Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging

Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing techno...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Trends in neurosciences (Regular ed.) Ročník 45; číslo 8; s. 621 - 634
Hlavní autori: Brookes, Matthew J., Leggett, James, Rea, Molly, Hill, Ryan M., Holmes, Niall, Boto, Elena, Bowtell, Richard
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Elsevier Ltd 01.08.2022
Predmet:
ISSN:0166-2236, 1878-108X, 1878-108X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), ‘OPM-MEG’ has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience. Magnetoencephalography (MEG) allows noninvasive electrophysiological imaging of human brain activity. However, current MEG technology has significant limitations.Optically pumped magnetometers (OPM)-MEG is a new type of MEG instrumentation, promising several advantages compared with conventional scanners: higher signal sensitivity, better spatial resolution, more uniform coverage, lifespan compliance, free movement of participants during scanning, and lower system complexity.We describe the principles underlying OPM-MEG and its components, including noncryogenic field sensors and magnetic shielding technologies.We discuss how the OPM-MEG technology is impacting neuroscience, enabling researchers to overcome limitations of conventional human imaging techniques and tackle new types of research questions.
AbstractList Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), 'OPM-MEG' has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience.
Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), 'OPM-MEG' has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience.Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), 'OPM-MEG' has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience.
Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), ‘OPM-MEG’ has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience. Magnetoencephalography (MEG) allows noninvasive electrophysiological imaging of human brain activity. However, current MEG technology has significant limitations.Optically pumped magnetometers (OPM)-MEG is a new type of MEG instrumentation, promising several advantages compared with conventional scanners: higher signal sensitivity, better spatial resolution, more uniform coverage, lifespan compliance, free movement of participants during scanning, and lower system complexity.We describe the principles underlying OPM-MEG and its components, including noncryogenic field sensors and magnetic shielding technologies.We discuss how the OPM-MEG technology is impacting neuroscience, enabling researchers to overcome limitations of conventional human imaging techniques and tackle new types of research questions.
Author Hill, Ryan M.
Brookes, Matthew J.
Rea, Molly
Bowtell, Richard
Boto, Elena
Leggett, James
Holmes, Niall
AuthorAffiliation 1 Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
AuthorAffiliation_xml – name: 1 Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
Author_xml – sequence: 1
  givenname: Matthew J.
  surname: Brookes
  fullname: Brookes, Matthew J.
  email: matthew.brookes@nottingham.ac.uk
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
– sequence: 2
  givenname: James
  surname: Leggett
  fullname: Leggett, James
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
– sequence: 3
  givenname: Molly
  surname: Rea
  fullname: Rea, Molly
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
– sequence: 4
  givenname: Ryan M.
  surname: Hill
  fullname: Hill, Ryan M.
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
– sequence: 5
  givenname: Niall
  surname: Holmes
  fullname: Holmes, Niall
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
– sequence: 6
  givenname: Elena
  surname: Boto
  fullname: Boto, Elena
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
– sequence: 7
  givenname: Richard
  surname: Bowtell
  fullname: Bowtell, Richard
  organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35779970$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9v1DAQxS1URLeFL8AB-VgOCbbzz6mQEKpKQeqqHEDiZjnOJPGStVPbKd1vX4ctFfRQTh5p3m9m9J6P0IGxBhB6TUlKCS3fbdKgjU8ZYSwlRUoIf4ZWlFc8oYT_OECrKCoTxrLyEB15vyGE5pzmL9BhVlRVXVdkhcJa9gaCBaNgGuRoeyenYYd_6TBgOwWt5Dju8DRvJ2jxdi_eQgDn8cnV13WyPr94e4rDANjAbcA9GHAyaGuw7XA3G7XUcozd2VkdB2jTv0TPOzl6eHX_HqPvn86_nX1OLq8uvpx9vExUQaqQcKpynjVdVTaEZVmjSJFxVXV5C3XRMMZoXtCSVZzIWFeyJbKRRcHLtqZZpVh2jD7s505zs4VWgQlOjmJy8Q63E1Zq8W_H6EH09kZQkpdF9C1OOLmf4Oz1DD6IrfYKxlEasLMXrOQ5JVlNeZS--XvZw5Y_XkcB2wuUs9476B4klIglULERS6BiCVSQQsRAI8QfQUqH3_7Gg_X4NPp-j0K0-EaDE17pJedWO1BBtFY_jZ8-wtWozfIffsLuf_AdjbbRxg
CitedBy_id crossref_primary_10_1016_j_sna_2023_114188
crossref_primary_10_3390_s25072063
crossref_primary_10_1103_PhysRevApplied_20_024001
crossref_primary_10_1146_annurev_neuro_112723_024516
crossref_primary_10_1109_JSEN_2024_3366312
crossref_primary_10_1109_TIM_2024_3449978
crossref_primary_10_1016_j_jneumeth_2024_110279
crossref_primary_10_1063_5_0168990
crossref_primary_10_3390_bioengineering11050428
crossref_primary_10_1016_j_sna_2023_114869
crossref_primary_10_1016_j_neuroimage_2024_120864
crossref_primary_10_1088_1361_6560_ade6ba
crossref_primary_10_1109_TNSRE_2025_3561356
crossref_primary_10_1038_s41386_024_01946_8
crossref_primary_10_3390_s23094218
crossref_primary_10_3390_brainsci14010040
crossref_primary_10_1088_1367_2630_adc6b3
crossref_primary_10_1523_JNEUROSCI_2237_23_2024
crossref_primary_10_1080_17470919_2024_2380725
crossref_primary_10_1162_imag_a_00535
crossref_primary_10_1016_j_measurement_2025_118559
crossref_primary_10_1109_JBHI_2023_3248139
crossref_primary_10_1088_1742_6596_3042_1_012025
crossref_primary_10_3390_diagnostics14020139
crossref_primary_10_1002_epi4_70139
crossref_primary_10_3390_technologies12120254
crossref_primary_10_1162_imag_a_00410
crossref_primary_10_1038_s41583_023_00692_y
crossref_primary_10_3390_bioengineering11121258
crossref_primary_10_3390_s23042204
crossref_primary_10_1109_JSEN_2024_3468009
crossref_primary_10_1111_epi_18439
crossref_primary_10_1016_j_neuroimage_2023_120257
crossref_primary_10_1109_JSEN_2024_3435882
crossref_primary_10_3389_fnins_2023_1284262
crossref_primary_10_1109_TIM_2023_3325515
crossref_primary_10_3390_s25092682
crossref_primary_10_1016_j_jneumeth_2024_110131
crossref_primary_10_3390_s23052801
crossref_primary_10_1016_j_dcn_2025_101529
crossref_primary_10_1039_D4NH00560K
crossref_primary_10_1016_j_tics_2023_08_018
crossref_primary_10_1016_j_neuroimage_2023_120024
crossref_primary_10_1088_1361_6528_adb635
crossref_primary_10_1109_TIM_2023_3304705
crossref_primary_10_1038_s41598_025_02956_2
crossref_primary_10_1109_ACCESS_2024_3409771
crossref_primary_10_1109_JSEN_2023_3270325
crossref_primary_10_2514_1_J062707
crossref_primary_10_3390_s23073558
crossref_primary_10_1364_OE_568742
crossref_primary_10_1162_IMAG_a_10
crossref_primary_10_1142_S2737599424300058
crossref_primary_10_1109_JSEN_2024_3491164
crossref_primary_10_1162_imag_a_00283
crossref_primary_10_3390_surgeries6030050
crossref_primary_10_1186_s40779_023_00502_7
crossref_primary_10_1038_s41398_024_03047_y
crossref_primary_10_3389_fnsys_2022_1105923
crossref_primary_10_3389_fmedt_2024_1470970
crossref_primary_10_1109_JSEN_2023_3329043
crossref_primary_10_3390_bioengineering12090903
crossref_primary_10_1038_s41531_023_00474_4
crossref_primary_10_1088_1741_2552_acef92
crossref_primary_10_1016_j_neuroimage_2024_120661
crossref_primary_10_1038_s44220_024_00206_4
crossref_primary_10_1109_TIM_2025_3555727
crossref_primary_10_1016_j_measurement_2023_113904
crossref_primary_10_21926_obm_neurobiol_2503299
crossref_primary_10_1016_j_tins_2024_02_003
crossref_primary_10_1162_imag_a_00179
crossref_primary_10_1016_j_dcn_2024_101433
crossref_primary_10_1038_s41598_024_81865_2
crossref_primary_10_3389_fnhum_2024_1385427
crossref_primary_10_1162_imag_a_00029
crossref_primary_10_3390_brainsci13040651
crossref_primary_10_1088_1742_6596_2793_1_012006
crossref_primary_10_3390_s23146537
crossref_primary_10_1016_j_bspc_2024_106236
crossref_primary_10_1162_imag_a_00020
crossref_primary_10_1109_TIM_2025_3551466
crossref_primary_10_1016_j_engmed_2024_100039
crossref_primary_10_1016_j_sna_2025_116385
crossref_primary_10_1016_j_sna_2025_116383
crossref_primary_10_1017_qut_2023_1
crossref_primary_10_1016_j_bios_2025_117321
crossref_primary_10_1016_j_isci_2024_109250
crossref_primary_10_1038_s43856_024_00547_2
crossref_primary_10_1109_JSEN_2024_3395694
crossref_primary_10_1162_IMAG_a_8
crossref_primary_10_1016_j_ebiom_2024_105259
crossref_primary_10_1016_j_neuroimage_2025_121232
crossref_primary_10_7554_eLife_94561_3
crossref_primary_10_1038_s42003_023_05522_6
crossref_primary_10_1016_j_compbiomed_2023_107318
crossref_primary_10_1109_JSEN_2024_3509679
crossref_primary_10_1016_j_bbe_2023_11_004
crossref_primary_10_1016_j_jad_2025_120133
crossref_primary_10_1002_qute_202300185
crossref_primary_10_1038_s41390_024_03421_y
crossref_primary_10_1109_TNSRE_2024_3381173
crossref_primary_10_1016_j_dib_2025_111574
crossref_primary_10_3390_s23125454
crossref_primary_10_1111_1541_4337_13327
crossref_primary_10_1109_TIM_2024_3522373
crossref_primary_10_7554_eLife_94561
crossref_primary_10_3389_fmedt_2025_1515548
crossref_primary_10_1016_j_measurement_2025_119004
crossref_primary_10_1162_imag_a_00489
crossref_primary_10_1002_hbm_26118
crossref_primary_10_1109_TIM_2025_3553186
crossref_primary_10_1117_1_JOM_3_4_044501
crossref_primary_10_1016_j_ebiom_2025_105659
crossref_primary_10_1016_j_measurement_2024_115149
crossref_primary_10_1109_TIM_2024_3522701
crossref_primary_10_1016_j_neuroimage_2025_121056
crossref_primary_10_1016_j_vacuum_2025_114103
crossref_primary_10_3390_biology14010091
crossref_primary_10_3390_bios15040243
crossref_primary_10_1016_j_measurement_2024_115824
crossref_primary_10_1063_5_0167372
crossref_primary_10_1038_s41598_024_51857_3
crossref_primary_10_3390_s25154625
crossref_primary_10_1016_j_sna_2024_115043
crossref_primary_10_3389_fnagi_2024_1273738
crossref_primary_10_1109_JSEN_2024_3476032
crossref_primary_10_1002_qute_202400349
crossref_primary_10_1109_TIM_2023_3343783
crossref_primary_10_1016_j_measurement_2025_117286
crossref_primary_10_1186_s12984_023_01294_6
crossref_primary_10_3389_fmedt_2025_1548260
crossref_primary_10_1002_hbm_70293
crossref_primary_10_1109_JSEN_2024_3438765
crossref_primary_10_1111_ejn_70060
crossref_primary_10_1016_j_clinph_2025_02_265
crossref_primary_10_1016_j_measurement_2024_114711
crossref_primary_10_1088_1361_6560_adc0df
crossref_primary_10_1016_j_measurement_2025_118138
crossref_primary_10_1109_JSEN_2023_3297109
crossref_primary_10_1016_j_neuroimage_2025_121393
crossref_primary_10_1016_j_molstruc_2024_138827
crossref_primary_10_1371_journal_pone_0319328
crossref_primary_10_1007_s00415_025_13324_5
crossref_primary_10_1016_j_nicl_2024_103608
crossref_primary_10_1016_j_fmre_2024_04_011
crossref_primary_10_1162_imag_a_00112
crossref_primary_10_1002_hbm_26684
crossref_primary_10_1016_j_neuroimage_2025_121403
crossref_primary_10_1371_journal_pbio_3002828
crossref_primary_10_1109_JSEN_2025_3542464
crossref_primary_10_1016_j_measurement_2024_114266
crossref_primary_10_1093_pnasnexus_pgaf187
crossref_primary_10_1371_journal_pbio_3002824
crossref_primary_10_1007_s11517_025_03340_y
crossref_primary_10_1002_qute_202200146
crossref_primary_10_1038_s41598_023_31111_y
crossref_primary_10_1016_j_neuron_2023_02_032
crossref_primary_10_1364_OL_565523
crossref_primary_10_3390_s25134160
crossref_primary_10_1016_j_measurement_2023_112890
crossref_primary_10_2196_37269
crossref_primary_10_1162_imag_a_00219
crossref_primary_10_1016_j_cmpb_2024_108292
crossref_primary_10_3390_electronics13163163
crossref_primary_10_1016_j_measurement_2024_115909
crossref_primary_10_1103_PhysRevApplied_22_054033
crossref_primary_10_1109_TIM_2023_3341112
crossref_primary_10_1016_j_metrad_2025_100135
crossref_primary_10_1088_1741_2552_ad9680
crossref_primary_10_1088_2058_9565_ad8678
crossref_primary_10_1016_j_neuroimage_2023_120057
crossref_primary_10_1103_PhysRevApplied_22_064046
crossref_primary_10_1109_TIM_2025_3595633
crossref_primary_10_1103_PhysRevApplied_20_034074
crossref_primary_10_1109_LSENS_2024_3427435
crossref_primary_10_1364_PRJ_519409
crossref_primary_10_1016_j_neuroimage_2025_121182
crossref_primary_10_3390_photonics10080934
crossref_primary_10_3390_s25020433
crossref_primary_10_1002_hbm_70018
crossref_primary_10_1016_j_dcn_2024_101481
crossref_primary_10_1016_j_infbeh_2025_102100
crossref_primary_10_1063_5_0096826
crossref_primary_10_1016_j_neucli_2025_103087
crossref_primary_10_1103_gy6f_4cs9
crossref_primary_10_1109_TIM_2023_3323002
crossref_primary_10_3389_fnins_2023_1154572
crossref_primary_10_1038_s41598_024_56878_6
crossref_primary_10_1016_j_measurement_2025_118102
crossref_primary_10_1109_TBME_2024_3465654
crossref_primary_10_1007_s42399_024_01705_2
crossref_primary_10_1007_s11011_024_01389_6
crossref_primary_10_1016_j_optlastec_2025_113063
crossref_primary_10_1088_1361_6579_ad0358
Cites_doi 10.1186/s12915-021-01073-6
10.1016/j.neuroimage.2019.05.063
10.1016/j.neuroimage.2020.117443
10.1016/j.neuroimage.2019.06.010
10.1088/0031-9155/58/22/8153
10.1109/TSP.2005.853302
10.3791/58909
10.1016/j.neuroimage.2018.07.035
10.1016/j.neuroimage.2021.118604
10.1126/science.161.3843.784
10.1016/j.neuroimage.2020.116995
10.1103/RevModPhys.65.413
10.1364/OE.420031
10.1111/j.1528-1167.2012.03574.x
10.1051/rphysap:019700050109500
10.1371/journal.pone.0157655
10.1364/BOE.3.000981
10.1103/PhysRevA.98.053431
10.1016/j.neuroimage.2017.07.038
10.1002/acn3.50995
10.1016/j.clinph.2012.03.080
10.1016/j.neuroimage.2021.118401
10.1140/epjqt/s40507-020-00086-4
10.1007/s10548-016-0523-1
10.1088/0031-9155/51/7/008
10.1016/j.neuroimage.2012.11.047
10.1103/RevModPhys.44.169
10.1016/j.neuroimage.2017.01.034
10.1016/j.neuroimage.2019.116192
10.1002/hbm.24795
10.1371/journal.pone.0227684
10.1109/TMI.2018.2856367
10.7567/JJAP.54.026601
10.1038/s41598-019-50697-w
10.3390/s22093184
10.1016/j.neuroimage.2021.118025
10.1126/science.175.4022.664
10.1016/j.neuroimage.2019.03.022
10.1038/s41467-019-12486-x
10.1016/j.neuroimage.2022.119027
10.3390/s22083059
10.1016/j.neuroimage.2016.12.048
10.3389/fphys.2022.798376
10.1016/j.neuroimage.2007.12.026
10.1113/JP277899
10.1111/nyas.13948
10.1016/j.neuroimage.2019.116099
10.1016/j.neuroimage.2019.01.059
10.1016/j.neuroimage.2018.07.028
10.1088/0031-9155/58/17/6065
10.1063/1.2392722
10.1109/JSEN.2022.3143209
10.1016/j.neuroimage.2021.118528
10.1063/1.3522648
10.1016/j.neuroimage.2021.117815
10.1016/j.clinph.2021.06.009
10.1148/radiol.212453
10.1038/nature26147
10.1016/j.neuroimage.2017.11.068
10.1103/PhysRevLett.89.130801
10.1016/j.neuroimage.2021.117969
10.1038/nn.4504
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.tins.2022.05.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1878-108X
EndPage 634
ExternalDocumentID PMC10465236
35779970
10_1016_j_tins_2022_05_008
S0166223622001023
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R44 MH110288
– fundername: Wellcome Trust
  grantid: 203257/Z/16/Z
– fundername: Wellcome Trust
– fundername: NIBIB NIH HHS
  grantid: R01 EB028772
– fundername: Wellcome Trust
  grantid: 203257/B/16/Z
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1CY
1P~
1RT
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABIVO
ABJNI
ABLJU
ABMAC
ABTEW
ABUFD
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADIYS
ADMUD
ADNMO
ADXHL
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
KOM
M2V
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OHT
OP~
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
TAE
TN5
UQL
WH7
WUQ
X7M
XPP
YYP
Z5R
ZCA
ZGI
ZKB
~G-
~HD
6I.
AACTN
AADPK
AAFTH
AAIAV
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
RCE
RIG
XFK
YCJ
ZA5
9DU
AAYXX
CITATION
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c507t-81c483bf76b0233bc0538c7f4de95b222145162780a2217ad0aba5586d9137c23
ISICitedReferencesCount 217
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831679100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-2236
1878-108X
IngestDate Tue Nov 04 02:06:23 EST 2025
Thu Oct 02 21:13:14 EDT 2025
Mon Jul 21 06:01:50 EDT 2025
Sat Nov 29 07:25:25 EST 2025
Tue Nov 18 21:40:32 EST 2025
Fri Feb 23 02:40:18 EST 2024
Tue Oct 14 19:30:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords biomagnetism
functional brain imaging
electrophysiology
neurophysiology
OPM-MEG
quantum technology
Language English
License This is an open access article under the CC BY license.
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c507t-81c483bf76b0233bc0538c7f4de95b222145162780a2217ad0aba5586d9137c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10465236
PMID 35779970
PQID 2684103918
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10465236
proquest_miscellaneous_2684103918
pubmed_primary_35779970
crossref_primary_10_1016_j_tins_2022_05_008
crossref_citationtrail_10_1016_j_tins_2022_05_008
elsevier_sciencedirect_doi_10_1016_j_tins_2022_05_008
elsevier_clinicalkey_doi_10_1016_j_tins_2022_05_008
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in neurosciences (Regular ed.)
PublicationTitleAlternate Trends Neurosci
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Boto (bb0060) 2016; 11
Bu (bb0115) 2022; 13
Chen (bb0195) 2019; 189
Rea (bb0335) 2021; 241
Boto (bb0070) 2017; 149
Marquetand (bb0110) 2021; 132
Hamalainen (bb0025) 1993; 65
Xia (bb0150) 2006; 89
De Lange (bb0285) 2021; 233
Quspin Inc. Zero field parametric resonance magnetometer with triaxial sensitivity, US10775450B1
Johnson (bb0050) 2010; 97
Lin (bb0105) 2019; 597
Rapaport (bb0220) 2019
Feys (bb0265) 2022
Kamada (bb0155) 2015; 54
Seymour (bb0245) 2021; 244
Tierney (bb0100) 2021; 225
Boto (bb0275) 2021; 230
Westner (bb0125) 2021; 243
Medvedovsky (bb0215) 2007; 4
Vivekananda (bb0260) 2020; 7
Roberts (bb0240) 2019; 199
Hill (bb0270) 2020; 219
Stolk (bb0180) 2013; 68
Allred (bb0030) 2002; 89
Baillet (bb0015) 2017; 20
Shah, V.
Wittevrongel (bb0280) 2021; 19
Strand (bb0130) 2019; 20
Fourcault (bb0305) 2021; 29
Sander (bb0055) 2012; 3
Mardell (bb0120) 2022
Tannoudji (bb0325) 1970; 5
Nugent (bb0085) 2022; 2
Johnson (bb0035) 2013; 58
Taulu, Simola (bb0185) 2006; 51
Happer (bb0320) 1972; 44
Brookes (bb0145) 2021; 236
Cohen (bb0020) 1972; 5
An (bb0160) 2021
Borna (bb0255) 2020; 15
Tierney (bb0095) 2018; 181
Iivanainen (bb0165) 2019; 194
Barry (bb0075) 2019; 203
Pinti (bb0225) 2020; 1464
Marhl (bb0140) 2022; 22
Medvedovsky (bb0330) 2012; 53
Iivanainen (bb0340) 2022; 22
Iivanainen (bb0065) 2017; 147
Iivanainen (bb0170) 2019; 41
Wehner (bb0200) 2008; 40
Nardelli (bb0315) 2020; 7
Larson, Taulu (bb0210) 2017; 30
Pang (bb0295) 2022; 22
Hill (bb0090) 2019; 10
Boto (bb0250) 2019; 201
Boto (bb0290) 2022; 252
Shah, Wakai (bb0045) 2013; 58
Tierney (bb0040) 2019; 199
Nenonen (bb0205) 2012; 123
Boto (bb0080) 2018; 555
Messaritaki (bb0175) 2017; 159
Bonaiuto (bb0010) 2018; 167
Taulu (bb0190) 2005; 53
Cohen (bb0005) 1968; 161
Holmes (bb0230) 2018; 181
Holmes (bb0235) 2020; 9
Beato (bb0300) 2018; 98
Labyt (bb0310) 2019; 38
Stolk (10.1016/j.tins.2022.05.008_bb0180) 2013; 68
Vivekananda (10.1016/j.tins.2022.05.008_bb0260) 2020; 7
Shah (10.1016/j.tins.2022.05.008_bb0045) 2013; 58
Hill (10.1016/j.tins.2022.05.008_bb0270) 2020; 219
Tannoudji (10.1016/j.tins.2022.05.008_bb0325) 1970; 5
Tierney (10.1016/j.tins.2022.05.008_bb0095) 2018; 181
Holmes (10.1016/j.tins.2022.05.008_bb0230) 2018; 181
Baillet (10.1016/j.tins.2022.05.008_bb0015) 2017; 20
De Lange (10.1016/j.tins.2022.05.008_bb0285) 2021; 233
Marhl (10.1016/j.tins.2022.05.008_bb0140) 2022; 22
Labyt (10.1016/j.tins.2022.05.008_bb0310) 2019; 38
Pinti (10.1016/j.tins.2022.05.008_bb0225) 2020; 1464
Johnson (10.1016/j.tins.2022.05.008_bb0035) 2013; 58
Boto (10.1016/j.tins.2022.05.008_bb0275) 2021; 230
Fourcault (10.1016/j.tins.2022.05.008_bb0305) 2021; 29
An (10.1016/j.tins.2022.05.008_bb0160) 2021
Nugent (10.1016/j.tins.2022.05.008_bb0085) 2022; 2
Hill (10.1016/j.tins.2022.05.008_bb0090) 2019; 10
Mardell (10.1016/j.tins.2022.05.008_bb0120) 2022
Wehner (10.1016/j.tins.2022.05.008_bb0200) 2008; 40
Borna (10.1016/j.tins.2022.05.008_bb0255) 2020; 15
Kamada (10.1016/j.tins.2022.05.008_bb0155) 2015; 54
Chen (10.1016/j.tins.2022.05.008_bb0195) 2019; 189
Beato (10.1016/j.tins.2022.05.008_bb0300) 2018; 98
Iivanainen (10.1016/j.tins.2022.05.008_bb0065) 2017; 147
Lin (10.1016/j.tins.2022.05.008_bb0105) 2019; 597
Rapaport (10.1016/j.tins.2022.05.008_bb0220) 2019
Cohen (10.1016/j.tins.2022.05.008_bb0005) 1968; 161
Medvedovsky (10.1016/j.tins.2022.05.008_bb0330) 2012; 53
Sander (10.1016/j.tins.2022.05.008_bb0055) 2012; 3
Nenonen (10.1016/j.tins.2022.05.008_bb0205) 2012; 123
Strand (10.1016/j.tins.2022.05.008_bb0130) 2019; 20
Medvedovsky (10.1016/j.tins.2022.05.008_bb0215) 2007; 4
Cohen (10.1016/j.tins.2022.05.008_bb0020) 1972; 5
Taulu (10.1016/j.tins.2022.05.008_bb0190) 2005; 53
Nardelli (10.1016/j.tins.2022.05.008_bb0315) 2020; 7
Marquetand (10.1016/j.tins.2022.05.008_bb0110) 2021; 132
Messaritaki (10.1016/j.tins.2022.05.008_bb0175) 2017; 159
Wittevrongel (10.1016/j.tins.2022.05.008_bb0280) 2021; 19
Larson (10.1016/j.tins.2022.05.008_bb0210) 2017; 30
Barry (10.1016/j.tins.2022.05.008_bb0075) 2019; 203
Iivanainen (10.1016/j.tins.2022.05.008_bb0165) 2019; 194
Holmes (10.1016/j.tins.2022.05.008_bb0235) 2020; 9
Tierney (10.1016/j.tins.2022.05.008_bb0040) 2019; 199
Xia (10.1016/j.tins.2022.05.008_bb0150) 2006; 89
Boto (10.1016/j.tins.2022.05.008_bb0290) 2022; 252
Boto (10.1016/j.tins.2022.05.008_bb0060) 2016; 11
Brookes (10.1016/j.tins.2022.05.008_bb0145) 2021; 236
Bu (10.1016/j.tins.2022.05.008_bb0115) 2022; 13
Boto (10.1016/j.tins.2022.05.008_bb0250) 2019; 201
Iivanainen (10.1016/j.tins.2022.05.008_bb0340) 2022; 22
10.1016/j.tins.2022.05.008_bb0135
Johnson (10.1016/j.tins.2022.05.008_bb0050) 2010; 97
Allred (10.1016/j.tins.2022.05.008_bb0030) 2002; 89
Seymour (10.1016/j.tins.2022.05.008_bb0245) 2021; 244
Tierney (10.1016/j.tins.2022.05.008_bb0100) 2021; 225
Rea (10.1016/j.tins.2022.05.008_bb0335) 2021; 241
Pang (10.1016/j.tins.2022.05.008_bb0295) 2022; 22
Iivanainen (10.1016/j.tins.2022.05.008_bb0170) 2019; 41
Roberts (10.1016/j.tins.2022.05.008_bb0240) 2019; 199
Feys (10.1016/j.tins.2022.05.008_bb0265) 2022
Boto (10.1016/j.tins.2022.05.008_bb0070) 2017; 149
Taulu (10.1016/j.tins.2022.05.008_bb0185) 2006; 51
Happer (10.1016/j.tins.2022.05.008_bb0320) 1972; 44
Hamalainen (10.1016/j.tins.2022.05.008_bb0025) 1993; 65
Boto (10.1016/j.tins.2022.05.008_bb0080) 2018; 555
Bonaiuto (10.1016/j.tins.2022.05.008_bb0010) 2018; 167
Westner (10.1016/j.tins.2022.05.008_bb0125) 2021; 243
References_xml – volume: 161
  start-page: 784
  year: 1968
  end-page: 786
  ident: bb0005
  article-title: Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents
  publication-title: Science
– volume: 123
  start-page: 2180
  year: 2012
  end-page: 2191
  ident: bb0205
  article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography
  publication-title: Clin. Neurophysiol.
– year: 2019
  ident: bb0220
  article-title: Studying brain function in children using magnetoencephalography
  publication-title: J. Vis. Exp.
– volume: 53
  start-page: 1649
  year: 2012
  end-page: 1657
  ident: bb0330
  article-title: Sensitivity and specificity of seizure-onset zone estimation by ictal magnetoencephalography
  publication-title: Epilepsia
– volume: 7
  start-page: 397
  year: 2020
  end-page: 401
  ident: bb0260
  article-title: Optically pumped magnetoencephalography in epilepsy
  publication-title: Ann. Clin. Transl. Neurol.
– volume: 597
  start-page: 4309
  year: 2019
  end-page: 4324
  ident: bb0105
  article-title: Using optically-pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum
  publication-title: J. Physiol.
– volume: 147
  start-page: 542
  year: 2017
  end-page: 553
  ident: bb0065
  article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays
  publication-title: Neuroimage
– volume: 58
  start-page: 8153
  year: 2013
  end-page: 8161
  ident: bb0045
  article-title: A compact, high performance atomic magnetometer for biomedical applications
  publication-title: Phys. Med. Biol.
– volume: 159
  start-page: 302
  year: 2017
  end-page: 324
  ident: bb0175
  article-title: Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity
  publication-title: NeuroImage
– volume: 98
  year: 2018
  ident: bb0300
  article-title: Theory of a He4 parametric-resonance magnetometer based on atomic alignment
  publication-title: Phys. Rev. A
– volume: 236
  year: 2021
  ident: bb0145
  article-title: Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system
  publication-title: NeuroImage
– volume: 68
  start-page: 39
  year: 2013
  end-page: 48
  ident: bb0180
  article-title: Online and offline tools for head movement compensation in MEG
  publication-title: NeuroImage
– volume: 225
  year: 2021
  ident: bb0100
  article-title: Mouth magnetoencephalography: a unique perspective on the human hippocampus
  publication-title: NeuroImage
– volume: 30
  start-page: 172
  year: 2017
  end-page: 181
  ident: bb0210
  article-title: The importance of properly compensating for head movements during MEG acquisition across different age groups
  publication-title: Brain Topogr.
– volume: 41
  start-page: 150
  year: 2019
  end-page: 161
  ident: bb0170
  article-title: Potential of on-scalp MEG: robust detection of human visual gamma-band responses
  publication-title: Hum. Brain Mapp.
– year: 2021
  ident: bb0160
  article-title: Detection of the 40-Hz auditory steady-state response with optically pumped magnetometers
  publication-title: BioRxiv
– volume: 51
  start-page: 1759
  year: 2006
  ident: bb0185
  article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements
  publication-title: Phys. Med. Biol.
– reference: . Quspin Inc. Zero field parametric resonance magnetometer with triaxial sensitivity, US10775450B1
– volume: 19
  start-page: 1
  year: 2021
  end-page: 15
  ident: bb0280
  article-title: Practical real-time MEG-based neural interfacing with optically pumped magnetometers
  publication-title: BMC Biol.
– volume: 132
  start-page: 2681
  year: 2021
  end-page: 2684
  ident: bb0110
  article-title: Optically pumped magnetometers reveal fasciculations non-invasively
  publication-title: Clin. Neurophysiol.
– volume: 9
  start-page: 14196
  year: 2020
  ident: bb0235
  article-title: Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography
  publication-title: Sci. Rep.
– volume: 38
  start-page: 90
  year: 2019
  end-page: 98
  ident: bb0310
  article-title: Magnetoencephalography with optically pumped 4He magnetometers at ambient temperature
  publication-title: IEEE Trans. Med. Imaging
– volume: 201
  year: 2019
  ident: bb0250
  article-title: Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography
  publication-title: NeuroImage
– volume: 219
  year: 2020
  ident: bb0270
  article-title: Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system
  publication-title: NeuroImage
– volume: 189
  start-page: 445
  year: 2019
  end-page: 458
  ident: bb0195
  article-title: Magnetoencephalography and the infant brain
  publication-title: NeuroImage
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: bb0025
  article-title: Magnetoencephalography: theory, instrumentation, and applications to non-invasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
– volume: 3
  start-page: 981
  year: 2012
  end-page: 990
  ident: bb0055
  article-title: Magnetoencephalography with a chip-scale atomic magnetometer
  publication-title: Biomed. Opt. Express
– volume: 243
  year: 2021
  ident: bb0125
  article-title: Contactless measurements of retinal activity using optically pumped magnetometers
  publication-title: NeuroImage
– volume: 194
  start-page: 244
  year: 2019
  end-page: 258
  ident: bb0165
  article-title: On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers
  publication-title: NeuroImage
– volume: 230
  year: 2021
  ident: bb0275
  article-title: Measuring functional connectivity with wearable MEG
  publication-title: NeuroImage
– volume: 44
  start-page: 169
  year: 1972
  ident: bb0320
  article-title: Optical pumping
  publication-title: Rev. Mod. Phys.
– volume: 5
  start-page: 664
  year: 1972
  end-page: 666
  ident: bb0020
  article-title: Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer
  publication-title: Science
– volume: 97
  year: 2010
  ident: bb0050
  article-title: Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer
  publication-title: Appl. Phys. Lett.
– volume: 53
  start-page: 3359
  year: 2005
  end-page: 3372
  ident: bb0190
  article-title: Applications of the signal space separation method
  publication-title: IEEE Trans. Signal Process.
– volume: 29
  start-page: 14467
  year: 2021
  end-page: 14475
  ident: bb0305
  article-title: Helium-4 magnetometers for room-temperature biomedical imaging: toward collective operation and photon-noise limited sensitivity
  publication-title: Opt. Express
– volume: 149
  start-page: 404
  year: 2017
  end-page: 414
  ident: bb0070
  article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers
  publication-title: NeuroImage
– volume: 89
  year: 2002
  ident: bb0030
  article-title: High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation
  publication-title: Phys. Rev. Lett.
– volume: 555
  start-page: 657
  year: 2018
  ident: bb0080
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
– volume: 20
  year: 2019
  ident: bb0130
  article-title: Low-cost fetal magnetocardiography: a comparison of superconducting quantum interference device and optically pumped magnetometers
  publication-title: J. Am. Heart Assoc.
– volume: 13
  year: 2022
  ident: bb0115
  article-title: Peripheral nerve magnetoneurography with optically pumped magnetometers
  publication-title: Front. Physiol.
– volume: 15
  year: 2020
  ident: bb0255
  article-title: Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system
  publication-title: PLoS One
– volume: 22
  start-page: 4514
  year: 2022
  end-page: 4523
  ident: bb0295
  article-title: Thermal analysis of wearable OPM-MEG array system for auditory evoked experiments
  publication-title: IEEE Sensors
– year: 2022
  ident: bb0120
  article-title: Concurrent spinal and brain imaging with optically pumped magnetometers
  publication-title: bioRxiv
– volume: 181
  start-page: 513
  year: 2018
  end-page: 520
  ident: bb0095
  article-title: Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function
  publication-title: NeuroImage
– volume: 181
  start-page: 760
  year: 2018
  end-page: 774
  ident: bb0230
  article-title: A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography
  publication-title: NeuroImage
– volume: 203
  year: 2019
  ident: bb0075
  article-title: Imaging the human hippocampus with optically-pumped magnetometers
  publication-title: NeuroImage
– volume: 10
  start-page: 4785
  year: 2019
  ident: bb0090
  article-title: A tool for functional brain imaging with lifespan compliance
  publication-title: Nat. Commun.
– volume: 22
  start-page: 3184
  year: 2022
  ident: bb0140
  article-title: Simulation study of different OPM-MEG measurement components
  publication-title: Sensors
– volume: 2
  year: 2022
  ident: bb0085
  article-title: On-scalp magnetocorticography with optically pumped magnetometers: simulated performance in resolving simultaneous sources
  publication-title: NeuroImage
– volume: 54
  year: 2015
  ident: bb0155
  article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer
  publication-title: Jpn. J. Appl. Phys.
– volume: 244
  year: 2021
  ident: bb0245
  article-title: Using OPMs to measure neural activity in standing, mobile participants
  publication-title: NeuroImage
– volume: 40
  start-page: 541
  year: 2008
  end-page: 550
  ident: bb0200
  article-title: Head movements of children in MEG: quantification, effects on source estimation, and compensation
  publication-title: NeuroImage
– volume: 199
  start-page: 598
  year: 2019
  end-page: 608
  ident: bb0040
  article-title: Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography
  publication-title: NeuroImage
– reference: Shah, V.,
– volume: 199
  start-page: 408
  year: 2019
  end-page: 417
  ident: bb0240
  article-title: Towards magnetoencephalography in a virtual reality environment
  publication-title: NeuroImage
– volume: 7
  start-page: 11
  year: 2020
  ident: bb0315
  article-title: A conformal array of microfabricated optically-pumped first-order gradiometers for magnetoencephalography
  publication-title: EPJ Quantum Technol.
– year: 2022
  ident: bb0265
  article-title: On-scalp optically pumped magnetometers vs. cryogenic magnetoencephalography for diagnostic evaluation of epilepsy in school-aged children
  publication-title: Radiology
– volume: 233
  year: 2021
  ident: bb0285
  article-title: Measuring the cortical tracking of speech with optically-pumped magnetometers
  publication-title: NeuroImage
– volume: 89
  year: 2006
  ident: bb0150
  article-title: Magnetoencephalography with an atomic magnetometer
  publication-title: Appl. Phys. Lett.
– volume: 241
  year: 2021
  ident: bb0335
  article-title: Precision magnetic field modelling and control for wearable magnetoencephalography
  publication-title: NeuroImage
– volume: 11
  year: 2016
  ident: bb0060
  article-title: The benefits of atomic magnetometers for MEG: a simulation study
  publication-title: PLoS One
– volume: 1464
  start-page: 5
  year: 2020
  end-page: 29
  ident: bb0225
  article-title: The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 20
  start-page: 327
  year: 2017
  end-page: 339
  ident: bb0015
  article-title: Magnetoencephalography for brain electrophysiology and imaging
  publication-title: Nat. Neurosci.
– volume: 58
  start-page: 6065
  year: 2013
  end-page: 6077
  ident: bb0035
  article-title: Multi-sensor magnetoencephalography with atomic magnetometers
  publication-title: Phys. Med. Biol.
– volume: 167
  start-page: 372
  year: 2018
  end-page: 383
  ident: bb0010
  article-title: Non-invasive laminar inference with MEG: comparison of methods and source inversion algorithms
  publication-title: NeuroImage
– volume: 4
  start-page: 1
  year: 2007
  end-page: 10
  ident: bb0215
  article-title: Artifact and head movement compensation in MEG
  publication-title: Neurol Neurophysiol. Neurosci.
– volume: 252
  year: 2022
  ident: bb0290
  article-title: Triaxial detection of the neuromagnetic field using optically pumped magnetometry: feasibility and application in children
  publication-title: NeuroImage
– volume: 5
  start-page: 95
  year: 1970
  ident: bb0325
  article-title: Diverses résonances de croisement de niveaux sur des atomes pompés optiquement en champ nul i. théorie
  publication-title: Rev. Phys. Appl.
– volume: 22
  start-page: 3059
  year: 2022
  ident: bb0340
  article-title: Calibration and localization of optically pumped magnetometers using electromagnetic coils
  publication-title: Sensors
– volume: 19
  start-page: 1
  year: 2021
  ident: 10.1016/j.tins.2022.05.008_bb0280
  article-title: Practical real-time MEG-based neural interfacing with optically pumped magnetometers
  publication-title: BMC Biol.
  doi: 10.1186/s12915-021-01073-6
– volume: 199
  start-page: 598
  year: 2019
  ident: 10.1016/j.tins.2022.05.008_bb0040
  article-title: Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.05.063
– volume: 225
  year: 2021
  ident: 10.1016/j.tins.2022.05.008_bb0100
  article-title: Mouth magnetoencephalography: a unique perspective on the human hippocampus
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117443
– volume: 199
  start-page: 408
  year: 2019
  ident: 10.1016/j.tins.2022.05.008_bb0240
  article-title: Towards magnetoencephalography in a virtual reality environment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.06.010
– ident: 10.1016/j.tins.2022.05.008_bb0135
– volume: 58
  start-page: 8153
  year: 2013
  ident: 10.1016/j.tins.2022.05.008_bb0045
  article-title: A compact, high performance atomic magnetometer for biomedical applications
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/22/8153
– volume: 53
  start-page: 3359
  year: 2005
  ident: 10.1016/j.tins.2022.05.008_bb0190
  article-title: Applications of the signal space separation method
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.853302
– year: 2019
  ident: 10.1016/j.tins.2022.05.008_bb0220
  article-title: Studying brain function in children using magnetoencephalography
  publication-title: J. Vis. Exp.
  doi: 10.3791/58909
– volume: 181
  start-page: 513
  year: 2018
  ident: 10.1016/j.tins.2022.05.008_bb0095
  article-title: Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.07.035
– volume: 244
  year: 2021
  ident: 10.1016/j.tins.2022.05.008_bb0245
  article-title: Using OPMs to measure neural activity in standing, mobile participants
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118604
– volume: 161
  start-page: 784
  year: 1968
  ident: 10.1016/j.tins.2022.05.008_bb0005
  article-title: Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents
  publication-title: Science
  doi: 10.1126/science.161.3843.784
– volume: 2
  year: 2022
  ident: 10.1016/j.tins.2022.05.008_bb0085
  article-title: On-scalp magnetocorticography with optically pumped magnetometers: simulated performance in resolving simultaneous sources
  publication-title: NeuroImage
– volume: 219
  year: 2020
  ident: 10.1016/j.tins.2022.05.008_bb0270
  article-title: Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116995
– volume: 65
  start-page: 413
  year: 1993
  ident: 10.1016/j.tins.2022.05.008_bb0025
  article-title: Magnetoencephalography: theory, instrumentation, and applications to non-invasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
– volume: 29
  start-page: 14467
  year: 2021
  ident: 10.1016/j.tins.2022.05.008_bb0305
  article-title: Helium-4 magnetometers for room-temperature biomedical imaging: toward collective operation and photon-noise limited sensitivity
  publication-title: Opt. Express
  doi: 10.1364/OE.420031
– volume: 53
  start-page: 1649
  year: 2012
  ident: 10.1016/j.tins.2022.05.008_bb0330
  article-title: Sensitivity and specificity of seizure-onset zone estimation by ictal magnetoencephalography
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2012.03574.x
– volume: 5
  start-page: 95
  year: 1970
  ident: 10.1016/j.tins.2022.05.008_bb0325
  article-title: Diverses résonances de croisement de niveaux sur des atomes pompés optiquement en champ nul i. théorie
  publication-title: Rev. Phys. Appl.
  doi: 10.1051/rphysap:019700050109500
– volume: 11
  year: 2016
  ident: 10.1016/j.tins.2022.05.008_bb0060
  article-title: The benefits of atomic magnetometers for MEG: a simulation study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0157655
– volume: 3
  start-page: 981
  year: 2012
  ident: 10.1016/j.tins.2022.05.008_bb0055
  article-title: Magnetoencephalography with a chip-scale atomic magnetometer
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.3.000981
– volume: 98
  year: 2018
  ident: 10.1016/j.tins.2022.05.008_bb0300
  article-title: Theory of a He4 parametric-resonance magnetometer based on atomic alignment
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.053431
– volume: 159
  start-page: 302
  year: 2017
  ident: 10.1016/j.tins.2022.05.008_bb0175
  article-title: Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.07.038
– volume: 7
  start-page: 397
  year: 2020
  ident: 10.1016/j.tins.2022.05.008_bb0260
  article-title: Optically pumped magnetoencephalography in epilepsy
  publication-title: Ann. Clin. Transl. Neurol.
  doi: 10.1002/acn3.50995
– volume: 123
  start-page: 2180
  year: 2012
  ident: 10.1016/j.tins.2022.05.008_bb0205
  article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2012.03.080
– volume: 241
  year: 2021
  ident: 10.1016/j.tins.2022.05.008_bb0335
  article-title: Precision magnetic field modelling and control for wearable magnetoencephalography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118401
– volume: 7
  start-page: 11
  year: 2020
  ident: 10.1016/j.tins.2022.05.008_bb0315
  article-title: A conformal array of microfabricated optically-pumped first-order gradiometers for magnetoencephalography
  publication-title: EPJ Quantum Technol.
  doi: 10.1140/epjqt/s40507-020-00086-4
– volume: 30
  start-page: 172
  year: 2017
  ident: 10.1016/j.tins.2022.05.008_bb0210
  article-title: The importance of properly compensating for head movements during MEG acquisition across different age groups
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-016-0523-1
– volume: 51
  start-page: 1759
  year: 2006
  ident: 10.1016/j.tins.2022.05.008_bb0185
  article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/7/008
– volume: 68
  start-page: 39
  year: 2013
  ident: 10.1016/j.tins.2022.05.008_bb0180
  article-title: Online and offline tools for head movement compensation in MEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.11.047
– volume: 44
  start-page: 169
  year: 1972
  ident: 10.1016/j.tins.2022.05.008_bb0320
  article-title: Optical pumping
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.44.169
– volume: 4
  start-page: 1
  year: 2007
  ident: 10.1016/j.tins.2022.05.008_bb0215
  article-title: Artifact and head movement compensation in MEG
  publication-title: Neurol Neurophysiol. Neurosci.
– volume: 149
  start-page: 404
  year: 2017
  ident: 10.1016/j.tins.2022.05.008_bb0070
  article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.01.034
– volume: 203
  year: 2019
  ident: 10.1016/j.tins.2022.05.008_bb0075
  article-title: Imaging the human hippocampus with optically-pumped magnetometers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116192
– volume: 41
  start-page: 150
  year: 2019
  ident: 10.1016/j.tins.2022.05.008_bb0170
  article-title: Potential of on-scalp MEG: robust detection of human visual gamma-band responses
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24795
– volume: 15
  year: 2020
  ident: 10.1016/j.tins.2022.05.008_bb0255
  article-title: Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0227684
– volume: 38
  start-page: 90
  year: 2019
  ident: 10.1016/j.tins.2022.05.008_bb0310
  article-title: Magnetoencephalography with optically pumped 4He magnetometers at ambient temperature
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2856367
– volume: 54
  year: 2015
  ident: 10.1016/j.tins.2022.05.008_bb0155
  article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.54.026601
– year: 2022
  ident: 10.1016/j.tins.2022.05.008_bb0120
  article-title: Concurrent spinal and brain imaging with optically pumped magnetometers
  publication-title: bioRxiv
– volume: 9
  start-page: 14196
  year: 2020
  ident: 10.1016/j.tins.2022.05.008_bb0235
  article-title: Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50697-w
– volume: 22
  start-page: 3184
  year: 2022
  ident: 10.1016/j.tins.2022.05.008_bb0140
  article-title: Simulation study of different OPM-MEG measurement components
  publication-title: Sensors
  doi: 10.3390/s22093184
– volume: 236
  year: 2021
  ident: 10.1016/j.tins.2022.05.008_bb0145
  article-title: Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118025
– volume: 5
  start-page: 664
  year: 1972
  ident: 10.1016/j.tins.2022.05.008_bb0020
  article-title: Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer
  publication-title: Science
  doi: 10.1126/science.175.4022.664
– volume: 194
  start-page: 244
  year: 2019
  ident: 10.1016/j.tins.2022.05.008_bb0165
  article-title: On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.03.022
– volume: 10
  start-page: 4785
  year: 2019
  ident: 10.1016/j.tins.2022.05.008_bb0090
  article-title: A tool for functional brain imaging with lifespan compliance
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12486-x
– volume: 252
  year: 2022
  ident: 10.1016/j.tins.2022.05.008_bb0290
  article-title: Triaxial detection of the neuromagnetic field using optically pumped magnetometry: feasibility and application in children
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119027
– volume: 22
  start-page: 3059
  year: 2022
  ident: 10.1016/j.tins.2022.05.008_bb0340
  article-title: Calibration and localization of optically pumped magnetometers using electromagnetic coils
  publication-title: Sensors
  doi: 10.3390/s22083059
– volume: 147
  start-page: 542
  year: 2017
  ident: 10.1016/j.tins.2022.05.008_bb0065
  article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.048
– volume: 13
  year: 2022
  ident: 10.1016/j.tins.2022.05.008_bb0115
  article-title: Peripheral nerve magnetoneurography with optically pumped magnetometers
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2022.798376
– volume: 40
  start-page: 541
  year: 2008
  ident: 10.1016/j.tins.2022.05.008_bb0200
  article-title: Head movements of children in MEG: quantification, effects on source estimation, and compensation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.12.026
– volume: 597
  start-page: 4309
  year: 2019
  ident: 10.1016/j.tins.2022.05.008_bb0105
  article-title: Using optically-pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum
  publication-title: J. Physiol.
  doi: 10.1113/JP277899
– volume: 1464
  start-page: 5
  year: 2020
  ident: 10.1016/j.tins.2022.05.008_bb0225
  article-title: The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.13948
– volume: 201
  year: 2019
  ident: 10.1016/j.tins.2022.05.008_bb0250
  article-title: Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116099
– volume: 189
  start-page: 445
  year: 2019
  ident: 10.1016/j.tins.2022.05.008_bb0195
  article-title: Magnetoencephalography and the infant brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.01.059
– volume: 181
  start-page: 760
  year: 2018
  ident: 10.1016/j.tins.2022.05.008_bb0230
  article-title: A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.07.028
– volume: 58
  start-page: 6065
  year: 2013
  ident: 10.1016/j.tins.2022.05.008_bb0035
  article-title: Multi-sensor magnetoencephalography with atomic magnetometers
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/17/6065
– volume: 89
  year: 2006
  ident: 10.1016/j.tins.2022.05.008_bb0150
  article-title: Magnetoencephalography with an atomic magnetometer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2392722
– volume: 20
  year: 2019
  ident: 10.1016/j.tins.2022.05.008_bb0130
  article-title: Low-cost fetal magnetocardiography: a comparison of superconducting quantum interference device and optically pumped magnetometers
  publication-title: J. Am. Heart Assoc.
– volume: 22
  start-page: 4514
  year: 2022
  ident: 10.1016/j.tins.2022.05.008_bb0295
  article-title: Thermal analysis of wearable OPM-MEG array system for auditory evoked experiments
  publication-title: IEEE Sensors
  doi: 10.1109/JSEN.2022.3143209
– volume: 243
  year: 2021
  ident: 10.1016/j.tins.2022.05.008_bb0125
  article-title: Contactless measurements of retinal activity using optically pumped magnetometers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118528
– volume: 97
  year: 2010
  ident: 10.1016/j.tins.2022.05.008_bb0050
  article-title: Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3522648
– volume: 230
  year: 2021
  ident: 10.1016/j.tins.2022.05.008_bb0275
  article-title: Measuring functional connectivity with wearable MEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.117815
– volume: 132
  start-page: 2681
  year: 2021
  ident: 10.1016/j.tins.2022.05.008_bb0110
  article-title: Optically pumped magnetometers reveal fasciculations non-invasively
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2021.06.009
– year: 2022
  ident: 10.1016/j.tins.2022.05.008_bb0265
  article-title: On-scalp optically pumped magnetometers vs. cryogenic magnetoencephalography for diagnostic evaluation of epilepsy in school-aged children
  publication-title: Radiology
  doi: 10.1148/radiol.212453
– volume: 555
  start-page: 657
  year: 2018
  ident: 10.1016/j.tins.2022.05.008_bb0080
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
  doi: 10.1038/nature26147
– volume: 167
  start-page: 372
  year: 2018
  ident: 10.1016/j.tins.2022.05.008_bb0010
  article-title: Non-invasive laminar inference with MEG: comparison of methods and source inversion algorithms
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.11.068
– volume: 89
  year: 2002
  ident: 10.1016/j.tins.2022.05.008_bb0030
  article-title: High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.130801
– volume: 233
  year: 2021
  ident: 10.1016/j.tins.2022.05.008_bb0285
  article-title: Measuring the cortical tracking of speech with optically-pumped magnetometers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.117969
– year: 2021
  ident: 10.1016/j.tins.2022.05.008_bb0160
  article-title: Detection of the 40-Hz auditory steady-state response with optically pumped magnetometers
  publication-title: BioRxiv
– volume: 20
  start-page: 327
  year: 2017
  ident: 10.1016/j.tins.2022.05.008_bb0015
  article-title: Magnetoencephalography for brain electrophysiology and imaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4504
SSID ssj0014814
Score 2.7165873
SecondaryResourceType review_article
Snippet Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 621
SubjectTerms Adult
biomagnetism
Brain - diagnostic imaging
Brain - physiology
electrophysiology
functional brain imaging
Functional Neuroimaging
Humans
Magnetoencephalography - methods
neurophysiology
OPM-MEG
quantum technology
Title Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0166223622001023
https://dx.doi.org/10.1016/j.tins.2022.05.008
https://www.ncbi.nlm.nih.gov/pubmed/35779970
https://www.proquest.com/docview/2684103918
https://pubmed.ncbi.nlm.nih.gov/PMC10465236
Volume 45
WOSCitedRecordID wos000831679100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-108X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014814
  issn: 0166-2236
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELZCixAvCFoo4aiMBAhUbbS3bd4CCkellKoqUt5WXtubpmo2UUir9ufxzxgfezSlhT7wslptbGuz89kznvk8g9BroWguZZx7RASxFzPqe3kBu9YoLqIkliyHtzfFJsjeHh2N2H6n86s6C3N2QsqSnp-z-X8VNTwDYeujs7cQdz0oPIB7EDpcQexw_SfBD_m4VMuZnrHzI16lpLYO19ncuK61RwPECLbm1DaealKM8b9-3x96w8GXNyGrGB8lLN-60LJa1NalVobOh2jyYU6mptZR29BtuLatjJnWxXugxob7qmSv5Yf4uNDJP63v29Yg39ntNXSh8dgRig2ttw4TKWP7DnXB7MaJbiMpBxc6DtVruzVgR1yR6mpPZ5p6YLuk7aXaZp50kKStdTe1x6ydCk-tf_SKdrCOimMwBkqdqT0MTdJWnza6sIr_r6jImrhYceKOMz1GpsfI_CQzx83XQ5IwWFjX-98Go906lBXTKsG8_T_u5JYlGa6-yXXW0dXdzyqJt2UVHT5ED9x2BvctDB-hjio30Ga_5ICpC_wWG4KxidxsoHtDx-PYRMs_gxRrkOIapNiCFF8CKX7nIPr-AwaUYA1P3MATzwrcwBO34fkY_fg8OPz01XP1PzwBu5SlRwMR0ygvSJqDZRnlAhQGFaSIpWJJDoatqTIdEupzuCdc-jznSUJTyYKIiDB6gtbKWameIswTKTmlquAyjpkSNJGUc5ZyGEIEgeyioPrumXDJ8XWNlpPseol30U7dZ25Tw9zYOqrEmVWHnkFNZ4DNG3sldS83U62p-9d-ryrEZKAvdBCQl2p2Co1SGmv6RwBttiyC6rePEkIYI34X0UvYqhvoXPSXfyknRyYnvaaKJIDuZ7f6KM_R_Wbuv0Bry8WpeonuirPl5OdiG90hI7rt5tNv-R0Fcw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetoencephalography+with+optically+pumped+magnetometers+%28OPM-MEG%29%3A+the+next+generation+of+functional+neuroimaging&rft.jtitle=Trends+in+neurosciences+%28Regular+ed.%29&rft.au=Brookes%2C+Matthew+J.&rft.au=Leggett%2C+James&rft.au=Rea%2C+Molly&rft.au=Hill%2C+Ryan+M.&rft.date=2022-08-01&rft.issn=0166-2236&rft.volume=45&rft.issue=8&rft.spage=621&rft.epage=634&rft_id=info:doi/10.1016%2Fj.tins.2022.05.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tins_2022_05_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-2236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-2236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-2236&client=summon