Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging
Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing techno...
Uloženo v:
| Vydáno v: | Trends in neurosciences (Regular ed.) Ročník 45; číslo 8; s. 621 - 634 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.08.2022
|
| Témata: | |
| ISSN: | 0166-2236, 1878-108X, 1878-108X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), ‘OPM-MEG’ has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience.
Magnetoencephalography (MEG) allows noninvasive electrophysiological imaging of human brain activity. However, current MEG technology has significant limitations.Optically pumped magnetometers (OPM)-MEG is a new type of MEG instrumentation, promising several advantages compared with conventional scanners: higher signal sensitivity, better spatial resolution, more uniform coverage, lifespan compliance, free movement of participants during scanning, and lower system complexity.We describe the principles underlying OPM-MEG and its components, including noncryogenic field sensors and magnetic shielding technologies.We discuss how the OPM-MEG technology is impacting neuroscience, enabling researchers to overcome limitations of conventional human imaging techniques and tackle new types of research questions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ISSN: | 0166-2236 1878-108X 1878-108X |
| DOI: | 10.1016/j.tins.2022.05.008 |