Development of Stock Networks Using Part Mutual Information and Australian Stock Market Data

Complex network is a powerful tool to discover important information from various types of big data. Although substantial studies have been conducted for the development of stock relation networks, correlation coefficient is dominantly used to measure the relationship between stock pairs. Informatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Jg. 22; H. 7; S. 773
Hauptverfasser: Yan, Yan, Wu, Boyao, Tian, Tianhai, Zhang, Hu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI 15.07.2020
MDPI AG
Schlagworte:
ISSN:1099-4300, 1099-4300
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Complex network is a powerful tool to discover important information from various types of big data. Although substantial studies have been conducted for the development of stock relation networks, correlation coefficient is dominantly used to measure the relationship between stock pairs. Information theory is much less discussed for this important topic, though mutual information is able to measure nonlinear pairwise relationship. In this work we propose to use part mutual information for developing stock networks. The path-consistency algorithm is used to filter out redundant relationships. Using the Australian stock market data, we develop four stock relation networks using different orders of part mutual information. Compared with the widely used planar maximally filtered graph (PMFG), we can generate networks with cliques of large size. In addition, the large cliques show consistency with the structure of industrial sectors. We also analyze the connectivity and degree distributions of the generated networks. Analysis results suggest that the proposed method is an effective approach to develop stock relation networks using information theory.
AbstractList Complex network is a powerful tool to discover important information from various types of big data. Although substantial studies have been conducted for the development of stock relation networks, correlation coefficient is dominantly used to measure the relationship between stock pairs. Information theory is much less discussed for this important topic, though mutual information is able to measure nonlinear pairwise relationship. In this work we propose to use part mutual information for developing stock networks. The path-consistency algorithm is used to filter out redundant relationships. Using the Australian stock market data, we develop four stock relation networks using different orders of part mutual information. Compared with the widely used planar maximally filtered graph (PMFG), we can generate networks with cliques of large size. In addition, the large cliques show consistency with the structure of industrial sectors. We also analyze the connectivity and degree distributions of the generated networks. Analysis results suggest that the proposed method is an effective approach to develop stock relation networks using information theory.
Complex network is a powerful tool to discover important information from various types of big data. Although substantial studies have been conducted for the development of stock relation networks, correlation coefficient is dominantly used to measure the relationship between stock pairs. Information theory is much less discussed for this important topic, though mutual information is able to measure nonlinear pairwise relationship. In this work we propose to use part mutual information for developing stock networks. The path-consistency algorithm is used to filter out redundant relationships. Using the Australian stock market data, we develop four stock relation networks using different orders of part mutual information. Compared with the widely used planar maximally filtered graph (PMFG), we can generate networks with cliques of large size. In addition, the large cliques show consistency with the structure of industrial sectors. We also analyze the connectivity and degree distributions of the generated networks. Analysis results suggest that the proposed method is an effective approach to develop stock relation networks using information theory.Complex network is a powerful tool to discover important information from various types of big data. Although substantial studies have been conducted for the development of stock relation networks, correlation coefficient is dominantly used to measure the relationship between stock pairs. Information theory is much less discussed for this important topic, though mutual information is able to measure nonlinear pairwise relationship. In this work we propose to use part mutual information for developing stock networks. The path-consistency algorithm is used to filter out redundant relationships. Using the Australian stock market data, we develop four stock relation networks using different orders of part mutual information. Compared with the widely used planar maximally filtered graph (PMFG), we can generate networks with cliques of large size. In addition, the large cliques show consistency with the structure of industrial sectors. We also analyze the connectivity and degree distributions of the generated networks. Analysis results suggest that the proposed method is an effective approach to develop stock relation networks using information theory.
Author Yan, Yan
Tian, Tianhai
Wu, Boyao
Zhang, Hu
AuthorAffiliation 2 School of Mathematics, Monash University, Melbourne, VIC 3800, Australia; boyao.wu@monash.edu
3 School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China
1 School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan 430205, China; yanyan@wit.edu.cn
AuthorAffiliation_xml – name: 1 School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan 430205, China; yanyan@wit.edu.cn
– name: 2 School of Mathematics, Monash University, Melbourne, VIC 3800, Australia; boyao.wu@monash.edu
– name: 3 School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0002-5833-4607
  surname: Yan
  fullname: Yan, Yan
– sequence: 2
  givenname: Boyao
  surname: Wu
  fullname: Wu, Boyao
– sequence: 3
  givenname: Tianhai
  orcidid: 0000-0001-6191-0209
  surname: Tian
  fullname: Tian, Tianhai
– sequence: 4
  givenname: Hu
  surname: Zhang
  fullname: Zhang, Hu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33286545$$D View this record in MEDLINE/PubMed
BookMark eNplkklvFDEQhS0URBY48AeQj3AY4qVtd1-QooRlpASQIDckq9rL4Ey3PdjuIP49ncwkSuBky_Xe91TlOkR7MUWH0EtK3nLekWPHGFFEKf4EHVDSdYuGE7L34L6PDku5IoRxRuUztM85a6VoxAH6ceau3ZA2o4sVJ4-_1WTW-LOrv1NeF3xZQlzhr5ArvpjqBANeRp_yCDWkiCFafDKVmmEIEHfeC8hrV_EZVHiOnnoYinuxO4_Q5Yf3308_Lc6_fFyenpwvjCCqLoTtpOyEFVx0fWc76DmB1vcgQPQGOLHeU09ayVtDQHBLgbaNY8opYxUBfoSWW65NcKU3OYyQ_-gEQd8-pLzScwfBDE6rnjDZM98SBU07J9hWNVwCd430jRMz692WtZn60Vkzz2Vu7xH0cSWGn3qVrrUSVHHGZ8DrHSCnX5MrVY-hGDcMEF2aimaNbDmXVN5IXz3Mug-5-55ZcLwVmJxKyc5rE-rt7OfoMGhK9M0C6PsFmB1v_nHcQf_X_gWFg7As
CitedBy_id crossref_primary_10_1057_s41599_024_04115_w
crossref_primary_10_1038_s41598_021_97100_1
crossref_primary_10_2139_ssrn_3799784
crossref_primary_10_3390_e24060808
crossref_primary_10_1016_j_iref_2025_104024
crossref_primary_10_3390_e26010070
crossref_primary_10_1371_journal_pone_0252601
crossref_primary_10_3390_e23060731
crossref_primary_10_1007_s41060_021_00306_9
crossref_primary_10_3390_e24121726
crossref_primary_10_1109_ACCESS_2023_3316727
crossref_primary_10_3390_math10213964
crossref_primary_10_3390_e23040434
crossref_primary_10_1007_s13132_024_02038_0
crossref_primary_10_1145_3696411
crossref_primary_10_1109_ACCESS_2023_3341422
crossref_primary_10_1371_journal_pone_0326947
crossref_primary_10_1016_j_physa_2021_126421
crossref_primary_10_1371_journal_pone_0303707
crossref_primary_10_1007_s10489_021_02591_0
crossref_primary_10_3390_e24050693
crossref_primary_10_3390_e23121575
crossref_primary_10_1109_ACCESS_2025_3588385
crossref_primary_10_1109_ACCESS_2023_3326816
Cites_doi 10.1126/science.1215842
10.1038/s41467-019-09038-8
10.1038/30918
10.1016/j.physa.2014.01.011
10.1371/journal.pone.0195941
10.3390/e21030300
10.1016/j.jempfin.2010.04.008
10.1103/PhysRevE.84.026108
10.1103/PhysRevE.89.052801
10.1016/j.jbankfin.2015.08.034
10.1371/journal.pone.0096732
10.1371/journal.pone.0221910
10.1080/01605682.2019.1595193
10.3390/jrfm8020266
10.1007/s10614-015-9481-z
10.1016/j.physa.2014.07.067
10.1093/nar/gku1315
10.1142/S0219477520500182
10.1073/pnas.1522586113
10.1371/journal.pone.0015032
10.1126/science.aah3449
10.1038/nature09659
10.1038/s42254-018-0002-6
10.1007/s100510050929
10.1103/RevModPhys.74.47
10.1093/bioinformatics/btr626
10.1080/14697688.2014.946660
10.1016/j.cell.2018.05.015
10.1016/j.jebo.2010.01.004
10.1198/106186008X381927
10.1103/PhysRevE.68.046130
10.1140/epjb/e2006-00414-4
10.1016/j.physleta.2015.11.015
10.1016/j.physa.2013.08.053
10.3390/e22050528
10.1126/science.286.5439.509
10.1093/bioinformatics/18.suppl_2.S231
10.1073/pnas.0500298102
10.1017/nws.2017.5
10.1126/science.1243089
10.1103/PhysRevLett.119.198301
10.1038/srep41379
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/e22070773
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_7b026b2f807a48a5ad87436a3e46f4e5
PMC7517323
33286545
10_3390_e22070773
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11571368
– fundername: Wuhan Institute of Technology supporting fund
  grantid: 1234
– fundername: National Office for Philosophy and Social Sciences
  grantid: 17BTJ017
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7X8
5PM
ID FETCH-LOGICAL-c507t-5d96695d5359b9d9ab30a8fba5a5bca30dff1f08638c0a53d1a184e27e7cd70a3
IEDL.DBID DOA
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000554178000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:35:00 EDT 2025
Tue Nov 04 01:36:07 EST 2025
Sun Nov 09 09:47:28 EST 2025
Mon Jul 21 06:04:02 EDT 2025
Sat Nov 29 07:18:13 EST 2025
Tue Nov 18 22:25:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords degree
clique
stock relation network
part mutual information
correlation coefficient
path-consistency
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-5d96695d5359b9d9ab30a8fba5a5bca30dff1f08638c0a53d1a184e27e7cd70a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5833-4607
0000-0001-6191-0209
OpenAccessLink https://doaj.org/article/7b026b2f807a48a5ad87436a3e46f4e5
PMID 33286545
PQID 2468336163
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7b026b2f807a48a5ad87436a3e46f4e5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7517323
proquest_miscellaneous_2468336163
pubmed_primary_33286545
crossref_citationtrail_10_3390_e22070773
crossref_primary_10_3390_e22070773
PublicationCentury 2000
PublicationDate 20200715
PublicationDateYYYYMMDD 2020-07-15
PublicationDate_xml – month: 7
  year: 2020
  text: 20200715
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Coronnello (ref_21) 2005; 36
Reka (ref_45) 1999; 286
Zhang (ref_38) 2015; 43
Neal (ref_48) 2017; 5
Jiang (ref_36) 2020; 19
Aral (ref_4) 2012; 337
Petter (ref_46) 2019; 10
Tumminello (ref_14) 2007; 55
Heiberger (ref_24) 2014; 393
Tao (ref_34) 2015; 8
ref_33
ref_32
ref_31
ref_30
Tumminello (ref_13) 2005; 102
Yang (ref_20) 2014; 400
Song (ref_22) 2011; 84
Albert (ref_1) 2001; 74
Haldane (ref_6) 2011; 469
Camacho (ref_5) 2018; 173
Cimini (ref_8) 2019; 1
Birch (ref_16) 2016; 47
ref_39
Chi (ref_15) 2010; 17
Xu (ref_19) 2017; 7
Kalisch (ref_41) 2007; 8
Kalisch (ref_42) 2008; 17
Steuer (ref_43) 2002; 18
Mantegna (ref_11) 1999; 11
Fiedor (ref_35) 2014; 89
Anufriev (ref_29) 2015; 61
Einav (ref_3) 2014; 346
Sensoy (ref_17) 2014; 414
ref_25
ref_44
Watts (ref_47) 1998; 393
Andriosopoulos (ref_26) 2019; 70
Kenett (ref_28) 2015; 15
Zhang (ref_37) 2012; 28
Zhao (ref_23) 2016; 380
ref_27
Zhao (ref_40) 2016; 113
Junior (ref_10) 2011; 391
Sun (ref_7) 2017; 119
Tumminello (ref_9) 2008; 75
Bonanno (ref_12) 2003; 68
Massara (ref_18) 2017; 5
Przulj (ref_2) 2016; 353
References_xml – volume: 337
  start-page: 337
  year: 2012
  ident: ref_4
  article-title: Identifying influential and susceptible members of social networks
  publication-title: Science
  doi: 10.1126/science.1215842
– volume: 8
  start-page: 613
  year: 2007
  ident: ref_41
  article-title: Estimating high-dimensional directed acyclic graphs with the PC-algorithm
  publication-title: J. Mach. Learn. Res.
– volume: 10
  start-page: 1016
  year: 2019
  ident: ref_46
  article-title: Rare and everywhere: Perspectives on scale-free networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09038-8
– volume: 393
  start-page: 440
  year: 1998
  ident: ref_47
  article-title: Collective dynamics of ‘small-world’ networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 400
  start-page: 168
  year: 2014
  ident: ref_20
  article-title: Cointegration analysis and influence rank?a network approach to global stock markets
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2014.01.011
– ident: ref_32
  doi: 10.1371/journal.pone.0195941
– ident: ref_31
  doi: 10.3390/e21030300
– volume: 17
  start-page: 659
  year: 2010
  ident: ref_15
  article-title: A network perspective of the stock market
  publication-title: J. Empir. Financ.
  doi: 10.1016/j.jempfin.2010.04.008
– volume: 84
  start-page: 026108
  year: 2011
  ident: ref_22
  article-title: Evolution of worldwide stock markets, correlation structure, and correlation-based graphs
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.026108
– volume: 89
  start-page: 052801
  year: 2014
  ident: ref_35
  article-title: Networks in financial markets based on the mutual information rate
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.052801
– volume: 61
  start-page: S241
  year: 2015
  ident: ref_29
  article-title: Connecting the dots: Econometric methods for uncovering networks with an application to the australian financial institutions
  publication-title: J. Bank. Financ.
  doi: 10.1016/j.jbankfin.2015.08.034
– ident: ref_39
  doi: 10.1371/journal.pone.0096732
– ident: ref_33
  doi: 10.1371/journal.pone.0221910
– volume: 70
  start-page: 1581
  year: 2019
  ident: ref_26
  article-title: Computational approaches and data analytics in financial services: A literature review
  publication-title: J. Oper. Res. Soc.
  doi: 10.1080/01605682.2019.1595193
– volume: 8
  start-page: 266
  year: 2015
  ident: ref_34
  article-title: Network analysis of the Shanghai stock exchange based on partial mutual information
  publication-title: J. Risk Financ. Manag.
  doi: 10.3390/jrfm8020266
– volume: 47
  start-page: 501
  year: 2016
  ident: ref_16
  article-title: Analysis of Correlation Based Networks Representing DAX 30 Stock Price Returns
  publication-title: Comput. Econ.
  doi: 10.1007/s10614-015-9481-z
– volume: 414
  start-page: 387
  year: 2014
  ident: ref_17
  article-title: Dynamic spanning trees in stock market networks: The case of Asia-Pacific
  publication-title: Physica A
  doi: 10.1016/j.physa.2014.07.067
– volume: 43
  start-page: E31
  year: 2015
  ident: ref_38
  article-title: Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1315
– ident: ref_44
– volume: 19
  start-page: 2050018
  year: 2020
  ident: ref_36
  article-title: An effective stock classification method via MDS based on modified mutual information distance
  publication-title: Fluct. Noise Lett.
  doi: 10.1142/S0219477520500182
– volume: 113
  start-page: 5130
  year: 2016
  ident: ref_40
  article-title: Part mutual information for quantifying direct associations in networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1522586113
– ident: ref_27
  doi: 10.1371/journal.pone.0015032
– volume: 353
  start-page: 123
  year: 2016
  ident: ref_2
  article-title: Network analytics in the age of big data
  publication-title: Science
  doi: 10.1126/science.aah3449
– volume: 469
  start-page: 351
  year: 2011
  ident: ref_6
  article-title: Systemic risk in banking ecosystems
  publication-title: Nature
  doi: 10.1038/nature09659
– volume: 1
  start-page: 58
  year: 2019
  ident: ref_8
  article-title: The statistical physics of real-world networks
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-018-0002-6
– volume: 11
  start-page: 193
  year: 1999
  ident: ref_11
  article-title: Hierarchical structure in financial markets
  publication-title: Eur. Phys. J. B
  doi: 10.1007/s100510050929
– volume: 74
  start-page: 47
  year: 2001
  ident: ref_1
  article-title: Statistical mechanics of complex networks
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.74.47
– ident: ref_25
– volume: 28
  start-page: 98
  year: 2012
  ident: ref_37
  article-title: Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr626
– volume: 15
  start-page: 569
  year: 2015
  ident: ref_28
  article-title: Partial correlation analysis: Applications for financial markets
  publication-title: Quant. Financ.
  doi: 10.1080/14697688.2014.946660
– volume: 173
  start-page: 1581
  year: 2018
  ident: ref_5
  article-title: Next-generation machine learning for biological networks
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.015
– volume: 75
  start-page: 40
  year: 2008
  ident: ref_9
  article-title: Correlation, hierarchies and networks in financial markets
  publication-title: J. Econ. Behav. Organ.
  doi: 10.1016/j.jebo.2010.01.004
– volume: 17
  start-page: 773
  year: 2008
  ident: ref_42
  article-title: Robustification of the PC-algorithm for directed acyclicgraphs
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186008X381927
– volume: 68
  start-page: 352
  year: 2003
  ident: ref_12
  article-title: Topology of correlation based minimal spanning trees in real and model markets
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.046130
– volume: 55
  start-page: 209
  year: 2007
  ident: ref_14
  article-title: Correlation based networks of equity returns sampled at different time horizons
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2006-00414-4
– volume: 391
  start-page: 187
  year: 2011
  ident: ref_10
  article-title: Correlation of financial markets in times of crisis
  publication-title: Physica A
– volume: 380
  start-page: 654
  year: 2016
  ident: ref_23
  article-title: Structure and dynamics of stock market in times of crisis
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2015.11.015
– volume: 393
  start-page: 376
  year: 2014
  ident: ref_24
  article-title: Stock network stability in times of crisis
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2013.08.053
– ident: ref_30
  doi: 10.3390/e22050528
– volume: 286
  start-page: 509
  year: 1999
  ident: ref_45
  article-title: Emergence of Scaling in Random Networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 36
  start-page: 26
  year: 2005
  ident: ref_21
  article-title: Sector identification in a set of stock return time series traded at the London Stock Exchange
  publication-title: Acta Phys. Pol. A
– volume: 18
  start-page: S231
  year: 2002
  ident: ref_43
  article-title: The mutual information: Detecting and evaluating dependencies between variables
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_2.S231
– volume: 102
  start-page: 10421
  year: 2005
  ident: ref_13
  article-title: A tool for filtering information in complex systems
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0500298102
– volume: 5
  start-page: 30
  year: 2017
  ident: ref_48
  article-title: How small is it? Comparing indices of small worldliness
  publication-title: Netw. Sci.
  doi: 10.1017/nws.2017.5
– volume: 5
  start-page: 161
  year: 2017
  ident: ref_18
  article-title: Network Filtering for Big Data: Triangulated Maximally Filtered Graph
  publication-title: J. Complex Netw.
– volume: 346
  start-page: 1243089
  year: 2014
  ident: ref_3
  article-title: Economics in the age of big data
  publication-title: Science
  doi: 10.1126/science.1243089
– volume: 119
  start-page: 198301
  year: 2017
  ident: ref_7
  article-title: Closed-loop control of complex networks: A trade-off between time and energy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.198301
– volume: 7
  start-page: 41379
  year: 2017
  ident: ref_19
  article-title: Topological characteristics of the hong kong stock market: A test-based p-threshold approach to understanding network complexity
  publication-title: Sci. Rep.
  doi: 10.1038/srep41379
SSID ssj0023216
Score 2.3741524
Snippet Complex network is a powerful tool to discover important information from various types of big data. Although substantial studies have been conducted for the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 773
SubjectTerms clique
correlation coefficient
degree
part mutual information
path-consistency
stock relation network
Title Development of Stock Networks Using Part Mutual Information and Australian Stock Market Data
URI https://www.ncbi.nlm.nih.gov/pubmed/33286545
https://www.proquest.com/docview/2468336163
https://pubmed.ncbi.nlm.nih.gov/PMC7517323
https://doaj.org/article/7b026b2f807a48a5ad87436a3e46f4e5
Volume 22
WOSCitedRecordID wos000554178000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4cAFLeJVYCuDOHCJNvXEHufI7nYFEq0iFlCRkCI_tSuhFG1Tjvx2xklaWrQSFy45xLbifOPHfMnMZ8ZeO2UleDRZxMJlhXKKppSCrHAYEZUPusty_fIB53O9WJTVzlFfKSaslwfugTtGSyzBiqhzNIU20nhNm54yEAoVi9Cpl-ZYbsjUQLVATFSvIwRE6o-DEEnWBmFv9-lE-m_yLP8OkNzZcc4P2f3BVeRv-y4-YLdC85B924ny4cvIL1pa0Pi8D-Ze8S4CgFf0Wny2TqkhfMg3Svhz03j-5-PG0HbW5T3zM9OaR-zz-fTT6btsOCEhc-THtZn0xFZK6SXI0pa-NBZyo6MlmKR1BnIf4yQSawHtckNGmRhidEFgQOcxN_CYHTTLJjxlPGoUtOCE0kTykAJYMmBAQjlXwZoII_Zmg1ztBvnwdIrF95poRAK53oI8Yq-2VX_0mhk3VTpJ8G8rJJnr7gYZvx6MX__L-CP2cmO8mqZF-tdhmrBcr2pRKA2gaNiN2JPemNtHAaR03IJa456Z9_qyX9JcXXbS2ygnCAKe_Y_OP2f3RCLvSaVTvmAH7fU6HLG77md7tboes9u40GN252Q6rz6Ou9E9ToGpF-n6a0ol1ftZ9fU3GOEC8Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Stock+Networks+Using+Part+Mutual+Information+and+Australian+Stock+Market+Data&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Yan+Yan&rft.au=Boyao+Wu&rft.au=Tianhai+Tian&rft.au=Hu+Zhang&rft.date=2020-07-15&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=22&rft.issue=7&rft.spage=773&rft_id=info:doi/10.3390%2Fe22070773&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7b026b2f807a48a5ad87436a3e46f4e5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon