Development of Stock Networks Using Part Mutual Information and Australian Stock Market Data
Complex network is a powerful tool to discover important information from various types of big data. Although substantial studies have been conducted for the development of stock relation networks, correlation coefficient is dominantly used to measure the relationship between stock pairs. Informatio...
Gespeichert in:
| Veröffentlicht in: | Entropy (Basel, Switzerland) Jg. 22; H. 7; S. 773 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI
15.07.2020
MDPI AG |
| Schlagworte: | |
| ISSN: | 1099-4300, 1099-4300 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Complex network is a powerful tool to discover important information from various types of big data. Although substantial studies have been conducted for the development of stock relation networks, correlation coefficient is dominantly used to measure the relationship between stock pairs. Information theory is much less discussed for this important topic, though mutual information is able to measure nonlinear pairwise relationship. In this work we propose to use part mutual information for developing stock networks. The path-consistency algorithm is used to filter out redundant relationships. Using the Australian stock market data, we develop four stock relation networks using different orders of part mutual information. Compared with the widely used planar maximally filtered graph (PMFG), we can generate networks with cliques of large size. In addition, the large cliques show consistency with the structure of industrial sectors. We also analyze the connectivity and degree distributions of the generated networks. Analysis results suggest that the proposed method is an effective approach to develop stock relation networks using information theory. |
|---|---|
| AbstractList | Complex network is a powerful tool to discover important information from various types of big data. Although substantial studies have been conducted for the development of stock relation networks, correlation coefficient is dominantly used to measure the relationship between stock pairs. Information theory is much less discussed for this important topic, though mutual information is able to measure nonlinear pairwise relationship. In this work we propose to use part mutual information for developing stock networks. The path-consistency algorithm is used to filter out redundant relationships. Using the Australian stock market data, we develop four stock relation networks using different orders of part mutual information. Compared with the widely used planar maximally filtered graph (PMFG), we can generate networks with cliques of large size. In addition, the large cliques show consistency with the structure of industrial sectors. We also analyze the connectivity and degree distributions of the generated networks. Analysis results suggest that the proposed method is an effective approach to develop stock relation networks using information theory. Complex network is a powerful tool to discover important information from various types of big data. Although substantial studies have been conducted for the development of stock relation networks, correlation coefficient is dominantly used to measure the relationship between stock pairs. Information theory is much less discussed for this important topic, though mutual information is able to measure nonlinear pairwise relationship. In this work we propose to use part mutual information for developing stock networks. The path-consistency algorithm is used to filter out redundant relationships. Using the Australian stock market data, we develop four stock relation networks using different orders of part mutual information. Compared with the widely used planar maximally filtered graph (PMFG), we can generate networks with cliques of large size. In addition, the large cliques show consistency with the structure of industrial sectors. We also analyze the connectivity and degree distributions of the generated networks. Analysis results suggest that the proposed method is an effective approach to develop stock relation networks using information theory.Complex network is a powerful tool to discover important information from various types of big data. Although substantial studies have been conducted for the development of stock relation networks, correlation coefficient is dominantly used to measure the relationship between stock pairs. Information theory is much less discussed for this important topic, though mutual information is able to measure nonlinear pairwise relationship. In this work we propose to use part mutual information for developing stock networks. The path-consistency algorithm is used to filter out redundant relationships. Using the Australian stock market data, we develop four stock relation networks using different orders of part mutual information. Compared with the widely used planar maximally filtered graph (PMFG), we can generate networks with cliques of large size. In addition, the large cliques show consistency with the structure of industrial sectors. We also analyze the connectivity and degree distributions of the generated networks. Analysis results suggest that the proposed method is an effective approach to develop stock relation networks using information theory. |
| Author | Yan, Yan Tian, Tianhai Wu, Boyao Zhang, Hu |
| AuthorAffiliation | 2 School of Mathematics, Monash University, Melbourne, VIC 3800, Australia; boyao.wu@monash.edu 3 School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China 1 School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan 430205, China; yanyan@wit.edu.cn |
| AuthorAffiliation_xml | – name: 1 School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan 430205, China; yanyan@wit.edu.cn – name: 2 School of Mathematics, Monash University, Melbourne, VIC 3800, Australia; boyao.wu@monash.edu – name: 3 School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China |
| Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0002-5833-4607 surname: Yan fullname: Yan, Yan – sequence: 2 givenname: Boyao surname: Wu fullname: Wu, Boyao – sequence: 3 givenname: Tianhai orcidid: 0000-0001-6191-0209 surname: Tian fullname: Tian, Tianhai – sequence: 4 givenname: Hu surname: Zhang fullname: Zhang, Hu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33286545$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkklvFDEQhS0URBY48AeQj3AY4qVtd1-QooRlpASQIDckq9rL4Ey3PdjuIP49ncwkSuBky_Xe91TlOkR7MUWH0EtK3nLekWPHGFFEKf4EHVDSdYuGE7L34L6PDku5IoRxRuUztM85a6VoxAH6ceau3ZA2o4sVJ4-_1WTW-LOrv1NeF3xZQlzhr5ArvpjqBANeRp_yCDWkiCFafDKVmmEIEHfeC8hrV_EZVHiOnnoYinuxO4_Q5Yf3308_Lc6_fFyenpwvjCCqLoTtpOyEFVx0fWc76DmB1vcgQPQGOLHeU09ayVtDQHBLgbaNY8opYxUBfoSWW65NcKU3OYyQ_-gEQd8-pLzScwfBDE6rnjDZM98SBU07J9hWNVwCd430jRMz692WtZn60Vkzz2Vu7xH0cSWGn3qVrrUSVHHGZ8DrHSCnX5MrVY-hGDcMEF2aimaNbDmXVN5IXz3Mug-5-55ZcLwVmJxKyc5rE-rt7OfoMGhK9M0C6PsFmB1v_nHcQf_X_gWFg7As |
| CitedBy_id | crossref_primary_10_1057_s41599_024_04115_w crossref_primary_10_1038_s41598_021_97100_1 crossref_primary_10_2139_ssrn_3799784 crossref_primary_10_3390_e24060808 crossref_primary_10_1016_j_iref_2025_104024 crossref_primary_10_3390_e26010070 crossref_primary_10_1371_journal_pone_0252601 crossref_primary_10_3390_e23060731 crossref_primary_10_1007_s41060_021_00306_9 crossref_primary_10_3390_e24121726 crossref_primary_10_1109_ACCESS_2023_3316727 crossref_primary_10_3390_math10213964 crossref_primary_10_3390_e23040434 crossref_primary_10_1007_s13132_024_02038_0 crossref_primary_10_1145_3696411 crossref_primary_10_1109_ACCESS_2023_3341422 crossref_primary_10_1371_journal_pone_0326947 crossref_primary_10_1016_j_physa_2021_126421 crossref_primary_10_1371_journal_pone_0303707 crossref_primary_10_1007_s10489_021_02591_0 crossref_primary_10_3390_e24050693 crossref_primary_10_3390_e23121575 crossref_primary_10_1109_ACCESS_2025_3588385 crossref_primary_10_1109_ACCESS_2023_3326816 |
| Cites_doi | 10.1126/science.1215842 10.1038/s41467-019-09038-8 10.1038/30918 10.1016/j.physa.2014.01.011 10.1371/journal.pone.0195941 10.3390/e21030300 10.1016/j.jempfin.2010.04.008 10.1103/PhysRevE.84.026108 10.1103/PhysRevE.89.052801 10.1016/j.jbankfin.2015.08.034 10.1371/journal.pone.0096732 10.1371/journal.pone.0221910 10.1080/01605682.2019.1595193 10.3390/jrfm8020266 10.1007/s10614-015-9481-z 10.1016/j.physa.2014.07.067 10.1093/nar/gku1315 10.1142/S0219477520500182 10.1073/pnas.1522586113 10.1371/journal.pone.0015032 10.1126/science.aah3449 10.1038/nature09659 10.1038/s42254-018-0002-6 10.1007/s100510050929 10.1103/RevModPhys.74.47 10.1093/bioinformatics/btr626 10.1080/14697688.2014.946660 10.1016/j.cell.2018.05.015 10.1016/j.jebo.2010.01.004 10.1198/106186008X381927 10.1103/PhysRevE.68.046130 10.1140/epjb/e2006-00414-4 10.1016/j.physleta.2015.11.015 10.1016/j.physa.2013.08.053 10.3390/e22050528 10.1126/science.286.5439.509 10.1093/bioinformatics/18.suppl_2.S231 10.1073/pnas.0500298102 10.1017/nws.2017.5 10.1126/science.1243089 10.1103/PhysRevLett.119.198301 10.1038/srep41379 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3390/e22070773 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_7b026b2f807a48a5ad87436a3e46f4e5 PMC7517323 33286545 10_3390_e22070773 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11571368 – fundername: Wuhan Institute of Technology supporting fund grantid: 1234 – fundername: National Office for Philosophy and Social Sciences grantid: 17BTJ017 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c507t-5d96695d5359b9d9ab30a8fba5a5bca30dff1f08638c0a53d1a184e27e7cd70a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000554178000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:35:00 EDT 2025 Tue Nov 04 01:36:07 EST 2025 Sun Nov 09 09:47:28 EST 2025 Mon Jul 21 06:04:02 EDT 2025 Sat Nov 29 07:18:13 EST 2025 Tue Nov 18 22:25:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | degree clique stock relation network part mutual information correlation coefficient path-consistency |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c507t-5d96695d5359b9d9ab30a8fba5a5bca30dff1f08638c0a53d1a184e27e7cd70a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5833-4607 0000-0001-6191-0209 |
| OpenAccessLink | https://doaj.org/article/7b026b2f807a48a5ad87436a3e46f4e5 |
| PMID | 33286545 |
| PQID | 2468336163 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7b026b2f807a48a5ad87436a3e46f4e5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7517323 proquest_miscellaneous_2468336163 pubmed_primary_33286545 crossref_citationtrail_10_3390_e22070773 crossref_primary_10_3390_e22070773 |
| PublicationCentury | 2000 |
| PublicationDate | 20200715 |
| PublicationDateYYYYMMDD | 2020-07-15 |
| PublicationDate_xml | – month: 7 year: 2020 text: 20200715 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationTitleAlternate | Entropy (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | Coronnello (ref_21) 2005; 36 Reka (ref_45) 1999; 286 Zhang (ref_38) 2015; 43 Neal (ref_48) 2017; 5 Jiang (ref_36) 2020; 19 Aral (ref_4) 2012; 337 Petter (ref_46) 2019; 10 Tumminello (ref_14) 2007; 55 Heiberger (ref_24) 2014; 393 Tao (ref_34) 2015; 8 ref_33 ref_32 ref_31 ref_30 Tumminello (ref_13) 2005; 102 Yang (ref_20) 2014; 400 Song (ref_22) 2011; 84 Albert (ref_1) 2001; 74 Haldane (ref_6) 2011; 469 Camacho (ref_5) 2018; 173 Cimini (ref_8) 2019; 1 Birch (ref_16) 2016; 47 ref_39 Chi (ref_15) 2010; 17 Xu (ref_19) 2017; 7 Kalisch (ref_41) 2007; 8 Kalisch (ref_42) 2008; 17 Steuer (ref_43) 2002; 18 Mantegna (ref_11) 1999; 11 Fiedor (ref_35) 2014; 89 Anufriev (ref_29) 2015; 61 Einav (ref_3) 2014; 346 Sensoy (ref_17) 2014; 414 ref_25 ref_44 Watts (ref_47) 1998; 393 Andriosopoulos (ref_26) 2019; 70 Kenett (ref_28) 2015; 15 Zhang (ref_37) 2012; 28 Zhao (ref_23) 2016; 380 ref_27 Zhao (ref_40) 2016; 113 Junior (ref_10) 2011; 391 Sun (ref_7) 2017; 119 Tumminello (ref_9) 2008; 75 Bonanno (ref_12) 2003; 68 Massara (ref_18) 2017; 5 Przulj (ref_2) 2016; 353 |
| References_xml | – volume: 337 start-page: 337 year: 2012 ident: ref_4 article-title: Identifying influential and susceptible members of social networks publication-title: Science doi: 10.1126/science.1215842 – volume: 8 start-page: 613 year: 2007 ident: ref_41 article-title: Estimating high-dimensional directed acyclic graphs with the PC-algorithm publication-title: J. Mach. Learn. Res. – volume: 10 start-page: 1016 year: 2019 ident: ref_46 article-title: Rare and everywhere: Perspectives on scale-free networks publication-title: Nat. Commun. doi: 10.1038/s41467-019-09038-8 – volume: 393 start-page: 440 year: 1998 ident: ref_47 article-title: Collective dynamics of ‘small-world’ networks publication-title: Nature doi: 10.1038/30918 – volume: 400 start-page: 168 year: 2014 ident: ref_20 article-title: Cointegration analysis and influence rank?a network approach to global stock markets publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2014.01.011 – ident: ref_32 doi: 10.1371/journal.pone.0195941 – ident: ref_31 doi: 10.3390/e21030300 – volume: 17 start-page: 659 year: 2010 ident: ref_15 article-title: A network perspective of the stock market publication-title: J. Empir. Financ. doi: 10.1016/j.jempfin.2010.04.008 – volume: 84 start-page: 026108 year: 2011 ident: ref_22 article-title: Evolution of worldwide stock markets, correlation structure, and correlation-based graphs publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.026108 – volume: 89 start-page: 052801 year: 2014 ident: ref_35 article-title: Networks in financial markets based on the mutual information rate publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.052801 – volume: 61 start-page: S241 year: 2015 ident: ref_29 article-title: Connecting the dots: Econometric methods for uncovering networks with an application to the australian financial institutions publication-title: J. Bank. Financ. doi: 10.1016/j.jbankfin.2015.08.034 – ident: ref_39 doi: 10.1371/journal.pone.0096732 – ident: ref_33 doi: 10.1371/journal.pone.0221910 – volume: 70 start-page: 1581 year: 2019 ident: ref_26 article-title: Computational approaches and data analytics in financial services: A literature review publication-title: J. Oper. Res. Soc. doi: 10.1080/01605682.2019.1595193 – volume: 8 start-page: 266 year: 2015 ident: ref_34 article-title: Network analysis of the Shanghai stock exchange based on partial mutual information publication-title: J. Risk Financ. Manag. doi: 10.3390/jrfm8020266 – volume: 47 start-page: 501 year: 2016 ident: ref_16 article-title: Analysis of Correlation Based Networks Representing DAX 30 Stock Price Returns publication-title: Comput. Econ. doi: 10.1007/s10614-015-9481-z – volume: 414 start-page: 387 year: 2014 ident: ref_17 article-title: Dynamic spanning trees in stock market networks: The case of Asia-Pacific publication-title: Physica A doi: 10.1016/j.physa.2014.07.067 – volume: 43 start-page: E31 year: 2015 ident: ref_38 article-title: Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1315 – ident: ref_44 – volume: 19 start-page: 2050018 year: 2020 ident: ref_36 article-title: An effective stock classification method via MDS based on modified mutual information distance publication-title: Fluct. Noise Lett. doi: 10.1142/S0219477520500182 – volume: 113 start-page: 5130 year: 2016 ident: ref_40 article-title: Part mutual information for quantifying direct associations in networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1522586113 – ident: ref_27 doi: 10.1371/journal.pone.0015032 – volume: 353 start-page: 123 year: 2016 ident: ref_2 article-title: Network analytics in the age of big data publication-title: Science doi: 10.1126/science.aah3449 – volume: 469 start-page: 351 year: 2011 ident: ref_6 article-title: Systemic risk in banking ecosystems publication-title: Nature doi: 10.1038/nature09659 – volume: 1 start-page: 58 year: 2019 ident: ref_8 article-title: The statistical physics of real-world networks publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-018-0002-6 – volume: 11 start-page: 193 year: 1999 ident: ref_11 article-title: Hierarchical structure in financial markets publication-title: Eur. Phys. J. B doi: 10.1007/s100510050929 – volume: 74 start-page: 47 year: 2001 ident: ref_1 article-title: Statistical mechanics of complex networks publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.74.47 – ident: ref_25 – volume: 28 start-page: 98 year: 2012 ident: ref_37 article-title: Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr626 – volume: 15 start-page: 569 year: 2015 ident: ref_28 article-title: Partial correlation analysis: Applications for financial markets publication-title: Quant. Financ. doi: 10.1080/14697688.2014.946660 – volume: 173 start-page: 1581 year: 2018 ident: ref_5 article-title: Next-generation machine learning for biological networks publication-title: Cell doi: 10.1016/j.cell.2018.05.015 – volume: 75 start-page: 40 year: 2008 ident: ref_9 article-title: Correlation, hierarchies and networks in financial markets publication-title: J. Econ. Behav. Organ. doi: 10.1016/j.jebo.2010.01.004 – volume: 17 start-page: 773 year: 2008 ident: ref_42 article-title: Robustification of the PC-algorithm for directed acyclicgraphs publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186008X381927 – volume: 68 start-page: 352 year: 2003 ident: ref_12 article-title: Topology of correlation based minimal spanning trees in real and model markets publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.046130 – volume: 55 start-page: 209 year: 2007 ident: ref_14 article-title: Correlation based networks of equity returns sampled at different time horizons publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2006-00414-4 – volume: 391 start-page: 187 year: 2011 ident: ref_10 article-title: Correlation of financial markets in times of crisis publication-title: Physica A – volume: 380 start-page: 654 year: 2016 ident: ref_23 article-title: Structure and dynamics of stock market in times of crisis publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2015.11.015 – volume: 393 start-page: 376 year: 2014 ident: ref_24 article-title: Stock network stability in times of crisis publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2013.08.053 – ident: ref_30 doi: 10.3390/e22050528 – volume: 286 start-page: 509 year: 1999 ident: ref_45 article-title: Emergence of Scaling in Random Networks publication-title: Science doi: 10.1126/science.286.5439.509 – volume: 36 start-page: 26 year: 2005 ident: ref_21 article-title: Sector identification in a set of stock return time series traded at the London Stock Exchange publication-title: Acta Phys. Pol. A – volume: 18 start-page: S231 year: 2002 ident: ref_43 article-title: The mutual information: Detecting and evaluating dependencies between variables publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_2.S231 – volume: 102 start-page: 10421 year: 2005 ident: ref_13 article-title: A tool for filtering information in complex systems publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0500298102 – volume: 5 start-page: 30 year: 2017 ident: ref_48 article-title: How small is it? Comparing indices of small worldliness publication-title: Netw. Sci. doi: 10.1017/nws.2017.5 – volume: 5 start-page: 161 year: 2017 ident: ref_18 article-title: Network Filtering for Big Data: Triangulated Maximally Filtered Graph publication-title: J. Complex Netw. – volume: 346 start-page: 1243089 year: 2014 ident: ref_3 article-title: Economics in the age of big data publication-title: Science doi: 10.1126/science.1243089 – volume: 119 start-page: 198301 year: 2017 ident: ref_7 article-title: Closed-loop control of complex networks: A trade-off between time and energy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.198301 – volume: 7 start-page: 41379 year: 2017 ident: ref_19 article-title: Topological characteristics of the hong kong stock market: A test-based p-threshold approach to understanding network complexity publication-title: Sci. Rep. doi: 10.1038/srep41379 |
| SSID | ssj0023216 |
| Score | 2.3741524 |
| Snippet | Complex network is a powerful tool to discover important information from various types of big data. Although substantial studies have been conducted for the... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 773 |
| SubjectTerms | clique correlation coefficient degree part mutual information path-consistency stock relation network |
| Title | Development of Stock Networks Using Part Mutual Information and Australian Stock Market Data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33286545 https://www.proquest.com/docview/2468336163 https://pubmed.ncbi.nlm.nih.gov/PMC7517323 https://doaj.org/article/7b026b2f807a48a5ad87436a3e46f4e5 |
| Volume | 22 |
| WOSCitedRecordID | wos000554178000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M7S dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: PIMPY dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4cAFLeJVYCuDOHCJNvXEHufI7nYFEq0iFlCRkCI_tSuhFG1Tjvx2xklaWrQSFy45xLbifOPHfMnMZ8ZeO2UleDRZxMJlhXKKppSCrHAYEZUPusty_fIB53O9WJTVzlFfKSaslwfugTtGSyzBiqhzNIU20nhNm54yEAoVi9Cpl-ZYbsjUQLVATFSvIwRE6o-DEEnWBmFv9-lE-m_yLP8OkNzZcc4P2f3BVeRv-y4-YLdC85B924ny4cvIL1pa0Pi8D-Ze8S4CgFf0Wny2TqkhfMg3Svhz03j-5-PG0HbW5T3zM9OaR-zz-fTT6btsOCEhc-THtZn0xFZK6SXI0pa-NBZyo6MlmKR1BnIf4yQSawHtckNGmRhidEFgQOcxN_CYHTTLJjxlPGoUtOCE0kTykAJYMmBAQjlXwZoII_Zmg1ztBvnwdIrF95poRAK53oI8Yq-2VX_0mhk3VTpJ8G8rJJnr7gYZvx6MX__L-CP2cmO8mqZF-tdhmrBcr2pRKA2gaNiN2JPemNtHAaR03IJa456Z9_qyX9JcXXbS2ygnCAKe_Y_OP2f3RCLvSaVTvmAH7fU6HLG77md7tboes9u40GN252Q6rz6Ou9E9ToGpF-n6a0ol1ftZ9fU3GOEC8Q |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Stock+Networks+Using+Part+Mutual+Information+and+Australian+Stock+Market+Data&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Yan+Yan&rft.au=Boyao+Wu&rft.au=Tianhai+Tian&rft.au=Hu+Zhang&rft.date=2020-07-15&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=22&rft.issue=7&rft.spage=773&rft_id=info:doi/10.3390%2Fe22070773&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7b026b2f807a48a5ad87436a3e46f4e5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |