Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging
Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing techno...
Uložené v:
| Vydané v: | Trends in neurosciences (Regular ed.) Ročník 45; číslo 8; s. 621 - 634 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Elsevier Ltd
01.08.2022
|
| Predmet: | |
| ISSN: | 0166-2236, 1878-108X, 1878-108X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), ‘OPM-MEG’ has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience.
Magnetoencephalography (MEG) allows noninvasive electrophysiological imaging of human brain activity. However, current MEG technology has significant limitations.Optically pumped magnetometers (OPM)-MEG is a new type of MEG instrumentation, promising several advantages compared with conventional scanners: higher signal sensitivity, better spatial resolution, more uniform coverage, lifespan compliance, free movement of participants during scanning, and lower system complexity.We describe the principles underlying OPM-MEG and its components, including noncryogenic field sensors and magnetic shielding technologies.We discuss how the OPM-MEG technology is impacting neuroscience, enabling researchers to overcome limitations of conventional human imaging techniques and tackle new types of research questions. |
|---|---|
| AbstractList | Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), 'OPM-MEG' has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience. Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), 'OPM-MEG' has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience.Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), 'OPM-MEG' has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience. Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), ‘OPM-MEG’ has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience. Magnetoencephalography (MEG) allows noninvasive electrophysiological imaging of human brain activity. However, current MEG technology has significant limitations.Optically pumped magnetometers (OPM)-MEG is a new type of MEG instrumentation, promising several advantages compared with conventional scanners: higher signal sensitivity, better spatial resolution, more uniform coverage, lifespan compliance, free movement of participants during scanning, and lower system complexity.We describe the principles underlying OPM-MEG and its components, including noncryogenic field sensors and magnetic shielding technologies.We discuss how the OPM-MEG technology is impacting neuroscience, enabling researchers to overcome limitations of conventional human imaging techniques and tackle new types of research questions. |
| Author | Hill, Ryan M. Brookes, Matthew J. Rea, Molly Bowtell, Richard Boto, Elena Leggett, James Holmes, Niall |
| AuthorAffiliation | 1 Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK |
| AuthorAffiliation_xml | – name: 1 Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK |
| Author_xml | – sequence: 1 givenname: Matthew J. surname: Brookes fullname: Brookes, Matthew J. email: matthew.brookes@nottingham.ac.uk organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK – sequence: 2 givenname: James surname: Leggett fullname: Leggett, James organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK – sequence: 3 givenname: Molly surname: Rea fullname: Rea, Molly organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK – sequence: 4 givenname: Ryan M. surname: Hill fullname: Hill, Ryan M. organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK – sequence: 5 givenname: Niall surname: Holmes fullname: Holmes, Niall organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK – sequence: 6 givenname: Elena surname: Boto fullname: Boto, Elena organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK – sequence: 7 givenname: Richard surname: Bowtell fullname: Bowtell, Richard organization: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35779970$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk9v1DAQxS1URLeFL8AB-VgOCbbzz6mQEKpKQeqqHEDiZjnOJPGStVPbKd1vX4ctFfRQTh5p3m9m9J6P0IGxBhB6TUlKCS3fbdKgjU8ZYSwlRUoIf4ZWlFc8oYT_OECrKCoTxrLyEB15vyGE5pzmL9BhVlRVXVdkhcJa9gaCBaNgGuRoeyenYYd_6TBgOwWt5Dju8DRvJ2jxdi_eQgDn8cnV13WyPr94e4rDANjAbcA9GHAyaGuw7XA3G7XUcozd2VkdB2jTv0TPOzl6eHX_HqPvn86_nX1OLq8uvpx9vExUQaqQcKpynjVdVTaEZVmjSJFxVXV5C3XRMMZoXtCSVZzIWFeyJbKRRcHLtqZZpVh2jD7s505zs4VWgQlOjmJy8Q63E1Zq8W_H6EH09kZQkpdF9C1OOLmf4Oz1DD6IrfYKxlEasLMXrOQ5JVlNeZS--XvZw5Y_XkcB2wuUs9476B4klIglULERS6BiCVSQQsRAI8QfQUqH3_7Gg_X4NPp-j0K0-EaDE17pJedWO1BBtFY_jZ8-wtWozfIffsLuf_AdjbbRxg |
| CitedBy_id | crossref_primary_10_1016_j_sna_2023_114188 crossref_primary_10_3390_s25072063 crossref_primary_10_1103_PhysRevApplied_20_024001 crossref_primary_10_1146_annurev_neuro_112723_024516 crossref_primary_10_1109_JSEN_2024_3366312 crossref_primary_10_1109_TIM_2024_3449978 crossref_primary_10_1016_j_jneumeth_2024_110279 crossref_primary_10_1063_5_0168990 crossref_primary_10_3390_bioengineering11050428 crossref_primary_10_1016_j_sna_2023_114869 crossref_primary_10_1016_j_neuroimage_2024_120864 crossref_primary_10_1088_1361_6560_ade6ba crossref_primary_10_1109_TNSRE_2025_3561356 crossref_primary_10_1038_s41386_024_01946_8 crossref_primary_10_3390_s23094218 crossref_primary_10_3390_brainsci14010040 crossref_primary_10_1088_1367_2630_adc6b3 crossref_primary_10_1523_JNEUROSCI_2237_23_2024 crossref_primary_10_1080_17470919_2024_2380725 crossref_primary_10_1162_imag_a_00535 crossref_primary_10_1016_j_measurement_2025_118559 crossref_primary_10_1109_JBHI_2023_3248139 crossref_primary_10_1088_1742_6596_3042_1_012025 crossref_primary_10_3390_diagnostics14020139 crossref_primary_10_1002_epi4_70139 crossref_primary_10_3390_technologies12120254 crossref_primary_10_1162_imag_a_00410 crossref_primary_10_1038_s41583_023_00692_y crossref_primary_10_3390_bioengineering11121258 crossref_primary_10_3390_s23042204 crossref_primary_10_1109_JSEN_2024_3468009 crossref_primary_10_1111_epi_18439 crossref_primary_10_1016_j_neuroimage_2023_120257 crossref_primary_10_1109_JSEN_2024_3435882 crossref_primary_10_3389_fnins_2023_1284262 crossref_primary_10_1109_TIM_2023_3325515 crossref_primary_10_3390_s25092682 crossref_primary_10_1016_j_jneumeth_2024_110131 crossref_primary_10_3390_s23052801 crossref_primary_10_1016_j_dcn_2025_101529 crossref_primary_10_1039_D4NH00560K crossref_primary_10_1016_j_tics_2023_08_018 crossref_primary_10_1016_j_neuroimage_2023_120024 crossref_primary_10_1088_1361_6528_adb635 crossref_primary_10_1109_TIM_2023_3304705 crossref_primary_10_1038_s41598_025_02956_2 crossref_primary_10_1109_ACCESS_2024_3409771 crossref_primary_10_1109_JSEN_2023_3270325 crossref_primary_10_2514_1_J062707 crossref_primary_10_3390_s23073558 crossref_primary_10_1364_OE_568742 crossref_primary_10_1162_IMAG_a_10 crossref_primary_10_1142_S2737599424300058 crossref_primary_10_1109_JSEN_2024_3491164 crossref_primary_10_1162_imag_a_00283 crossref_primary_10_3390_surgeries6030050 crossref_primary_10_1186_s40779_023_00502_7 crossref_primary_10_1038_s41398_024_03047_y crossref_primary_10_3389_fnsys_2022_1105923 crossref_primary_10_3389_fmedt_2024_1470970 crossref_primary_10_1109_JSEN_2023_3329043 crossref_primary_10_3390_bioengineering12090903 crossref_primary_10_1038_s41531_023_00474_4 crossref_primary_10_1088_1741_2552_acef92 crossref_primary_10_1016_j_neuroimage_2024_120661 crossref_primary_10_1038_s44220_024_00206_4 crossref_primary_10_1109_TIM_2025_3555727 crossref_primary_10_1016_j_measurement_2023_113904 crossref_primary_10_21926_obm_neurobiol_2503299 crossref_primary_10_1016_j_tins_2024_02_003 crossref_primary_10_1162_imag_a_00179 crossref_primary_10_1016_j_dcn_2024_101433 crossref_primary_10_1038_s41598_024_81865_2 crossref_primary_10_3389_fnhum_2024_1385427 crossref_primary_10_1162_imag_a_00029 crossref_primary_10_3390_brainsci13040651 crossref_primary_10_1088_1742_6596_2793_1_012006 crossref_primary_10_3390_s23146537 crossref_primary_10_1016_j_bspc_2024_106236 crossref_primary_10_1162_imag_a_00020 crossref_primary_10_1109_TIM_2025_3551466 crossref_primary_10_1016_j_engmed_2024_100039 crossref_primary_10_1016_j_sna_2025_116385 crossref_primary_10_1016_j_sna_2025_116383 crossref_primary_10_1017_qut_2023_1 crossref_primary_10_1016_j_bios_2025_117321 crossref_primary_10_1016_j_isci_2024_109250 crossref_primary_10_1038_s43856_024_00547_2 crossref_primary_10_1109_JSEN_2024_3395694 crossref_primary_10_1162_IMAG_a_8 crossref_primary_10_1016_j_ebiom_2024_105259 crossref_primary_10_1016_j_neuroimage_2025_121232 crossref_primary_10_7554_eLife_94561_3 crossref_primary_10_1038_s42003_023_05522_6 crossref_primary_10_1016_j_compbiomed_2023_107318 crossref_primary_10_1109_JSEN_2024_3509679 crossref_primary_10_1016_j_bbe_2023_11_004 crossref_primary_10_1016_j_jad_2025_120133 crossref_primary_10_1002_qute_202300185 crossref_primary_10_1038_s41390_024_03421_y crossref_primary_10_1109_TNSRE_2024_3381173 crossref_primary_10_1016_j_dib_2025_111574 crossref_primary_10_3390_s23125454 crossref_primary_10_1111_1541_4337_13327 crossref_primary_10_1109_TIM_2024_3522373 crossref_primary_10_7554_eLife_94561 crossref_primary_10_3389_fmedt_2025_1515548 crossref_primary_10_1016_j_measurement_2025_119004 crossref_primary_10_1162_imag_a_00489 crossref_primary_10_1002_hbm_26118 crossref_primary_10_1109_TIM_2025_3553186 crossref_primary_10_1117_1_JOM_3_4_044501 crossref_primary_10_1016_j_ebiom_2025_105659 crossref_primary_10_1016_j_measurement_2024_115149 crossref_primary_10_1109_TIM_2024_3522701 crossref_primary_10_1016_j_neuroimage_2025_121056 crossref_primary_10_1016_j_vacuum_2025_114103 crossref_primary_10_3390_biology14010091 crossref_primary_10_3390_bios15040243 crossref_primary_10_1016_j_measurement_2024_115824 crossref_primary_10_1063_5_0167372 crossref_primary_10_1038_s41598_024_51857_3 crossref_primary_10_3390_s25154625 crossref_primary_10_1016_j_sna_2024_115043 crossref_primary_10_3389_fnagi_2024_1273738 crossref_primary_10_1109_JSEN_2024_3476032 crossref_primary_10_1002_qute_202400349 crossref_primary_10_1109_TIM_2023_3343783 crossref_primary_10_1016_j_measurement_2025_117286 crossref_primary_10_1186_s12984_023_01294_6 crossref_primary_10_3389_fmedt_2025_1548260 crossref_primary_10_1002_hbm_70293 crossref_primary_10_1109_JSEN_2024_3438765 crossref_primary_10_1111_ejn_70060 crossref_primary_10_1016_j_clinph_2025_02_265 crossref_primary_10_1016_j_measurement_2024_114711 crossref_primary_10_1088_1361_6560_adc0df crossref_primary_10_1016_j_measurement_2025_118138 crossref_primary_10_1109_JSEN_2023_3297109 crossref_primary_10_1016_j_neuroimage_2025_121393 crossref_primary_10_1016_j_molstruc_2024_138827 crossref_primary_10_1371_journal_pone_0319328 crossref_primary_10_1007_s00415_025_13324_5 crossref_primary_10_1016_j_nicl_2024_103608 crossref_primary_10_1016_j_fmre_2024_04_011 crossref_primary_10_1162_imag_a_00112 crossref_primary_10_1002_hbm_26684 crossref_primary_10_1016_j_neuroimage_2025_121403 crossref_primary_10_1371_journal_pbio_3002828 crossref_primary_10_1109_JSEN_2025_3542464 crossref_primary_10_1016_j_measurement_2024_114266 crossref_primary_10_1093_pnasnexus_pgaf187 crossref_primary_10_1371_journal_pbio_3002824 crossref_primary_10_1007_s11517_025_03340_y crossref_primary_10_1002_qute_202200146 crossref_primary_10_1038_s41598_023_31111_y crossref_primary_10_1016_j_neuron_2023_02_032 crossref_primary_10_1364_OL_565523 crossref_primary_10_3390_s25134160 crossref_primary_10_1016_j_measurement_2023_112890 crossref_primary_10_2196_37269 crossref_primary_10_1162_imag_a_00219 crossref_primary_10_1016_j_cmpb_2024_108292 crossref_primary_10_3390_electronics13163163 crossref_primary_10_1016_j_measurement_2024_115909 crossref_primary_10_1103_PhysRevApplied_22_054033 crossref_primary_10_1109_TIM_2023_3341112 crossref_primary_10_1016_j_metrad_2025_100135 crossref_primary_10_1088_1741_2552_ad9680 crossref_primary_10_1088_2058_9565_ad8678 crossref_primary_10_1016_j_neuroimage_2023_120057 crossref_primary_10_1103_PhysRevApplied_22_064046 crossref_primary_10_1109_TIM_2025_3595633 crossref_primary_10_1103_PhysRevApplied_20_034074 crossref_primary_10_1109_LSENS_2024_3427435 crossref_primary_10_1364_PRJ_519409 crossref_primary_10_1016_j_neuroimage_2025_121182 crossref_primary_10_3390_photonics10080934 crossref_primary_10_3390_s25020433 crossref_primary_10_1002_hbm_70018 crossref_primary_10_1016_j_dcn_2024_101481 crossref_primary_10_1016_j_infbeh_2025_102100 crossref_primary_10_1063_5_0096826 crossref_primary_10_1016_j_neucli_2025_103087 crossref_primary_10_1103_gy6f_4cs9 crossref_primary_10_1109_TIM_2023_3323002 crossref_primary_10_3389_fnins_2023_1154572 crossref_primary_10_1038_s41598_024_56878_6 crossref_primary_10_1016_j_measurement_2025_118102 crossref_primary_10_1109_TBME_2024_3465654 crossref_primary_10_1007_s42399_024_01705_2 crossref_primary_10_1007_s11011_024_01389_6 crossref_primary_10_1016_j_optlastec_2025_113063 crossref_primary_10_1088_1361_6579_ad0358 |
| Cites_doi | 10.1186/s12915-021-01073-6 10.1016/j.neuroimage.2019.05.063 10.1016/j.neuroimage.2020.117443 10.1016/j.neuroimage.2019.06.010 10.1088/0031-9155/58/22/8153 10.1109/TSP.2005.853302 10.3791/58909 10.1016/j.neuroimage.2018.07.035 10.1016/j.neuroimage.2021.118604 10.1126/science.161.3843.784 10.1016/j.neuroimage.2020.116995 10.1103/RevModPhys.65.413 10.1364/OE.420031 10.1111/j.1528-1167.2012.03574.x 10.1051/rphysap:019700050109500 10.1371/journal.pone.0157655 10.1364/BOE.3.000981 10.1103/PhysRevA.98.053431 10.1016/j.neuroimage.2017.07.038 10.1002/acn3.50995 10.1016/j.clinph.2012.03.080 10.1016/j.neuroimage.2021.118401 10.1140/epjqt/s40507-020-00086-4 10.1007/s10548-016-0523-1 10.1088/0031-9155/51/7/008 10.1016/j.neuroimage.2012.11.047 10.1103/RevModPhys.44.169 10.1016/j.neuroimage.2017.01.034 10.1016/j.neuroimage.2019.116192 10.1002/hbm.24795 10.1371/journal.pone.0227684 10.1109/TMI.2018.2856367 10.7567/JJAP.54.026601 10.1038/s41598-019-50697-w 10.3390/s22093184 10.1016/j.neuroimage.2021.118025 10.1126/science.175.4022.664 10.1016/j.neuroimage.2019.03.022 10.1038/s41467-019-12486-x 10.1016/j.neuroimage.2022.119027 10.3390/s22083059 10.1016/j.neuroimage.2016.12.048 10.3389/fphys.2022.798376 10.1016/j.neuroimage.2007.12.026 10.1113/JP277899 10.1111/nyas.13948 10.1016/j.neuroimage.2019.116099 10.1016/j.neuroimage.2019.01.059 10.1016/j.neuroimage.2018.07.028 10.1088/0031-9155/58/17/6065 10.1063/1.2392722 10.1109/JSEN.2022.3143209 10.1016/j.neuroimage.2021.118528 10.1063/1.3522648 10.1016/j.neuroimage.2021.117815 10.1016/j.clinph.2021.06.009 10.1148/radiol.212453 10.1038/nature26147 10.1016/j.neuroimage.2017.11.068 10.1103/PhysRevLett.89.130801 10.1016/j.neuroimage.2021.117969 10.1038/nn.4504 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.tins.2022.05.008 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1878-108X |
| EndPage | 634 |
| ExternalDocumentID | PMC10465236 35779970 10_1016_j_tins_2022_05_008 S0166223622001023 |
| Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R44 MH110288 – fundername: Wellcome Trust grantid: 203257/Z/16/Z – fundername: Wellcome Trust – fundername: NIBIB NIH HHS grantid: R01 EB028772 – fundername: Wellcome Trust grantid: 203257/B/16/Z |
| GroupedDBID | --- --K --M -DZ -~X .1- .55 .FO .GJ .~1 0R~ 123 1B1 1CY 1P~ 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABIVO ABJNI ABLJU ABMAC ABTEW ABUFD ABWVN ABXDB ACDAQ ACGFS ACIUM ACIWK ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADIYS ADMUD ADNMO ADXHL AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W KOM M2V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OHT OP~ OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- ROL RPZ RXW SCC SDF SDG SDP SES SEW SNS SPCBC SSN SSZ T5K TAE TN5 UQL WH7 WUQ X7M XPP YYP Z5R ZCA ZGI ZKB ~G- ~HD 6I. AACTN AADPK AAFTH AAIAV ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW RCE RIG XFK YCJ ZA5 9DU AAYXX CITATION AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 5PM |
| ID | FETCH-LOGICAL-c507t-81c483bf76b0233bc0538c7f4de95b222145162780a2217ad0aba5586d9137c23 |
| ISICitedReferencesCount | 217 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831679100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0166-2236 1878-108X |
| IngestDate | Tue Nov 04 02:06:23 EST 2025 Thu Oct 02 21:13:14 EDT 2025 Mon Jul 21 06:01:50 EDT 2025 Sat Nov 29 07:25:25 EST 2025 Tue Nov 18 21:40:32 EST 2025 Fri Feb 23 02:40:18 EST 2024 Tue Oct 14 19:30:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | biomagnetism functional brain imaging electrophysiology neurophysiology OPM-MEG quantum technology |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c507t-81c483bf76b0233bc0538c7f4de95b222145162780a2217ad0aba5586d9137c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10465236 |
| PMID | 35779970 |
| PQID | 2684103918 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10465236 proquest_miscellaneous_2684103918 pubmed_primary_35779970 crossref_primary_10_1016_j_tins_2022_05_008 crossref_citationtrail_10_1016_j_tins_2022_05_008 elsevier_sciencedirect_doi_10_1016_j_tins_2022_05_008 elsevier_clinicalkey_doi_10_1016_j_tins_2022_05_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Trends in neurosciences (Regular ed.) |
| PublicationTitleAlternate | Trends Neurosci |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Boto (bb0060) 2016; 11 Bu (bb0115) 2022; 13 Chen (bb0195) 2019; 189 Rea (bb0335) 2021; 241 Boto (bb0070) 2017; 149 Marquetand (bb0110) 2021; 132 Hamalainen (bb0025) 1993; 65 Xia (bb0150) 2006; 89 De Lange (bb0285) 2021; 233 Quspin Inc. Zero field parametric resonance magnetometer with triaxial sensitivity, US10775450B1 Johnson (bb0050) 2010; 97 Lin (bb0105) 2019; 597 Rapaport (bb0220) 2019 Feys (bb0265) 2022 Kamada (bb0155) 2015; 54 Seymour (bb0245) 2021; 244 Tierney (bb0100) 2021; 225 Boto (bb0275) 2021; 230 Westner (bb0125) 2021; 243 Medvedovsky (bb0215) 2007; 4 Vivekananda (bb0260) 2020; 7 Roberts (bb0240) 2019; 199 Hill (bb0270) 2020; 219 Stolk (bb0180) 2013; 68 Allred (bb0030) 2002; 89 Baillet (bb0015) 2017; 20 Shah, V. Wittevrongel (bb0280) 2021; 19 Strand (bb0130) 2019; 20 Fourcault (bb0305) 2021; 29 Sander (bb0055) 2012; 3 Mardell (bb0120) 2022 Tannoudji (bb0325) 1970; 5 Nugent (bb0085) 2022; 2 Johnson (bb0035) 2013; 58 Taulu, Simola (bb0185) 2006; 51 Happer (bb0320) 1972; 44 Brookes (bb0145) 2021; 236 Cohen (bb0020) 1972; 5 An (bb0160) 2021 Borna (bb0255) 2020; 15 Tierney (bb0095) 2018; 181 Iivanainen (bb0165) 2019; 194 Barry (bb0075) 2019; 203 Pinti (bb0225) 2020; 1464 Marhl (bb0140) 2022; 22 Medvedovsky (bb0330) 2012; 53 Iivanainen (bb0340) 2022; 22 Iivanainen (bb0065) 2017; 147 Iivanainen (bb0170) 2019; 41 Wehner (bb0200) 2008; 40 Nardelli (bb0315) 2020; 7 Larson, Taulu (bb0210) 2017; 30 Pang (bb0295) 2022; 22 Hill (bb0090) 2019; 10 Boto (bb0250) 2019; 201 Boto (bb0290) 2022; 252 Shah, Wakai (bb0045) 2013; 58 Tierney (bb0040) 2019; 199 Nenonen (bb0205) 2012; 123 Boto (bb0080) 2018; 555 Messaritaki (bb0175) 2017; 159 Bonaiuto (bb0010) 2018; 167 Taulu (bb0190) 2005; 53 Cohen (bb0005) 1968; 161 Holmes (bb0230) 2018; 181 Holmes (bb0235) 2020; 9 Beato (bb0300) 2018; 98 Labyt (bb0310) 2019; 38 Stolk (10.1016/j.tins.2022.05.008_bb0180) 2013; 68 Vivekananda (10.1016/j.tins.2022.05.008_bb0260) 2020; 7 Shah (10.1016/j.tins.2022.05.008_bb0045) 2013; 58 Hill (10.1016/j.tins.2022.05.008_bb0270) 2020; 219 Tannoudji (10.1016/j.tins.2022.05.008_bb0325) 1970; 5 Tierney (10.1016/j.tins.2022.05.008_bb0095) 2018; 181 Holmes (10.1016/j.tins.2022.05.008_bb0230) 2018; 181 Baillet (10.1016/j.tins.2022.05.008_bb0015) 2017; 20 De Lange (10.1016/j.tins.2022.05.008_bb0285) 2021; 233 Marhl (10.1016/j.tins.2022.05.008_bb0140) 2022; 22 Labyt (10.1016/j.tins.2022.05.008_bb0310) 2019; 38 Pinti (10.1016/j.tins.2022.05.008_bb0225) 2020; 1464 Johnson (10.1016/j.tins.2022.05.008_bb0035) 2013; 58 Boto (10.1016/j.tins.2022.05.008_bb0275) 2021; 230 Fourcault (10.1016/j.tins.2022.05.008_bb0305) 2021; 29 An (10.1016/j.tins.2022.05.008_bb0160) 2021 Nugent (10.1016/j.tins.2022.05.008_bb0085) 2022; 2 Hill (10.1016/j.tins.2022.05.008_bb0090) 2019; 10 Mardell (10.1016/j.tins.2022.05.008_bb0120) 2022 Wehner (10.1016/j.tins.2022.05.008_bb0200) 2008; 40 Borna (10.1016/j.tins.2022.05.008_bb0255) 2020; 15 Kamada (10.1016/j.tins.2022.05.008_bb0155) 2015; 54 Chen (10.1016/j.tins.2022.05.008_bb0195) 2019; 189 Beato (10.1016/j.tins.2022.05.008_bb0300) 2018; 98 Iivanainen (10.1016/j.tins.2022.05.008_bb0065) 2017; 147 Lin (10.1016/j.tins.2022.05.008_bb0105) 2019; 597 Rapaport (10.1016/j.tins.2022.05.008_bb0220) 2019 Cohen (10.1016/j.tins.2022.05.008_bb0005) 1968; 161 Medvedovsky (10.1016/j.tins.2022.05.008_bb0330) 2012; 53 Sander (10.1016/j.tins.2022.05.008_bb0055) 2012; 3 Nenonen (10.1016/j.tins.2022.05.008_bb0205) 2012; 123 Strand (10.1016/j.tins.2022.05.008_bb0130) 2019; 20 Medvedovsky (10.1016/j.tins.2022.05.008_bb0215) 2007; 4 Cohen (10.1016/j.tins.2022.05.008_bb0020) 1972; 5 Taulu (10.1016/j.tins.2022.05.008_bb0190) 2005; 53 Nardelli (10.1016/j.tins.2022.05.008_bb0315) 2020; 7 Marquetand (10.1016/j.tins.2022.05.008_bb0110) 2021; 132 Messaritaki (10.1016/j.tins.2022.05.008_bb0175) 2017; 159 Wittevrongel (10.1016/j.tins.2022.05.008_bb0280) 2021; 19 Larson (10.1016/j.tins.2022.05.008_bb0210) 2017; 30 Barry (10.1016/j.tins.2022.05.008_bb0075) 2019; 203 Iivanainen (10.1016/j.tins.2022.05.008_bb0165) 2019; 194 Holmes (10.1016/j.tins.2022.05.008_bb0235) 2020; 9 Tierney (10.1016/j.tins.2022.05.008_bb0040) 2019; 199 Xia (10.1016/j.tins.2022.05.008_bb0150) 2006; 89 Boto (10.1016/j.tins.2022.05.008_bb0290) 2022; 252 Boto (10.1016/j.tins.2022.05.008_bb0060) 2016; 11 Brookes (10.1016/j.tins.2022.05.008_bb0145) 2021; 236 Bu (10.1016/j.tins.2022.05.008_bb0115) 2022; 13 Boto (10.1016/j.tins.2022.05.008_bb0250) 2019; 201 Iivanainen (10.1016/j.tins.2022.05.008_bb0340) 2022; 22 10.1016/j.tins.2022.05.008_bb0135 Johnson (10.1016/j.tins.2022.05.008_bb0050) 2010; 97 Allred (10.1016/j.tins.2022.05.008_bb0030) 2002; 89 Seymour (10.1016/j.tins.2022.05.008_bb0245) 2021; 244 Tierney (10.1016/j.tins.2022.05.008_bb0100) 2021; 225 Rea (10.1016/j.tins.2022.05.008_bb0335) 2021; 241 Pang (10.1016/j.tins.2022.05.008_bb0295) 2022; 22 Iivanainen (10.1016/j.tins.2022.05.008_bb0170) 2019; 41 Roberts (10.1016/j.tins.2022.05.008_bb0240) 2019; 199 Feys (10.1016/j.tins.2022.05.008_bb0265) 2022 Boto (10.1016/j.tins.2022.05.008_bb0070) 2017; 149 Taulu (10.1016/j.tins.2022.05.008_bb0185) 2006; 51 Happer (10.1016/j.tins.2022.05.008_bb0320) 1972; 44 Hamalainen (10.1016/j.tins.2022.05.008_bb0025) 1993; 65 Boto (10.1016/j.tins.2022.05.008_bb0080) 2018; 555 Bonaiuto (10.1016/j.tins.2022.05.008_bb0010) 2018; 167 Westner (10.1016/j.tins.2022.05.008_bb0125) 2021; 243 |
| References_xml | – volume: 161 start-page: 784 year: 1968 end-page: 786 ident: bb0005 article-title: Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents publication-title: Science – volume: 123 start-page: 2180 year: 2012 end-page: 2191 ident: bb0205 article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography publication-title: Clin. Neurophysiol. – year: 2019 ident: bb0220 article-title: Studying brain function in children using magnetoencephalography publication-title: J. Vis. Exp. – volume: 53 start-page: 1649 year: 2012 end-page: 1657 ident: bb0330 article-title: Sensitivity and specificity of seizure-onset zone estimation by ictal magnetoencephalography publication-title: Epilepsia – volume: 7 start-page: 397 year: 2020 end-page: 401 ident: bb0260 article-title: Optically pumped magnetoencephalography in epilepsy publication-title: Ann. Clin. Transl. Neurol. – volume: 597 start-page: 4309 year: 2019 end-page: 4324 ident: bb0105 article-title: Using optically-pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum publication-title: J. Physiol. – volume: 147 start-page: 542 year: 2017 end-page: 553 ident: bb0065 article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays publication-title: Neuroimage – volume: 58 start-page: 8153 year: 2013 end-page: 8161 ident: bb0045 article-title: A compact, high performance atomic magnetometer for biomedical applications publication-title: Phys. Med. Biol. – volume: 159 start-page: 302 year: 2017 end-page: 324 ident: bb0175 article-title: Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity publication-title: NeuroImage – volume: 98 year: 2018 ident: bb0300 article-title: Theory of a He4 parametric-resonance magnetometer based on atomic alignment publication-title: Phys. Rev. A – volume: 236 year: 2021 ident: bb0145 article-title: Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system publication-title: NeuroImage – volume: 68 start-page: 39 year: 2013 end-page: 48 ident: bb0180 article-title: Online and offline tools for head movement compensation in MEG publication-title: NeuroImage – volume: 225 year: 2021 ident: bb0100 article-title: Mouth magnetoencephalography: a unique perspective on the human hippocampus publication-title: NeuroImage – volume: 30 start-page: 172 year: 2017 end-page: 181 ident: bb0210 article-title: The importance of properly compensating for head movements during MEG acquisition across different age groups publication-title: Brain Topogr. – volume: 41 start-page: 150 year: 2019 end-page: 161 ident: bb0170 article-title: Potential of on-scalp MEG: robust detection of human visual gamma-band responses publication-title: Hum. Brain Mapp. – year: 2021 ident: bb0160 article-title: Detection of the 40-Hz auditory steady-state response with optically pumped magnetometers publication-title: BioRxiv – volume: 51 start-page: 1759 year: 2006 ident: bb0185 article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements publication-title: Phys. Med. Biol. – reference: . Quspin Inc. Zero field parametric resonance magnetometer with triaxial sensitivity, US10775450B1 – volume: 19 start-page: 1 year: 2021 end-page: 15 ident: bb0280 article-title: Practical real-time MEG-based neural interfacing with optically pumped magnetometers publication-title: BMC Biol. – volume: 132 start-page: 2681 year: 2021 end-page: 2684 ident: bb0110 article-title: Optically pumped magnetometers reveal fasciculations non-invasively publication-title: Clin. Neurophysiol. – volume: 9 start-page: 14196 year: 2020 ident: bb0235 article-title: Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography publication-title: Sci. Rep. – volume: 38 start-page: 90 year: 2019 end-page: 98 ident: bb0310 article-title: Magnetoencephalography with optically pumped 4He magnetometers at ambient temperature publication-title: IEEE Trans. Med. Imaging – volume: 201 year: 2019 ident: bb0250 article-title: Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography publication-title: NeuroImage – volume: 219 year: 2020 ident: bb0270 article-title: Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system publication-title: NeuroImage – volume: 189 start-page: 445 year: 2019 end-page: 458 ident: bb0195 article-title: Magnetoencephalography and the infant brain publication-title: NeuroImage – volume: 65 start-page: 413 year: 1993 end-page: 497 ident: bb0025 article-title: Magnetoencephalography: theory, instrumentation, and applications to non-invasive studies of the working human brain publication-title: Rev. Mod. Phys. – volume: 3 start-page: 981 year: 2012 end-page: 990 ident: bb0055 article-title: Magnetoencephalography with a chip-scale atomic magnetometer publication-title: Biomed. Opt. Express – volume: 243 year: 2021 ident: bb0125 article-title: Contactless measurements of retinal activity using optically pumped magnetometers publication-title: NeuroImage – volume: 194 start-page: 244 year: 2019 end-page: 258 ident: bb0165 article-title: On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers publication-title: NeuroImage – volume: 230 year: 2021 ident: bb0275 article-title: Measuring functional connectivity with wearable MEG publication-title: NeuroImage – volume: 44 start-page: 169 year: 1972 ident: bb0320 article-title: Optical pumping publication-title: Rev. Mod. Phys. – volume: 5 start-page: 664 year: 1972 end-page: 666 ident: bb0020 article-title: Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer publication-title: Science – volume: 97 year: 2010 ident: bb0050 article-title: Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer publication-title: Appl. Phys. Lett. – volume: 53 start-page: 3359 year: 2005 end-page: 3372 ident: bb0190 article-title: Applications of the signal space separation method publication-title: IEEE Trans. Signal Process. – volume: 29 start-page: 14467 year: 2021 end-page: 14475 ident: bb0305 article-title: Helium-4 magnetometers for room-temperature biomedical imaging: toward collective operation and photon-noise limited sensitivity publication-title: Opt. Express – volume: 149 start-page: 404 year: 2017 end-page: 414 ident: bb0070 article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers publication-title: NeuroImage – volume: 89 year: 2002 ident: bb0030 article-title: High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation publication-title: Phys. Rev. Lett. – volume: 555 start-page: 657 year: 2018 ident: bb0080 article-title: Moving magnetoencephalography towards real-world applications with a wearable system publication-title: Nature – volume: 20 year: 2019 ident: bb0130 article-title: Low-cost fetal magnetocardiography: a comparison of superconducting quantum interference device and optically pumped magnetometers publication-title: J. Am. Heart Assoc. – volume: 13 year: 2022 ident: bb0115 article-title: Peripheral nerve magnetoneurography with optically pumped magnetometers publication-title: Front. Physiol. – volume: 15 year: 2020 ident: bb0255 article-title: Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system publication-title: PLoS One – volume: 22 start-page: 4514 year: 2022 end-page: 4523 ident: bb0295 article-title: Thermal analysis of wearable OPM-MEG array system for auditory evoked experiments publication-title: IEEE Sensors – year: 2022 ident: bb0120 article-title: Concurrent spinal and brain imaging with optically pumped magnetometers publication-title: bioRxiv – volume: 181 start-page: 513 year: 2018 end-page: 520 ident: bb0095 article-title: Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function publication-title: NeuroImage – volume: 181 start-page: 760 year: 2018 end-page: 774 ident: bb0230 article-title: A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography publication-title: NeuroImage – volume: 203 year: 2019 ident: bb0075 article-title: Imaging the human hippocampus with optically-pumped magnetometers publication-title: NeuroImage – volume: 10 start-page: 4785 year: 2019 ident: bb0090 article-title: A tool for functional brain imaging with lifespan compliance publication-title: Nat. Commun. – volume: 22 start-page: 3184 year: 2022 ident: bb0140 article-title: Simulation study of different OPM-MEG measurement components publication-title: Sensors – volume: 2 year: 2022 ident: bb0085 article-title: On-scalp magnetocorticography with optically pumped magnetometers: simulated performance in resolving simultaneous sources publication-title: NeuroImage – volume: 54 year: 2015 ident: bb0155 article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer publication-title: Jpn. J. Appl. Phys. – volume: 244 year: 2021 ident: bb0245 article-title: Using OPMs to measure neural activity in standing, mobile participants publication-title: NeuroImage – volume: 40 start-page: 541 year: 2008 end-page: 550 ident: bb0200 article-title: Head movements of children in MEG: quantification, effects on source estimation, and compensation publication-title: NeuroImage – volume: 199 start-page: 598 year: 2019 end-page: 608 ident: bb0040 article-title: Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography publication-title: NeuroImage – reference: Shah, V., – volume: 199 start-page: 408 year: 2019 end-page: 417 ident: bb0240 article-title: Towards magnetoencephalography in a virtual reality environment publication-title: NeuroImage – volume: 7 start-page: 11 year: 2020 ident: bb0315 article-title: A conformal array of microfabricated optically-pumped first-order gradiometers for magnetoencephalography publication-title: EPJ Quantum Technol. – year: 2022 ident: bb0265 article-title: On-scalp optically pumped magnetometers vs. cryogenic magnetoencephalography for diagnostic evaluation of epilepsy in school-aged children publication-title: Radiology – volume: 233 year: 2021 ident: bb0285 article-title: Measuring the cortical tracking of speech with optically-pumped magnetometers publication-title: NeuroImage – volume: 89 year: 2006 ident: bb0150 article-title: Magnetoencephalography with an atomic magnetometer publication-title: Appl. Phys. Lett. – volume: 241 year: 2021 ident: bb0335 article-title: Precision magnetic field modelling and control for wearable magnetoencephalography publication-title: NeuroImage – volume: 11 year: 2016 ident: bb0060 article-title: The benefits of atomic magnetometers for MEG: a simulation study publication-title: PLoS One – volume: 1464 start-page: 5 year: 2020 end-page: 29 ident: bb0225 article-title: The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience publication-title: Ann. N. Y. Acad. Sci. – volume: 20 start-page: 327 year: 2017 end-page: 339 ident: bb0015 article-title: Magnetoencephalography for brain electrophysiology and imaging publication-title: Nat. Neurosci. – volume: 58 start-page: 6065 year: 2013 end-page: 6077 ident: bb0035 article-title: Multi-sensor magnetoencephalography with atomic magnetometers publication-title: Phys. Med. Biol. – volume: 167 start-page: 372 year: 2018 end-page: 383 ident: bb0010 article-title: Non-invasive laminar inference with MEG: comparison of methods and source inversion algorithms publication-title: NeuroImage – volume: 4 start-page: 1 year: 2007 end-page: 10 ident: bb0215 article-title: Artifact and head movement compensation in MEG publication-title: Neurol Neurophysiol. Neurosci. – volume: 252 year: 2022 ident: bb0290 article-title: Triaxial detection of the neuromagnetic field using optically pumped magnetometry: feasibility and application in children publication-title: NeuroImage – volume: 5 start-page: 95 year: 1970 ident: bb0325 article-title: Diverses résonances de croisement de niveaux sur des atomes pompés optiquement en champ nul i. théorie publication-title: Rev. Phys. Appl. – volume: 22 start-page: 3059 year: 2022 ident: bb0340 article-title: Calibration and localization of optically pumped magnetometers using electromagnetic coils publication-title: Sensors – volume: 19 start-page: 1 year: 2021 ident: 10.1016/j.tins.2022.05.008_bb0280 article-title: Practical real-time MEG-based neural interfacing with optically pumped magnetometers publication-title: BMC Biol. doi: 10.1186/s12915-021-01073-6 – volume: 199 start-page: 598 year: 2019 ident: 10.1016/j.tins.2022.05.008_bb0040 article-title: Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.05.063 – volume: 225 year: 2021 ident: 10.1016/j.tins.2022.05.008_bb0100 article-title: Mouth magnetoencephalography: a unique perspective on the human hippocampus publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117443 – volume: 199 start-page: 408 year: 2019 ident: 10.1016/j.tins.2022.05.008_bb0240 article-title: Towards magnetoencephalography in a virtual reality environment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.06.010 – ident: 10.1016/j.tins.2022.05.008_bb0135 – volume: 58 start-page: 8153 year: 2013 ident: 10.1016/j.tins.2022.05.008_bb0045 article-title: A compact, high performance atomic magnetometer for biomedical applications publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/22/8153 – volume: 53 start-page: 3359 year: 2005 ident: 10.1016/j.tins.2022.05.008_bb0190 article-title: Applications of the signal space separation method publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.853302 – year: 2019 ident: 10.1016/j.tins.2022.05.008_bb0220 article-title: Studying brain function in children using magnetoencephalography publication-title: J. Vis. Exp. doi: 10.3791/58909 – volume: 181 start-page: 513 year: 2018 ident: 10.1016/j.tins.2022.05.008_bb0095 article-title: Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.07.035 – volume: 244 year: 2021 ident: 10.1016/j.tins.2022.05.008_bb0245 article-title: Using OPMs to measure neural activity in standing, mobile participants publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118604 – volume: 161 start-page: 784 year: 1968 ident: 10.1016/j.tins.2022.05.008_bb0005 article-title: Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents publication-title: Science doi: 10.1126/science.161.3843.784 – volume: 2 year: 2022 ident: 10.1016/j.tins.2022.05.008_bb0085 article-title: On-scalp magnetocorticography with optically pumped magnetometers: simulated performance in resolving simultaneous sources publication-title: NeuroImage – volume: 219 year: 2020 ident: 10.1016/j.tins.2022.05.008_bb0270 article-title: Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116995 – volume: 65 start-page: 413 year: 1993 ident: 10.1016/j.tins.2022.05.008_bb0025 article-title: Magnetoencephalography: theory, instrumentation, and applications to non-invasive studies of the working human brain publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.413 – volume: 29 start-page: 14467 year: 2021 ident: 10.1016/j.tins.2022.05.008_bb0305 article-title: Helium-4 magnetometers for room-temperature biomedical imaging: toward collective operation and photon-noise limited sensitivity publication-title: Opt. Express doi: 10.1364/OE.420031 – volume: 53 start-page: 1649 year: 2012 ident: 10.1016/j.tins.2022.05.008_bb0330 article-title: Sensitivity and specificity of seizure-onset zone estimation by ictal magnetoencephalography publication-title: Epilepsia doi: 10.1111/j.1528-1167.2012.03574.x – volume: 5 start-page: 95 year: 1970 ident: 10.1016/j.tins.2022.05.008_bb0325 article-title: Diverses résonances de croisement de niveaux sur des atomes pompés optiquement en champ nul i. théorie publication-title: Rev. Phys. Appl. doi: 10.1051/rphysap:019700050109500 – volume: 11 year: 2016 ident: 10.1016/j.tins.2022.05.008_bb0060 article-title: The benefits of atomic magnetometers for MEG: a simulation study publication-title: PLoS One doi: 10.1371/journal.pone.0157655 – volume: 3 start-page: 981 year: 2012 ident: 10.1016/j.tins.2022.05.008_bb0055 article-title: Magnetoencephalography with a chip-scale atomic magnetometer publication-title: Biomed. Opt. Express doi: 10.1364/BOE.3.000981 – volume: 98 year: 2018 ident: 10.1016/j.tins.2022.05.008_bb0300 article-title: Theory of a He4 parametric-resonance magnetometer based on atomic alignment publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.053431 – volume: 159 start-page: 302 year: 2017 ident: 10.1016/j.tins.2022.05.008_bb0175 article-title: Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.07.038 – volume: 7 start-page: 397 year: 2020 ident: 10.1016/j.tins.2022.05.008_bb0260 article-title: Optically pumped magnetoencephalography in epilepsy publication-title: Ann. Clin. Transl. Neurol. doi: 10.1002/acn3.50995 – volume: 123 start-page: 2180 year: 2012 ident: 10.1016/j.tins.2022.05.008_bb0205 article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2012.03.080 – volume: 241 year: 2021 ident: 10.1016/j.tins.2022.05.008_bb0335 article-title: Precision magnetic field modelling and control for wearable magnetoencephalography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118401 – volume: 7 start-page: 11 year: 2020 ident: 10.1016/j.tins.2022.05.008_bb0315 article-title: A conformal array of microfabricated optically-pumped first-order gradiometers for magnetoencephalography publication-title: EPJ Quantum Technol. doi: 10.1140/epjqt/s40507-020-00086-4 – volume: 30 start-page: 172 year: 2017 ident: 10.1016/j.tins.2022.05.008_bb0210 article-title: The importance of properly compensating for head movements during MEG acquisition across different age groups publication-title: Brain Topogr. doi: 10.1007/s10548-016-0523-1 – volume: 51 start-page: 1759 year: 2006 ident: 10.1016/j.tins.2022.05.008_bb0185 article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/7/008 – volume: 68 start-page: 39 year: 2013 ident: 10.1016/j.tins.2022.05.008_bb0180 article-title: Online and offline tools for head movement compensation in MEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.11.047 – volume: 44 start-page: 169 year: 1972 ident: 10.1016/j.tins.2022.05.008_bb0320 article-title: Optical pumping publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.44.169 – volume: 4 start-page: 1 year: 2007 ident: 10.1016/j.tins.2022.05.008_bb0215 article-title: Artifact and head movement compensation in MEG publication-title: Neurol Neurophysiol. Neurosci. – volume: 149 start-page: 404 year: 2017 ident: 10.1016/j.tins.2022.05.008_bb0070 article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.01.034 – volume: 203 year: 2019 ident: 10.1016/j.tins.2022.05.008_bb0075 article-title: Imaging the human hippocampus with optically-pumped magnetometers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116192 – volume: 41 start-page: 150 year: 2019 ident: 10.1016/j.tins.2022.05.008_bb0170 article-title: Potential of on-scalp MEG: robust detection of human visual gamma-band responses publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24795 – volume: 15 year: 2020 ident: 10.1016/j.tins.2022.05.008_bb0255 article-title: Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system publication-title: PLoS One doi: 10.1371/journal.pone.0227684 – volume: 38 start-page: 90 year: 2019 ident: 10.1016/j.tins.2022.05.008_bb0310 article-title: Magnetoencephalography with optically pumped 4He magnetometers at ambient temperature publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2856367 – volume: 54 year: 2015 ident: 10.1016/j.tins.2022.05.008_bb0155 article-title: Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.54.026601 – year: 2022 ident: 10.1016/j.tins.2022.05.008_bb0120 article-title: Concurrent spinal and brain imaging with optically pumped magnetometers publication-title: bioRxiv – volume: 9 start-page: 14196 year: 2020 ident: 10.1016/j.tins.2022.05.008_bb0235 article-title: Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography publication-title: Sci. Rep. doi: 10.1038/s41598-019-50697-w – volume: 22 start-page: 3184 year: 2022 ident: 10.1016/j.tins.2022.05.008_bb0140 article-title: Simulation study of different OPM-MEG measurement components publication-title: Sensors doi: 10.3390/s22093184 – volume: 236 year: 2021 ident: 10.1016/j.tins.2022.05.008_bb0145 article-title: Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118025 – volume: 5 start-page: 664 year: 1972 ident: 10.1016/j.tins.2022.05.008_bb0020 article-title: Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer publication-title: Science doi: 10.1126/science.175.4022.664 – volume: 194 start-page: 244 year: 2019 ident: 10.1016/j.tins.2022.05.008_bb0165 article-title: On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.03.022 – volume: 10 start-page: 4785 year: 2019 ident: 10.1016/j.tins.2022.05.008_bb0090 article-title: A tool for functional brain imaging with lifespan compliance publication-title: Nat. Commun. doi: 10.1038/s41467-019-12486-x – volume: 252 year: 2022 ident: 10.1016/j.tins.2022.05.008_bb0290 article-title: Triaxial detection of the neuromagnetic field using optically pumped magnetometry: feasibility and application in children publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119027 – volume: 22 start-page: 3059 year: 2022 ident: 10.1016/j.tins.2022.05.008_bb0340 article-title: Calibration and localization of optically pumped magnetometers using electromagnetic coils publication-title: Sensors doi: 10.3390/s22083059 – volume: 147 start-page: 542 year: 2017 ident: 10.1016/j.tins.2022.05.008_bb0065 article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.048 – volume: 13 year: 2022 ident: 10.1016/j.tins.2022.05.008_bb0115 article-title: Peripheral nerve magnetoneurography with optically pumped magnetometers publication-title: Front. Physiol. doi: 10.3389/fphys.2022.798376 – volume: 40 start-page: 541 year: 2008 ident: 10.1016/j.tins.2022.05.008_bb0200 article-title: Head movements of children in MEG: quantification, effects on source estimation, and compensation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.12.026 – volume: 597 start-page: 4309 year: 2019 ident: 10.1016/j.tins.2022.05.008_bb0105 article-title: Using optically-pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum publication-title: J. Physiol. doi: 10.1113/JP277899 – volume: 1464 start-page: 5 year: 2020 ident: 10.1016/j.tins.2022.05.008_bb0225 article-title: The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.13948 – volume: 201 year: 2019 ident: 10.1016/j.tins.2022.05.008_bb0250 article-title: Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116099 – volume: 189 start-page: 445 year: 2019 ident: 10.1016/j.tins.2022.05.008_bb0195 article-title: Magnetoencephalography and the infant brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.01.059 – volume: 181 start-page: 760 year: 2018 ident: 10.1016/j.tins.2022.05.008_bb0230 article-title: A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.07.028 – volume: 58 start-page: 6065 year: 2013 ident: 10.1016/j.tins.2022.05.008_bb0035 article-title: Multi-sensor magnetoencephalography with atomic magnetometers publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/17/6065 – volume: 89 year: 2006 ident: 10.1016/j.tins.2022.05.008_bb0150 article-title: Magnetoencephalography with an atomic magnetometer publication-title: Appl. Phys. Lett. doi: 10.1063/1.2392722 – volume: 20 year: 2019 ident: 10.1016/j.tins.2022.05.008_bb0130 article-title: Low-cost fetal magnetocardiography: a comparison of superconducting quantum interference device and optically pumped magnetometers publication-title: J. Am. Heart Assoc. – volume: 22 start-page: 4514 year: 2022 ident: 10.1016/j.tins.2022.05.008_bb0295 article-title: Thermal analysis of wearable OPM-MEG array system for auditory evoked experiments publication-title: IEEE Sensors doi: 10.1109/JSEN.2022.3143209 – volume: 243 year: 2021 ident: 10.1016/j.tins.2022.05.008_bb0125 article-title: Contactless measurements of retinal activity using optically pumped magnetometers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118528 – volume: 97 year: 2010 ident: 10.1016/j.tins.2022.05.008_bb0050 article-title: Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer publication-title: Appl. Phys. Lett. doi: 10.1063/1.3522648 – volume: 230 year: 2021 ident: 10.1016/j.tins.2022.05.008_bb0275 article-title: Measuring functional connectivity with wearable MEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.117815 – volume: 132 start-page: 2681 year: 2021 ident: 10.1016/j.tins.2022.05.008_bb0110 article-title: Optically pumped magnetometers reveal fasciculations non-invasively publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2021.06.009 – year: 2022 ident: 10.1016/j.tins.2022.05.008_bb0265 article-title: On-scalp optically pumped magnetometers vs. cryogenic magnetoencephalography for diagnostic evaluation of epilepsy in school-aged children publication-title: Radiology doi: 10.1148/radiol.212453 – volume: 555 start-page: 657 year: 2018 ident: 10.1016/j.tins.2022.05.008_bb0080 article-title: Moving magnetoencephalography towards real-world applications with a wearable system publication-title: Nature doi: 10.1038/nature26147 – volume: 167 start-page: 372 year: 2018 ident: 10.1016/j.tins.2022.05.008_bb0010 article-title: Non-invasive laminar inference with MEG: comparison of methods and source inversion algorithms publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.11.068 – volume: 89 year: 2002 ident: 10.1016/j.tins.2022.05.008_bb0030 article-title: High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.130801 – volume: 233 year: 2021 ident: 10.1016/j.tins.2022.05.008_bb0285 article-title: Measuring the cortical tracking of speech with optically-pumped magnetometers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.117969 – year: 2021 ident: 10.1016/j.tins.2022.05.008_bb0160 article-title: Detection of the 40-Hz auditory steady-state response with optically pumped magnetometers publication-title: BioRxiv – volume: 20 start-page: 327 year: 2017 ident: 10.1016/j.tins.2022.05.008_bb0015 article-title: Magnetoencephalography for brain electrophysiology and imaging publication-title: Nat. Neurosci. doi: 10.1038/nn.4504 |
| SSID | ssj0014814 |
| Score | 2.7165873 |
| SecondaryResourceType | review_article |
| Snippet | Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 621 |
| SubjectTerms | Adult biomagnetism Brain - diagnostic imaging Brain - physiology electrophysiology functional brain imaging Functional Neuroimaging Humans Magnetoencephalography - methods neurophysiology OPM-MEG quantum technology |
| Title | Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0166223622001023 https://dx.doi.org/10.1016/j.tins.2022.05.008 https://www.ncbi.nlm.nih.gov/pubmed/35779970 https://www.proquest.com/docview/2684103918 https://pubmed.ncbi.nlm.nih.gov/PMC10465236 |
| Volume | 45 |
| WOSCitedRecordID | wos000831679100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-108X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014814 issn: 0166-2236 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELZCixAvCFoo4aiMBAhUbbS3bd4CCkellKoqUt5WXtubpmo2UUir9ufxzxgfezSlhT7wslptbGuz89kznvk8g9BroWguZZx7RASxFzPqe3kBu9YoLqIkliyHtzfFJsjeHh2N2H6n86s6C3N2QsqSnp-z-X8VNTwDYeujs7cQdz0oPIB7EDpcQexw_SfBD_m4VMuZnrHzI16lpLYO19ncuK61RwPECLbm1DaealKM8b9-3x96w8GXNyGrGB8lLN-60LJa1NalVobOh2jyYU6mptZR29BtuLatjJnWxXugxob7qmSv5Yf4uNDJP63v29Yg39ntNXSh8dgRig2ttw4TKWP7DnXB7MaJbiMpBxc6DtVruzVgR1yR6mpPZ5p6YLuk7aXaZp50kKStdTe1x6ydCk-tf_SKdrCOimMwBkqdqT0MTdJWnza6sIr_r6jImrhYceKOMz1GpsfI_CQzx83XQ5IwWFjX-98Go906lBXTKsG8_T_u5JYlGa6-yXXW0dXdzyqJt2UVHT5ED9x2BvctDB-hjio30Ga_5ICpC_wWG4KxidxsoHtDx-PYRMs_gxRrkOIapNiCFF8CKX7nIPr-AwaUYA1P3MATzwrcwBO34fkY_fg8OPz01XP1PzwBu5SlRwMR0ygvSJqDZRnlAhQGFaSIpWJJDoatqTIdEupzuCdc-jznSUJTyYKIiDB6gtbKWameIswTKTmlquAyjpkSNJGUc5ZyGEIEgeyioPrumXDJ8XWNlpPseol30U7dZ25Tw9zYOqrEmVWHnkFNZ4DNG3sldS83U62p-9d-ryrEZKAvdBCQl2p2Co1SGmv6RwBttiyC6rePEkIYI34X0UvYqhvoXPSXfyknRyYnvaaKJIDuZ7f6KM_R_Wbuv0Bry8WpeonuirPl5OdiG90hI7rt5tNv-R0Fcw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetoencephalography+with+optically+pumped+magnetometers+%28OPM-MEG%29%3A+the+next+generation+of+functional+neuroimaging&rft.jtitle=Trends+in+neurosciences+%28Regular+ed.%29&rft.au=Brookes%2C+Matthew+J.&rft.au=Leggett%2C+James&rft.au=Rea%2C+Molly&rft.au=Hill%2C+Ryan+M.&rft.date=2022-08-01&rft.issn=0166-2236&rft.volume=45&rft.issue=8&rft.spage=621&rft.epage=634&rft_id=info:doi/10.1016%2Fj.tins.2022.05.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tins_2022_05_008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-2236&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-2236&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-2236&client=summon |