The impact of oxidative DNA damage and stress on telomere homeostasis

•Loss of telomere maintenance contributes ageing-related diseases and carcinogenesis.•Numerous diseases associated with oxidative stress are also associated with shortened telomeres.•Studies in human tissues, mouse models and cell culture provide evidence that oxidative stress accelerates telomere s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mechanisms of ageing and development Ročník 177; s. 37 - 45
Hlavní autoři: Barnes, Ryan P., Fouquerel, Elise, Opresko, Patricia L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Ireland Elsevier B.V 01.01.2019
Témata:
ISSN:0047-6374, 1872-6216, 1872-6216
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Loss of telomere maintenance contributes ageing-related diseases and carcinogenesis.•Numerous diseases associated with oxidative stress are also associated with shortened telomeres.•Studies in human tissues, mouse models and cell culture provide evidence that oxidative stress accelerates telomere shortening.•Telomeres are highly sensitive to oxidative DNA damage, which can induce telomere losses and dysfunction.•Base excision repair of oxidative damage is essential for telomere maintenance. Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage.
AbstractList Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage.
•Loss of telomere maintenance contributes ageing-related diseases and carcinogenesis.•Numerous diseases associated with oxidative stress are also associated with shortened telomeres.•Studies in human tissues, mouse models and cell culture provide evidence that oxidative stress accelerates telomere shortening.•Telomeres are highly sensitive to oxidative DNA damage, which can induce telomere losses and dysfunction.•Base excision repair of oxidative damage is essential for telomere maintenance. Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage.
Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage.Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage.
Author Barnes, Ryan P.
Opresko, Patricia L.
Fouquerel, Elise
Author_xml – sequence: 1
  givenname: Ryan P.
  surname: Barnes
  fullname: Barnes, Ryan P.
– sequence: 2
  givenname: Elise
  surname: Fouquerel
  fullname: Fouquerel, Elise
– sequence: 3
  givenname: Patricia L.
  surname: Opresko
  fullname: Opresko, Patricia L.
  email: plo4@pitt.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29604323$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URKeFH8AGeckm4foRxxESUlXKQ6pgU9aWa990PEriwfaM4N_j0ZQKWJTVXfico-PznZGTJS5IyEsGLQOm3mza2fqWA9MtiBaYeEJWTPe8UZypE7ICkH2jRC9PyVnOGwBgkqtn5JQPCqTgYkWubtZIw7y1rtA40vgjeFvCHun7LxfU29neIbWLp7kkzJnGhRac4owJ6bqemIvNIT8nT0c7ZXxxf8_Jtw9XN5efmuuvHz9fXlw3roO-NJ3qlR1qB6s51557IYexNgFUwunBjwzcOEh-2w9S664TnvWeAXAA4dB24py8O-Zud7czeodLSXYy2xRmm36aaIP5-2UJa3MX90axOok-BLy-D0jx-w5zMXPIDqfJLhh32XAtJK-DAv-_tNaSmuuur9JXf9Z66PN75ipgR4FLMeeE44OEgTmgNBtTUZoDSgPCVJTV0__jcaFUNvHwszA96nx7dGJFsQ-YTHYBF4c-JHTF-Bgecf8CfWq2Zw
CitedBy_id crossref_primary_10_1007_s12640_022_00489_4
crossref_primary_10_3390_ijms241310427
crossref_primary_10_1080_10408444_2018_1538201
crossref_primary_10_15252_embr_202153658
crossref_primary_10_3389_fendo_2023_1244553
crossref_primary_10_1016_j_mce_2021_111207
crossref_primary_10_3390_antiox11050812
crossref_primary_10_1016_j_jesf_2025_03_004
crossref_primary_10_1097_MOL_0000000000000900
crossref_primary_10_1016_j_dnarep_2020_102956
crossref_primary_10_3390_environments11120280
crossref_primary_10_3390_ijms222212536
crossref_primary_10_3390_biom13050745
crossref_primary_10_3390_antiox14050520
crossref_primary_10_1016_j_jpeds_2020_11_025
crossref_primary_10_1016_j_numecd_2020_06_014
crossref_primary_10_3390_cancers16193370
crossref_primary_10_1016_j_etap_2021_103633
crossref_primary_10_1016_j_mad_2020_111256
crossref_primary_10_1155_2022_1225578
crossref_primary_10_3389_fendo_2021_650988
crossref_primary_10_1007_s11356_021_16693_2
crossref_primary_10_1016_j_arr_2025_102773
crossref_primary_10_1039_D5FO00435G
crossref_primary_10_1111_1365_2435_13408
crossref_primary_10_1111_ijfs_14502
crossref_primary_10_3390_antiox12112004
crossref_primary_10_1093_nutrit_nuae187
crossref_primary_10_1016_j_jnha_2024_100323
crossref_primary_10_1017_neu_2024_62
crossref_primary_10_3390_ijms25179463
crossref_primary_10_1017_S0033291719002228
crossref_primary_10_1016_j_bmcl_2024_129988
crossref_primary_10_1016_j_fertnstert_2024_08_340
crossref_primary_10_2147_JIR_S275595
crossref_primary_10_3389_fphar_2023_1156538
crossref_primary_10_1016_j_enceco_2025_03_007
crossref_primary_10_3390_foods13111673
crossref_primary_10_1038_s41598_024_81375_1
crossref_primary_10_3390_antiox14080987
crossref_primary_10_3390_genes14051029
crossref_primary_10_3389_fcell_2021_668171
crossref_primary_10_3389_fbioe_2019_00447
crossref_primary_10_1038_s41467_024_48443_6
crossref_primary_10_1002_ajpa_24722
crossref_primary_10_1016_j_rasd_2024_102496
crossref_primary_10_1186_s13104_025_07118_1
crossref_primary_10_1089_ars_2023_0253
crossref_primary_10_3390_ijms22052419
crossref_primary_10_1111_cpr_13448
crossref_primary_10_1007_s11626_023_00749_3
crossref_primary_10_1016_j_bej_2024_109460
crossref_primary_10_1016_j_phanu_2020_100226
crossref_primary_10_1016_j_marpolbul_2021_112610
crossref_primary_10_1002_ece3_6035
crossref_primary_10_1016_j_lfs_2022_120644
crossref_primary_10_1002_ajb2_16244
crossref_primary_10_1186_s12935_023_03041_2
crossref_primary_10_3168_jds_2023_23556
crossref_primary_10_1016_j_dnarep_2021_103198
crossref_primary_10_1111_age_12870
crossref_primary_10_15857_ksep_2020_29_3_256
crossref_primary_10_31083_JIN24948
crossref_primary_10_1186_s12885_023_11387_z
crossref_primary_10_1155_2020_5681096
crossref_primary_10_1093_ckj_sfab067
crossref_primary_10_1038_s41366_021_00879_2
crossref_primary_10_1016_j_mrrev_2024_108507
crossref_primary_10_1246_cl_220091
crossref_primary_10_1002_clt2_70066
crossref_primary_10_1016_j_mrgentox_2021_503387
crossref_primary_10_1155_2021_6545728
crossref_primary_10_1159_000542557
crossref_primary_10_3390_jcm13092694
crossref_primary_10_1007_s10815_023_03008_2
crossref_primary_10_1093_mutage_geaf005
crossref_primary_10_1016_j_bbadis_2022_166397
crossref_primary_10_3389_fcell_2021_758402
crossref_primary_10_1016_j_tibs_2022_03_013
crossref_primary_10_3390_ijms25126709
crossref_primary_10_3389_fcvm_2022_1012615
crossref_primary_10_3389_fpls_2024_1351613
crossref_primary_10_4162_nrp_2025_19_4_621
crossref_primary_10_1186_s13287_021_02209_9
crossref_primary_10_1155_2020_6708152
crossref_primary_10_1186_s43042_025_00763_y
crossref_primary_10_1002_mc_23768
crossref_primary_10_1016_j_arr_2023_102083
crossref_primary_10_3390_ijms22137194
crossref_primary_10_1016_j_schres_2025_06_013
crossref_primary_10_1093_conphys_coad018
crossref_primary_10_1080_09603123_2024_2394136
crossref_primary_10_3389_fnagi_2022_1002138
crossref_primary_10_1007_s13577_025_01213_y
crossref_primary_10_1016_j_ecoenv_2025_117767
crossref_primary_10_1503_jpn_200238
crossref_primary_10_1038_s41598_023_35912_z
crossref_primary_10_3390_jcm9082669
crossref_primary_10_1007_s10653_023_01697_3
crossref_primary_10_1016_j_mad_2025_112026
crossref_primary_10_1080_0886022X_2025_2464828
crossref_primary_10_3390_cells13110884
crossref_primary_10_1134_S0362119724700865
crossref_primary_10_1515_revneuro_2021_0070
crossref_primary_10_1038_s41598_021_82917_7
crossref_primary_10_1016_j_envpol_2023_121855
crossref_primary_10_1016_j_ijbiomac_2024_135280
crossref_primary_10_1139_cjpp_2021_0090
crossref_primary_10_1007_s13668_024_00529_9
crossref_primary_10_3390_antiox11030572
crossref_primary_10_1007_s00204_025_04033_z
crossref_primary_10_59324_stss_2025_2_3__02
crossref_primary_10_1186_s13054_024_05051_6
crossref_primary_10_1016_j_ecoenv_2024_116206
crossref_primary_10_1002_dev_22457
crossref_primary_10_3390_antiox12071374
crossref_primary_10_3390_jcm13102841
crossref_primary_10_1007_s10577_020_09641_2
crossref_primary_10_1111_mec_16199
crossref_primary_10_1016_j_drudis_2021_07_012
crossref_primary_10_1016_j_biopha_2020_111119
crossref_primary_10_3390_ijms25168652
crossref_primary_10_1016_j_bbi_2025_05_022
crossref_primary_10_1016_j_mad_2023_111858
crossref_primary_10_1016_j_prp_2023_154691
crossref_primary_10_1038_s41598_024_62980_6
crossref_primary_10_1111_jir_13244
crossref_primary_10_1016_j_envres_2025_121174
crossref_primary_10_3390_ijms24054491
crossref_primary_10_3389_fimmu_2021_747335
crossref_primary_10_1002_bies_201900177
crossref_primary_10_3389_fnut_2022_993425
crossref_primary_10_1038_s42003_024_06060_5
crossref_primary_10_3390_nu14061244
crossref_primary_10_1093_advances_nmz026
crossref_primary_10_3390_biomedicines11092535
crossref_primary_10_1007_s00018_022_04235_z
crossref_primary_10_1016_j_psyneuen_2025_107431
crossref_primary_10_1186_s40748_024_00193_5
crossref_primary_10_1016_j_molcel_2019_04_024
crossref_primary_10_1155_2020_9256107
crossref_primary_10_1016_j_mad_2025_112042
crossref_primary_10_1016_j_jpsychires_2025_07_024
crossref_primary_10_3390_cells13151292
crossref_primary_10_3390_cells10081866
crossref_primary_10_1111_mec_17158
crossref_primary_10_3390_ijms21010062
crossref_primary_10_1186_s12610_023_00188_w
crossref_primary_10_3390_genes15121599
crossref_primary_10_3389_fendo_2023_1172481
crossref_primary_10_1007_s00394_024_03460_5
crossref_primary_10_1016_j_aggp_2023_100003
crossref_primary_10_1080_09553002_2019_1704908
crossref_primary_10_1097_YCO_0000000000000525
crossref_primary_10_3390_cancers13225678
crossref_primary_10_3390_ijms26104577
crossref_primary_10_3389_fonc_2025_1555858
crossref_primary_10_1016_j_yexcr_2020_112361
crossref_primary_10_3389_fphar_2023_1269581
crossref_primary_10_1016_j_bbamcr_2020_118845
crossref_primary_10_3390_cells11111787
crossref_primary_10_1007_s00784_023_05265_y
crossref_primary_10_1016_j_resinv_2021_09_003
crossref_primary_10_3389_fendo_2023_1225600
crossref_primary_10_3389_fimmu_2022_998102
crossref_primary_10_1038_s41580_024_00800_5
crossref_primary_10_1016_j_nut_2019_05_002
crossref_primary_10_1002_wrna_1710
crossref_primary_10_1186_s40798_022_00503_1
crossref_primary_10_1111_mec_16967
crossref_primary_10_1016_j_jmb_2024_168672
crossref_primary_10_3389_fped_2024_1358272
crossref_primary_10_1007_s11357_025_01580_2
crossref_primary_10_1016_j_kint_2020_02_034
crossref_primary_10_15420_japsc_2023_26
crossref_primary_10_1097_PAS_0000000000001725
crossref_primary_10_3390_biology12101348
crossref_primary_10_1016_j_ijbiomac_2021_08_095
crossref_primary_10_1016_j_immuni_2025_08_008
crossref_primary_10_1186_s12884_025_07542_y
crossref_primary_10_1016_j_labinv_2022_100059
crossref_primary_10_3390_antiox12030579
crossref_primary_10_3390_ijms232415498
crossref_primary_10_26599_NTM_2022_9130007
crossref_primary_10_3390_genes14030715
crossref_primary_10_1016_j_etap_2024_104607
crossref_primary_10_1007_s12035_021_02623_3
crossref_primary_10_1016_j_dnarep_2024_103774
crossref_primary_10_1161_JAHA_122_026619
crossref_primary_10_3390_antiox12061196
crossref_primary_10_1038_s41467_024_55638_4
crossref_primary_10_1093_nar_gkae732
crossref_primary_10_3390_ijms20020364
crossref_primary_10_1007_s11356_023_28017_7
crossref_primary_10_1016_j_abb_2020_108749
crossref_primary_10_3390_ijms24032717
crossref_primary_10_3389_fnut_2024_1458442
crossref_primary_10_3390_nu17122009
crossref_primary_10_1016_j_biopha_2023_116034
crossref_primary_10_1080_15384101_2023_2287929
crossref_primary_10_1098_rsob_220011
crossref_primary_10_1134_S0006297921120026
crossref_primary_10_1002_jbt_70414
crossref_primary_10_3390_md20100626
crossref_primary_10_1111_mec_15980
crossref_primary_10_3390_ijms25169026
crossref_primary_10_1016_j_mad_2022_111757
crossref_primary_10_1186_s13045_022_01337_w
crossref_primary_10_1089_ars_2021_0074
crossref_primary_10_1016_j_ijheh_2024_114447
crossref_primary_10_3389_fimmu_2023_1139589
crossref_primary_10_3390_jcm10040590
crossref_primary_10_1111_mec_16150
crossref_primary_10_3389_fimmu_2022_1065739
crossref_primary_10_3389_fnbeh_2018_00306
crossref_primary_10_3390_cancers12030558
crossref_primary_10_1038_s41420_023_01792_5
crossref_primary_10_18332_pht_205879
crossref_primary_10_31083_j_fbl2910368
crossref_primary_10_3390_cells10051156
crossref_primary_10_1097_JCN_0000000000001044
crossref_primary_10_1007_s12403_020_00367_4
crossref_primary_10_1007_s11033_024_09238_6
crossref_primary_10_1016_j_biochi_2025_06_001
crossref_primary_10_15252_embj_2021108164
crossref_primary_10_1016_j_bbih_2022_100577
crossref_primary_10_1098_rsos_212012
crossref_primary_10_1007_s12603_023_1912_1
crossref_primary_10_3233_NHA_200096
crossref_primary_10_3389_fonc_2021_707066
crossref_primary_10_3390_genes14030609
crossref_primary_10_3390_cosmetics11050167
crossref_primary_10_3390_life11010060
crossref_primary_10_3389_fgene_2020_630186
crossref_primary_10_1016_j_arr_2025_102833
crossref_primary_10_3390_ani14192839
crossref_primary_10_1111_acel_13530
crossref_primary_10_3389_fpubh_2022_1059248
crossref_primary_10_1016_j_mrgentox_2021_503418
crossref_primary_10_1016_j_bpsgos_2021_07_006
crossref_primary_10_1016_j_phrs_2025_107700
crossref_primary_10_1038_s41598_024_63030_x
crossref_primary_10_3748_wjg_v31_i15_103773
crossref_primary_10_1016_j_jad_2024_09_143
crossref_primary_10_3390_nu14183723
crossref_primary_10_1016_j_arr_2018_07_007
crossref_primary_10_3389_fmed_2022_898293
crossref_primary_10_3390_biomedicines12061182
crossref_primary_10_3390_biom14030263
crossref_primary_10_1016_j_bcp_2024_116393
crossref_primary_10_3390_diabetology6070058
crossref_primary_10_3390_ijms23094990
crossref_primary_10_1111_ggi_14121
crossref_primary_10_1016_j_rvsc_2020_01_008
crossref_primary_10_1155_2021_7501424
crossref_primary_10_1111_1755_0998_13238
crossref_primary_10_1111_acel_13669
crossref_primary_10_3390_ani13142325
crossref_primary_10_3390_antiox12061169
crossref_primary_10_1111_mec_16370
crossref_primary_10_1016_j_ajo_2025_03_027
crossref_primary_10_3390_ijms232416010
crossref_primary_10_1016_j_freeradbiomed_2024_10_299
crossref_primary_10_1038_s41467_025_60391_3
crossref_primary_10_1080_1354750X_2025_2557452
crossref_primary_10_1016_j_bbagrm_2024_195007
crossref_primary_10_1177_0300060519882570
crossref_primary_10_1186_s12979_022_00287_8
crossref_primary_10_1038_s41467_020_19115_y
crossref_primary_10_3389_fphys_2022_936768
crossref_primary_10_1016_j_jnutbio_2024_109747
crossref_primary_10_1038_s42003_024_06464_3
crossref_primary_10_1159_000508497
crossref_primary_10_1093_nar_gkad1209
crossref_primary_10_1186_s12864_025_11209_5
crossref_primary_10_1016_j_nut_2024_112596
crossref_primary_10_1080_01902148_2023_2285061
crossref_primary_10_3390_ijms241411283
crossref_primary_10_3390_cancers16071386
crossref_primary_10_3390_cancers17121936
crossref_primary_10_1016_j_arr_2022_101807
crossref_primary_10_3390_antiox14080933
crossref_primary_10_1016_j_exger_2023_112132
crossref_primary_10_1016_j_snb_2019_03_146
crossref_primary_10_3390_antiox13081016
crossref_primary_10_1016_j_jhep_2023_02_035
crossref_primary_10_3390_antiox13091109
crossref_primary_10_3390_ijms21207441
crossref_primary_10_1016_j_exger_2023_112138
crossref_primary_10_3389_fendo_2023_1179050
crossref_primary_10_1038_s41598_023_35113_8
crossref_primary_10_1016_j_mrgentox_2025_503877
crossref_primary_10_1111_acel_13513
crossref_primary_10_1016_j_neubiorev_2019_12_027
crossref_primary_10_3390_cimb47040273
crossref_primary_10_1016_j_cell_2020_12_028
crossref_primary_10_1016_j_advnut_2023_08_004
crossref_primary_10_3390_cimb46070431
crossref_primary_10_1007_s10522_023_10074_7
crossref_primary_10_1016_j_envpol_2023_123192
crossref_primary_10_1016_j_biopha_2023_114573
crossref_primary_10_3390_nu13030816
crossref_primary_10_1016_j_sleep_2024_08_014
crossref_primary_10_1093_mutage_geaa012
crossref_primary_10_1016_j_tiv_2025_106037
crossref_primary_10_1093_geroni_igae070
crossref_primary_10_18502_sjms_v19i4_16404
crossref_primary_10_1093_carcin_bgaa114
crossref_primary_10_1007_s10592_022_01441_x
crossref_primary_10_1002_dmrr_3374
crossref_primary_10_1007_s00360_024_01541_9
crossref_primary_10_1016_j_arr_2019_100940
crossref_primary_10_1139_cjpp_2021_0143
crossref_primary_10_1016_j_mrgentox_2025_503887
crossref_primary_10_3389_fendo_2022_978747
crossref_primary_10_1080_10406638_2022_2083194
crossref_primary_10_1007_s11010_023_04845_6
crossref_primary_10_3390_antiox10081247
crossref_primary_10_7759_cureus_10794
crossref_primary_10_1007_s11033_023_09087_9
crossref_primary_10_31083_j_jin2309180
crossref_primary_10_1155_2022_1144387
crossref_primary_10_1093_nar_gkaf285
crossref_primary_10_1038_s42003_023_04903_1
crossref_primary_10_3390_ijerph19137810
crossref_primary_10_1530_REP_22_0189
crossref_primary_10_1021_acschemneuro_4c00342
crossref_primary_10_1158_0008_5472_CAN_20_1028
crossref_primary_10_1242_jeb_242164
crossref_primary_10_3390_membranes11120944
crossref_primary_10_1093_plcell_koac122
crossref_primary_10_3390_antiox10111750
crossref_primary_10_1016_j_lfs_2022_121005
crossref_primary_10_3390_molecules27228101
crossref_primary_10_1111_gcb_15305
crossref_primary_10_1016_j_gde_2020_01_005
crossref_primary_10_1089_rej_2021_0045
crossref_primary_10_3390_genes13020343
crossref_primary_10_3390_antiox11112270
crossref_primary_10_1186_s12916_022_02340_1
crossref_primary_10_1002_der2_70028
crossref_primary_10_3390_cancers14071621
crossref_primary_10_1038_s41370_023_00616_z
crossref_primary_10_3390_ijerph17051492
crossref_primary_10_3390_pathogens14010041
crossref_primary_10_1007_s11240_018_1499_1
crossref_primary_10_3389_fneur_2024_1393825
crossref_primary_10_1038_s41594_022_00790_y
crossref_primary_10_1101_cshperspect_a041707
crossref_primary_10_1111_acel_13861
Cites_doi 10.1021/bi002721g
10.1155/2014/671539
10.1371/journal.pbio.0050110
10.1016/j.cell.2009.06.021
10.1046/j.1474-9728.2003.00057.x
10.1007/s12603-011-0029-1
10.1126/science.1170633
10.1038/nrg3246
10.1016/j.celrep.2016.11.071
10.1016/j.dnarep.2010.09.008
10.1038/emboj.2009.355
10.1016/j.dnarep.2012.06.003
10.1093/nar/gkx789
10.1093/emboj/cdg016
10.1038/345458a0
10.1002/em.21820
10.1146/annurev.genet.41.110306.130350
10.1038/12680
10.1101/cshperspect.a016576
10.1038/ng1084
10.4161/cc.11.5.19483
10.1016/j.freeradbiomed.2008.01.007
10.1016/S0960-9822(02)00863-1
10.1038/nrurol.2017.104
10.1038/nature09787
10.1038/ng989
10.1038/35020592
10.4061/2010/805698
10.1083/jcb.200103049
10.1021/bi0347252
10.1242/jcs.039115
10.1186/2041-9414-1-16
10.1038/embor.2011.227
10.1074/jbc.273.33.21203
10.1021/tx970225w
10.1371/journal.pone.0189467
10.1074/jbc.M114.571588
10.1016/j.freeradbiomed.2010.04.036
10.1073/pnas.0804280105
10.1016/j.dnarep.2017.09.007
10.1093/gerona/glr034
10.1046/j.1474-9728.2003.00040.x
10.1002/ijc.25815
10.1101/cshperspect.a012583
10.1371/journal.pone.0174833
10.1021/acs.biochem.7b00295
10.1016/j.celrep.2017.08.020
10.1006/excr.1997.3893
10.1016/j.freeradbiomed.2016.11.030
10.1038/35015598
10.1074/jbc.274.2.962
10.1021/bi049097i
10.1016/j.canlet.2011.12.038
10.1096/fj.02-0851com
10.1158/0008-5472.CAN-12-3125
10.1091/mbc.e05-07-0672
10.1038/nature02118
10.1038/nature05778
10.1093/nar/gkn615
10.1016/S1097-2765(00)80172-0
10.1093/nar/gki273
10.1016/j.mad.2007.02.003
10.1136/oemed-2012-101350
10.1073/pnas.0401263101
10.1021/tx010072j
10.1016/S0140-6736(05)66630-5
10.1038/nature05843
10.1016/j.dnarep.2016.05.022
10.1093/nar/29.6.1285
10.1158/1055-9965.EPI-05-0837
10.1016/j.freeradbiomed.2010.09.006
10.1073/pnas.1413582111
10.1006/excr.2000.4862
10.1038/nrm3289
10.1073/pnas.1615340113
10.1242/jcs.019372
10.18632/aging.100385
10.1016/j.dnarep.2016.05.032
10.1038/sj.emboj.7601277
10.1038/s41598-017-04472-4
10.1128/MCB.21.12.4046-4054.2001
10.1007/s40572-016-0098-8
10.1016/j.arr.2016.05.009
10.1038/nsmb.3319
10.1038/nature13181
10.1016/S0014-5793(99)00748-6
10.4049/jimmunol.1401625
10.1038/ncomms5172
10.1016/S0968-0004(02)02110-2
10.1016/j.mad.2013.12.008
10.1101/cshperspect.a012559
10.1093/nar/29.2.430
10.1158/0008-5472.CAN-05-2336
10.1074/jbc.M113.479055
10.1016/j.toxlet.2014.01.039
10.1074/jbc.M111269200
10.1016/j.dnarep.2004.11.002
10.1371/journal.pone.0019687
10.1128/MCB.24.4.1595-1607.2004
10.1158/0008-5472.CAN-10-1966
10.1016/j.dnarep.2013.04.008
10.18632/oncotarget.20887
10.1016/j.arr.2015.11.006
10.1016/j.dnarep.2013.08.019
10.1074/jbc.M115.658146
10.1016/j.mad.2012.01.005
10.1098/rsbl.2017.0463
10.1371/journal.pone.0110963
10.1007/s11356-013-1748-0
10.1016/S1568-7864(03)00140-X
10.1016/S1470-2045(09)70096-8
10.1111/jgh.13717
10.1016/j.exger.2007.08.005
10.1093/nar/gkt1117
10.1073/pnas.0407162101
10.1164/rccm.201105-0802OC
10.1371/journal.pgen.1000951
10.1371/journal.pgen.1003639
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.mad.2018.03.013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE


AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Zoology
EISSN 1872-6216
EndPage 45
ExternalDocumentID PMC6162185
29604323
10_1016_j_mad_2018_03_013
S0047637418300526
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R33 ES025606
– fundername: NCI NIH HHS
  grantid: R01 CA207342
– fundername: NIEHS NIH HHS
  grantid: R01 ES028242
– fundername: NIEHS NIH HHS
  grantid: R01 ES022944
– fundername: NIGMS NIH HHS
  grantid: R43 GM108187
– fundername: NIGMS NIH HHS
  grantid: R44 GM108187
– fundername: NIEHS NIH HHS
  grantid: R35 ES030396
– fundername: NIEHS NIH HHS
  grantid: R21 ES025606
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29M
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYJJ
ABCQJ
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LX3
M2V
M41
MO0
MOBAO
MS~
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSU
SSZ
T5K
WUQ
X7M
YYP
ZGI
ZXP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c507t-5676a9142a8228d2d349f6040e63c89df10cf942b79488553d17d1002003cea53
ISICitedReferencesCount 384
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456902900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0047-6374
1872-6216
IngestDate Tue Nov 04 01:59:28 EST 2025
Sat Sep 27 23:55:20 EDT 2025
Thu Oct 02 05:32:47 EDT 2025
Thu Apr 03 06:59:57 EDT 2025
Sat Nov 29 06:25:48 EST 2025
Tue Nov 18 22:33:53 EST 2025
Fri Feb 23 02:12:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Telomeres
Oxidative stress
Base excision repair
Oxidative DNA damage
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c507t-5676a9142a8228d2d349f6040e63c89df10cf942b79488553d17d1002003cea53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 29604323
PQID 2020482857
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6162185
proquest_miscellaneous_2834220102
proquest_miscellaneous_2020482857
pubmed_primary_29604323
crossref_primary_10_1016_j_mad_2018_03_013
crossref_citationtrail_10_1016_j_mad_2018_03_013
elsevier_sciencedirect_doi_10_1016_j_mad_2018_03_013
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Mechanisms of ageing and development
PublicationTitleAlternate Mech Ageing Dev
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Harbo, Koelvraa, Serakinci, Bendix (bib0210) 2012; 11
Srivastava, Berg, Prasad, Molina, Beard, Tomkinson, Wilson (bib0525) 1998; 273
Alder, Chen, Lancaster, Danoff, Su, Cogan, Vulto, Xie, Qi, Tuder (bib0030) 2008; 105
Gopalakrishnan, Low, Ting, Srikanth, Slijepcevic, Hande (bib0200) 2010; 1
Lee, Bose, Lee, Opresko, Myong (bib0280) 2017; 45
Zhang, Lin, Funk, Hou (bib0590) 2013; 70
Fleming, Burrows (bib0170) 2017; 107
Bouvard, Baan, Straif, Grosse, Secretan, El Ghissassi, Benbrahim-Tallaa, Guha, Freeman, Galichet (bib0080) 2009; 10
Cattan, Mercier, Gardner, Regnault, Labat, Maki-Jouppila, Nzietchueng, Benetos, Kimura, Aviv (bib0100) 2008; 44
Henle, Han, Tang, Rai, Luo, Linn (bib0230) 1999; 274
Kliment, Oury (bib0250) 2010; 49
de Lange (bib0145) 2009; 326
Armanios, Blackburn (bib0045) 2012; 13
Tuo, Jaruga, Rodriguez, Bohr, Dizdaroglu (bib0545) 2003; 17
Markkanen (bib0325) 2017; 59
Valdes, Andrew, Gardner, Kimura, Oelsner, Cherkas, Aviv, Spector (bib0550) 2005; 366
Amsellem, Gary-Bobo, Marcos, Maitre, Chaar, Validire, Stern, Noureddine, Sapin, Rideau (bib0040) 2011; 184
Hill, Hazra, Izumi, Mitra (bib0235) 2001; 29
Petersen, Saretzki, von Zglinicki (bib0410) 1998; 239
Sahin, Colla, Liesa, Moslehi, Muller, Guo, Cooper, Kotton, Fabian, Walkey (bib0475) 2011; 470
Snetselaar, van Batenburg, van Oosterhout, Kazemier, Roothaan, Peeters, van der Vis, Goldschmeding, Grutters, van Moorsel (bib0515) 2017; 12
Shimizu, Iwai, Hanaoka, Sugasawa (bib0505) 2003; 22
Jurk, Wilson, Passos, Oakley, Correia-Melo, Greaves, Saretzki, Fox, Lawless, Anderson (bib0240) 2014; 2
Kolbanovskiy, Chowdhury, Nadkarni, Broyde, Geacintov, Scicchitano, Shafirovich (bib0260) 2017; 56
d’Adda di Fagagna, Reaper, Clay-Farrace, Fiegler, Carr, Von Zglinicki, Saretzki, Carter, Jackson (bib0130) 2003; 426
Kaul, Cesare, Huschtscha, Neumann, Reddel (bib0245) 2012; 13
Morland, Luna, Gustad, Seeberg, Bjørås (bib0360) 2005; 4
Ahmed, Passos, Birket, Beckmann, Brings, Peters, Birch-Machin, von Zglinicki, Saretzki (bib0020) 2008; 121
Epel, Blackburn, Lin, Dhabhar, Adler, Morrow, Cawthon (bib0160) 2004; 101
Finley, Reid, Odze, Sanchez, Galipeau, Li, Self, Gollahon, Blount, Rabinovitch (bib0165) 2006; 15
O’Donovan, Pantell, Puterman, Dhabhar, Blackburn, Yaffe, Cawthon, Opresko, Hsueh, Satterfield (bib0370) 2011; 6
Rulten, Caldecott (bib0470) 2013; 12
Nzietchueng, Elfarra, Nloga, Labat, Carteaux, Maureira, Lacolley, Villemot, Benetos (bib0365) 2011; 15
Zhang, Rane, Dai, Shanmugam, Arfuso, Samy, Lai, Kappei, Kumar, Sethi (bib0585) 2016; 25
Chakraborty, Wakamiya, Venkova-Canova, Pandita, Aguilera-Aguirre, Sarker, Singh, Hosoki, Wood, Sharma (bib0105) 2015; 290
Askree, Yehuda, Smolikov, Gurevich, Hawk, Coker, Krauskopf, Kupiec, McEachern (bib0060) 2004; 101
Larson, Iams, Drummond (bib0275) 2003; 2
Aeby, Ahmed, Redon, Simanis, Lingner (bib0010) 2016; 17
Lonkar, Dedon (bib0295) 2011; 128
Aseervatham, Sivasudha, Jeyadevi, Arul Ananth (bib0055) 2013; 20
Rey, Quintavalle, Burmeister, Calabrese, Schlageter, Quagliata, Cathomas, Diebold, Molinolo, Heim (bib0435) 2017; 32
Ame, Fouquerel, Gauthier, Biard, Boussin, Dantzer, de Murcia, Schreiber (bib0035) 2009; 122
Rhee, Ghosh, Lu, Bohr, Liu (bib0440) 2011; 10
Vallabhaneni, O’Callaghan, Sidorova, Liu (bib0555) 2013; 9
Risques, Lai, Himmetoglu, Ebaee, Li, Feng, Bronner, Al-Lahham, Kowdley, Lindor (bib0455) 2011; 71
Oikawa, Tada-Oikawa, Kawanishi (bib0385) 2001; 40
Opresko, Fan, Danzy, Wilson, Bohr (bib0390) 2005; 33
Lee, Hills, Conomos, Stutz, Dagg, Lau, Reddel, Pickett (bib0285) 2014; 42
Sfeir, Kosiyatrakul, Hockemeyer, MacRae, Karlseder, Schildkraut, de Lange (bib0500) 2009; 138
Aguilera-Aguirre, Bacsi, Radak, Hazra, Mitra, Sur, Brasier, Ba, Boldogh (bib0015) 2014; 193
Wallace (bib0570) 2013; 54
Mazurek, Berardini, Fishel (bib0335) 2002; 277
Graham, Meeker (bib0205) 2017; 14
Sobol, Prasad, Evenski, Baker, Yang, Horton, Wilson (bib0520) 2000; 405
Poonepalli, Balakrishnan, Khaw, Low, Jayapal, Bhattacharjee, Akira, Balajee, Hande (bib0420) 2005; 65
Krokan, Bjoras (bib0270) 2013; 5
Gad, Koolmeister, Jemth, Eshtad, Jacques, Strom, Svensson, Schultz, Lundback, Einarsdottir (bib0190) 2014; 508
Malinin, West, Byzova (bib0315) 2011; 3
Rudd, Valerie, Helleday (bib0465) 2016; 44
Richter, Saretzki, Nelson, Melcher, Olijslagers, von Zglinicki (bib0445) 2007; 128
Campisi, Andersen, Kapahi, Melov (bib0090) 2011; 21
Doksani, de Lange (bib0150) 2014; 6
Coluzzi, Colamartino, Cozzi, Leone, Meneghini, O’Callaghan, Sgura (bib0120) 2014; 9
Lu, Liu (bib0300) 2010; 29
Cannan, Tsang, Wallace, Pederson (bib0095) 2014; 289
McNulty, Jerkovic, Bolton, Basu (bib0340) 1998; 11
Zhou, Liu, Fleming, Burrows, Wallace (bib0600) 2013; 288
Cadet, Wagner (bib0085) 2013; 5
Harley, Futcher, Greider (bib0215) 1990; 345
von Zglinicki (bib0565) 2002; 27
Wallace, Murphy, Sweasy (bib0575) 2012; 327
Zhou, Chan, Lambele, Yusufzai, Stumpff, Opresko, Thali, Wallace (bib0595) 2017; 20
Henderson, Delaney, Muller, Neeley, Tannenbaum, Burrows, Essigmann (bib0225) 2003; 42
Hegde, Mantha, Hazra, Bhakat, Mitra, Szczesny (bib0220) 2012; 133
Opresko, Shay (bib0395) 2017; 33
Poljsak, Fink (bib0415) 2014; 2014
Artandi, Chang, Lee, Alson, Gottlieb, Chin, DePinho (bib0050) 2000; 406
d’Adda di Fagagna, Hande, Tong, Lansdorp, Wang, Jackson (bib0125) 1999; 23
Maga, Villani, Crespan, Wimmer, Ferrari, Bertocci, Hubscher (bib0310) 2007; 447
Baird, Rowson, Wynford-Thomas, Kipling (bib0065) 2003; 33
Fouquerel, Lormand, Bose, Lee, Kim, Li, Sobol, Freudenthal, Myong, Opresko (bib0180) 2016; 23
Reichert, Stier (bib0425) 2017; 13
Miller, Balakrishnan, Buncher, Opresko, Bambara (bib0350) 2012; 11
Shimizu, Uchimura, Dohmae, Saitoh, Hanaoka, Sugasawa (bib0510) 2010; 2010
Gomez, Wu, Schreiber, Dunlap, Dantzer, Wang, Liu (bib0195) 2006; 17
Aikata, Takaishi, Kawakami, Takahashi, Kitamoto, Nakanishi, Nakamura, Shimamoto, Kajiyama, Ide (bib0025) 2000; 256
Wang, Rhee, Lu, Bohr, Zhou, Vallabhaneni, de Souza-Pinto, Liu (bib0580) 2010; 6
Letsolo, Jones, Rowson, Grimstead, Keith, Jenkins, Baird (bib0290) 2017; 12
Ebrahimkhani, Daneshmand, Mazumder, Allocca, Calvo, Abolhassani, Jhun, Muthupalani, Ayata, Samson (bib0155) 2014; 111
Aamann, Hvitby, Popuri, Muftuoglu, Lemminger, Skeby, Keijzers, Ahn, Bjørås, Bohr (bib0005) 2014; 135
Passos, Saretzki, Ahmed, Nelson, Richter, Peters, Wappler, Birket, Harold, Schaeuble (bib0405) 2007; 5
Oikawa, Kawanishi (bib0380) 1999; 453
Beneke, Cohausz, Malanga, Boukamp, Althaus, Burkle (bib0075) 2008; 36
D’Errico, Parlanti, Teson, de Jesus, Degan, Calcagnile, Jaruga, Bjørås, Crescenzi, Pedrini (bib0135) 2006; 25
Fouquerel, Parikh, Opresko (bib0185) 2016
Chang, Ong, LaGory, Kraft, Giaccia, Wu, Blau (bib0110) 2016; 113
Melis, Kuiper, Zwart, Robinson, Pennings, van Oostrom, Luijten, van Steeg (bib0345) 2013; 12
Mao, Gu, Chen, Yu, He (bib0320) 2017; 8
Richter, von Zglinicki (bib0450) 2007; 42
Vidal, Hickson, Boiteux, Radicella (bib0560) 2001; 29
Rolseth, Luna, Olsen, Suganthan, Scheffler, Neurauter, Esbensen, Kusnierczyk, Hildrestrand, Graupner (bib0460) 2017; 7
Klungland, Höss, Gunz, Constantinou, Clarkson, Doetsch, Bolton, Wood, Lindahl (bib0255) 1999; 3
Palm, de Lange (bib0400) 2008; 42
Kovtun, Liu, Bjoras, Klungland, Wilson, McMurray (bib0265) 2007; 447
Martens, Nawrot (bib0330) 2016; 3
Mokkapati, Wiederhold, Hazra, Mitra (bib0355) 2004; 43
Baltazar, Dinis-Oliveira, de Lourdes Bastos, Tsatsakis, Duarte, Carvalho (bib0070) 2014; 230
Reuter, Gupta, Chaturvedi, Aggarwal (bib0430) 2010; 49
Saretzki, Murphy, von Zglinicki (bib0495) 2003; 2
Sanders, Iannaccone, Boudreau, Conley, Opresko, Hsueh, Cummings, Cawthon, Harris, Nalls (bib0490) 2011; 66
Stout, Blasco (bib0530) 2013; 73
Dantzer, Giraud-Panis, Jaco, Ame, Schultz, Blasco, Koering, Gilson, Menissier-de Murcia, de Murcia (bib0140) 2004; 24
Tong, Hande, Lansdorp, Wang (bib0540) 2001; 21
Sale, Lehmann, Woodgate (bib0480) 2012; 13
Forsyth, Evans, Shay, Wright (bib0175) 2003; 2
Samper, Goytisolo, Menissier-de Murcia, Gonzalez-Suarez, Cigudosa, de Murcia, Blasco (bib0485) 2001; 154
Tan, Nakajima, Wang, Sun, Xue, Wu, Hellwig, Zeng, Yates, Smithgall (bib0535) 2017; 818–831
O’Sullivan, Bronner, Brentnall, Finley, Shen, Emerson, Emond, Gollahon, Moskovitz, Crispin (bib0375) 2002; 32
Luo, Muller, Rachlin, Burrows (bib0305) 2001; 14
Colussi, Parlanti, Degan, Aquilina, Barnes, Macpherson, Karran, Crescenzi, Dogliotti, Bignami (bib0115) 2002; 12
Rulten (10.1016/j.mad.2018.03.013_bib0470) 2013; 12
Lee (10.1016/j.mad.2018.03.013_bib0280) 2017; 45
Lee (10.1016/j.mad.2018.03.013_bib0285) 2014; 42
Nzietchueng (10.1016/j.mad.2018.03.013_bib0365) 2011; 15
Lonkar (10.1016/j.mad.2018.03.013_bib0295) 2011; 128
Poonepalli (10.1016/j.mad.2018.03.013_bib0420) 2005; 65
Aguilera-Aguirre (10.1016/j.mad.2018.03.013_bib0015) 2014; 193
Gad (10.1016/j.mad.2018.03.013_bib0190) 2014; 508
Finley (10.1016/j.mad.2018.03.013_bib0165) 2006; 15
Rolseth (10.1016/j.mad.2018.03.013_bib0460) 2017; 7
Zhang (10.1016/j.mad.2018.03.013_bib0590) 2013; 70
Wang (10.1016/j.mad.2018.03.013_bib0580) 2010; 6
Dantzer (10.1016/j.mad.2018.03.013_bib0140) 2004; 24
Klungland (10.1016/j.mad.2018.03.013_bib0255) 1999; 3
Tuo (10.1016/j.mad.2018.03.013_bib0545) 2003; 17
de Lange (10.1016/j.mad.2018.03.013_bib0145) 2009; 326
Harbo (10.1016/j.mad.2018.03.013_bib0210) 2012; 11
Ebrahimkhani (10.1016/j.mad.2018.03.013_bib0155) 2014; 111
Ahmed (10.1016/j.mad.2018.03.013_bib0020) 2008; 121
Kaul (10.1016/j.mad.2018.03.013_bib0245) 2012; 13
Harley (10.1016/j.mad.2018.03.013_bib0215) 1990; 345
Fouquerel (10.1016/j.mad.2018.03.013_bib0185) 2016
Oikawa (10.1016/j.mad.2018.03.013_bib0380) 1999; 453
d’Adda di Fagagna (10.1016/j.mad.2018.03.013_bib0125) 1999; 23
Reichert (10.1016/j.mad.2018.03.013_bib0425) 2017; 13
Bouvard (10.1016/j.mad.2018.03.013_bib0080) 2009; 10
D’Errico (10.1016/j.mad.2018.03.013_bib0135) 2006; 25
Fleming (10.1016/j.mad.2018.03.013_bib0170) 2017; 107
Kliment (10.1016/j.mad.2018.03.013_bib0250) 2010; 49
Zhou (10.1016/j.mad.2018.03.013_bib0595) 2017; 20
Ame (10.1016/j.mad.2018.03.013_bib0035) 2009; 122
Letsolo (10.1016/j.mad.2018.03.013_bib0290) 2017; 12
Poljsak (10.1016/j.mad.2018.03.013_bib0415) 2014; 2014
Colussi (10.1016/j.mad.2018.03.013_bib0115) 2002; 12
Lu (10.1016/j.mad.2018.03.013_bib0300) 2010; 29
Henle (10.1016/j.mad.2018.03.013_bib0230) 1999; 274
Beneke (10.1016/j.mad.2018.03.013_bib0075) 2008; 36
Wallace (10.1016/j.mad.2018.03.013_bib0570) 2013; 54
Chang (10.1016/j.mad.2018.03.013_bib0110) 2016; 113
Forsyth (10.1016/j.mad.2018.03.013_bib0175) 2003; 2
Krokan (10.1016/j.mad.2018.03.013_bib0270) 2013; 5
Tong (10.1016/j.mad.2018.03.013_bib0540) 2001; 21
Sahin (10.1016/j.mad.2018.03.013_bib0475) 2011; 470
Malinin (10.1016/j.mad.2018.03.013_bib0315) 2011; 3
Markkanen (10.1016/j.mad.2018.03.013_bib0325) 2017; 59
Shimizu (10.1016/j.mad.2018.03.013_bib0510) 2010; 2010
Henderson (10.1016/j.mad.2018.03.013_bib0225) 2003; 42
Morland (10.1016/j.mad.2018.03.013_bib0360) 2005; 4
Cadet (10.1016/j.mad.2018.03.013_bib0085) 2013; 5
Baird (10.1016/j.mad.2018.03.013_bib0065) 2003; 33
Luo (10.1016/j.mad.2018.03.013_bib0305) 2001; 14
Srivastava (10.1016/j.mad.2018.03.013_bib0525) 1998; 273
Wallace (10.1016/j.mad.2018.03.013_bib0575) 2012; 327
Sfeir (10.1016/j.mad.2018.03.013_bib0500) 2009; 138
Kovtun (10.1016/j.mad.2018.03.013_bib0265) 2007; 447
Kolbanovskiy (10.1016/j.mad.2018.03.013_bib0260) 2017; 56
Petersen (10.1016/j.mad.2018.03.013_bib0410) 1998; 239
Rudd (10.1016/j.mad.2018.03.013_bib0465) 2016; 44
Larson (10.1016/j.mad.2018.03.013_bib0275) 2003; 2
Reuter (10.1016/j.mad.2018.03.013_bib0430) 2010; 49
Alder (10.1016/j.mad.2018.03.013_bib0030) 2008; 105
Askree (10.1016/j.mad.2018.03.013_bib0060) 2004; 101
Snetselaar (10.1016/j.mad.2018.03.013_bib0515) 2017; 12
Hill (10.1016/j.mad.2018.03.013_bib0235) 2001; 29
Mazurek (10.1016/j.mad.2018.03.013_bib0335) 2002; 277
Coluzzi (10.1016/j.mad.2018.03.013_bib0120) 2014; 9
Sanders (10.1016/j.mad.2018.03.013_bib0490) 2011; 66
Sobol (10.1016/j.mad.2018.03.013_bib0520) 2000; 405
Aeby (10.1016/j.mad.2018.03.013_bib0010) 2016; 17
Saretzki (10.1016/j.mad.2018.03.013_bib0495) 2003; 2
Shimizu (10.1016/j.mad.2018.03.013_bib0505) 2003; 22
Zhou (10.1016/j.mad.2018.03.013_bib0600) 2013; 288
Aikata (10.1016/j.mad.2018.03.013_bib0025) 2000; 256
Chakraborty (10.1016/j.mad.2018.03.013_bib0105) 2015; 290
Gomez (10.1016/j.mad.2018.03.013_bib0195) 2006; 17
Martens (10.1016/j.mad.2018.03.013_bib0330) 2016; 3
Vallabhaneni (10.1016/j.mad.2018.03.013_bib0555) 2013; 9
Doksani (10.1016/j.mad.2018.03.013_bib0150) 2014; 6
Mokkapati (10.1016/j.mad.2018.03.013_bib0355) 2004; 43
Gopalakrishnan (10.1016/j.mad.2018.03.013_bib0200) 2010; 1
Aseervatham (10.1016/j.mad.2018.03.013_bib0055) 2013; 20
Oikawa (10.1016/j.mad.2018.03.013_bib0385) 2001; 40
O’Donovan (10.1016/j.mad.2018.03.013_bib0370) 2011; 6
Campisi (10.1016/j.mad.2018.03.013_bib0090) 2011; 21
Richter (10.1016/j.mad.2018.03.013_bib0445) 2007; 128
Rey (10.1016/j.mad.2018.03.013_bib0435) 2017; 32
Aamann (10.1016/j.mad.2018.03.013_bib0005) 2014; 135
Artandi (10.1016/j.mad.2018.03.013_bib0050) 2000; 406
Miller (10.1016/j.mad.2018.03.013_bib0350) 2012; 11
Graham (10.1016/j.mad.2018.03.013_bib0205) 2017; 14
von Zglinicki (10.1016/j.mad.2018.03.013_bib0565) 2002; 27
O’Sullivan (10.1016/j.mad.2018.03.013_bib0375) 2002; 32
Opresko (10.1016/j.mad.2018.03.013_bib0390) 2005; 33
Cannan (10.1016/j.mad.2018.03.013_bib0095) 2014; 289
d’Adda di Fagagna (10.1016/j.mad.2018.03.013_bib0130) 2003; 426
Richter (10.1016/j.mad.2018.03.013_bib0450) 2007; 42
Cattan (10.1016/j.mad.2018.03.013_bib0100) 2008; 44
McNulty (10.1016/j.mad.2018.03.013_bib0340) 1998; 11
Jurk (10.1016/j.mad.2018.03.013_bib0240) 2014; 2
Palm (10.1016/j.mad.2018.03.013_bib0400) 2008; 42
Rhee (10.1016/j.mad.2018.03.013_bib0440) 2011; 10
Fouquerel (10.1016/j.mad.2018.03.013_bib0180) 2016; 23
Armanios (10.1016/j.mad.2018.03.013_bib0045) 2012; 13
Valdes (10.1016/j.mad.2018.03.013_bib0550) 2005; 366
Zhang (10.1016/j.mad.2018.03.013_bib0585) 2016; 25
Mao (10.1016/j.mad.2018.03.013_bib0320) 2017; 8
Epel (10.1016/j.mad.2018.03.013_bib0160) 2004; 101
Samper (10.1016/j.mad.2018.03.013_bib0485) 2001; 154
Stout (10.1016/j.mad.2018.03.013_bib0530) 2013; 73
Hegde (10.1016/j.mad.2018.03.013_bib0220) 2012; 133
Melis (10.1016/j.mad.2018.03.013_bib0345) 2013; 12
Opresko (10.1016/j.mad.2018.03.013_bib0395) 2017; 33
Passos (10.1016/j.mad.2018.03.013_bib0405) 2007; 5
Tan (10.1016/j.mad.2018.03.013_bib0535) 2017; 818–831
Risques (10.1016/j.mad.2018.03.013_bib0455) 2011; 71
Baltazar (10.1016/j.mad.2018.03.013_bib0070) 2014; 230
Amsellem (10.1016/j.mad.2018.03.013_bib0040) 2011; 184
Maga (10.1016/j.mad.2018.03.013_bib0310) 2007; 447
Sale (10.1016/j.mad.2018.03.013_bib0480) 2012; 13
Vidal (10.1016/j.mad.2018.03.013_bib0560) 2001; 29
References_xml – volume: 135
  start-page: 1
  year: 2014
  end-page: 14
  ident: bib0005
  article-title: Cockayne syndrome group B protein stimulates NEIL2 DNA glycosylase activity
  publication-title: Mech. Ageing Dev.
– volume: 405
  start-page: 807
  year: 2000
  end-page: 810
  ident: bib0520
  article-title: The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity
  publication-title: Nature
– volume: 290
  start-page: 24636
  year: 2015
  end-page: 24648
  ident: bib0105
  article-title: Neil2-null mice accumulate oxidized DNA bases in the transcriptionally active sequences of the genome and are susceptible to innate inflammation
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: e19687
  year: 2011
  ident: bib0370
  article-title: Cumulative inflammatory load is associated with short leukocyte telomere length in the health, aging and body composition study
  publication-title: PLoS One
– volume: 256
  start-page: 578
  year: 2000
  end-page: 582
  ident: bib0025
  article-title: Telomere reduction in human liver tissues with age and chronic inflammation
  publication-title: Exp. Cell. Res.
– volume: 4
  start-page: 381
  year: 2005
  end-page: 387
  ident: bib0360
  article-title: Product inhibition and magnesium modulate the dual reaction mode of hOgg1
  publication-title: DNA Repair (Amst)
– volume: 818–831
  start-page: e815
  year: 2017
  ident: bib0535
  article-title: Nek7 protects telomeres from oxidative DNA damage by phosphorylation and stabilization of TRF1
  publication-title: Mol. Cell
– volume: 49
  start-page: 707
  year: 2010
  end-page: 717
  ident: bib0250
  article-title: Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis
  publication-title: Free Radic. Biol. Med.
– volume: 447
  start-page: 447
  year: 2007
  end-page: 452
  ident: bib0265
  article-title: OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells
  publication-title: Nature
– volume: 406
  start-page: 641
  year: 2000
  end-page: 645
  ident: bib0050
  article-title: Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice
  publication-title: Nature
– volume: 15
  start-page: 153
  year: 2011
  end-page: 156
  ident: bib0365
  article-title: Telomere length in vascular tissues from patients with atherosclerotic disease
  publication-title: J. Nutr. Health Aging
– volume: 121
  start-page: 1046
  year: 2008
  end-page: 1053
  ident: bib0020
  article-title: Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress
  publication-title: J. Cell. Sci.
– volume: 508
  start-page: 215
  year: 2014
  end-page: 221
  ident: bib0190
  article-title: MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool
  publication-title: Nature
– volume: 44
  start-page: 1592
  year: 2008
  end-page: 1598
  ident: bib0100
  article-title: Chronic oxidative stress induces a tissue-specific reduction in telomere length in CAST/Ei mice
  publication-title: Free Radic. Biol. Med.
– volume: 15
  start-page: 1451
  year: 2006
  end-page: 1457
  ident: bib0165
  article-title: Chromosomal instability in Barrett’s esophagus is related to telomere shortening
  publication-title: Cancer Epidemiol. Biomarkers Prev.
– volume: 29
  start-page: 430
  year: 2001
  end-page: 438
  ident: bib0235
  article-title: Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair
  publication-title: Nucleic Acids Res.
– volume: 277
  start-page: 8260
  year: 2002
  end-page: 8266
  ident: bib0335
  article-title: Activation of human MutS homologs by 8-oxo-guanine DNA damage
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: e0174833
  year: 2017
  ident: bib0290
  article-title: Extensive telomere erosion is consistent with localised clonal expansions in Barrett’s metaplasia
  publication-title: PLoS One
– volume: 13
  start-page: 693
  year: 2012
  end-page: 704
  ident: bib0045
  article-title: The telomere syndromes
  publication-title: Nat. Rev. Genet.
– volume: 12
  start-page: 912
  year: 2002
  end-page: 918
  ident: bib0115
  article-title: The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool
  publication-title: Curr. Biol.
– volume: 20
  start-page: 2044
  year: 2017
  end-page: 2056
  ident: bib0595
  article-title: NEIL3 repairs telomere damage during S phase to secure chromosome segregation at mitosis
  publication-title: Cell Rep.
– volume: 2
  start-page: 1199
  year: 2003
  end-page: 1210
  ident: bib0275
  article-title: Strand-specific processing of 8-oxoguanine by the human mismatch repair pathway: inefficient removal of 8-oxoguanine paired with adenine or cytosine
  publication-title: DNA Repair (Amst)
– volume: 23
  start-page: 1092
  year: 2016
  end-page: 1100
  ident: bib0180
  article-title: Oxidative guanine base damage regulates human telomerase activity
  publication-title: Nat. Struct. Mol. Biol.
– volume: 2010
  year: 2010
  ident: bib0510
  article-title: Stimulation of DNA glycosylase activities by XPC protein complex: roles of protein-protein interactions
  publication-title: J. Nucleic Acids
– volume: 11
  start-page: 666
  year: 1998
  end-page: 673
  ident: bib0340
  article-title: Replication inhibition and miscoding properties of DNA templates containing a site-specific cis-thymine glycol or urea residue
  publication-title: Chem. Res. Toxicol.
– volume: 154
  start-page: 49
  year: 2001
  end-page: 60
  ident: bib0485
  article-title: Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase-deficient mice and primary cells despite increased chromosomal instability
  publication-title: J. Cell Biol.
– volume: 274
  start-page: 962
  year: 1999
  end-page: 971
  ident: bib0230
  article-title: Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications
  publication-title: J. Biol. Chem.
– volume: 128
  start-page: 1999
  year: 2011
  end-page: 2009
  ident: bib0295
  article-title: Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates
  publication-title: Int. J. Cancer
– volume: 21
  start-page: 354
  year: 2011
  end-page: 359
  ident: bib0090
  article-title: Cellular senescence: a link between cancer and age-related degenerative disease?
  publication-title: Semin Cancer Biol.
– volume: 32
  start-page: 280
  year: 2002
  end-page: 284
  ident: bib0375
  article-title: Chromosomal instability in ulcerative colitis is related to telomere shortening
  publication-title: Nat. Genet.
– volume: 17
  start-page: 1686
  year: 2006
  end-page: 1696
  ident: bib0195
  article-title: PARP1 Is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres
  publication-title: Mol. Biol. Cell
– volume: 9
  start-page: e1003639
  year: 2013
  ident: bib0555
  article-title: Defective repair of oxidative base lesions by the DNA glycosylase Nth1 associates with multiple telomere defects
  publication-title: PLoS Genet.
– volume: 13
  year: 2017
  ident: bib0425
  article-title: Does oxidative stress shorten telomeres in vivo? A review
  publication-title: Biol. Lett.
– volume: 17
  start-page: 3107
  year: 2016
  end-page: 3114
  ident: bib0010
  article-title: Peroxiredoxin 1 protects telomeres from oxidative damage and preserves telomeric DNA for extension by telomerase
  publication-title: Cell. Rep.
– volume: 42
  start-page: 301
  year: 2008
  end-page: 334
  ident: bib0400
  article-title: How shelterin protects mammalian telomeres
  publication-title: Annu Rev. Genet.
– volume: 65
  start-page: 10977
  year: 2005
  end-page: 10983
  ident: bib0420
  article-title: Lack of poly(ADP-ribose) polymerase-1 gene product enhances cellular sensitivity to arsenite
  publication-title: Cancer Res.
– volume: 42
  start-page: 9257
  year: 2003
  end-page: 9262
  ident: bib0225
  article-title: The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo
  publication-title: Biochemistry
– volume: 44
  start-page: 193
  year: 2016
  end-page: 204
  ident: bib0465
  article-title: Pathways controlling dNTP pools to maintain genome stability
  publication-title: DNA Repair (Amst)
– volume: 29
  start-page: 398
  year: 2010
  end-page: 409
  ident: bib0300
  article-title: Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast
  publication-title: EMBO J.
– volume: 9
  start-page: e110963
  year: 2014
  ident: bib0120
  article-title: Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells
  publication-title: PLoS One
– volume: 40
  start-page: 4763
  year: 2001
  end-page: 4768
  ident: bib0385
  article-title: Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening
  publication-title: Biochemistry
– volume: 273
  start-page: 21203
  year: 1998
  end-page: 21209
  ident: bib0525
  article-title: Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 4046
  year: 2001
  end-page: 4054
  ident: bib0540
  article-title: DNA strand break-sensing molecule poly(ADP-Ribose) polymerase cooperates with p53 in telomere function, chromosome stability, and tumor suppression
  publication-title: Mol. Cell Biol.
– volume: 10
  start-page: 34
  year: 2011
  end-page: 44
  ident: bib0440
  article-title: Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1
  publication-title: DNA Repair (Amst)
– volume: 8
  start-page: 81649
  year: 2017
  end-page: 81661
  ident: bib0320
  article-title: Oxidative stress-induced diseases and tea polyphenols
  publication-title: Oncotarget
– volume: 2
  start-page: 141
  year: 2003
  end-page: 143
  ident: bib0495
  article-title: MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress
  publication-title: Aging Cell
– volume: 54
  start-page: 691
  year: 2013
  end-page: 704
  ident: bib0570
  article-title: DNA glycosylases search for and remove oxidized DNA bases
  publication-title: Environ. Mol. Mutagen.
– volume: 3
  start-page: 258
  year: 2016
  end-page: 269
  ident: bib0330
  article-title: Air pollution stress and the aging phenotype: the telomere connection
  publication-title: Curr. Environ. Health Rep.
– volume: 230
  start-page: 85
  year: 2014
  end-page: 103
  ident: bib0070
  article-title: Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases--a mechanistic approach
  publication-title: Toxicol. Lett.
– volume: 24
  start-page: 1595
  year: 2004
  end-page: 1607
  ident: bib0140
  article-title: Functional interaction between poly(ADP-Ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2
  publication-title: Mol. Cell Biol.
– volume: 12
  start-page: 558
  year: 2013
  end-page: 567
  ident: bib0470
  article-title: DNA strand break repair and neurodegeneration
  publication-title: DNA Repair (Amst)
– volume: 5
  year: 2013
  ident: bib0085
  article-title: DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation
  publication-title: Cold Spring Harb. Perspect Biol.
– volume: 33
  start-page: 52
  year: 2017
  end-page: 66
  ident: bib0395
  article-title: Telomere-associated aging disorders
  publication-title: Ageing Res. Rev.
– volume: 7
  start-page: 4384
  year: 2017
  ident: bib0460
  article-title: No cancer predisposition or increased spontaneous mutation frequencies in NEIL DNA glycosylases-deficient mice
  publication-title: Sci. Rep.
– volume: 12
  start-page: 1081
  year: 2013
  end-page: 1086
  ident: bib0345
  article-title: Slow accumulation of mutations in Xpc-/- mice upon induction of oxidative stress
  publication-title: DNA Repair (Amst)
– volume: 23
  start-page: 76
  year: 1999
  end-page: 80
  ident: bib0125
  article-title: Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability
  publication-title: Nat. Genet.
– volume: 36
  start-page: 6309
  year: 2008
  end-page: 6317
  ident: bib0075
  article-title: Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1
  publication-title: Nucleic Acids Res.
– volume: 59
  start-page: 82
  year: 2017
  end-page: 105
  ident: bib0325
  article-title: Not breathing is not an option: how to deal with oxidative DNA damage
  publication-title: DNA Repair (Amst)
– volume: 27
  start-page: 339
  year: 2002
  end-page: 344
  ident: bib0565
  article-title: Oxidative stress shortens telomeres
  publication-title: Trends Biochem. Sci.
– volume: 1
  start-page: 16
  year: 2010
  ident: bib0200
  article-title: Hydrogen peroxide induced genomic instability in nucleotide excision repair-deficient lymphoblastoid cells
  publication-title: Genome Integr.
– volume: 22
  start-page: 164
  year: 2003
  end-page: 173
  ident: bib0505
  article-title: Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase
  publication-title: EMBO J.
– volume: 101
  start-page: 8658
  year: 2004
  end-page: 8663
  ident: bib0060
  article-title: A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 3
  start-page: 33
  year: 1999
  end-page: 42
  ident: bib0255
  article-title: Base excision repair of oxidative DNA damage activated by XPG protein
  publication-title: Mol. Cell
– volume: 42
  start-page: 1733
  year: 2014
  end-page: 1746
  ident: bib0285
  article-title: Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes
  publication-title: Nucleic Acids Res.
– volume: 122
  start-page: 1990
  year: 2009
  end-page: 2002
  ident: bib0035
  article-title: Radiation-induced mitotic catastrophe in PARG-deficient cells
  publication-title: J. Cell. Sci.
– volume: 25
  start-page: 4305
  year: 2006
  end-page: 4315
  ident: bib0135
  article-title: New functions of XPC in the protection of human skin cells from oxidative damage
  publication-title: EMBO J.
– year: 2016
  ident: bib0185
  article-title: DNA damage processing at telomeres: the ends justify the means
  publication-title: DNA Repair (Amst)
– volume: 2014
  start-page: 671539
  year: 2014
  ident: bib0415
  article-title: The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution
  publication-title: Oxid. Med. Cell Longev.
– volume: 33
  start-page: 203
  year: 2003
  end-page: 207
  ident: bib0065
  article-title: Extensive allelic variation and ultrashort telomeres in senescent human cells
  publication-title: Nat. Genet.
– volume: 14
  start-page: 927
  year: 2001
  end-page: 938
  ident: bib0305
  article-title: Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model
  publication-title: Chem. Res. Toxicol.
– volume: 3
  start-page: 906
  year: 2011
  end-page: 910
  ident: bib0315
  article-title: Oxidation as "the stress of life"
  publication-title: Aging (Albany NY)
– volume: 73
  start-page: 1844
  year: 2013
  end-page: 1854
  ident: bib0530
  article-title: Telomere length and telomerase activity impact the UV sensitivity syndrome xeroderma pigmentosum C
  publication-title: Cancer Res.
– volume: 101
  start-page: 17312
  year: 2004
  end-page: 17315
  ident: bib0160
  article-title: Accelerated telomere shortening in response to life stress
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 5
  start-page: e110
  year: 2007
  ident: bib0405
  article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence
  publication-title: PLoS Biol.
– volume: 32
  start-page: 1480
  year: 2017
  end-page: 1486
  ident: bib0435
  article-title: Liver damage and senescence increases in patients developing hepatocellular carcinoma
  publication-title: J. Gastroenterol. Hepatol.
– volume: 6
  start-page: a016576
  year: 2014
  ident: bib0150
  article-title: The role of double-strand break repair pathways at functional and dysfunctional telomeres
  publication-title: Cold Spring Harb. Perspect Biol.
– volume: 70
  start-page: 743
  year: 2013
  end-page: 749
  ident: bib0590
  article-title: Environmental and occupational exposure to chemicals and telomere length in human studies
  publication-title: Occup. Environ. Med.
– volume: 326
  start-page: 948
  year: 2009
  end-page: 952
  ident: bib0145
  article-title: How telomeres solve the end-protection problem
  publication-title: Science
– volume: 2
  start-page: 235
  year: 2003
  end-page: 243
  ident: bib0175
  article-title: Developmental differences in the immortalization of lung fibroblasts by telomerase
  publication-title: Aging Cell
– volume: 45
  start-page: 11752
  year: 2017
  end-page: 11765
  ident: bib0280
  article-title: Molecular mechanisms by which oxidative DNA damage promotes telomerase activity
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 321
  year: 2009
  end-page: 322
  ident: bib0080
  article-title: A review of human carcinogens--Part B: biological agents
  publication-title: Lancet Oncol.
– volume: 33
  start-page: 1230
  year: 2005
  end-page: 1239
  ident: bib0390
  article-title: Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2
  publication-title: Nucleic Acids Res.
– volume: 128
  start-page: 340
  year: 2007
  end-page: 345
  ident: bib0445
  article-title: TRF2 overexpression diminishes repair of telomeric single-strand breaks and accelerates telomere shortening in human fibroblasts
  publication-title: Mech. Ageing Dev.
– volume: 288
  start-page: 27263
  year: 2013
  end-page: 27272
  ident: bib0600
  article-title: Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context
  publication-title: J. Biol. Chem.
– volume: 107
  start-page: 35
  year: 2017
  end-page: 52
  ident: bib0170
  article-title: Formation and processing of DNA damage substrates for the hNEIL enzymes
  publication-title: Free Radic. Biol. Med.
– volume: 345
  start-page: 458
  year: 1990
  end-page: 460
  ident: bib0215
  article-title: Telomeres shorten during ageing of human fibroblasts
  publication-title: Nature
– volume: 366
  start-page: 662
  year: 2005
  end-page: 664
  ident: bib0550
  article-title: Obesity, cigarette smoking, and telomere length in women
  publication-title: Lancet
– volume: 56
  start-page: 3008
  year: 2017
  end-page: 3018
  ident: bib0260
  article-title: The nonbulky DNA lesions spiroiminodihydantoin and 5-Guanidinohydantoin significantly block human RNA polymerase II elongation in vitro
  publication-title: Biochemistry
– volume: 426
  start-page: 194
  year: 2003
  end-page: 198
  ident: bib0130
  article-title: A DNA damage checkpoint response in telomere-initiated senescence
  publication-title: Nature
– volume: 470
  start-page: 359
  year: 2011
  end-page: 365
  ident: bib0475
  article-title: Telomere dysfunction induces metabolic and mitochondrial compromise
  publication-title: Nature
– volume: 14
  start-page: 607
  year: 2017
  end-page: 619
  ident: bib0205
  article-title: Telomeres and telomerase in prostate cancer development and therapy
  publication-title: Nat. Rev. Urol.
– volume: 66
  start-page: 639
  year: 2011
  end-page: 645
  ident: bib0490
  article-title: The association of cataract with leukocyte telomere length in older adults: defining a new marker of aging
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
– volume: 289
  start-page: 19881
  year: 2014
  end-page: 19893
  ident: bib0095
  article-title: Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages
  publication-title: J. Biol. Chem.
– volume: 42
  start-page: 1039
  year: 2007
  end-page: 1042
  ident: bib0450
  article-title: A continuous correlation between oxidative stress and telomere shortening in fibroblasts
  publication-title: Exp. Gerontol.
– volume: 133
  start-page: 157
  year: 2012
  end-page: 168
  ident: bib0220
  article-title: Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases
  publication-title: Mech. Ageing Dev.
– volume: 71
  start-page: 1669
  year: 2011
  end-page: 1679
  ident: bib0455
  article-title: Ulcerative colitis-associated colorectal cancer arises in a field of short telomeres, senescence, and inflammation
  publication-title: Cancer Res.
– volume: 2
  start-page: 4172
  year: 2014
  ident: bib0240
  article-title: Chronic inflammation induces telomere dysfunction and accelerates ageing in mice
  publication-title: Nat. Commun.
– volume: 6
  start-page: e1000951
  year: 2010
  ident: bib0580
  article-title: Characterization of oxidative guanine damage and repair in mammalian telomeres
  publication-title: PLoS Genet.
– volume: 447
  start-page: 606
  year: 2007
  end-page: 608
  ident: bib0310
  article-title: 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins
  publication-title: Nature
– volume: 453
  start-page: 365
  year: 1999
  end-page: 368
  ident: bib0380
  article-title: Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening
  publication-title: FEBS Lett.
– volume: 13
  start-page: 52
  year: 2012
  end-page: 59
  ident: bib0245
  article-title: Five dysfunctional telomeres predict onset of senescence in human cells
  publication-title: EMBO Rep.
– volume: 11
  start-page: 998
  year: 2012
  end-page: 1007
  ident: bib0350
  article-title: Telomere proteins POT1, TRF1 and TRF2 augment long-patch base excision repair in vitro
  publication-title: Cell Cycle
– volume: 327
  start-page: 73
  year: 2012
  end-page: 89
  ident: bib0575
  article-title: Base excision repair and cancer
  publication-title: Cancer Lett.
– volume: 138
  start-page: 90
  year: 2009
  end-page: 103
  ident: bib0500
  article-title: Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication
  publication-title: Cell
– volume: 49
  start-page: 1603
  year: 2010
  end-page: 1616
  ident: bib0430
  article-title: Oxidative stress, inflammation, and cancer: how are they linked?
  publication-title: Free Radic. Biol. Med.
– volume: 111
  start-page: E4878
  year: 2014
  end-page: 4886
  ident: bib0155
  article-title: Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 20
  start-page: 4356
  year: 2013
  end-page: 4369
  ident: bib0055
  article-title: Environmental factors and unhealthy lifestyle influence oxidative stress in humans--an overview
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 11
  start-page: 774
  year: 2012
  end-page: 779
  ident: bib0210
  article-title: Telomere dynamics in human mesenchymal stem cells after exposure to acute oxidative stress
  publication-title: DNA Repair (Amst)
– volume: 105
  start-page: 13051
  year: 2008
  end-page: 13056
  ident: bib0030
  article-title: Short telomeres are a risk factor for idiopathic pulmonary fibrosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 113
  start-page: 13120
  year: 2016
  end-page: 13125
  ident: bib0110
  article-title: Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 29
  start-page: 1285
  year: 2001
  end-page: 1292
  ident: bib0560
  article-title: Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step
  publication-title: Nucleic Acids Res.
– volume: 25
  start-page: 55
  year: 2016
  end-page: 69
  ident: bib0585
  article-title: Ageing and the telomere connection: an intimate relationship with inflammation
  publication-title: Ageing Res. Rev.
– volume: 43
  start-page: 11596
  year: 2004
  end-page: 11604
  ident: bib0355
  article-title: Stimulation of DNA glycosylase activity of OGG1 by NEIL1: functional collaboration between two human DNA glycosylases
  publication-title: Biochemistry
– volume: 12
  start-page: e0189467
  year: 2017
  ident: bib0515
  article-title: Short telomere length in IPF lung associates with fibrotic lesions and predicts survival
  publication-title: PLoS One
– volume: 13
  start-page: 141
  year: 2012
  end-page: 152
  ident: bib0480
  article-title: Y-family DNA polymerases and their role in tolerance of cellular DNA damage
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 184
  start-page: 1358
  year: 2011
  end-page: 1366
  ident: bib0040
  article-title: Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 193
  start-page: 4643
  year: 2014
  end-page: 4653
  ident: bib0015
  article-title: Innate inflammation induced by the 8-oxoguanine DNA glycosylase-1-KRAS-NF-kappaB pathway
  publication-title: J. Immunol.
– volume: 5
  start-page: a012583
  year: 2013
  ident: bib0270
  article-title: Base excision repair
  publication-title: Cold Spring Harb. Perspect Biol.
– volume: 239
  start-page: 152
  year: 1998
  end-page: 160
  ident: bib0410
  article-title: Preferential accumulation of single-stranded regions in telomeres of human fibroblasts
  publication-title: Exp. Cell Res.
– volume: 17
  start-page: 668
  year: 2003
  end-page: 674
  ident: bib0545
  article-title: Primary fibroblasts of cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress
  publication-title: FASEB J.
– volume: 40
  start-page: 4763
  year: 2001
  ident: 10.1016/j.mad.2018.03.013_bib0385
  article-title: Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening
  publication-title: Biochemistry
  doi: 10.1021/bi002721g
– volume: 2014
  start-page: 671539
  year: 2014
  ident: 10.1016/j.mad.2018.03.013_bib0415
  article-title: The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution
  publication-title: Oxid. Med. Cell Longev.
  doi: 10.1155/2014/671539
– volume: 5
  start-page: e110
  year: 2007
  ident: 10.1016/j.mad.2018.03.013_bib0405
  article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050110
– volume: 138
  start-page: 90
  year: 2009
  ident: 10.1016/j.mad.2018.03.013_bib0500
  article-title: Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication
  publication-title: Cell
  doi: 10.1016/j.cell.2009.06.021
– volume: 2
  start-page: 235
  year: 2003
  ident: 10.1016/j.mad.2018.03.013_bib0175
  article-title: Developmental differences in the immortalization of lung fibroblasts by telomerase
  publication-title: Aging Cell
  doi: 10.1046/j.1474-9728.2003.00057.x
– volume: 21
  start-page: 354
  year: 2011
  ident: 10.1016/j.mad.2018.03.013_bib0090
  article-title: Cellular senescence: a link between cancer and age-related degenerative disease?
  publication-title: Semin Cancer Biol.
– volume: 15
  start-page: 153
  year: 2011
  ident: 10.1016/j.mad.2018.03.013_bib0365
  article-title: Telomere length in vascular tissues from patients with atherosclerotic disease
  publication-title: J. Nutr. Health Aging
  doi: 10.1007/s12603-011-0029-1
– volume: 326
  start-page: 948
  year: 2009
  ident: 10.1016/j.mad.2018.03.013_bib0145
  article-title: How telomeres solve the end-protection problem
  publication-title: Science
  doi: 10.1126/science.1170633
– volume: 13
  start-page: 693
  year: 2012
  ident: 10.1016/j.mad.2018.03.013_bib0045
  article-title: The telomere syndromes
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3246
– volume: 17
  start-page: 3107
  year: 2016
  ident: 10.1016/j.mad.2018.03.013_bib0010
  article-title: Peroxiredoxin 1 protects telomeres from oxidative damage and preserves telomeric DNA for extension by telomerase
  publication-title: Cell. Rep.
  doi: 10.1016/j.celrep.2016.11.071
– volume: 10
  start-page: 34
  year: 2011
  ident: 10.1016/j.mad.2018.03.013_bib0440
  article-title: Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2010.09.008
– volume: 29
  start-page: 398
  year: 2010
  ident: 10.1016/j.mad.2018.03.013_bib0300
  article-title: Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.355
– volume: 11
  start-page: 774
  year: 2012
  ident: 10.1016/j.mad.2018.03.013_bib0210
  article-title: Telomere dynamics in human mesenchymal stem cells after exposure to acute oxidative stress
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2012.06.003
– volume: 45
  start-page: 11752
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0280
  article-title: Molecular mechanisms by which oxidative DNA damage promotes telomerase activity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx789
– volume: 22
  start-page: 164
  year: 2003
  ident: 10.1016/j.mad.2018.03.013_bib0505
  article-title: Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg016
– volume: 345
  start-page: 458
  year: 1990
  ident: 10.1016/j.mad.2018.03.013_bib0215
  article-title: Telomeres shorten during ageing of human fibroblasts
  publication-title: Nature
  doi: 10.1038/345458a0
– volume: 54
  start-page: 691
  year: 2013
  ident: 10.1016/j.mad.2018.03.013_bib0570
  article-title: DNA glycosylases search for and remove oxidized DNA bases
  publication-title: Environ. Mol. Mutagen.
  doi: 10.1002/em.21820
– volume: 42
  start-page: 301
  year: 2008
  ident: 10.1016/j.mad.2018.03.013_bib0400
  article-title: How shelterin protects mammalian telomeres
  publication-title: Annu Rev. Genet.
  doi: 10.1146/annurev.genet.41.110306.130350
– volume: 818–831
  start-page: e815
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0535
  article-title: Nek7 protects telomeres from oxidative DNA damage by phosphorylation and stabilization of TRF1
  publication-title: Mol. Cell
– volume: 23
  start-page: 76
  year: 1999
  ident: 10.1016/j.mad.2018.03.013_bib0125
  article-title: Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability
  publication-title: Nat. Genet.
  doi: 10.1038/12680
– volume: 6
  start-page: a016576
  year: 2014
  ident: 10.1016/j.mad.2018.03.013_bib0150
  article-title: The role of double-strand break repair pathways at functional and dysfunctional telomeres
  publication-title: Cold Spring Harb. Perspect Biol.
  doi: 10.1101/cshperspect.a016576
– volume: 33
  start-page: 203
  year: 2003
  ident: 10.1016/j.mad.2018.03.013_bib0065
  article-title: Extensive allelic variation and ultrashort telomeres in senescent human cells
  publication-title: Nat. Genet.
  doi: 10.1038/ng1084
– volume: 11
  start-page: 998
  year: 2012
  ident: 10.1016/j.mad.2018.03.013_bib0350
  article-title: Telomere proteins POT1, TRF1 and TRF2 augment long-patch base excision repair in vitro
  publication-title: Cell Cycle
  doi: 10.4161/cc.11.5.19483
– volume: 44
  start-page: 1592
  year: 2008
  ident: 10.1016/j.mad.2018.03.013_bib0100
  article-title: Chronic oxidative stress induces a tissue-specific reduction in telomere length in CAST/Ei mice
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2008.01.007
– volume: 12
  start-page: 912
  year: 2002
  ident: 10.1016/j.mad.2018.03.013_bib0115
  article-title: The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)00863-1
– volume: 14
  start-page: 607
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0205
  article-title: Telomeres and telomerase in prostate cancer development and therapy
  publication-title: Nat. Rev. Urol.
  doi: 10.1038/nrurol.2017.104
– volume: 470
  start-page: 359
  year: 2011
  ident: 10.1016/j.mad.2018.03.013_bib0475
  article-title: Telomere dysfunction induces metabolic and mitochondrial compromise
  publication-title: Nature
  doi: 10.1038/nature09787
– volume: 32
  start-page: 280
  year: 2002
  ident: 10.1016/j.mad.2018.03.013_bib0375
  article-title: Chromosomal instability in ulcerative colitis is related to telomere shortening
  publication-title: Nat. Genet.
  doi: 10.1038/ng989
– volume: 406
  start-page: 641
  year: 2000
  ident: 10.1016/j.mad.2018.03.013_bib0050
  article-title: Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice
  publication-title: Nature
  doi: 10.1038/35020592
– volume: 2010
  year: 2010
  ident: 10.1016/j.mad.2018.03.013_bib0510
  article-title: Stimulation of DNA glycosylase activities by XPC protein complex: roles of protein-protein interactions
  publication-title: J. Nucleic Acids
  doi: 10.4061/2010/805698
– volume: 154
  start-page: 49
  year: 2001
  ident: 10.1016/j.mad.2018.03.013_bib0485
  article-title: Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase-deficient mice and primary cells despite increased chromosomal instability
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200103049
– volume: 42
  start-page: 9257
  year: 2003
  ident: 10.1016/j.mad.2018.03.013_bib0225
  article-title: The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo
  publication-title: Biochemistry
  doi: 10.1021/bi0347252
– volume: 122
  start-page: 1990
  year: 2009
  ident: 10.1016/j.mad.2018.03.013_bib0035
  article-title: Radiation-induced mitotic catastrophe in PARG-deficient cells
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.039115
– volume: 1
  start-page: 16
  year: 2010
  ident: 10.1016/j.mad.2018.03.013_bib0200
  article-title: Hydrogen peroxide induced genomic instability in nucleotide excision repair-deficient lymphoblastoid cells
  publication-title: Genome Integr.
  doi: 10.1186/2041-9414-1-16
– volume: 13
  start-page: 52
  year: 2012
  ident: 10.1016/j.mad.2018.03.013_bib0245
  article-title: Five dysfunctional telomeres predict onset of senescence in human cells
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.227
– volume: 273
  start-page: 21203
  year: 1998
  ident: 10.1016/j.mad.2018.03.013_bib0525
  article-title: Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.33.21203
– volume: 11
  start-page: 666
  year: 1998
  ident: 10.1016/j.mad.2018.03.013_bib0340
  article-title: Replication inhibition and miscoding properties of DNA templates containing a site-specific cis-thymine glycol or urea residue
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx970225w
– volume: 12
  start-page: e0189467
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0515
  article-title: Short telomere length in IPF lung associates with fibrotic lesions and predicts survival
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0189467
– volume: 289
  start-page: 19881
  year: 2014
  ident: 10.1016/j.mad.2018.03.013_bib0095
  article-title: Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.571588
– volume: 49
  start-page: 707
  year: 2010
  ident: 10.1016/j.mad.2018.03.013_bib0250
  article-title: Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2010.04.036
– volume: 105
  start-page: 13051
  year: 2008
  ident: 10.1016/j.mad.2018.03.013_bib0030
  article-title: Short telomeres are a risk factor for idiopathic pulmonary fibrosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0804280105
– volume: 59
  start-page: 82
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0325
  article-title: Not breathing is not an option: how to deal with oxidative DNA damage
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2017.09.007
– volume: 66
  start-page: 639
  year: 2011
  ident: 10.1016/j.mad.2018.03.013_bib0490
  article-title: The association of cataract with leukocyte telomere length in older adults: defining a new marker of aging
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/glr034
– volume: 2
  start-page: 141
  year: 2003
  ident: 10.1016/j.mad.2018.03.013_bib0495
  article-title: MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress
  publication-title: Aging Cell
  doi: 10.1046/j.1474-9728.2003.00040.x
– volume: 128
  start-page: 1999
  year: 2011
  ident: 10.1016/j.mad.2018.03.013_bib0295
  article-title: Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.25815
– volume: 5
  start-page: a012583
  year: 2013
  ident: 10.1016/j.mad.2018.03.013_bib0270
  article-title: Base excision repair
  publication-title: Cold Spring Harb. Perspect Biol.
  doi: 10.1101/cshperspect.a012583
– volume: 12
  start-page: e0174833
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0290
  article-title: Extensive telomere erosion is consistent with localised clonal expansions in Barrett’s metaplasia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0174833
– volume: 56
  start-page: 3008
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0260
  article-title: The nonbulky DNA lesions spiroiminodihydantoin and 5-Guanidinohydantoin significantly block human RNA polymerase II elongation in vitro
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b00295
– volume: 20
  start-page: 2044
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0595
  article-title: NEIL3 repairs telomere damage during S phase to secure chromosome segregation at mitosis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.08.020
– volume: 239
  start-page: 152
  year: 1998
  ident: 10.1016/j.mad.2018.03.013_bib0410
  article-title: Preferential accumulation of single-stranded regions in telomeres of human fibroblasts
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.1997.3893
– volume: 107
  start-page: 35
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0170
  article-title: Formation and processing of DNA damage substrates for the hNEIL enzymes
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.11.030
– volume: 405
  start-page: 807
  year: 2000
  ident: 10.1016/j.mad.2018.03.013_bib0520
  article-title: The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity
  publication-title: Nature
  doi: 10.1038/35015598
– volume: 274
  start-page: 962
  year: 1999
  ident: 10.1016/j.mad.2018.03.013_bib0230
  article-title: Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.2.962
– volume: 43
  start-page: 11596
  year: 2004
  ident: 10.1016/j.mad.2018.03.013_bib0355
  article-title: Stimulation of DNA glycosylase activity of OGG1 by NEIL1: functional collaboration between two human DNA glycosylases
  publication-title: Biochemistry
  doi: 10.1021/bi049097i
– volume: 327
  start-page: 73
  year: 2012
  ident: 10.1016/j.mad.2018.03.013_bib0575
  article-title: Base excision repair and cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2011.12.038
– volume: 17
  start-page: 668
  year: 2003
  ident: 10.1016/j.mad.2018.03.013_bib0545
  article-title: Primary fibroblasts of cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress
  publication-title: FASEB J.
  doi: 10.1096/fj.02-0851com
– volume: 73
  start-page: 1844
  year: 2013
  ident: 10.1016/j.mad.2018.03.013_bib0530
  article-title: Telomere length and telomerase activity impact the UV sensitivity syndrome xeroderma pigmentosum C
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3125
– volume: 17
  start-page: 1686
  year: 2006
  ident: 10.1016/j.mad.2018.03.013_bib0195
  article-title: PARP1 Is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-07-0672
– volume: 426
  start-page: 194
  year: 2003
  ident: 10.1016/j.mad.2018.03.013_bib0130
  article-title: A DNA damage checkpoint response in telomere-initiated senescence
  publication-title: Nature
  doi: 10.1038/nature02118
– volume: 447
  start-page: 447
  year: 2007
  ident: 10.1016/j.mad.2018.03.013_bib0265
  article-title: OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells
  publication-title: Nature
  doi: 10.1038/nature05778
– volume: 36
  start-page: 6309
  year: 2008
  ident: 10.1016/j.mad.2018.03.013_bib0075
  article-title: Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn615
– volume: 3
  start-page: 33
  year: 1999
  ident: 10.1016/j.mad.2018.03.013_bib0255
  article-title: Base excision repair of oxidative DNA damage activated by XPG protein
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80172-0
– volume: 33
  start-page: 1230
  year: 2005
  ident: 10.1016/j.mad.2018.03.013_bib0390
  article-title: Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki273
– volume: 128
  start-page: 340
  year: 2007
  ident: 10.1016/j.mad.2018.03.013_bib0445
  article-title: TRF2 overexpression diminishes repair of telomeric single-strand breaks and accelerates telomere shortening in human fibroblasts
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2007.02.003
– volume: 70
  start-page: 743
  year: 2013
  ident: 10.1016/j.mad.2018.03.013_bib0590
  article-title: Environmental and occupational exposure to chemicals and telomere length in human studies
  publication-title: Occup. Environ. Med.
  doi: 10.1136/oemed-2012-101350
– volume: 101
  start-page: 8658
  year: 2004
  ident: 10.1016/j.mad.2018.03.013_bib0060
  article-title: A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0401263101
– volume: 14
  start-page: 927
  year: 2001
  ident: 10.1016/j.mad.2018.03.013_bib0305
  article-title: Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx010072j
– volume: 366
  start-page: 662
  year: 2005
  ident: 10.1016/j.mad.2018.03.013_bib0550
  article-title: Obesity, cigarette smoking, and telomere length in women
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)66630-5
– volume: 447
  start-page: 606
  year: 2007
  ident: 10.1016/j.mad.2018.03.013_bib0310
  article-title: 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins
  publication-title: Nature
  doi: 10.1038/nature05843
– year: 2016
  ident: 10.1016/j.mad.2018.03.013_bib0185
  article-title: DNA damage processing at telomeres: the ends justify the means
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2016.05.022
– volume: 29
  start-page: 1285
  year: 2001
  ident: 10.1016/j.mad.2018.03.013_bib0560
  article-title: Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.6.1285
– volume: 15
  start-page: 1451
  year: 2006
  ident: 10.1016/j.mad.2018.03.013_bib0165
  article-title: Chromosomal instability in Barrett’s esophagus is related to telomere shortening
  publication-title: Cancer Epidemiol. Biomarkers Prev.
  doi: 10.1158/1055-9965.EPI-05-0837
– volume: 49
  start-page: 1603
  year: 2010
  ident: 10.1016/j.mad.2018.03.013_bib0430
  article-title: Oxidative stress, inflammation, and cancer: how are they linked?
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2010.09.006
– volume: 111
  start-page: E4878
  year: 2014
  ident: 10.1016/j.mad.2018.03.013_bib0155
  article-title: Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1413582111
– volume: 256
  start-page: 578
  year: 2000
  ident: 10.1016/j.mad.2018.03.013_bib0025
  article-title: Telomere reduction in human liver tissues with age and chronic inflammation
  publication-title: Exp. Cell. Res.
  doi: 10.1006/excr.2000.4862
– volume: 13
  start-page: 141
  year: 2012
  ident: 10.1016/j.mad.2018.03.013_bib0480
  article-title: Y-family DNA polymerases and their role in tolerance of cellular DNA damage
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3289
– volume: 113
  start-page: 13120
  year: 2016
  ident: 10.1016/j.mad.2018.03.013_bib0110
  article-title: Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1615340113
– volume: 121
  start-page: 1046
  year: 2008
  ident: 10.1016/j.mad.2018.03.013_bib0020
  article-title: Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.019372
– volume: 3
  start-page: 906
  year: 2011
  ident: 10.1016/j.mad.2018.03.013_bib0315
  article-title: Oxidation as "the stress of life"
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100385
– volume: 44
  start-page: 193
  year: 2016
  ident: 10.1016/j.mad.2018.03.013_bib0465
  article-title: Pathways controlling dNTP pools to maintain genome stability
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2016.05.032
– volume: 25
  start-page: 4305
  year: 2006
  ident: 10.1016/j.mad.2018.03.013_bib0135
  article-title: New functions of XPC in the protection of human skin cells from oxidative damage
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601277
– volume: 7
  start-page: 4384
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0460
  article-title: No cancer predisposition or increased spontaneous mutation frequencies in NEIL DNA glycosylases-deficient mice
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04472-4
– volume: 21
  start-page: 4046
  year: 2001
  ident: 10.1016/j.mad.2018.03.013_bib0540
  article-title: DNA strand break-sensing molecule poly(ADP-Ribose) polymerase cooperates with p53 in telomere function, chromosome stability, and tumor suppression
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.21.12.4046-4054.2001
– volume: 3
  start-page: 258
  year: 2016
  ident: 10.1016/j.mad.2018.03.013_bib0330
  article-title: Air pollution stress and the aging phenotype: the telomere connection
  publication-title: Curr. Environ. Health Rep.
  doi: 10.1007/s40572-016-0098-8
– volume: 33
  start-page: 52
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0395
  article-title: Telomere-associated aging disorders
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2016.05.009
– volume: 23
  start-page: 1092
  year: 2016
  ident: 10.1016/j.mad.2018.03.013_bib0180
  article-title: Oxidative guanine base damage regulates human telomerase activity
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3319
– volume: 508
  start-page: 215
  year: 2014
  ident: 10.1016/j.mad.2018.03.013_bib0190
  article-title: MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool
  publication-title: Nature
  doi: 10.1038/nature13181
– volume: 453
  start-page: 365
  year: 1999
  ident: 10.1016/j.mad.2018.03.013_bib0380
  article-title: Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(99)00748-6
– volume: 193
  start-page: 4643
  year: 2014
  ident: 10.1016/j.mad.2018.03.013_bib0015
  article-title: Innate inflammation induced by the 8-oxoguanine DNA glycosylase-1-KRAS-NF-kappaB pathway
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1401625
– volume: 2
  start-page: 4172
  year: 2014
  ident: 10.1016/j.mad.2018.03.013_bib0240
  article-title: Chronic inflammation induces telomere dysfunction and accelerates ageing in mice
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5172
– volume: 27
  start-page: 339
  year: 2002
  ident: 10.1016/j.mad.2018.03.013_bib0565
  article-title: Oxidative stress shortens telomeres
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(02)02110-2
– volume: 135
  start-page: 1
  year: 2014
  ident: 10.1016/j.mad.2018.03.013_bib0005
  article-title: Cockayne syndrome group B protein stimulates NEIL2 DNA glycosylase activity
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2013.12.008
– volume: 5
  year: 2013
  ident: 10.1016/j.mad.2018.03.013_bib0085
  article-title: DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation
  publication-title: Cold Spring Harb. Perspect Biol.
  doi: 10.1101/cshperspect.a012559
– volume: 29
  start-page: 430
  year: 2001
  ident: 10.1016/j.mad.2018.03.013_bib0235
  article-title: Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.2.430
– volume: 65
  start-page: 10977
  year: 2005
  ident: 10.1016/j.mad.2018.03.013_bib0420
  article-title: Lack of poly(ADP-ribose) polymerase-1 gene product enhances cellular sensitivity to arsenite
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-2336
– volume: 288
  start-page: 27263
  year: 2013
  ident: 10.1016/j.mad.2018.03.013_bib0600
  article-title: Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.479055
– volume: 230
  start-page: 85
  year: 2014
  ident: 10.1016/j.mad.2018.03.013_bib0070
  article-title: Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases--a mechanistic approach
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2014.01.039
– volume: 277
  start-page: 8260
  year: 2002
  ident: 10.1016/j.mad.2018.03.013_bib0335
  article-title: Activation of human MutS homologs by 8-oxo-guanine DNA damage
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111269200
– volume: 4
  start-page: 381
  year: 2005
  ident: 10.1016/j.mad.2018.03.013_bib0360
  article-title: Product inhibition and magnesium modulate the dual reaction mode of hOgg1
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2004.11.002
– volume: 6
  start-page: e19687
  year: 2011
  ident: 10.1016/j.mad.2018.03.013_bib0370
  article-title: Cumulative inflammatory load is associated with short leukocyte telomere length in the health, aging and body composition study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019687
– volume: 24
  start-page: 1595
  year: 2004
  ident: 10.1016/j.mad.2018.03.013_bib0140
  article-title: Functional interaction between poly(ADP-Ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.24.4.1595-1607.2004
– volume: 71
  start-page: 1669
  year: 2011
  ident: 10.1016/j.mad.2018.03.013_bib0455
  article-title: Ulcerative colitis-associated colorectal cancer arises in a field of short telomeres, senescence, and inflammation
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-1966
– volume: 12
  start-page: 558
  year: 2013
  ident: 10.1016/j.mad.2018.03.013_bib0470
  article-title: DNA strand break repair and neurodegeneration
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2013.04.008
– volume: 8
  start-page: 81649
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0320
  article-title: Oxidative stress-induced diseases and tea polyphenols
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20887
– volume: 25
  start-page: 55
  year: 2016
  ident: 10.1016/j.mad.2018.03.013_bib0585
  article-title: Ageing and the telomere connection: an intimate relationship with inflammation
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2015.11.006
– volume: 12
  start-page: 1081
  year: 2013
  ident: 10.1016/j.mad.2018.03.013_bib0345
  article-title: Slow accumulation of mutations in Xpc-/- mice upon induction of oxidative stress
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2013.08.019
– volume: 290
  start-page: 24636
  year: 2015
  ident: 10.1016/j.mad.2018.03.013_bib0105
  article-title: Neil2-null mice accumulate oxidized DNA bases in the transcriptionally active sequences of the genome and are susceptible to innate inflammation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.658146
– volume: 133
  start-page: 157
  year: 2012
  ident: 10.1016/j.mad.2018.03.013_bib0220
  article-title: Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2012.01.005
– volume: 13
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0425
  article-title: Does oxidative stress shorten telomeres in vivo? A review
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2017.0463
– volume: 9
  start-page: e110963
  year: 2014
  ident: 10.1016/j.mad.2018.03.013_bib0120
  article-title: Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0110963
– volume: 20
  start-page: 4356
  year: 2013
  ident: 10.1016/j.mad.2018.03.013_bib0055
  article-title: Environmental factors and unhealthy lifestyle influence oxidative stress in humans--an overview
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-013-1748-0
– volume: 2
  start-page: 1199
  year: 2003
  ident: 10.1016/j.mad.2018.03.013_bib0275
  article-title: Strand-specific processing of 8-oxoguanine by the human mismatch repair pathway: inefficient removal of 8-oxoguanine paired with adenine or cytosine
  publication-title: DNA Repair (Amst)
  doi: 10.1016/S1568-7864(03)00140-X
– volume: 10
  start-page: 321
  year: 2009
  ident: 10.1016/j.mad.2018.03.013_bib0080
  article-title: A review of human carcinogens--Part B: biological agents
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(09)70096-8
– volume: 32
  start-page: 1480
  year: 2017
  ident: 10.1016/j.mad.2018.03.013_bib0435
  article-title: Liver damage and senescence increases in patients developing hepatocellular carcinoma
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.13717
– volume: 42
  start-page: 1039
  year: 2007
  ident: 10.1016/j.mad.2018.03.013_bib0450
  article-title: A continuous correlation between oxidative stress and telomere shortening in fibroblasts
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2007.08.005
– volume: 42
  start-page: 1733
  year: 2014
  ident: 10.1016/j.mad.2018.03.013_bib0285
  article-title: Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1117
– volume: 101
  start-page: 17312
  year: 2004
  ident: 10.1016/j.mad.2018.03.013_bib0160
  article-title: Accelerated telomere shortening in response to life stress
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0407162101
– volume: 184
  start-page: 1358
  year: 2011
  ident: 10.1016/j.mad.2018.03.013_bib0040
  article-title: Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201105-0802OC
– volume: 6
  start-page: e1000951
  year: 2010
  ident: 10.1016/j.mad.2018.03.013_bib0580
  article-title: Characterization of oxidative guanine damage and repair in mammalian telomeres
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000951
– volume: 9
  start-page: e1003639
  year: 2013
  ident: 10.1016/j.mad.2018.03.013_bib0555
  article-title: Defective repair of oxidative base lesions by the DNA glycosylase Nth1 associates with multiple telomere defects
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003639
SSID ssj0001426
Score 2.6684022
SecondaryResourceType review_article
Snippet •Loss of telomere maintenance contributes ageing-related diseases and carcinogenesis.•Numerous diseases associated with oxidative stress are also associated...
Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 37
SubjectTerms Aging - metabolism
Aging - pathology
Animals
Base excision repair
DNA Damage
Environmental Exposure - adverse effects
Humans
Mice
Oxidation-Reduction
Oxidative DNA damage
Oxidative Stress
Telomeres
Title The impact of oxidative DNA damage and stress on telomere homeostasis
URI https://dx.doi.org/10.1016/j.mad.2018.03.013
https://www.ncbi.nlm.nih.gov/pubmed/29604323
https://www.proquest.com/docview/2020482857
https://www.proquest.com/docview/2834220102
https://pubmed.ncbi.nlm.nih.gov/PMC6162185
Volume 177
WOSCitedRecordID wos000456902900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001426
  issn: 0047-6374
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYBhMvCDpg5TIZCfHAVJS7nccKigBpBaEhVbxETuxoGU1cJS3q_j3HlyRdp1XwwEtaOY5b-ftyfGyf8xmh16lPOHOUymcK7lsQRTG8UjkfCfCGUzd3BWXmsAkyndLZLP5mBRUafZwAqSq6XseL_wo1lAHYKnX2H-DuGoUC-A6gwxVgh-tfA9_nPsp1wY2294fp-JSzUsXo6MVykySi9grEXJaiFqcX8CHBW2yKZtNnPRMqO7hoSh31Ac-3eY28DzjqF0Rrq_3__UqZ136QW8EAVJuQgMm86LeEvqpI3F_SeLPquICC2UwIuxah0p-6tQhh7Ccl3ijyTPpkZ2DtQS3GRBqNlxuW2ywiXL4rmdJvdamWnjVpqhugLUqNmqckZXyTqLwll93e2kMHHgljMHQH48-T2ZdueHbBJ2m3t3Wg39YvKnlo28ZtvsrNuch2SO2Gj3L-ED2wkws8NqR4hO6IaoCOxhVbyvIKv8E63FfvowzQ4ZmNqhigez-lLjxCEyAPNuTBMscdeTCQBxvyYEAeG_JgWeGWPHiDPI_Rj4-T8_efRvagjVEG04HlKIxIxGLoGAbuIuUe94M4hy5wRORnNOa562R5HHgpGG9Kw9DnLuFKuxeGhEyw0H-C9itZiWOEc6VpyQnzOQ2CMMxSJ3Iy4YGf6mcwFQ-GyGm7NMmsCr06DGWetOGGlwkAkihAEsdPAJAhets9sjASLLsqBy1OifUhjW-YANF2PfaqxTQB-6o2zVgl5KqBSkra2qMh2VGH-oGnwkq8IXpqeND905ZLQ0SuMaSroPTdr9-pigut8x658CbR8NmtbT5H9_u38AXaX9Yr8RLdzX4vi6Y-QXtkRk8s_f8AP-K94Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+oxidative+DNA+damage+and+stress+on+telomere+homeostasis&rft.jtitle=Mechanisms+of+ageing+and+development&rft.au=Barnes%2C+Ryan+P&rft.au=Fouquerel%2C+Elise&rft.au=Opresko%2C+Patricia+L&rft.date=2019-01-01&rft.eissn=1872-6216&rft.volume=177&rft.spage=37&rft_id=info:doi/10.1016%2Fj.mad.2018.03.013&rft_id=info%3Apmid%2F29604323&rft.externalDocID=29604323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-6374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-6374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-6374&client=summon