Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms
Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years. Pl...
Uloženo v:
| Vydáno v: | Environmental pollution (1987) Ročník 262; s. 114297 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.07.2020
|
| Témata: | |
| ISSN: | 0269-7491, 1873-6424, 1873-6424 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years.
Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge.
One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by “protein corona” that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2).
Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels.
[Display omitted]
•The studies suggest that polystyrene nanoparticles may penetrate organisms.•Polystyrene nanoparticles accumulate along the food chain.•Nanoparticles are surrounded by a protein corona that allows penetrating membranes.•In vitro and in vivo studies suggest that polystyrene nanoparticles could be toxic.•Currently there are no studies focused on their effect on human organism.
PS-NPs are widely spread in the environment, penetrate living organisms and are toxic. |
|---|---|
| AbstractList | Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years.
Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge.
One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by “protein corona” that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2).
Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels.
[Display omitted]
•The studies suggest that polystyrene nanoparticles may penetrate organisms.•Polystyrene nanoparticles accumulate along the food chain.•Nanoparticles are surrounded by a protein corona that allows penetrating membranes.•In vitro and in vivo studies suggest that polystyrene nanoparticles could be toxic.•Currently there are no studies focused on their effect on human organism.
PS-NPs are widely spread in the environment, penetrate living organisms and are toxic. Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years.Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge.One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by “protein corona” that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2).Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels. Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years. Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge. One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by "protein corona" that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2). Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels.Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years. Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge. One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by "protein corona" that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2). Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels. Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years. Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge. One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by "protein corona" that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2). Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels. |
| ArticleNumber | 114297 |
| Author | Bukowska, Bożena Sicińska, Paulina Kik, Kinga |
| Author_xml | – sequence: 1 givenname: Kinga surname: Kik fullname: Kik, Kinga – sequence: 2 givenname: Bożena surname: Bukowska fullname: Bukowska, Bożena – sequence: 3 givenname: Paulina surname: Sicińska fullname: Sicińska, Paulina email: paulina.sicinska@biol.uni.lodz.pl |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32155552$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u1DAUhS3Uik4Lb4CQlyyaqX-TuAukquJPqgQSsLYc5wY8SuzBdkbMK_DUeCaFRRetN7Z8v3Pv1Tnn6MQHDwi9omRNCa2vNmvwu20Y14yw8kUFU80ztKJtw6taMHGCVoTVqmqEomfoPKUNIURwzp-jM86oLIet0J8vYdynvI_gAXvjw9bE7OwI6Rp_DXO0kC5xsHaOhbCAncf5J-Ay2sXgJ_D5Evcu5ei6Obvgj4BLaT7oTNFN82iOBeN7nMNvZ13elwfemejCnHCIP4x3aUov0OlgxgQv7-8L9P39u2-3H6u7zx8-3d7cVVaSJldKSGBdZwcgg7K8qTk1QvBaqd4MvG8G1TLDeG9BSC5pb2Vj5NBI2nWlaAi_QG-WvtsYfpU9s55csjCOxkNZSDPBacsVbeXTaBnPKGOqLejre3TuJuj1NrrJxL3-Z3UBxALYGFKKMPxHKNGHRPVGL4nqQ6J6SbTIrh_IioFHR3M0bnxK_HYRQ_Fz5yDqZN0hx95FsFn3wT3e4C9nisI4 |
| CitedBy_id | crossref_primary_10_3389_ftox_2025_1530209 |
| Cites_doi | 10.1016/j.nano.2011.12.001 10.1021/jz402234c 10.1016/j.aquatox.2017.06.017 10.1021/acs.est.8b04848 10.1016/j.jconrel.2017.12.015 10.1093/mutage/ger033 10.1146/annurev-environ-102016-060700 10.1016/j.envpol.2017.10.057 10.1021/nn700256c 10.1021/acs.est.6b04048 10.1021/ac300771z 10.1007/s12013-015-0705-6 10.1016/0272-0590(85)90168-X 10.1289/ehp.9209 10.1111/j.1749-6632.1988.tb30112.x 10.1021/nn9005973 10.1109/TNB.2011.2175745 10.1126/science.aad6359 10.3389/fmars.2018.00313 10.1371/journal.pone.0108025 10.1080/10611860410001693706 10.1016/j.scitotenv.2016.05.041 10.1021/nn103077k 10.3762/bjnano.5.250 10.1016/j.marpolbul.2011.05.030 10.1039/C5EM00227C 10.1016/j.marpolbul.2010.08.005 10.1002/etc.2611 10.1016/j.envpol.2018.10.024 10.1039/C8EN00412A 10.1016/j.coesh.2017.10.003 10.1038/srep46687 10.1021/es502569w 10.1016/j.maturitas.2018.06.010 10.1016/j.tiv.2015.11.006 10.1023/A:1004908110793 10.1126/science.1260352 10.5620/eht.e2018013 10.1007/s004200000185 10.1039/C8NA00210J 10.1016/j.cub.2017.02.060 10.1016/j.polymdegradstab.2007.11.008 10.1021/acs.estlett.7b00187 10.1136/ebmed-2015-110374 10.1128/aem.38.3.551-553.1979 10.1039/C1CS15233E 10.1146/annurev-anchem-062011-143134 10.1016/j.marpolbul.2013.12.035 10.1016/j.watres.2019.02.054 10.1098/rsif.2009.0272.focus 10.1021/es401288x 10.1080/10937400252972162 10.1016/j.biomaterials.2013.06.052 10.1021/es401932b 10.1016/j.scitotenv.2019.134455 10.1007/978-3-319-16510-3_12 10.1016/j.nano.2011.03.005 10.1021/jp1054759 10.1016/j.eng.2018.09.007 10.1126/science.1192321 10.1016/j.tiv.2019.104610 10.1016/j.chemosphere.2015.11.078 10.1186/1477-3155-2-12 10.1016/j.biomaterials.2011.08.085 10.1016/j.scitotenv.2018.06.186 10.1016/j.envres.2017.08.043 10.1039/C4NR06849A 10.5271/sjweh.2754 10.1093/toxsci/64.2.151 10.3390/ijms10093722 10.1006/taap.2001.9240 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.envpol.2020.114297 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Environmental Sciences |
| EISSN | 1873-6424 |
| ExternalDocumentID | 32155552 10_1016_j_envpol_2020_114297 S026974911933595X |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 29G 4.4 457 53G 5GY 5VS 6I. 6TJ 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TWZ VH1 WH7 WUQ XJT XOL XPP ZMT ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c507t-945e2bbcfe0f9c37631a443699daf3d7f982a23dce45351dc57a5f751bbd7fa03 |
| ISICitedReferencesCount | 404 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000533524300114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0269-7491 1873-6424 |
| IngestDate | Sun Nov 09 14:44:37 EST 2025 Sun Sep 28 08:52:22 EDT 2025 Wed Feb 19 02:30:59 EST 2025 Sat Nov 29 07:22:11 EST 2025 Tue Nov 18 22:29:01 EST 2025 Fri Feb 23 02:46:26 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Polystyrene nanoparticles Polystyrene toxicity Degradation of plastic Protein corona Food chain |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c507t-945e2bbcfe0f9c37631a443699daf3d7f982a23dce45351dc57a5f751bbd7fa03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.envpol.2020.114297 |
| PMID | 32155552 |
| PQID | 2376212298 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2431839185 proquest_miscellaneous_2376212298 pubmed_primary_32155552 crossref_primary_10_1016_j_envpol_2020_114297 crossref_citationtrail_10_1016_j_envpol_2020_114297 elsevier_sciencedirect_doi_10_1016_j_envpol_2020_114297 |
| PublicationCentury | 2000 |
| PublicationDate | July 2020 2020-07-00 2020-Jul 20200701 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Environmental pollution (1987) |
| PublicationTitleAlternate | Environ Pollut |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Johannaber, Michaeli (bib36) 2004 Mohr, Sommer, Baier, Schottler, Okwieka, Tenzer, Landfester, Mailander, Schmidt, Meyer (bib57) 2014; 5 Prata, da Costa, Lopes, Duarte, Rocha-Santos (bib69) 2020; 702 Andrady (bib1) 2011; 62 Desforges, Galbraith, Dangerfield, Ross (bib20) 2014; 79 Della Torre, Bergami, Salvati, Faleri, Cirino, Dawson, Corsi (bib18) 2014; 48 Pitt, Trevisan, Massarsky, Kozal, Levin, Di Giulio (bib65) 2018; 1 Yooeun, Dokyung, Shin, Youn-Joo (bib90) 2018; 8 Revel, Chatel, Mouneyrac (bib70) 2018; 1 (bib66) 2017 Tokiwa, Calabia, Ugwu, Aiba (bib80) 2009; 10 Cox, Covernton, Davies, Dower, Juanes, Dudas (bib15) 2019; 1–10 Park, Neigh, Vermeulen, Fonteyne, Verharen, Briedé, Loveren, Jong (bib64) 2011; 32 De Falco, Gullo, Gentile, Di Pace, Cocca, Gelabert, Brouta-Agnésa, Rovira, Escudero, Villalba, Mossotti, Montarsolo, Gavignano, Tonin, Avella (bib17) 2018; 236 Lee, Shim, Kwon, Kang (bib45) 2013; 47 Singh, Sharma (bib77) 2008; 93 Salvati, Aberg, dos Santos, Varela, Pinto, Lynch (bib72) 2011; 7 Anguissola, Garry, Salvati, O’Brien, Dawson (bib2) 2014; 9 Murali, Kenesei, Li, Demeter, Korneyi, Madarasz (bib59) 2015; 7 Snopczyński, Góralczyk, Czaja, Struciński, Hernik, Korcz, Ludwicki (bib78) 2009; 60 Loss, Syrovets, Musyanovych, Mailander, Landfester, Nienhaus, Simmet (bib49) 2014; 5 Jambeck, Geyer, Wilcox, Siegler, Perryman, Andrady, Narayan, Law (bib34) 2015; 347 Shahbazi, Hamidi, Mäkilä, Zhang, Almeida, Kaasalainen, Salonen, Hirvonen, Santos (bib74) 2013; 34 Midwoud, Janse, Merema, Groothuis, Verpoorte (bib56) 2012; 84 Zettler, Mincer, Amaral-Zettler (bib92) 2013; 47 Costa, Santos, Duarte, Rocha-Santos (bib14) 2016; 566–567 Schirinzi, Perez-Pomeda, Sanchis, Rossini, Farre, Barcelo (bib73) 2017; 159 Moore, Lattin, Zellers (bib58) 2005 Zhao, Qu, Wong, Wang (bib93) 2017; 4 Law, Moret-Ferguson, Maximenko, Proskurowski, Peacock, Hafner, Reddy (bib44) 2010 Cui, Kim, An (bib16) 2017; 1–10 Domininghaus, Eyerer, Elsner, Hirth (bib21) 2005 Florence (bib25) 2004; 12 Habib, Locke, Cannone (bib29) 1998; 103 Shang, Nienhaus, Nienhaus (bib75) 2014; 12 Tornero-Velez, Rappaport (bib81) 2001; 64 Xia, Kovochich, Liong, Zink, Nel (bib89) 2008; 2 Esch, Southard, Tako (bib24) 2012; 1–8 WHO (bib86) 2000 Cohen, Carlson, Charnley, Coggon, Delzell, Graham, Greim, Krewski, Medinsky, Monson, Paustenbach, Petersen, Rappaport, Rhomberg, Ryan, Thompson (bib12) 2002; 5 Pomerena, Bruna, Peijnenburga, Vijvera (bib67) 2017; 190 Kang, Park, Kwon, Lee, Jeong, Ju, Kwon (bib37) 2018; 33 Lee, Kim, Huh, Lee (bib46) 2019 Meng, Xia, George, Nel (bib55) 2009; 3 Thompson, Quigley, Halfpenny, Scott, Hawkins (bib79) 2016; 21 Koelman, Besseling, Shim (bib40) 2015 Chae, Kim, Kim, An (bib11) 2018 Mahon, O’Connell, Healy, O’Connor, Officer, Nash, Morrison (bib52) 2017; 51 Bhattacharya, Lin, Turner, Ke (bib8) 2010; 114 Koelmans, Nor, Hermsen, Kooi, Mintenig, De France (bib41) 2019; 155 Mutti, Buzio, Perazzoli, Bergamaschi, Bocchi, Selis, Mineo, Franchini (bib60) 1992; 83 Hoet, Bruske-Hohlfeld, Salata (bib32) 2004; 8 Wang, Zhang, Zhang, Mu, Ding, Mao, Cao, Jin, Cong, Wang, Zhang, Wang (bib84) 2019; 244 Zhao, Sun, Zhang, Trewyn, Slowing, Lin (bib94) 2011; 5 Love, Maurer-Jones, Thompson, Lin, Haynes (bib50) 2012; 5 Wünsch (bib88) 2000 Lambert, Wagner (bib43) 2016; 145 O’Brine, Thompson (bib61) 2010; 60 Lei, Liu, Song, Lu, Hu, Cao, Xie, Shi, He (bib47) 2018; 5 Lickly, Breder, Rainey (bib48) 1995; 21 Kashiwada (bib39) 2006; 114 Zhou, Peng, Seven, Leblanc (bib95) 2018; 270 Ma, Yao, Li, Ding, He, Chen, Zhou, Yuan (bib51) 2018; 4 Gurman, Baier, Levin (bib28) 1987; 11 Beliles, Butala, Stack, Makris (bib7) 1985; 5 Yoshida, Hiraga, Takehana, Taniguchi (bib91) 2016; 351 Barshtein, Livshits, Shvartsman, Shlomai, Yedgar, Arbell (bib6) 2016; 74 Huff, Infante (bib33) 2011; 26 Oslakovic, Cedervall, Linse, Dahlbäck (bib63) 2012; 8 Waring, Harris, Mitchell (bib85) 2018; 115 Ekvall, Lundqvist, Kelpsiene, Sileikis, Gunnarsson, Cedervall (bib23) 2019; 1 FDA (Food and Drug Administration) (bib26) 2002 Shim, Hong, Eo (bib76) 2018 Forte, Iachetta, Tussellino, Carotenuto, Prisco, De Falco, Laforgia, Valiante (bib27) 2016; 31 Ponomarkov, Tomatis (bib68) 1978; 4 Mattsson, Johnson, Malmendal, Linse, Hannson, Cedervall (bib54) 2017; 7 Hesler, Aengenheister, Ellinger, Drexel, Straskraba, Jost, Wagner, Meier, von Briesen, Buchel, Wick, Buerki-Thurnherr, Kohl (bib31) 2019; 61 Rossi, Barnoud, Monticelli (bib71) 2014; 5 Bombelli, Howe, Bertocchini (bib9) 2017; 27 Hernandez, Yousefi, Tufenkji (bib30) 2017; 4 Worm, Lotze, Jubinville, Wilcox, Jambeck (bib87) 2017; 42 Deng, Zhang, Lemos, Ren (bib19) 2017; 7 Mattsson, Hansson, Cedervall (bib53) 2015; 17 Walkey, Warren (bib83) 2012; 41 Ašmonaitė, Sundh, Asker, Almroth (bib3) 2018; 52 Efimova, Bagaeva, Bagaev, Kileso, Chubarenko (bib22) 2018; 5 Awet, Kohl, Meier, Straskraba, Grün, Ruf, Jost, Drexel, Tunc, Emmerling (bib4) 2018; 30 Barshtein, Arbell, Yedgar (bib5) 2011; 10 Brown, Wilson, MacNee, Stone, Donaldson (bib10) 2001; 175 Conti, Maltoni, Perino, Ciliberti (bib13) 1988; 534 Kokkinopoulou, Simon, Mailaender, Lieberwirth, Ladfester (bib42) 2012 Oberdorster (bib62) 2001; 74 Jiang, Weise, Hafner, Rocker, Zhang, Wolfgang (bib35) 2010; 7 Velzeboer, Quik, van de Meent, Koelmans (bib82) 2014; 33 Kaplan, Hartenstein, Sutter (bib38) 1979; 38 Forte (10.1016/j.envpol.2020.114297_bib27) 2016; 31 Costa (10.1016/j.envpol.2020.114297_bib14) 2016; 566–567 Loss (10.1016/j.envpol.2020.114297_bib49) 2014; 5 Kang (10.1016/j.envpol.2020.114297_bib37) 2018; 33 Cox (10.1016/j.envpol.2020.114297_bib15) 2019; 1–10 Koelman (10.1016/j.envpol.2020.114297_bib40) 2015 Lambert (10.1016/j.envpol.2020.114297_bib43) 2016; 145 Park (10.1016/j.envpol.2020.114297_bib64) 2011; 32 Esch (10.1016/j.envpol.2020.114297_bib24) 2012; 1–8 Waring (10.1016/j.envpol.2020.114297_bib85) 2018; 115 Johannaber (10.1016/j.envpol.2020.114297_bib36) 2004 Desforges (10.1016/j.envpol.2020.114297_bib20) 2014; 79 Hesler (10.1016/j.envpol.2020.114297_bib31) 2019; 61 Walkey (10.1016/j.envpol.2020.114297_bib83) 2012; 41 Della Torre (10.1016/j.envpol.2020.114297_bib18) 2014; 48 Snopczyński (10.1016/j.envpol.2020.114297_bib78) 2009; 60 Wünsch (10.1016/j.envpol.2020.114297_bib88) 2000 Anguissola (10.1016/j.envpol.2020.114297_bib2) 2014; 9 Singh (10.1016/j.envpol.2020.114297_bib77) 2008; 93 Kokkinopoulou (10.1016/j.envpol.2020.114297_bib42) 2012 Velzeboer (10.1016/j.envpol.2020.114297_bib82) 2014; 33 Awet (10.1016/j.envpol.2020.114297_bib4) 2018; 30 Oberdorster (10.1016/j.envpol.2020.114297_bib62) 2001; 74 Worm (10.1016/j.envpol.2020.114297_bib87) 2017; 42 Chae (10.1016/j.envpol.2020.114297_bib11) 2018 Lickly (10.1016/j.envpol.2020.114297_bib48) 1995; 21 Ponomarkov (10.1016/j.envpol.2020.114297_bib68) 1978; 4 Koelmans (10.1016/j.envpol.2020.114297_bib41) 2019; 155 Law (10.1016/j.envpol.2020.114297_bib44) 2010 Ma (10.1016/j.envpol.2020.114297_bib51) 2018; 4 Mohr (10.1016/j.envpol.2020.114297_bib57) 2014; 5 Jambeck (10.1016/j.envpol.2020.114297_bib34) 2015; 347 O’Brine (10.1016/j.envpol.2020.114297_bib61) 2010; 60 Prata (10.1016/j.envpol.2020.114297_bib69) 2020; 702 Mattsson (10.1016/j.envpol.2020.114297_bib53) 2015; 17 Oslakovic (10.1016/j.envpol.2020.114297_bib63) 2012; 8 Zhao (10.1016/j.envpol.2020.114297_bib94) 2011; 5 Florence (10.1016/j.envpol.2020.114297_bib25) 2004; 12 Beliles (10.1016/j.envpol.2020.114297_bib7) 1985; 5 Schirinzi (10.1016/j.envpol.2020.114297_bib73) 2017; 159 Shahbazi (10.1016/j.envpol.2020.114297_bib74) 2013; 34 FDA (Food and Drug Administration) (10.1016/j.envpol.2020.114297_bib26) 2002 Gurman (10.1016/j.envpol.2020.114297_bib28) 1987; 11 Hernandez (10.1016/j.envpol.2020.114297_bib30) 2017; 4 Salvati (10.1016/j.envpol.2020.114297_bib72) 2011; 7 Habib (10.1016/j.envpol.2020.114297_bib29) 1998; 103 Revel (10.1016/j.envpol.2020.114297_bib70) 2018; 1 Efimova (10.1016/j.envpol.2020.114297_bib22) 2018; 5 Jiang (10.1016/j.envpol.2020.114297_bib35) 2010; 7 Tokiwa (10.1016/j.envpol.2020.114297_bib80) 2009; 10 Zhou (10.1016/j.envpol.2020.114297_bib95) 2018; 270 Yoshida (10.1016/j.envpol.2020.114297_bib91) 2016; 351 Kashiwada (10.1016/j.envpol.2020.114297_bib39) 2006; 114 Murali (10.1016/j.envpol.2020.114297_bib59) 2015; 7 Yooeun (10.1016/j.envpol.2020.114297_bib90) 2018; 8 Bombelli (10.1016/j.envpol.2020.114297_bib9) 2017; 27 Zettler (10.1016/j.envpol.2020.114297_bib92) 2013; 47 Lee (10.1016/j.envpol.2020.114297_bib45) 2013; 47 Brown (10.1016/j.envpol.2020.114297_bib10) 2001; 175 (10.1016/j.envpol.2020.114297_bib66) 2017 Love (10.1016/j.envpol.2020.114297_bib50) 2012; 5 Barshtein (10.1016/j.envpol.2020.114297_bib5) 2011; 10 Zhao (10.1016/j.envpol.2020.114297_bib93) 2017; 4 Ašmonaitė (10.1016/j.envpol.2020.114297_bib3) 2018; 52 Kaplan (10.1016/j.envpol.2020.114297_bib38) 1979; 38 Pomerena (10.1016/j.envpol.2020.114297_bib67) 2017; 190 Shang (10.1016/j.envpol.2020.114297_bib75) 2014; 12 Mutti (10.1016/j.envpol.2020.114297_bib60) 1992; 83 Cohen (10.1016/j.envpol.2020.114297_bib12) 2002; 5 Meng (10.1016/j.envpol.2020.114297_bib55) 2009; 3 Deng (10.1016/j.envpol.2020.114297_bib19) 2017; 7 Andrady (10.1016/j.envpol.2020.114297_bib1) 2011; 62 WHO (10.1016/j.envpol.2020.114297_bib86) 2000 Xia (10.1016/j.envpol.2020.114297_bib89) 2008; 2 Mattsson (10.1016/j.envpol.2020.114297_bib54) 2017; 7 Lei (10.1016/j.envpol.2020.114297_bib47) 2018; 5 Conti (10.1016/j.envpol.2020.114297_bib13) 1988; 534 De Falco (10.1016/j.envpol.2020.114297_bib17) 2018; 236 Wang (10.1016/j.envpol.2020.114297_bib84) 2019; 244 Domininghaus (10.1016/j.envpol.2020.114297_bib21) 2005 Ekvall (10.1016/j.envpol.2020.114297_bib23) 2019; 1 Midwoud (10.1016/j.envpol.2020.114297_bib56) 2012; 84 Moore (10.1016/j.envpol.2020.114297_bib58) 2005 Shim (10.1016/j.envpol.2020.114297_bib76) 2018 Cui (10.1016/j.envpol.2020.114297_bib16) 2017; 1–10 Tornero-Velez (10.1016/j.envpol.2020.114297_bib81) 2001; 64 Huff (10.1016/j.envpol.2020.114297_bib33) 2011; 26 Rossi (10.1016/j.envpol.2020.114297_bib71) 2014; 5 Bhattacharya (10.1016/j.envpol.2020.114297_bib8) 2010; 114 Mahon (10.1016/j.envpol.2020.114297_bib52) 2017; 51 Hoet (10.1016/j.envpol.2020.114297_bib32) 2004; 8 Barshtein (10.1016/j.envpol.2020.114297_bib6) 2016; 74 Thompson (10.1016/j.envpol.2020.114297_bib79) 2016; 21 Lee (10.1016/j.envpol.2020.114297_bib46) 2019 Pitt (10.1016/j.envpol.2020.114297_bib65) 2018; 1 |
| References_xml | – volume: 8 start-page: 12 year: 2004 ident: bib32 article-title: Nanoparticles- known and unknown health risk publication-title: J. Nanobiotechnol. – volume: 9 start-page: 1 year: 2014 end-page: 16 ident: bib2 article-title: High content analysis provides mechanistic in sights on the pathways of toxicity induced by amine-modified polystyrene nanoparticles publication-title: PloS One – volume: 62 start-page: 1596 year: 2011 end-page: 1605 ident: bib1 article-title: Microplastics in the marine environment publication-title: Mar. Pollut. Bull. – volume: 30 start-page: 1 year: 2018 end-page: 10 ident: bib4 article-title: Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil publication-title: Environ. Sci. Eur. – volume: 17 start-page: 1712 year: 2015 end-page: 1721 ident: bib53 article-title: Nano-plastics in the aquatic environment publication-title: Environ. Sci. Process Impacts – volume: 155 start-page: 410 year: 2019 end-page: 422 ident: bib41 article-title: Microplastics in freshwaters and drinking water: critical review and assessment of data quality publication-title: Water Res. – volume: 159 start-page: 579 year: 2017 end-page: 587 ident: bib73 article-title: Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells publication-title: Environ. Res. – volume: 347 start-page: 768 year: 2015 end-page: 771 ident: bib34 article-title: Plastic waste inputs from land into ocean publication-title: Science – start-page: 1269 year: 2004 end-page: 1273 ident: bib36 article-title: HandbuchSpritzgießen – start-page: 1 year: 2019 end-page: 13 ident: bib46 article-title: Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in publication-title: Nanoscale – start-page: 1 year: 2018 end-page: 26 ident: bib76 article-title: Microplastic contamination in aquatic environments. Marine microplastics publication-title: Emerg. Matter Environ. Urg. – volume: 270 start-page: 290 year: 2018 end-page: 303 ident: bib95 article-title: Crossing the blood-brain barrier with nanoparticles publication-title: J. Contr. Release – volume: 351 start-page: 1196 year: 2016 end-page: 1199 ident: bib91 article-title: A bacterium that degrades and assimilates poly(ethylene terephthalate) publication-title: Science – volume: 42 start-page: 1 year: 2017 end-page: 26 ident: bib87 article-title: Plastic as a persistent marine pollutant publication-title: Annu. Rev. Environ. Resour. – start-page: 1185 year: 2010 end-page: 1188 ident: bib44 article-title: Plastic accumulation in the North Atlantic subtropical gyre publication-title: Science – volume: 3 start-page: 1620 year: 2009 end-page: 1627 ident: bib55 article-title: A predictive toxicological paradigm for the safety assessment of nanomaterials publication-title: ACS Nano – volume: 64 start-page: 151 year: 2001 end-page: 161 ident: bib81 article-title: Physiological modeling of the relative contributions of styrene-7,8-oxide derived from direct inhalation and from styrene metabolism to the systemic dose in humans publication-title: Toxicol. Sci. – volume: 534 start-page: 203 year: 1988 end-page: 234 ident: bib13 article-title: Long-term carcinogenicity bioassays on styrene administered by inhalation, ingestion and injection and styrene oxide administered by ingestion in Sprague-Dawley rats, and para-methyl styrene administered by ingestion in Sprague-Dawley rats and Swiss mice publication-title: Ann. N. Y. Acad. Sci. – volume: 1–8 year: 2012 ident: bib24 article-title: Oral exposure to polystyrene nanoparticles affects iron absorption publication-title: Nat. Nanotechnol. – start-page: 325 year: 2015 end-page: 340 ident: bib40 article-title: Nanoplastics in the aquatic environment. Critical review publication-title: Mar. Anthr. Litt. – year: 2018 ident: bib11 article-title: Trophic Transfer and Individual Impact of Nano-Sized Polystyrene in a Four-Species Freshwater Food Chain – volume: 702 start-page: 134455 year: 2020 ident: bib69 article-title: Environmental exposure to microplastics: an overview on possible human health effects publication-title: Sci. Total Environ. – volume: 8 start-page: 981 year: 2012 end-page: 986 ident: bib63 article-title: Polystyrene nanoparticles affecting blood coagulation publication-title: Nanomedicine – volume: 74 start-page: 19 year: 2016 end-page: 27 ident: bib6 article-title: Polystyrene nanoparticles activate erythrocyte aggregation and adhesion to endothelial cells publication-title: Cell Biochem. Biophys. – volume: 236 start-page: 916 year: 2018 end-page: 925 ident: bib17 article-title: Evaluation of microplastic release caused by textile washing processes of synthetic fabrics publication-title: Environ. Pollut. – volume: 84 start-page: 3938 year: 2012 end-page: 3944 ident: bib56 article-title: Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models publication-title: Anal. Chem. – volume: 1 start-page: 324 year: 2018 end-page: 334 ident: bib65 article-title: Maternal transfer of nanoplastic to offspring in zebrafish ( publication-title: Sci. Total Environ. – volume: 5 start-page: 2403 year: 2014 end-page: 2412 ident: bib49 article-title: Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions publication-title: Beilstein J. Nanotechnol. – volume: 103 start-page: 1 year: 1998 end-page: 8 ident: bib29 article-title: Synthetic fibres as indicators of municipal sewage sludge, sludge products, and sewage treatment plant effluents publication-title: Water Air Soil Pollut. – volume: 7 start-page: 1 year: 2017 end-page: 11 ident: bib54 article-title: Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain publication-title: Sci. Rep. – volume: 7 start-page: 818 year: 2011 end-page: 826 ident: bib72 article-title: Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 33 start-page: 1766 year: 2014 end-page: 1773 ident: bib82 article-title: Rapid settling of nanomaterials due to hetero-aggregation with suspended sediment publication-title: Environ. Toxicol. Chem. – volume: 47 start-page: 7137 year: 2013 end-page: 7146 ident: bib92 article-title: Life in the „plastisphere” : microbial communities on plastic marine debris publication-title: Environ. Sci. Technol. – volume: 4 start-page: 280 year: 2017 end-page: 285 ident: bib30 article-title: Are there nanoplastics in your personal care products? publication-title: Environ. Sci. Technol. Lett. – volume: 4 start-page: 888 year: 2018 end-page: 893 ident: bib51 article-title: Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering publication-title: Engineering – volume: 60 start-page: 101 year: 2009 end-page: 111 ident: bib78 article-title: Nanotechnology - possibilities of danger. [in polish] roczn publication-title: PZH – volume: 11 start-page: 109 year: 1987 end-page: 130 ident: bib28 article-title: Polystyrenes: a review of the literature on the products of thermal decomposition and toxicity publication-title: Int. J. – volume: 51 start-page: 810 year: 2017 end-page: 818 ident: bib52 article-title: Microplastics in sewage sludge: effects of treatment publication-title: Environ. Sci. Technol. – volume: 32 start-page: 9810 year: 2011 end-page: 9817 ident: bib64 article-title: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles publication-title: Biomaterials – volume: 27 start-page: R283 year: 2017 end-page: R293 ident: bib9 article-title: Polyethylene bio-degradation by caterpillars of the wax moth publication-title: Curr. Biol. – volume: 1 start-page: 1055 year: 2019 end-page: 1061 ident: bib23 article-title: Nanoplastic formed during the mechanical breakdown of daily-use polystyrene products publication-title: Nanoscale Adv. – volume: 7 start-page: S5 year: 2010 end-page: S13 ident: bib35 article-title: Quantitative analysis of the protein corona on FePt nanoparticles fordem by trasferrin binding publication-title: J. R. Soc. Interface – volume: 1–10 year: 2019 ident: bib15 article-title: Human consumption of microplastics publication-title: Environ. Sci. Technol. – volume: 74 start-page: 1 year: 2001 end-page: 8 ident: bib62 article-title: Pulmonary effects of inhaled ultrafine particles publication-title: Int. Arch. Occup. Environ. Health – volume: 5 start-page: 1 year: 2002 end-page: 265 ident: bib12 article-title: A comprehensive evaluation of the potential health risks associated with occupational and environmental exposure to styrene publication-title: Toxicol. Environ. Health Part B – volume: 61 year: 2019 ident: bib31 article-title: Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models publication-title: Toxicol. Vitro – volume: 190 start-page: 40 year: 2017 end-page: 45 ident: bib67 article-title: Exploring uptake and biodistribution of polystyrene (nano) particles in zebrafish embryos AT different development alstages publication-title: Aquat. Toxicol. – volume: 48 start-page: 12302 year: 2014 end-page: 12311 ident: bib18 article-title: Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos publication-title: Environ. Sci. Technol. – volume: 21 start-page: 55 year: 2016 end-page: 59 ident: bib79 article-title: Importance and methods of searching for E-publications ahead of print in systematic reviews publication-title: Evid. Based Med. – volume: 244 start-page: 715 year: 2019 end-page: 722 ident: bib84 article-title: Effects of ingested polystyrene microplastics on brine shrimp, Artemia parthenogenetica publication-title: Environ. Pollut. – volume: 1–10 year: 2017 ident: bib16 article-title: Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean publication-title: Sci. Rep. – volume: 12 start-page: 65 year: 2004 end-page: 70 ident: bib25 article-title: Issues in oral nanoparticle drug carrier uptake and targeting publication-title: J. Drug Target. – volume: 10 start-page: 3722 year: 2009 end-page: 3742 ident: bib80 article-title: Biodegradability of plastics publication-title: Int. J. Mol. Sci. – volume: 5 start-page: 181 year: 2012 end-page: 205 ident: bib50 article-title: Assessing nanoparticle toxicity publication-title: Annu. Rev. Anal. Chem. – start-page: 1 year: 2000 end-page: 28 ident: bib88 article-title: Polystyrene: Synthesis, Production and Applications – volume: 5 start-page: 1 year: 2014 end-page: 10 ident: bib57 article-title: Aggregation behavior of polystyrene – nanopartciles in human blood serum and its impact on the in vivo distribution in mice publication-title: J. Nanomed. Nanotechnol. – volume: 93 start-page: 561 year: 2008 end-page: 584 ident: bib77 article-title: Mechanistic implications of plastic degradation publication-title: Polym. Degrad. Stabil. – volume: 8 start-page: 1 year: 2018 end-page: 11 ident: bib90 article-title: Trophic transfer and individual impact of Nano-sized polystyrene in a four-species freshwater food chain publication-title: Sci. Rep. – start-page: 71 year: 2012 end-page: 72 ident: bib42 article-title: Physical Chemistry of Polymers – year: 2017 ident: bib66 article-title: An Analysis of European Plastics Production, Demand and Waste Data – volume: 7 start-page: 46687 year: 2017 ident: bib19 article-title: Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure publication-title: Sci. Rep. – volume: 79 start-page: 94 year: 2014 end-page: 99 ident: bib20 article-title: Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean publication-title: Mar. Pollut. Bull. – volume: 5 start-page: 241 year: 2014 end-page: 246 ident: bib71 article-title: Polystyrene nanopraticles pertrub lipid membranes publication-title: J. Phys. Chem. Lett. – year: 2002 ident: bib26 article-title: The Safety of Styrene-Based Polymers for Food-Contact Use – volume: 5 year: 2018 ident: bib47 article-title: Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans publication-title: Environ. Sci. Nano. – volume: 83 start-page: 167 year: 1992 end-page: 177 ident: bib60 article-title: Lymphocyte subpopulations in workers exposed occupationally to styrene publication-title: Med. Lavoro – volume: 34 start-page: 7776 year: 2013 end-page: 7789 ident: bib74 article-title: The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility publication-title: Biomaterials – volume: 10 start-page: 259 year: 2011 end-page: 261 ident: bib5 article-title: Hemolytic effect of polymeric nanoparticles: role of albumin publication-title: IEEE Trans. NanoBioscience – volume: 33 year: 2018 ident: bib37 article-title: Occurrence of microplastics in municipal sewage treatment plants: a review publication-title: Environ. Health Toxicol. – volume: 12 start-page: 1 year: 2014 end-page: 11 ident: bib75 article-title: Engineered nanoparticles interacting with cells: size matters publication-title: J. Nanobiotechnol. – volume: 26 start-page: 583 year: 2011 end-page: 584 ident: bib33 article-title: Styrene exposure and risk cancer publication-title: Mutagenesis – volume: 21 start-page: 406 year: 1995 end-page: 417 ident: bib48 article-title: A model for estimating the daily dietary intake of a substance from food contact articles: styrene from polystyrene food contact polymers Regul publication-title: Toxicol. Pharmacol. – volume: 145 start-page: 265 year: 2016 end-page: 268 ident: bib43 article-title: Characterisation of nanoplastic during the degradation of polystyrene publication-title: Chemosphere – volume: 114 start-page: 1697 year: 2006 end-page: 1702 ident: bib39 article-title: Distribution of nanoparticles in the see-through Medaka ( publication-title: Environ. Health Perspect. – volume: 115 start-page: 64 year: 2018 end-page: 68 ident: bib85 article-title: Plastic contamination of the food chain: a threat to human health? publication-title: Maturitas – volume: 1 start-page: 17 year: 2018 end-page: 23 ident: bib70 article-title: Micro (nano) plastics: a threat to human health? publication-title: Curr. Opin. Environ. Sci. Health – volume: 2 start-page: 85 year: 2008 end-page: 96 ident: bib89 article-title: Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways publication-title: ACS Nano – volume: 47 start-page: 11278 year: 2013 end-page: 11283 ident: bib45 article-title: Size-dependent effects of micro polystyrene nanoparticles in the marine copepod publication-title: Environ. Sci. Technol. – volume: 7 start-page: 4199 year: 2015 end-page: 4210 ident: bib59 article-title: Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells publication-title: Nanoscale – volume: 114 start-page: 16556 year: 2010 end-page: 16561 ident: bib8 article-title: Physical adsorption of charged plastic nanoparticles affects algal photosynthesis publication-title: J. Phys. Chem. – volume: 38 start-page: 551 year: 1979 end-page: 553 ident: bib38 article-title: Biodegradation of polystyrene, poly(metnyl methacrylate), and phenol formaldehyde publication-title: J. Appl. Environ. Microbiol. – volume: 52 start-page: 14392 year: 2018 end-page: 14401 ident: bib3 article-title: Rainbow trout maintain intestinal transport and barrier functions following exposure to polystyrene microplastics publication-title: Environ. Sci. Technol. – volume: 5 start-page: 855 year: 1985 end-page: 868 ident: bib7 article-title: Chronic toxicity and three- generation reproduction study of styrene monomer in the drinking, water of rats publication-title: Fund. Appl. Toxicol. – volume: 4 start-page: 1 year: 2017 end-page: 11 ident: bib93 article-title: Transgenerational toxicity of nanopolystyrene particles in the range of μg L publication-title: Environ. Sci.: Nano – volume: 4 start-page: 127 year: 1978 end-page: 135 ident: bib68 article-title: Effects of long-term oral administration of styrene to mice and rats publication-title: Scand. J. Work. Environ. Health – start-page: 1549 year: 2005 ident: bib21 article-title: Die Kunststoffe Und IhreEigenschaften – volume: 5 year: 2018 ident: bib22 article-title: Secondary microplastics generation in the sea swash zone with coarse bottom sediments: laboratory experiments publication-title: Frontiers in Marine Science – volume: 5 start-page: 1366 year: 2011 end-page: 1375 ident: bib94 article-title: Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects publication-title: ACS Nano – volume: 566–567 start-page: 15 year: 2016 end-page: 26 ident: bib14 article-title: Nano) plastics in the environment – sources, fates and effects publication-title: Sci. Total Environ. – volume: 175 start-page: 191 year: 2001 end-page: 199 ident: bib10 article-title: Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface are and oxidative stress in the enhanced activity of ultrafines publication-title: Toxicol. Appl. Pharmacol. – volume: 31 start-page: 126 year: 2016 end-page: 136 ident: bib27 article-title: Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells publication-title: Toxicol. In Vitro – year: 2005 ident: bib58 article-title: Density of plastic particles found in zooplankton trawls from coastal waters of California to the North pacific central gyre publication-title: Proceedings of the Plastic Debris Rivers to Sea Conference – start-page: 1 year: 2000 end-page: 288 ident: bib86 article-title: Styrene. Air Quality Guidelines for Europe – volume: 60 start-page: 2279 year: 2010 end-page: 2283 ident: bib61 article-title: Degradation of plastic carrier bags in the marine environment publication-title: Mar. Pollut. Bull. – volume: 41 start-page: 2780 year: 2012 end-page: 2799 ident: bib83 article-title: Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment publication-title: Chem. Soc. Rev. – start-page: 1269 year: 2004 ident: 10.1016/j.envpol.2020.114297_bib36 – volume: 8 start-page: 981 issue: 6 year: 2012 ident: 10.1016/j.envpol.2020.114297_bib63 article-title: Polystyrene nanoparticles affecting blood coagulation publication-title: Nanomedicine doi: 10.1016/j.nano.2011.12.001 – year: 2002 ident: 10.1016/j.envpol.2020.114297_bib26 – volume: 5 start-page: 241 issue: 1 year: 2014 ident: 10.1016/j.envpol.2020.114297_bib71 article-title: Polystyrene nanopraticles pertrub lipid membranes publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz402234c – volume: 190 start-page: 40 year: 2017 ident: 10.1016/j.envpol.2020.114297_bib67 article-title: Exploring uptake and biodistribution of polystyrene (nano) particles in zebrafish embryos AT different development alstages publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2017.06.017 – volume: 52 start-page: 14392 year: 2018 ident: 10.1016/j.envpol.2020.114297_bib3 article-title: Rainbow trout maintain intestinal transport and barrier functions following exposure to polystyrene microplastics publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b04848 – volume: 270 start-page: 290 year: 2018 ident: 10.1016/j.envpol.2020.114297_bib95 article-title: Crossing the blood-brain barrier with nanoparticles publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2017.12.015 – volume: 26 start-page: 583 issue: 5 year: 2011 ident: 10.1016/j.envpol.2020.114297_bib33 article-title: Styrene exposure and risk cancer publication-title: Mutagenesis doi: 10.1093/mutage/ger033 – volume: 5 start-page: 1 year: 2014 ident: 10.1016/j.envpol.2020.114297_bib57 article-title: Aggregation behavior of polystyrene – nanopartciles in human blood serum and its impact on the in vivo distribution in mice publication-title: J. Nanomed. Nanotechnol. – volume: 42 start-page: 1 year: 2017 ident: 10.1016/j.envpol.2020.114297_bib87 article-title: Plastic as a persistent marine pollutant publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev-environ-102016-060700 – volume: 236 start-page: 916 year: 2018 ident: 10.1016/j.envpol.2020.114297_bib17 article-title: Evaluation of microplastic release caused by textile washing processes of synthetic fabrics publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.10.057 – volume: 2 start-page: 85 year: 2008 ident: 10.1016/j.envpol.2020.114297_bib89 article-title: Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways publication-title: ACS Nano doi: 10.1021/nn700256c – volume: 51 start-page: 810 year: 2017 ident: 10.1016/j.envpol.2020.114297_bib52 article-title: Microplastics in sewage sludge: effects of treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04048 – volume: 84 start-page: 3938 issue: 9 year: 2012 ident: 10.1016/j.envpol.2020.114297_bib56 article-title: Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models publication-title: Anal. Chem. doi: 10.1021/ac300771z – volume: 83 start-page: 167 issue: 2 year: 1992 ident: 10.1016/j.envpol.2020.114297_bib60 article-title: Lymphocyte subpopulations in workers exposed occupationally to styrene publication-title: Med. Lavoro – volume: 74 start-page: 19 year: 2016 ident: 10.1016/j.envpol.2020.114297_bib6 article-title: Polystyrene nanoparticles activate erythrocyte aggregation and adhesion to endothelial cells publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-015-0705-6 – start-page: 1 year: 2000 ident: 10.1016/j.envpol.2020.114297_bib86 – volume: 5 start-page: 855 issue: 5 year: 1985 ident: 10.1016/j.envpol.2020.114297_bib7 article-title: Chronic toxicity and three- generation reproduction study of styrene monomer in the drinking, water of rats publication-title: Fund. Appl. Toxicol. doi: 10.1016/0272-0590(85)90168-X – volume: 7 start-page: 1 issue: 11452 year: 2017 ident: 10.1016/j.envpol.2020.114297_bib54 article-title: Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain publication-title: Sci. Rep. – volume: 114 start-page: 1697 issue: 11 year: 2006 ident: 10.1016/j.envpol.2020.114297_bib39 article-title: Distribution of nanoparticles in the see-through Medaka (Oryzias latipes) publication-title: Environ. Health Perspect. doi: 10.1289/ehp.9209 – volume: 534 start-page: 203 year: 1988 ident: 10.1016/j.envpol.2020.114297_bib13 article-title: Long-term carcinogenicity bioassays on styrene administered by inhalation, ingestion and injection and styrene oxide administered by ingestion in Sprague-Dawley rats, and para-methyl styrene administered by ingestion in Sprague-Dawley rats and Swiss mice publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1988.tb30112.x – volume: 3 start-page: 1620 year: 2009 ident: 10.1016/j.envpol.2020.114297_bib55 article-title: A predictive toxicological paradigm for the safety assessment of nanomaterials publication-title: ACS Nano doi: 10.1021/nn9005973 – volume: 21 start-page: 406 year: 1995 ident: 10.1016/j.envpol.2020.114297_bib48 article-title: A model for estimating the daily dietary intake of a substance from food contact articles: styrene from polystyrene food contact polymers Regul publication-title: Toxicol. Pharmacol. – volume: 10 start-page: 259 issue: 4 year: 2011 ident: 10.1016/j.envpol.2020.114297_bib5 article-title: Hemolytic effect of polymeric nanoparticles: role of albumin publication-title: IEEE Trans. NanoBioscience doi: 10.1109/TNB.2011.2175745 – volume: 351 start-page: 1196 issue: 6278 year: 2016 ident: 10.1016/j.envpol.2020.114297_bib91 article-title: A bacterium that degrades and assimilates poly(ethylene terephthalate) publication-title: Science doi: 10.1126/science.aad6359 – volume: 5 year: 2018 ident: 10.1016/j.envpol.2020.114297_bib22 article-title: Secondary microplastics generation in the sea swash zone with coarse bottom sediments: laboratory experiments publication-title: Frontiers in Marine Science doi: 10.3389/fmars.2018.00313 – volume: 9 start-page: 1 issue: 9 year: 2014 ident: 10.1016/j.envpol.2020.114297_bib2 article-title: High content analysis provides mechanistic in sights on the pathways of toxicity induced by amine-modified polystyrene nanoparticles publication-title: PloS One doi: 10.1371/journal.pone.0108025 – volume: 12 start-page: 65 year: 2004 ident: 10.1016/j.envpol.2020.114297_bib25 article-title: Issues in oral nanoparticle drug carrier uptake and targeting publication-title: J. Drug Target. doi: 10.1080/10611860410001693706 – volume: 566–567 start-page: 15 year: 2016 ident: 10.1016/j.envpol.2020.114297_bib14 article-title: Nano) plastics in the environment – sources, fates and effects publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.05.041 – volume: 5 start-page: 1366 year: 2011 ident: 10.1016/j.envpol.2020.114297_bib94 article-title: Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects publication-title: ACS Nano doi: 10.1021/nn103077k – volume: 30 start-page: 1 issue: 11 year: 2018 ident: 10.1016/j.envpol.2020.114297_bib4 article-title: Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil publication-title: Environ. Sci. Eur. – volume: 5 start-page: 2403 year: 2014 ident: 10.1016/j.envpol.2020.114297_bib49 article-title: Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.5.250 – volume: 62 start-page: 1596 issue: 8 year: 2011 ident: 10.1016/j.envpol.2020.114297_bib1 article-title: Microplastics in the marine environment publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.05.030 – volume: 17 start-page: 1712 issue: 10 year: 2015 ident: 10.1016/j.envpol.2020.114297_bib53 article-title: Nano-plastics in the aquatic environment publication-title: Environ. Sci. Process Impacts doi: 10.1039/C5EM00227C – volume: 60 start-page: 2279 issue: 12 year: 2010 ident: 10.1016/j.envpol.2020.114297_bib61 article-title: Degradation of plastic carrier bags in the marine environment publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2010.08.005 – volume: 11 start-page: 109 year: 1987 ident: 10.1016/j.envpol.2020.114297_bib28 article-title: Polystyrenes: a review of the literature on the products of thermal decomposition and toxicity publication-title: Int. J. – volume: 33 start-page: 1766 year: 2014 ident: 10.1016/j.envpol.2020.114297_bib82 article-title: Rapid settling of nanomaterials due to hetero-aggregation with suspended sediment publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.2611 – volume: 244 start-page: 715 year: 2019 ident: 10.1016/j.envpol.2020.114297_bib84 article-title: Effects of ingested polystyrene microplastics on brine shrimp, Artemia parthenogenetica publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.10.024 – volume: 5 issue: 8 year: 2018 ident: 10.1016/j.envpol.2020.114297_bib47 article-title: Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans publication-title: Environ. Sci. Nano. doi: 10.1039/C8EN00412A – start-page: 71 year: 2012 ident: 10.1016/j.envpol.2020.114297_bib42 – volume: 1 start-page: 17 year: 2018 ident: 10.1016/j.envpol.2020.114297_bib70 article-title: Micro (nano) plastics: a threat to human health? publication-title: Curr. Opin. Environ. Sci. Health doi: 10.1016/j.coesh.2017.10.003 – volume: 7 start-page: 46687 year: 2017 ident: 10.1016/j.envpol.2020.114297_bib19 article-title: Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure publication-title: Sci. Rep. doi: 10.1038/srep46687 – volume: 48 start-page: 12302 issue: 20 year: 2014 ident: 10.1016/j.envpol.2020.114297_bib18 article-title: Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus publication-title: Environ. Sci. Technol. doi: 10.1021/es502569w – volume: 115 start-page: 64 year: 2018 ident: 10.1016/j.envpol.2020.114297_bib85 article-title: Plastic contamination of the food chain: a threat to human health? publication-title: Maturitas doi: 10.1016/j.maturitas.2018.06.010 – year: 2018 ident: 10.1016/j.envpol.2020.114297_bib11 – volume: 31 start-page: 126 year: 2016 ident: 10.1016/j.envpol.2020.114297_bib27 article-title: Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells publication-title: Toxicol. In Vitro doi: 10.1016/j.tiv.2015.11.006 – volume: 103 start-page: 1 issue: 1–4 year: 1998 ident: 10.1016/j.envpol.2020.114297_bib29 article-title: Synthetic fibres as indicators of municipal sewage sludge, sludge products, and sewage treatment plant effluents publication-title: Water Air Soil Pollut. doi: 10.1023/A:1004908110793 – volume: 347 start-page: 768 issue: 6223 year: 2015 ident: 10.1016/j.envpol.2020.114297_bib34 article-title: Plastic waste inputs from land into ocean publication-title: Science doi: 10.1126/science.1260352 – volume: 33 issue: 3 year: 2018 ident: 10.1016/j.envpol.2020.114297_bib37 article-title: Occurrence of microplastics in municipal sewage treatment plants: a review publication-title: Environ. Health Toxicol. doi: 10.5620/eht.e2018013 – volume: 74 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.envpol.2020.114297_bib62 article-title: Pulmonary effects of inhaled ultrafine particles publication-title: Int. Arch. Occup. Environ. Health doi: 10.1007/s004200000185 – start-page: 1 year: 2018 ident: 10.1016/j.envpol.2020.114297_bib76 article-title: Microplastic contamination in aquatic environments. Marine microplastics publication-title: Emerg. Matter Environ. Urg. – volume: 1–10 year: 2019 ident: 10.1016/j.envpol.2020.114297_bib15 article-title: Human consumption of microplastics publication-title: Environ. Sci. Technol. – volume: 1 start-page: 1055 year: 2019 ident: 10.1016/j.envpol.2020.114297_bib23 article-title: Nanoplastic formed during the mechanical breakdown of daily-use polystyrene products publication-title: Nanoscale Adv. doi: 10.1039/C8NA00210J – volume: 1–8 year: 2012 ident: 10.1016/j.envpol.2020.114297_bib24 article-title: Oral exposure to polystyrene nanoparticles affects iron absorption publication-title: Nat. Nanotechnol. – volume: 27 start-page: R283 year: 2017 ident: 10.1016/j.envpol.2020.114297_bib9 article-title: Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.02.060 – start-page: 1549 year: 2005 ident: 10.1016/j.envpol.2020.114297_bib21 – volume: 93 start-page: 561 issue: 3 year: 2008 ident: 10.1016/j.envpol.2020.114297_bib77 article-title: Mechanistic implications of plastic degradation publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2007.11.008 – volume: 4 start-page: 1 year: 2017 ident: 10.1016/j.envpol.2020.114297_bib93 article-title: Transgenerational toxicity of nanopolystyrene particles in the range of μg L−1 in the nematode Caenorhabditis elegans publication-title: Environ. Sci.: Nano – volume: 4 start-page: 280 issue: 7 year: 2017 ident: 10.1016/j.envpol.2020.114297_bib30 article-title: Are there nanoplastics in your personal care products? publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.7b00187 – volume: 21 start-page: 55 issue: 2 year: 2016 ident: 10.1016/j.envpol.2020.114297_bib79 article-title: Importance and methods of searching for E-publications ahead of print in systematic reviews publication-title: Evid. Based Med. doi: 10.1136/ebmed-2015-110374 – volume: 38 start-page: 551 year: 1979 ident: 10.1016/j.envpol.2020.114297_bib38 article-title: Biodegradation of polystyrene, poly(metnyl methacrylate), and phenol formaldehyde publication-title: J. Appl. Environ. Microbiol. doi: 10.1128/aem.38.3.551-553.1979 – volume: 41 start-page: 2780 issue: 7 year: 2012 ident: 10.1016/j.envpol.2020.114297_bib83 article-title: Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15233E – volume: 5 start-page: 181 year: 2012 ident: 10.1016/j.envpol.2020.114297_bib50 article-title: Assessing nanoparticle toxicity publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-062011-143134 – start-page: 1 year: 2000 ident: 10.1016/j.envpol.2020.114297_bib88 – volume: 79 start-page: 94 issue: 1–2 year: 2014 ident: 10.1016/j.envpol.2020.114297_bib20 article-title: Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2013.12.035 – volume: 155 start-page: 410 year: 2019 ident: 10.1016/j.envpol.2020.114297_bib41 article-title: Microplastics in freshwaters and drinking water: critical review and assessment of data quality publication-title: Water Res. doi: 10.1016/j.watres.2019.02.054 – volume: 7 start-page: S5 year: 2010 ident: 10.1016/j.envpol.2020.114297_bib35 article-title: Quantitative analysis of the protein corona on FePt nanoparticles fordem by trasferrin binding publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2009.0272.focus – volume: 47 start-page: 7137 issue: 13 year: 2013 ident: 10.1016/j.envpol.2020.114297_bib92 article-title: Life in the „plastisphere” : microbial communities on plastic marine debris publication-title: Environ. Sci. Technol. doi: 10.1021/es401288x – volume: 5 start-page: 1 year: 2002 ident: 10.1016/j.envpol.2020.114297_bib12 article-title: A comprehensive evaluation of the potential health risks associated with occupational and environmental exposure to styrene publication-title: Toxicol. Environ. Health Part B doi: 10.1080/10937400252972162 – volume: 34 start-page: 7776 year: 2013 ident: 10.1016/j.envpol.2020.114297_bib74 article-title: The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.06.052 – volume: 47 start-page: 11278 year: 2013 ident: 10.1016/j.envpol.2020.114297_bib45 article-title: Size-dependent effects of micro polystyrene nanoparticles in the marine copepod Tigriopus japonicus publication-title: Environ. Sci. Technol. doi: 10.1021/es401932b – volume: 702 start-page: 134455 year: 2020 ident: 10.1016/j.envpol.2020.114297_bib69 article-title: Environmental exposure to microplastics: an overview on possible human health effects publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134455 – start-page: 325 year: 2015 ident: 10.1016/j.envpol.2020.114297_bib40 article-title: Nanoplastics in the aquatic environment. Critical review publication-title: Mar. Anthr. Litt. doi: 10.1007/978-3-319-16510-3_12 – volume: 7 start-page: 818 year: 2011 ident: 10.1016/j.envpol.2020.114297_bib72 article-title: Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2011.03.005 – volume: 114 start-page: 16556 issue: 39 year: 2010 ident: 10.1016/j.envpol.2020.114297_bib8 article-title: Physical adsorption of charged plastic nanoparticles affects algal photosynthesis publication-title: J. Phys. Chem. doi: 10.1021/jp1054759 – volume: 4 start-page: 888 issue: 6 year: 2018 ident: 10.1016/j.envpol.2020.114297_bib51 article-title: Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering publication-title: Engineering doi: 10.1016/j.eng.2018.09.007 – year: 2005 ident: 10.1016/j.envpol.2020.114297_bib58 article-title: Density of plastic particles found in zooplankton trawls from coastal waters of California to the North pacific central gyre – start-page: 1185 year: 2010 ident: 10.1016/j.envpol.2020.114297_bib44 article-title: Plastic accumulation in the North Atlantic subtropical gyre publication-title: Science doi: 10.1126/science.1192321 – volume: 61 year: 2019 ident: 10.1016/j.envpol.2020.114297_bib31 article-title: Multi-endpoint toxicological assessment of polystyrene nano- and microparticles in different biological models in vitro publication-title: Toxicol. Vitro doi: 10.1016/j.tiv.2019.104610 – volume: 145 start-page: 265 year: 2016 ident: 10.1016/j.envpol.2020.114297_bib43 article-title: Characterisation of nanoplastic during the degradation of polystyrene publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.11.078 – volume: 8 start-page: 12 issue: 2 year: 2004 ident: 10.1016/j.envpol.2020.114297_bib32 article-title: Nanoparticles- known and unknown health risk publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-2-12 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.envpol.2020.114297_bib90 article-title: Trophic transfer and individual impact of Nano-sized polystyrene in a four-species freshwater food chain publication-title: Sci. Rep. – volume: 32 start-page: 9810 year: 2011 ident: 10.1016/j.envpol.2020.114297_bib64 article-title: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.085 – start-page: 1 year: 2019 ident: 10.1016/j.envpol.2020.114297_bib46 article-title: Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embroys publication-title: Nanoscale – volume: 1 start-page: 324 issue: 643 year: 2018 ident: 10.1016/j.envpol.2020.114297_bib65 article-title: Maternal transfer of nanoplastic to offspring in zebrafish (Danio rerio): a case study with nanopolystyrene publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.186 – volume: 159 start-page: 579 year: 2017 ident: 10.1016/j.envpol.2020.114297_bib73 article-title: Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells publication-title: Environ. Res. doi: 10.1016/j.envres.2017.08.043 – volume: 12 start-page: 1 issue: 5 year: 2014 ident: 10.1016/j.envpol.2020.114297_bib75 article-title: Engineered nanoparticles interacting with cells: size matters publication-title: J. Nanobiotechnol. – volume: 7 start-page: 4199 issue: 9 year: 2015 ident: 10.1016/j.envpol.2020.114297_bib59 article-title: Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells publication-title: Nanoscale doi: 10.1039/C4NR06849A – volume: 4 start-page: 127 year: 1978 ident: 10.1016/j.envpol.2020.114297_bib68 article-title: Effects of long-term oral administration of styrene to mice and rats publication-title: Scand. J. Work. Environ. Health doi: 10.5271/sjweh.2754 – volume: 64 start-page: 151 issue: 2 year: 2001 ident: 10.1016/j.envpol.2020.114297_bib81 article-title: Physiological modeling of the relative contributions of styrene-7,8-oxide derived from direct inhalation and from styrene metabolism to the systemic dose in humans publication-title: Toxicol. Sci. doi: 10.1093/toxsci/64.2.151 – volume: 60 start-page: 101 issue: 2 year: 2009 ident: 10.1016/j.envpol.2020.114297_bib78 article-title: Nanotechnology - possibilities of danger. [in polish] roczn publication-title: PZH – volume: 10 start-page: 3722 year: 2009 ident: 10.1016/j.envpol.2020.114297_bib80 article-title: Biodegradability of plastics publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms10093722 – year: 2017 ident: 10.1016/j.envpol.2020.114297_bib66 – volume: 175 start-page: 191 issue: 3 year: 2001 ident: 10.1016/j.envpol.2020.114297_bib10 article-title: Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface are and oxidative stress in the enhanced activity of ultrafines publication-title: Toxicol. Appl. Pharmacol. doi: 10.1006/taap.2001.9240 – volume: 1–10 year: 2017 ident: 10.1016/j.envpol.2020.114297_bib16 article-title: Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata publication-title: Sci. Rep. |
| SSID | ssj0004333 |
| Score | 2.7078311 |
| SecondaryResourceType | review_article |
| Snippet | Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass.... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 114297 |
| SubjectTerms | adverse effects carcinogenicity carcinogens cell membranes Degradation of plastic Food chain humans in vitro studies markets microparticles nanoparticles phagocytosis plastics polymerization Polystyrene nanoparticles Polystyrene toxicity polystyrenes Protein corona soil styrene tissues toys |
| Title | Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms |
| URI | https://dx.doi.org/10.1016/j.envpol.2020.114297 https://www.ncbi.nlm.nih.gov/pubmed/32155552 https://www.proquest.com/docview/2376212298 https://www.proquest.com/docview/2431839185 |
| Volume | 262 |
| WOSCitedRecordID | wos000533524300114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004333 issn: 0269-7491 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DaHxgKBjo1wmIzGemqqNY2LzVqohbpombUh9ixzHkbq1SbV2pfsL_BH-Jse3JqMqgwf6EEXxcZLm-2Kfc3KOD0KvuynnKQl7QSyIDKJMqIDBIAhWa5xlTJAwT03Vkq_xyQkbDvlpo_HT58IsxnFRsOWST_8r1HAMwNaps_8A9-qkcAD2AXTYAuyw_SvgT8vxzUz7lkF9LEQBRnEt9u3M-OoNdqWUZm0mqXysYy3pTQtkek1dVw7LiBiMTF8BfSeu8JeNwSyXI6kVelBlF2B-68BaWzBq5pZD997_6ho6B0wXWnYMZL85Jr6MzECti65UToPry_L77NKWiy6PBvTo_UAVq-YzuAd9kEVORsc9uvrg3rUBdqwPg4WZyQ7HLCYBWEhRfbwO3fBtR1ydC2wjfNcmA-uXuOjA04O_09FX6KyLw8OfTgwXgLIUfmE1Na4CFn3TFtoJY8ph-Nzpfzoefq5ScAkhPjPThA-uX3QX3fen2aQEbTJyjLJz_gg9dFYK7lvmPEYNVTTRXr8Q83Jyg99gEzdsPsg00YPakpZNtH8LYOymjtke-lHjJb7Fy3fYsbKNK07iUYGBk7jGyTauM9IIWEa2cZ2PGPiIPR9hBzs-4hUfn6BvH47PBx8DVwgkkGCuzAMeURWmqcxVN-dST4k9EUXkLeeZyEkW55yFIiSZVBEltJdJGguax7SXptAoumQfbRdloZ4iTHOWplHOBKi-Ecv1YlVdrlIKYjnYCqSFiEcmkW6VfF2sZZz4cMiLxEKbaGgTC20LBateU7tKzB3ysQc9cZqu1WAT4O4dPV95jiQwEeive6JQ8BATHd4GemjI2R9kIj2Fc9DRW-jAEmx1v56bzza2PEe71Vv6Am3Pr67VS3RPLgDtq0O0FQ_ZoXsvfgFt_usb |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polystyrene+nanoparticles%3A+Sources%2C+occurrence+in+the+environment%2C+distribution+in+tissues%2C+accumulation+and+toxicity+to+various+organisms&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Kik%2C+Kinga&rft.au=Bukowska%2C+Bo%C5%BCena&rft.au=Sici%C5%84ska%2C+Paulina&rft.date=2020-07-01&rft.eissn=1873-6424&rft.volume=262&rft.spage=114297&rft_id=info:doi/10.1016%2Fj.envpol.2020.114297&rft_id=info%3Apmid%2F32155552&rft.externalDocID=32155552 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |