.envpol.2020.114297_bib32
  article-title: Nanoparticles- known and unknown health risk
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-2-12
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib90
  article-title: Trophic transfer and individual impact of Nano-sized polystyrene in a four-species freshwater food chain
  publication-title: Sci. Rep.
– volume: 32
  start-page: 9810
  year: 2011
  ident: 10.1016/j.envpol.2020.114297_bib64
  article-title: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.08.085
– start-page: 1
  year: 2019
  ident: 10.1016/j.envpol.2020.114297_bib46
  article-title: Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embroys
  publication-title: Nanoscale
– volume: 1
  start-page: 324
  issue: 643
  year: 2018
  ident: 10.1016/j.envpol.2020.114297_bib65
  article-title: Maternal transfer of nanoplastic to offspring in zebrafish (Danio rerio): a case study with nanopolystyrene
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.186
– volume: 159
  start-page: 579
  year: 2017
  ident: 10.1016/j.envpol.2020.114297_bib73
  article-title: Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.08.043
– volume: 12
  start-page: 1
  issue: 5
  year: 2014
  ident: 10.1016/j.envpol.2020.114297_bib75
  article-title: Engineered nanoparticles interacting with cells: size matters
  publication-title: J. Nanobiotechnol.
– volume: 7
  start-page: 4199
  issue: 9
  year: 2015
  ident: 10.1016/j.envpol.2020.114297_bib59
  article-title: Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells
  publication-title: Nanoscale
  doi: 10.1039/C4NR06849A
– volume: 4
  start-page: 127
  year: 1978
  ident: 10.1016/j.envpol.2020.114297_bib68
  article-title: Effects of long-term oral administration of styrene to mice and rats
  publication-title: Scand. J. Work. Environ. Health
  doi: 10.5271/sjweh.2754
– volume: 64
  start-page: 151
  issue: 2
  year: 2001
  ident: 10.1016/j.envpol.2020.114297_bib81
  article-title: Physiological modeling of the relative contributions of styrene-7,8-oxide derived from direct inhalation and from styrene metabolism to the systemic dose in humans
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/64.2.151
– volume: 60
  start-page: 101
  issue: 2
  year: 2009
  ident: 10.1016/j.envpol.2020.114297_bib78
  article-title: Nanotechnology - possibilities of danger. [in polish] roczn
  publication-title: PZH
– volume: 10
  start-page: 3722
  year: 2009
  ident: 10.1016/j.envpol.2020.114297_bib80
  article-title: Biodegradability of plastics
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms10093722
– year: 2017
  ident: 10.1016/j.envpol.2020.114297_bib66
– volume: 175
  start-page: 191
  issue: 3
  year: 2001
  ident: 10.1016/j.envpol.2020.114297_bib10
  article-title: Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface are and oxidative stress in the enhanced activity of ultrafines
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1006/taap.2001.9240
– volume: 1–10
  year: 2017
  ident: 10.1016/j.envpol.2020.114297_bib16
  article-title: Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata
  publication-title: Sci. Rep.
SSID ssj0004333
Score 2.7078319
SecondaryResourceType review_article
Snippet Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114297
SubjectTerms adverse effects
carcinogenicity
carcinogens
cell membranes
Degradation of plastic
Food chain
humans
in vitro studies
markets
microparticles
nanoparticles
phagocytosis
plastics
polymerization
Polystyrene nanoparticles
Polystyrene toxicity
polystyrenes
Protein corona
soil
styrene
tissues
toys
Title Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms
URI https://dx.doi.org/10.1016/j.envpol.2020.114297
https://www.ncbi.nlm.nih.gov/pubmed/32155552
https://www.proquest.com/docview/2376212298
https://www.proquest.com/docview/2431839185
Volume 262
WOSCitedRecordID wos000533524300114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLYK7GF7mLYyWHdBnjT21KA2dup4b13FtJsQEkzqW5Q4jlQoDqKlK39hf2d_cMe3JAUB42F5iKLEdpycL8fnnJwLQu8jAThhGQ3ytCABzcN-kHHQUmhR0HwQg0ggTcr8H-zgIB6P-WGr9cfHwiymTKl4ueTn_5XUcA6IrUNnH0DualA4AcdAdNgD2WH_T4Q_LKdXM21bBvFRpQqU4obv25Gx1RvalUKY3ExCel_HRtCbbpDrnLquHJZpYmhk-qbQ98wV_rI-mOVyIrRAD6LsAtRv7VhrC0bNXDp0b_2v76FjwHShZYfA-Jph4vvEMGpddKU2Glyelr9mp7ZcdLk7inY_jaSqLh_BHPTJmLo22u_R1Qf3pg1AiHeD9RwwHPCAUVvOy7Pr0HFvy3B1KLB18L2xFlizxMkevDx4mj19g726-Wrq7WtLYuWo6H3gThI7SqJHSewoa2gjZBEHVrox_Lo__laH4xJCrGnPzt5HbBq3wpuzuU0iuk3jMZLP8TP01KkseGhh9By1pGqjzaFK5-XZFf6AjROx-TvTRk8a-S3baGuF2titI7NN9LsBUrwC0o_YQbSLa4DiicIAUNwAaBc34WkaWHh2cROcGMCJPTjhADtw4gqcL9DPz_vHoy-BqwoSCNBd5gGnkQyzTBSyV3Ch18d-SikZcK7ZTc4KHodpSHIhaUSifi4ilkYFi_pZBhfTHtlC66pU8iXCVDAmi1DkoFRTkqVxL-a0z6mQPM6ILDqIeMokwqXM15VbpslduOigoOp1blPG3NOeeaInTuy14mwCSL6n5zuPkQRWBf2rL1USXmKifd1AKA15fEcbqtdzDgJ7B21bgFXzJaAJwBa-euCzvEaP6w_5DVqfX1zKt-iRWAAGLnbQGhvHO-5z-QupVfd_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polystyrene+nanoparticles%3A+Sources%2C+occurrence+in+the+environment%2C+distribution+in+tissues%2C+accumulation+and+toxicity+to+various+organisms&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Kik%2C+Kinga&rft.au=Bukowska%2C+Bo%C5%BCena&rft.au=Sici%C5%84ska%2C+Paulina&rft.date=2020-07-01&rft.issn=0269-7491&rft.volume=262&rft.spage=114297&rft_id=info:doi/10.1016%2Fj.envpol.2020.114297&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envpol_2020_114297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon