The impact of oxidative DNA damage and stress on telomere homeostasis
•Loss of telomere maintenance contributes ageing-related diseases and carcinogenesis.•Numerous diseases associated with oxidative stress are also associated with shortened telomeres.•Studies in human tissues, mouse models and cell culture provide evidence that oxidative stress accelerates telomere s...
Uloženo v:
| Vydáno v: | Mechanisms of ageing and development Ročník 177; s. 37 - 45 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Ireland
Elsevier B.V
01.01.2019
|
| Témata: | |
| ISSN: | 0047-6374, 1872-6216, 1872-6216 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Loss of telomere maintenance contributes ageing-related diseases and carcinogenesis.•Numerous diseases associated with oxidative stress are also associated with shortened telomeres.•Studies in human tissues, mouse models and cell culture provide evidence that oxidative stress accelerates telomere shortening.•Telomeres are highly sensitive to oxidative DNA damage, which can induce telomere losses and dysfunction.•Base excision repair of oxidative damage is essential for telomere maintenance.
Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage. |
|---|---|
| AbstractList | Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage. •Loss of telomere maintenance contributes ageing-related diseases and carcinogenesis.•Numerous diseases associated with oxidative stress are also associated with shortened telomeres.•Studies in human tissues, mouse models and cell culture provide evidence that oxidative stress accelerates telomere shortening.•Telomeres are highly sensitive to oxidative DNA damage, which can induce telomere losses and dysfunction.•Base excision repair of oxidative damage is essential for telomere maintenance. Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage. Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage.Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage. |
| Author | Barnes, Ryan P. Opresko, Patricia L. Fouquerel, Elise |
| Author_xml | – sequence: 1 givenname: Ryan P. surname: Barnes fullname: Barnes, Ryan P. – sequence: 2 givenname: Elise surname: Fouquerel fullname: Fouquerel, Elise – sequence: 3 givenname: Patricia L. surname: Opresko fullname: Opresko, Patricia L. email: plo4@pitt.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29604323$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtv1DAUhS1URKeFH8AGeckm4foRxxESUlXKQ6pgU9aWa990PEriwfaM4N_j0ZQKWJTVXfico-PznZGTJS5IyEsGLQOm3mza2fqWA9MtiBaYeEJWTPe8UZypE7ICkH2jRC9PyVnOGwBgkqtn5JQPCqTgYkWubtZIw7y1rtA40vgjeFvCHun7LxfU29neIbWLp7kkzJnGhRac4owJ6bqemIvNIT8nT0c7ZXxxf8_Jtw9XN5efmuuvHz9fXlw3roO-NJ3qlR1qB6s51557IYexNgFUwunBjwzcOEh-2w9S664TnvWeAXAA4dB24py8O-Zud7czeodLSXYy2xRmm36aaIP5-2UJa3MX90axOok-BLy-D0jx-w5zMXPIDqfJLhh32XAtJK-DAv-_tNaSmuuur9JXf9Z66PN75ipgR4FLMeeE44OEgTmgNBtTUZoDSgPCVJTV0__jcaFUNvHwszA96nx7dGJFsQ-YTHYBF4c-JHTF-Bgecf8CfWq2Zw |
| CitedBy_id | crossref_primary_10_1007_s12640_022_00489_4 crossref_primary_10_3390_ijms241310427 crossref_primary_10_1080_10408444_2018_1538201 crossref_primary_10_15252_embr_202153658 crossref_primary_10_3389_fendo_2023_1244553 crossref_primary_10_1016_j_mce_2021_111207 crossref_primary_10_3390_antiox11050812 crossref_primary_10_1016_j_jesf_2025_03_004 crossref_primary_10_1097_MOL_0000000000000900 crossref_primary_10_1016_j_dnarep_2020_102956 crossref_primary_10_3390_environments11120280 crossref_primary_10_3390_ijms222212536 crossref_primary_10_3390_biom13050745 crossref_primary_10_3390_antiox14050520 crossref_primary_10_1016_j_jpeds_2020_11_025 crossref_primary_10_1016_j_numecd_2020_06_014 crossref_primary_10_3390_cancers16193370 crossref_primary_10_1016_j_etap_2021_103633 crossref_primary_10_1016_j_mad_2020_111256 crossref_primary_10_1155_2022_1225578 crossref_primary_10_3389_fendo_2021_650988 crossref_primary_10_1007_s11356_021_16693_2 crossref_primary_10_1016_j_arr_2025_102773 crossref_primary_10_1039_D5FO00435G crossref_primary_10_1111_1365_2435_13408 crossref_primary_10_1111_ijfs_14502 crossref_primary_10_3390_antiox12112004 crossref_primary_10_1093_nutrit_nuae187 crossref_primary_10_1016_j_jnha_2024_100323 crossref_primary_10_1017_neu_2024_62 crossref_primary_10_3390_ijms25179463 crossref_primary_10_1017_S0033291719002228 crossref_primary_10_1016_j_bmcl_2024_129988 crossref_primary_10_1016_j_fertnstert_2024_08_340 crossref_primary_10_2147_JIR_S275595 crossref_primary_10_3389_fphar_2023_1156538 crossref_primary_10_1016_j_enceco_2025_03_007 crossref_primary_10_3390_foods13111673 crossref_primary_10_1038_s41598_024_81375_1 crossref_primary_10_3390_antiox14080987 crossref_primary_10_3390_genes14051029 crossref_primary_10_3389_fcell_2021_668171 crossref_primary_10_3389_fbioe_2019_00447 crossref_primary_10_1038_s41467_024_48443_6 crossref_primary_10_1002_ajpa_24722 crossref_primary_10_1016_j_rasd_2024_102496 crossref_primary_10_1186_s13104_025_07118_1 crossref_primary_10_1089_ars_2023_0253 crossref_primary_10_3390_ijms22052419 crossref_primary_10_1111_cpr_13448 crossref_primary_10_1007_s11626_023_00749_3 crossref_primary_10_1016_j_bej_2024_109460 crossref_primary_10_1016_j_phanu_2020_100226 crossref_primary_10_1016_j_marpolbul_2021_112610 crossref_primary_10_1002_ece3_6035 crossref_primary_10_1016_j_lfs_2022_120644 crossref_primary_10_1002_ajb2_16244 crossref_primary_10_1186_s12935_023_03041_2 crossref_primary_10_3168_jds_2023_23556 crossref_primary_10_1016_j_dnarep_2021_103198 crossref_primary_10_1111_age_12870 crossref_primary_10_15857_ksep_2020_29_3_256 crossref_primary_10_31083_JIN24948 crossref_primary_10_1186_s12885_023_11387_z crossref_primary_10_1155_2020_5681096 crossref_primary_10_1093_ckj_sfab067 crossref_primary_10_1038_s41366_021_00879_2 crossref_primary_10_1016_j_mrrev_2024_108507 crossref_primary_10_1246_cl_220091 crossref_primary_10_1002_clt2_70066 crossref_primary_10_1016_j_mrgentox_2021_503387 crossref_primary_10_1155_2021_6545728 crossref_primary_10_1159_000542557 crossref_primary_10_3390_jcm13092694 crossref_primary_10_1007_s10815_023_03008_2 crossref_primary_10_1093_mutage_geaf005 crossref_primary_10_1016_j_bbadis_2022_166397 crossref_primary_10_3389_fcell_2021_758402 crossref_primary_10_1016_j_tibs_2022_03_013 crossref_primary_10_3390_ijms25126709 crossref_primary_10_3389_fcvm_2022_1012615 crossref_primary_10_3389_fpls_2024_1351613 crossref_primary_10_4162_nrp_2025_19_4_621 crossref_primary_10_1186_s13287_021_02209_9 crossref_primary_10_1155_2020_6708152 crossref_primary_10_1186_s43042_025_00763_y crossref_primary_10_1002_mc_23768 crossref_primary_10_1016_j_arr_2023_102083 crossref_primary_10_3390_ijms22137194 crossref_primary_10_1016_j_schres_2025_06_013 crossref_primary_10_1093_conphys_coad018 crossref_primary_10_1080_09603123_2024_2394136 crossref_primary_10_3389_fnagi_2022_1002138 crossref_primary_10_1007_s13577_025_01213_y crossref_primary_10_1016_j_ecoenv_2025_117767 crossref_primary_10_1503_jpn_200238 crossref_primary_10_1038_s41598_023_35912_z crossref_primary_10_3390_jcm9082669 crossref_primary_10_1007_s10653_023_01697_3 crossref_primary_10_1016_j_mad_2025_112026 crossref_primary_10_1080_0886022X_2025_2464828 crossref_primary_10_3390_cells13110884 crossref_primary_10_1134_S0362119724700865 crossref_primary_10_1515_revneuro_2021_0070 crossref_primary_10_1038_s41598_021_82917_7 crossref_primary_10_1016_j_envpol_2023_121855 crossref_primary_10_1016_j_ijbiomac_2024_135280 crossref_primary_10_1139_cjpp_2021_0090 crossref_primary_10_1007_s13668_024_00529_9 crossref_primary_10_3390_antiox11030572 crossref_primary_10_1007_s00204_025_04033_z crossref_primary_10_59324_stss_2025_2_3__02 crossref_primary_10_1186_s13054_024_05051_6 crossref_primary_10_1016_j_ecoenv_2024_116206 crossref_primary_10_1002_dev_22457 crossref_primary_10_3390_antiox12071374 crossref_primary_10_3390_jcm13102841 crossref_primary_10_1007_s10577_020_09641_2 crossref_primary_10_1111_mec_16199 crossref_primary_10_1016_j_drudis_2021_07_012 crossref_primary_10_1016_j_biopha_2020_111119 crossref_primary_10_3390_ijms25168652 crossref_primary_10_1016_j_bbi_2025_05_022 crossref_primary_10_1016_j_mad_2023_111858 crossref_primary_10_1016_j_prp_2023_154691 crossref_primary_10_1038_s41598_024_62980_6 crossref_primary_10_1111_jir_13244 crossref_primary_10_1016_j_envres_2025_121174 crossref_primary_10_3390_ijms24054491 crossref_primary_10_3389_fimmu_2021_747335 crossref_primary_10_1002_bies_201900177 crossref_primary_10_3389_fnut_2022_993425 crossref_primary_10_1038_s42003_024_06060_5 crossref_primary_10_3390_nu14061244 crossref_primary_10_1093_advances_nmz026 crossref_primary_10_3390_biomedicines11092535 crossref_primary_10_1007_s00018_022_04235_z crossref_primary_10_1016_j_psyneuen_2025_107431 crossref_primary_10_1186_s40748_024_00193_5 crossref_primary_10_1016_j_molcel_2019_04_024 crossref_primary_10_1155_2020_9256107 crossref_primary_10_1016_j_mad_2025_112042 crossref_primary_10_1016_j_jpsychires_2025_07_024 crossref_primary_10_3390_cells13151292 crossref_primary_10_3390_cells10081866 crossref_primary_10_1111_mec_17158 crossref_primary_10_3390_ijms21010062 crossref_primary_10_1186_s12610_023_00188_w crossref_primary_10_3390_genes15121599 crossref_primary_10_3389_fendo_2023_1172481 crossref_primary_10_1007_s00394_024_03460_5 crossref_primary_10_1016_j_aggp_2023_100003 crossref_primary_10_1080_09553002_2019_1704908 crossref_primary_10_1097_YCO_0000000000000525 crossref_primary_10_3390_cancers13225678 crossref_primary_10_3390_ijms26104577 crossref_primary_10_3389_fonc_2025_1555858 crossref_primary_10_1016_j_yexcr_2020_112361 crossref_primary_10_3389_fphar_2023_1269581 crossref_primary_10_1016_j_bbamcr_2020_118845 crossref_primary_10_3390_cells11111787 crossref_primary_10_1007_s00784_023_05265_y crossref_primary_10_1016_j_resinv_2021_09_003 crossref_primary_10_3389_fendo_2023_1225600 crossref_primary_10_3389_fimmu_2022_998102 crossref_primary_10_1038_s41580_024_00800_5 crossref_primary_10_1016_j_nut_2019_05_002 crossref_primary_10_1002_wrna_1710 crossref_primary_10_1186_s40798_022_00503_1 crossref_primary_10_1111_mec_16967 crossref_primary_10_1016_j_jmb_2024_168672 crossref_primary_10_3389_fped_2024_1358272 crossref_primary_10_1007_s11357_025_01580_2 crossref_primary_10_1016_j_kint_2020_02_034 crossref_primary_10_15420_japsc_2023_26 crossref_primary_10_1097_PAS_0000000000001725 crossref_primary_10_3390_biology12101348 crossref_primary_10_1016_j_ijbiomac_2021_08_095 crossref_primary_10_1016_j_immuni_2025_08_008 crossref_primary_10_1186_s12884_025_07542_y crossref_primary_10_1016_j_labinv_2022_100059 crossref_primary_10_3390_antiox12030579 crossref_primary_10_3390_ijms232415498 crossref_primary_10_26599_NTM_2022_9130007 crossref_primary_10_3390_genes14030715 crossref_primary_10_1016_j_etap_2024_104607 crossref_primary_10_1007_s12035_021_02623_3 crossref_primary_10_1016_j_dnarep_2024_103774 crossref_primary_10_1161_JAHA_122_026619 crossref_primary_10_3390_antiox12061196 crossref_primary_10_1038_s41467_024_55638_4 crossref_primary_10_1093_nar_gkae732 crossref_primary_10_3390_ijms20020364 crossref_primary_10_1007_s11356_023_28017_7 crossref_primary_10_1016_j_abb_2020_108749 crossref_primary_10_3390_ijms24032717 crossref_primary_10_3389_fnut_2024_1458442 crossref_primary_10_3390_nu17122009 crossref_primary_10_1016_j_biopha_2023_116034 crossref_primary_10_1080_15384101_2023_2287929 crossref_primary_10_1098_rsob_220011 crossref_primary_10_1134_S0006297921120026 crossref_primary_10_1002_jbt_70414 crossref_primary_10_3390_md20100626 crossref_primary_10_1111_mec_15980 crossref_primary_10_3390_ijms25169026 crossref_primary_10_1016_j_mad_2022_111757 crossref_primary_10_1186_s13045_022_01337_w crossref_primary_10_1089_ars_2021_0074 crossref_primary_10_1016_j_ijheh_2024_114447 crossref_primary_10_3389_fimmu_2023_1139589 crossref_primary_10_3390_jcm10040590 crossref_primary_10_1111_mec_16150 crossref_primary_10_3389_fimmu_2022_1065739 crossref_primary_10_3389_fnbeh_2018_00306 crossref_primary_10_3390_cancers12030558 crossref_primary_10_1038_s41420_023_01792_5 crossref_primary_10_18332_pht_205879 crossref_primary_10_31083_j_fbl2910368 crossref_primary_10_3390_cells10051156 crossref_primary_10_1097_JCN_0000000000001044 crossref_primary_10_1007_s12403_020_00367_4 crossref_primary_10_1007_s11033_024_09238_6 crossref_primary_10_1016_j_biochi_2025_06_001 crossref_primary_10_15252_embj_2021108164 crossref_primary_10_1016_j_bbih_2022_100577 crossref_primary_10_1098_rsos_212012 crossref_primary_10_1007_s12603_023_1912_1 crossref_primary_10_3233_NHA_200096 crossref_primary_10_3389_fonc_2021_707066 crossref_primary_10_3390_genes14030609 crossref_primary_10_3390_cosmetics11050167 crossref_primary_10_3390_life11010060 crossref_primary_10_3389_fgene_2020_630186 crossref_primary_10_1016_j_arr_2025_102833 crossref_primary_10_3390_ani14192839 crossref_primary_10_1111_acel_13530 crossref_primary_10_3389_fpubh_2022_1059248 crossref_primary_10_1016_j_mrgentox_2021_503418 crossref_primary_10_1016_j_bpsgos_2021_07_006 crossref_primary_10_1016_j_phrs_2025_107700 crossref_primary_10_1038_s41598_024_63030_x crossref_primary_10_3748_wjg_v31_i15_103773 crossref_primary_10_1016_j_jad_2024_09_143 crossref_primary_10_3390_nu14183723 crossref_primary_10_1016_j_arr_2018_07_007 crossref_primary_10_3389_fmed_2022_898293 crossref_primary_10_3390_biomedicines12061182 crossref_primary_10_3390_biom14030263 crossref_primary_10_1016_j_bcp_2024_116393 crossref_primary_10_3390_diabetology6070058 crossref_primary_10_3390_ijms23094990 crossref_primary_10_1111_ggi_14121 crossref_primary_10_1016_j_rvsc_2020_01_008 crossref_primary_10_1155_2021_7501424 crossref_primary_10_1111_1755_0998_13238 crossref_primary_10_1111_acel_13669 crossref_primary_10_3390_ani13142325 crossref_primary_10_3390_antiox12061169 crossref_primary_10_1111_mec_16370 crossref_primary_10_1016_j_ajo_2025_03_027 crossref_primary_10_3390_ijms232416010 crossref_primary_10_1016_j_freeradbiomed_2024_10_299 crossref_primary_10_1038_s41467_025_60391_3 crossref_primary_10_1080_1354750X_2025_2557452 crossref_primary_10_1016_j_bbagrm_2024_195007 crossref_primary_10_1177_0300060519882570 crossref_primary_10_1186_s12979_022_00287_8 crossref_primary_10_1038_s41467_020_19115_y crossref_primary_10_3389_fphys_2022_936768 crossref_primary_10_1016_j_jnutbio_2024_109747 crossref_primary_10_1038_s42003_024_06464_3 crossref_primary_10_1159_000508497 crossref_primary_10_1093_nar_gkad1209 crossref_primary_10_1186_s12864_025_11209_5 crossref_primary_10_1016_j_nut_2024_112596 crossref_primary_10_1080_01902148_2023_2285061 crossref_primary_10_3390_ijms241411283 crossref_primary_10_3390_cancers16071386 crossref_primary_10_3390_cancers17121936 crossref_primary_10_1016_j_arr_2022_101807 crossref_primary_10_3390_antiox14080933 crossref_primary_10_1016_j_exger_2023_112132 crossref_primary_10_1016_j_snb_2019_03_146 crossref_primary_10_3390_antiox13081016 crossref_primary_10_1016_j_jhep_2023_02_035 crossref_primary_10_3390_antiox13091109 crossref_primary_10_3390_ijms21207441 crossref_primary_10_1016_j_exger_2023_112138 crossref_primary_10_3389_fendo_2023_1179050 crossref_primary_10_1038_s41598_023_35113_8 crossref_primary_10_1016_j_mrgentox_2025_503877 crossref_primary_10_1111_acel_13513 crossref_primary_10_1016_j_neubiorev_2019_12_027 crossref_primary_10_3390_cimb47040273 crossref_primary_10_1016_j_cell_2020_12_028 crossref_primary_10_1016_j_advnut_2023_08_004 crossref_primary_10_3390_cimb46070431 crossref_primary_10_1007_s10522_023_10074_7 crossref_primary_10_1016_j_envpol_2023_123192 crossref_primary_10_1016_j_biopha_2023_114573 crossref_primary_10_3390_nu13030816 crossref_primary_10_1016_j_sleep_2024_08_014 crossref_primary_10_1093_mutage_geaa012 crossref_primary_10_1016_j_tiv_2025_106037 crossref_primary_10_1093_geroni_igae070 crossref_primary_10_18502_sjms_v19i4_16404 crossref_primary_10_1093_carcin_bgaa114 crossref_primary_10_1007_s10592_022_01441_x crossref_primary_10_1002_dmrr_3374 crossref_primary_10_1007_s00360_024_01541_9 crossref_primary_10_1016_j_arr_2019_100940 crossref_primary_10_1139_cjpp_2021_0143 crossref_primary_10_1016_j_mrgentox_2025_503887 crossref_primary_10_3389_fendo_2022_978747 crossref_primary_10_1080_10406638_2022_2083194 crossref_primary_10_1007_s11010_023_04845_6 crossref_primary_10_3390_antiox10081247 crossref_primary_10_7759_cureus_10794 crossref_primary_10_1007_s11033_023_09087_9 crossref_primary_10_31083_j_jin2309180 crossref_primary_10_1155_2022_1144387 crossref_primary_10_1093_nar_gkaf285 crossref_primary_10_1038_s42003_023_04903_1 crossref_primary_10_3390_ijerph19137810 crossref_primary_10_1530_REP_22_0189 crossref_primary_10_1021_acschemneuro_4c00342 crossref_primary_10_1158_0008_5472_CAN_20_1028 crossref_primary_10_1242_jeb_242164 crossref_primary_10_3390_membranes11120944 crossref_primary_10_1093_plcell_koac122 crossref_primary_10_3390_antiox10111750 crossref_primary_10_1016_j_lfs_2022_121005 crossref_primary_10_3390_molecules27228101 crossref_primary_10_1111_gcb_15305 crossref_primary_10_1016_j_gde_2020_01_005 crossref_primary_10_1089_rej_2021_0045 crossref_primary_10_3390_genes13020343 crossref_primary_10_3390_antiox11112270 crossref_primary_10_1186_s12916_022_02340_1 crossref_primary_10_1002_der2_70028 crossref_primary_10_3390_cancers14071621 crossref_primary_10_1038_s41370_023_00616_z crossref_primary_10_3390_ijerph17051492 crossref_primary_10_3390_pathogens14010041 crossref_primary_10_1007_s11240_018_1499_1 crossref_primary_10_3389_fneur_2024_1393825 crossref_primary_10_1038_s41594_022_00790_y crossref_primary_10_1101_cshperspect_a041707 crossref_primary_10_1111_acel_13861 |
| Cites_doi | 10.1021/bi002721g 10.1155/2014/671539 10.1371/journal.pbio.0050110 10.1016/j.cell.2009.06.021 10.1046/j.1474-9728.2003.00057.x 10.1007/s12603-011-0029-1 10.1126/science.1170633 10.1038/nrg3246 10.1016/j.celrep.2016.11.071 10.1016/j.dnarep.2010.09.008 10.1038/emboj.2009.355 10.1016/j.dnarep.2012.06.003 10.1093/nar/gkx789 10.1093/emboj/cdg016 10.1038/345458a0 10.1002/em.21820 10.1146/annurev.genet.41.110306.130350 10.1038/12680 10.1101/cshperspect.a016576 10.1038/ng1084 10.4161/cc.11.5.19483 10.1016/j.freeradbiomed.2008.01.007 10.1016/S0960-9822(02)00863-1 10.1038/nrurol.2017.104 10.1038/nature09787 10.1038/ng989 10.1038/35020592 10.4061/2010/805698 10.1083/jcb.200103049 10.1021/bi0347252 10.1242/jcs.039115 10.1186/2041-9414-1-16 10.1038/embor.2011.227 10.1074/jbc.273.33.21203 10.1021/tx970225w 10.1371/journal.pone.0189467 10.1074/jbc.M114.571588 10.1016/j.freeradbiomed.2010.04.036 10.1073/pnas.0804280105 10.1016/j.dnarep.2017.09.007 10.1093/gerona/glr034 10.1046/j.1474-9728.2003.00040.x 10.1002/ijc.25815 10.1101/cshperspect.a012583 10.1371/journal.pone.0174833 10.1021/acs.biochem.7b00295 10.1016/j.celrep.2017.08.020 10.1006/excr.1997.3893 10.1016/j.freeradbiomed.2016.11.030 10.1038/35015598 10.1074/jbc.274.2.962 10.1021/bi049097i 10.1016/j.canlet.2011.12.038 10.1096/fj.02-0851com 10.1158/0008-5472.CAN-12-3125 10.1091/mbc.e05-07-0672 10.1038/nature02118 10.1038/nature05778 10.1093/nar/gkn615 10.1016/S1097-2765(00)80172-0 10.1093/nar/gki273 10.1016/j.mad.2007.02.003 10.1136/oemed-2012-101350 10.1073/pnas.0401263101 10.1021/tx010072j 10.1016/S0140-6736(05)66630-5 10.1038/nature05843 10.1016/j.dnarep.2016.05.022 10.1093/nar/29.6.1285 10.1158/1055-9965.EPI-05-0837 10.1016/j.freeradbiomed.2010.09.006 10.1073/pnas.1413582111 10.1006/excr.2000.4862 10.1038/nrm3289 10.1073/pnas.1615340113 10.1242/jcs.019372 10.18632/aging.100385 10.1016/j.dnarep.2016.05.032 10.1038/sj.emboj.7601277 10.1038/s41598-017-04472-4 10.1128/MCB.21.12.4046-4054.2001 10.1007/s40572-016-0098-8 10.1016/j.arr.2016.05.009 10.1038/nsmb.3319 10.1038/nature13181 10.1016/S0014-5793(99)00748-6 10.4049/jimmunol.1401625 10.1038/ncomms5172 10.1016/S0968-0004(02)02110-2 10.1016/j.mad.2013.12.008 10.1101/cshperspect.a012559 10.1093/nar/29.2.430 10.1158/0008-5472.CAN-05-2336 10.1074/jbc.M113.479055 10.1016/j.toxlet.2014.01.039 10.1074/jbc.M111269200 10.1016/j.dnarep.2004.11.002 10.1371/journal.pone.0019687 10.1128/MCB.24.4.1595-1607.2004 10.1158/0008-5472.CAN-10-1966 10.1016/j.dnarep.2013.04.008 10.18632/oncotarget.20887 10.1016/j.arr.2015.11.006 10.1016/j.dnarep.2013.08.019 10.1074/jbc.M115.658146 10.1016/j.mad.2012.01.005 10.1098/rsbl.2017.0463 10.1371/journal.pone.0110963 10.1007/s11356-013-1748-0 10.1016/S1568-7864(03)00140-X 10.1016/S1470-2045(09)70096-8 10.1111/jgh.13717 10.1016/j.exger.2007.08.005 10.1093/nar/gkt1117 10.1073/pnas.0407162101 10.1164/rccm.201105-0802OC 10.1371/journal.pgen.1000951 10.1371/journal.pgen.1003639 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
| DOI | 10.1016/j.mad.2018.03.013 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology Zoology |
| EISSN | 1872-6216 |
| EndPage | 45 |
| ExternalDocumentID | PMC6162185 29604323 10_1016_j_mad_2018_03_013 S0047637418300526 |
| Genre | Journal Article Review Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R33 ES025606 – fundername: NCI NIH HHS grantid: R01 CA207342 – fundername: NIEHS NIH HHS grantid: R01 ES028242 – fundername: NIEHS NIH HHS grantid: R01 ES022944 – fundername: NIGMS NIH HHS grantid: R43 GM108187 – fundername: NIGMS NIH HHS grantid: R44 GM108187 – fundername: NIEHS NIH HHS grantid: R35 ES030396 – fundername: NIEHS NIH HHS grantid: R21 ES025606 |
| GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29M 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYJJ ABCQJ ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGWIK AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HMQ HVGLF HZ~ IHE J1W KOM LX3 M2V M41 MO0 MOBAO MS~ MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SNS SPCBC SSN SSU SSZ T5K WUQ X7M YYP ZGI ZXP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c507t-5676a9142a8228d2d349f6040e63c89df10cf942b79488553d17d1002003cea53 |
| ISICitedReferencesCount | 384 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456902900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0047-6374 1872-6216 |
| IngestDate | Tue Nov 04 01:59:28 EST 2025 Sat Sep 27 23:55:20 EDT 2025 Thu Oct 02 05:32:47 EDT 2025 Thu Apr 03 06:59:57 EDT 2025 Sat Nov 29 06:25:48 EST 2025 Tue Nov 18 22:33:53 EST 2025 Fri Feb 23 02:12:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Telomeres Oxidative stress Base excision repair Oxidative DNA damage |
| Language | English |
| License | Copyright © 2018 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c507t-5676a9142a8228d2d349f6040e63c89df10cf942b79488553d17d1002003cea53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 29604323 |
| PQID | 2020482857 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6162185 proquest_miscellaneous_2834220102 proquest_miscellaneous_2020482857 pubmed_primary_29604323 crossref_primary_10_1016_j_mad_2018_03_013 crossref_citationtrail_10_1016_j_mad_2018_03_013 elsevier_sciencedirect_doi_10_1016_j_mad_2018_03_013 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland |
| PublicationTitle | Mechanisms of ageing and development |
| PublicationTitleAlternate | Mech Ageing Dev |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Harbo, Koelvraa, Serakinci, Bendix (bib0210) 2012; 11 Srivastava, Berg, Prasad, Molina, Beard, Tomkinson, Wilson (bib0525) 1998; 273 Alder, Chen, Lancaster, Danoff, Su, Cogan, Vulto, Xie, Qi, Tuder (bib0030) 2008; 105 Gopalakrishnan, Low, Ting, Srikanth, Slijepcevic, Hande (bib0200) 2010; 1 Lee, Bose, Lee, Opresko, Myong (bib0280) 2017; 45 Zhang, Lin, Funk, Hou (bib0590) 2013; 70 Fleming, Burrows (bib0170) 2017; 107 Bouvard, Baan, Straif, Grosse, Secretan, El Ghissassi, Benbrahim-Tallaa, Guha, Freeman, Galichet (bib0080) 2009; 10 Cattan, Mercier, Gardner, Regnault, Labat, Maki-Jouppila, Nzietchueng, Benetos, Kimura, Aviv (bib0100) 2008; 44 Henle, Han, Tang, Rai, Luo, Linn (bib0230) 1999; 274 Kliment, Oury (bib0250) 2010; 49 de Lange (bib0145) 2009; 326 Armanios, Blackburn (bib0045) 2012; 13 Tuo, Jaruga, Rodriguez, Bohr, Dizdaroglu (bib0545) 2003; 17 Markkanen (bib0325) 2017; 59 Valdes, Andrew, Gardner, Kimura, Oelsner, Cherkas, Aviv, Spector (bib0550) 2005; 366 Amsellem, Gary-Bobo, Marcos, Maitre, Chaar, Validire, Stern, Noureddine, Sapin, Rideau (bib0040) 2011; 184 Hill, Hazra, Izumi, Mitra (bib0235) 2001; 29 Petersen, Saretzki, von Zglinicki (bib0410) 1998; 239 Sahin, Colla, Liesa, Moslehi, Muller, Guo, Cooper, Kotton, Fabian, Walkey (bib0475) 2011; 470 Snetselaar, van Batenburg, van Oosterhout, Kazemier, Roothaan, Peeters, van der Vis, Goldschmeding, Grutters, van Moorsel (bib0515) 2017; 12 Shimizu, Iwai, Hanaoka, Sugasawa (bib0505) 2003; 22 Jurk, Wilson, Passos, Oakley, Correia-Melo, Greaves, Saretzki, Fox, Lawless, Anderson (bib0240) 2014; 2 Kolbanovskiy, Chowdhury, Nadkarni, Broyde, Geacintov, Scicchitano, Shafirovich (bib0260) 2017; 56 d’Adda di Fagagna, Reaper, Clay-Farrace, Fiegler, Carr, Von Zglinicki, Saretzki, Carter, Jackson (bib0130) 2003; 426 Kaul, Cesare, Huschtscha, Neumann, Reddel (bib0245) 2012; 13 Morland, Luna, Gustad, Seeberg, Bjørås (bib0360) 2005; 4 Ahmed, Passos, Birket, Beckmann, Brings, Peters, Birch-Machin, von Zglinicki, Saretzki (bib0020) 2008; 121 Epel, Blackburn, Lin, Dhabhar, Adler, Morrow, Cawthon (bib0160) 2004; 101 Finley, Reid, Odze, Sanchez, Galipeau, Li, Self, Gollahon, Blount, Rabinovitch (bib0165) 2006; 15 O’Donovan, Pantell, Puterman, Dhabhar, Blackburn, Yaffe, Cawthon, Opresko, Hsueh, Satterfield (bib0370) 2011; 6 Rulten, Caldecott (bib0470) 2013; 12 Nzietchueng, Elfarra, Nloga, Labat, Carteaux, Maureira, Lacolley, Villemot, Benetos (bib0365) 2011; 15 Zhang, Rane, Dai, Shanmugam, Arfuso, Samy, Lai, Kappei, Kumar, Sethi (bib0585) 2016; 25 Chakraborty, Wakamiya, Venkova-Canova, Pandita, Aguilera-Aguirre, Sarker, Singh, Hosoki, Wood, Sharma (bib0105) 2015; 290 Askree, Yehuda, Smolikov, Gurevich, Hawk, Coker, Krauskopf, Kupiec, McEachern (bib0060) 2004; 101 Larson, Iams, Drummond (bib0275) 2003; 2 Aeby, Ahmed, Redon, Simanis, Lingner (bib0010) 2016; 17 Lonkar, Dedon (bib0295) 2011; 128 Aseervatham, Sivasudha, Jeyadevi, Arul Ananth (bib0055) 2013; 20 Rey, Quintavalle, Burmeister, Calabrese, Schlageter, Quagliata, Cathomas, Diebold, Molinolo, Heim (bib0435) 2017; 32 Ame, Fouquerel, Gauthier, Biard, Boussin, Dantzer, de Murcia, Schreiber (bib0035) 2009; 122 Rhee, Ghosh, Lu, Bohr, Liu (bib0440) 2011; 10 Vallabhaneni, O’Callaghan, Sidorova, Liu (bib0555) 2013; 9 Risques, Lai, Himmetoglu, Ebaee, Li, Feng, Bronner, Al-Lahham, Kowdley, Lindor (bib0455) 2011; 71 Oikawa, Tada-Oikawa, Kawanishi (bib0385) 2001; 40 Opresko, Fan, Danzy, Wilson, Bohr (bib0390) 2005; 33 Lee, Hills, Conomos, Stutz, Dagg, Lau, Reddel, Pickett (bib0285) 2014; 42 Sfeir, Kosiyatrakul, Hockemeyer, MacRae, Karlseder, Schildkraut, de Lange (bib0500) 2009; 138 Aguilera-Aguirre, Bacsi, Radak, Hazra, Mitra, Sur, Brasier, Ba, Boldogh (bib0015) 2014; 193 Wallace (bib0570) 2013; 54 Mazurek, Berardini, Fishel (bib0335) 2002; 277 Graham, Meeker (bib0205) 2017; 14 Sobol, Prasad, Evenski, Baker, Yang, Horton, Wilson (bib0520) 2000; 405 Poonepalli, Balakrishnan, Khaw, Low, Jayapal, Bhattacharjee, Akira, Balajee, Hande (bib0420) 2005; 65 Krokan, Bjoras (bib0270) 2013; 5 Gad, Koolmeister, Jemth, Eshtad, Jacques, Strom, Svensson, Schultz, Lundback, Einarsdottir (bib0190) 2014; 508 Malinin, West, Byzova (bib0315) 2011; 3 Rudd, Valerie, Helleday (bib0465) 2016; 44 Richter, Saretzki, Nelson, Melcher, Olijslagers, von Zglinicki (bib0445) 2007; 128 Campisi, Andersen, Kapahi, Melov (bib0090) 2011; 21 Doksani, de Lange (bib0150) 2014; 6 Coluzzi, Colamartino, Cozzi, Leone, Meneghini, O’Callaghan, Sgura (bib0120) 2014; 9 Lu, Liu (bib0300) 2010; 29 Cannan, Tsang, Wallace, Pederson (bib0095) 2014; 289 McNulty, Jerkovic, Bolton, Basu (bib0340) 1998; 11 Zhou, Liu, Fleming, Burrows, Wallace (bib0600) 2013; 288 Cadet, Wagner (bib0085) 2013; 5 Harley, Futcher, Greider (bib0215) 1990; 345 von Zglinicki (bib0565) 2002; 27 Wallace, Murphy, Sweasy (bib0575) 2012; 327 Zhou, Chan, Lambele, Yusufzai, Stumpff, Opresko, Thali, Wallace (bib0595) 2017; 20 Henderson, Delaney, Muller, Neeley, Tannenbaum, Burrows, Essigmann (bib0225) 2003; 42 Hegde, Mantha, Hazra, Bhakat, Mitra, Szczesny (bib0220) 2012; 133 Opresko, Shay (bib0395) 2017; 33 Poljsak, Fink (bib0415) 2014; 2014 Artandi, Chang, Lee, Alson, Gottlieb, Chin, DePinho (bib0050) 2000; 406 d’Adda di Fagagna, Hande, Tong, Lansdorp, Wang, Jackson (bib0125) 1999; 23 Maga, Villani, Crespan, Wimmer, Ferrari, Bertocci, Hubscher (bib0310) 2007; 447 Baird, Rowson, Wynford-Thomas, Kipling (bib0065) 2003; 33 Fouquerel, Lormand, Bose, Lee, Kim, Li, Sobol, Freudenthal, Myong, Opresko (bib0180) 2016; 23 Reichert, Stier (bib0425) 2017; 13 Miller, Balakrishnan, Buncher, Opresko, Bambara (bib0350) 2012; 11 Shimizu, Uchimura, Dohmae, Saitoh, Hanaoka, Sugasawa (bib0510) 2010; 2010 Gomez, Wu, Schreiber, Dunlap, Dantzer, Wang, Liu (bib0195) 2006; 17 Aikata, Takaishi, Kawakami, Takahashi, Kitamoto, Nakanishi, Nakamura, Shimamoto, Kajiyama, Ide (bib0025) 2000; 256 Wang, Rhee, Lu, Bohr, Zhou, Vallabhaneni, de Souza-Pinto, Liu (bib0580) 2010; 6 Letsolo, Jones, Rowson, Grimstead, Keith, Jenkins, Baird (bib0290) 2017; 12 Ebrahimkhani, Daneshmand, Mazumder, Allocca, Calvo, Abolhassani, Jhun, Muthupalani, Ayata, Samson (bib0155) 2014; 111 Aamann, Hvitby, Popuri, Muftuoglu, Lemminger, Skeby, Keijzers, Ahn, Bjørås, Bohr (bib0005) 2014; 135 Passos, Saretzki, Ahmed, Nelson, Richter, Peters, Wappler, Birket, Harold, Schaeuble (bib0405) 2007; 5 Oikawa, Kawanishi (bib0380) 1999; 453 Beneke, Cohausz, Malanga, Boukamp, Althaus, Burkle (bib0075) 2008; 36 D’Errico, Parlanti, Teson, de Jesus, Degan, Calcagnile, Jaruga, Bjørås, Crescenzi, Pedrini (bib0135) 2006; 25 Fouquerel, Parikh, Opresko (bib0185) 2016 Chang, Ong, LaGory, Kraft, Giaccia, Wu, Blau (bib0110) 2016; 113 Melis, Kuiper, Zwart, Robinson, Pennings, van Oostrom, Luijten, van Steeg (bib0345) 2013; 12 Mao, Gu, Chen, Yu, He (bib0320) 2017; 8 Richter, von Zglinicki (bib0450) 2007; 42 Vidal, Hickson, Boiteux, Radicella (bib0560) 2001; 29 Rolseth, Luna, Olsen, Suganthan, Scheffler, Neurauter, Esbensen, Kusnierczyk, Hildrestrand, Graupner (bib0460) 2017; 7 Klungland, Höss, Gunz, Constantinou, Clarkson, Doetsch, Bolton, Wood, Lindahl (bib0255) 1999; 3 Palm, de Lange (bib0400) 2008; 42 Kovtun, Liu, Bjoras, Klungland, Wilson, McMurray (bib0265) 2007; 447 Martens, Nawrot (bib0330) 2016; 3 Mokkapati, Wiederhold, Hazra, Mitra (bib0355) 2004; 43 Baltazar, Dinis-Oliveira, de Lourdes Bastos, Tsatsakis, Duarte, Carvalho (bib0070) 2014; 230 Reuter, Gupta, Chaturvedi, Aggarwal (bib0430) 2010; 49 Saretzki, Murphy, von Zglinicki (bib0495) 2003; 2 Sanders, Iannaccone, Boudreau, Conley, Opresko, Hsueh, Cummings, Cawthon, Harris, Nalls (bib0490) 2011; 66 Stout, Blasco (bib0530) 2013; 73 Dantzer, Giraud-Panis, Jaco, Ame, Schultz, Blasco, Koering, Gilson, Menissier-de Murcia, de Murcia (bib0140) 2004; 24 Tong, Hande, Lansdorp, Wang (bib0540) 2001; 21 Sale, Lehmann, Woodgate (bib0480) 2012; 13 Forsyth, Evans, Shay, Wright (bib0175) 2003; 2 Samper, Goytisolo, Menissier-de Murcia, Gonzalez-Suarez, Cigudosa, de Murcia, Blasco (bib0485) 2001; 154 Tan, Nakajima, Wang, Sun, Xue, Wu, Hellwig, Zeng, Yates, Smithgall (bib0535) 2017; 818–831 O’Sullivan, Bronner, Brentnall, Finley, Shen, Emerson, Emond, Gollahon, Moskovitz, Crispin (bib0375) 2002; 32 Luo, Muller, Rachlin, Burrows (bib0305) 2001; 14 Colussi, Parlanti, Degan, Aquilina, Barnes, Macpherson, Karran, Crescenzi, Dogliotti, Bignami (bib0115) 2002; 12 Rulten (10.1016/j.mad.2018.03.013_bib0470) 2013; 12 Lee (10.1016/j.mad.2018.03.013_bib0280) 2017; 45 Lee (10.1016/j.mad.2018.03.013_bib0285) 2014; 42 Nzietchueng (10.1016/j.mad.2018.03.013_bib0365) 2011; 15 Lonkar (10.1016/j.mad.2018.03.013_bib0295) 2011; 128 Poonepalli (10.1016/j.mad.2018.03.013_bib0420) 2005; 65 Aguilera-Aguirre (10.1016/j.mad.2018.03.013_bib0015) 2014; 193 Gad (10.1016/j.mad.2018.03.013_bib0190) 2014; 508 Finley (10.1016/j.mad.2018.03.013_bib0165) 2006; 15 Rolseth (10.1016/j.mad.2018.03.013_bib0460) 2017; 7 Zhang (10.1016/j.mad.2018.03.013_bib0590) 2013; 70 Wang (10.1016/j.mad.2018.03.013_bib0580) 2010; 6 Dantzer (10.1016/j.mad.2018.03.013_bib0140) 2004; 24 Klungland (10.1016/j.mad.2018.03.013_bib0255) 1999; 3 Tuo (10.1016/j.mad.2018.03.013_bib0545) 2003; 17 de Lange (10.1016/j.mad.2018.03.013_bib0145) 2009; 326 Harbo (10.1016/j.mad.2018.03.013_bib0210) 2012; 11 Ebrahimkhani (10.1016/j.mad.2018.03.013_bib0155) 2014; 111 Ahmed (10.1016/j.mad.2018.03.013_bib0020) 2008; 121 Kaul (10.1016/j.mad.2018.03.013_bib0245) 2012; 13 Harley (10.1016/j.mad.2018.03.013_bib0215) 1990; 345 Fouquerel (10.1016/j.mad.2018.03.013_bib0185) 2016 Oikawa (10.1016/j.mad.2018.03.013_bib0380) 1999; 453 d’Adda di Fagagna (10.1016/j.mad.2018.03.013_bib0125) 1999; 23 Reichert (10.1016/j.mad.2018.03.013_bib0425) 2017; 13 Bouvard (10.1016/j.mad.2018.03.013_bib0080) 2009; 10 D’Errico (10.1016/j.mad.2018.03.013_bib0135) 2006; 25 Fleming (10.1016/j.mad.2018.03.013_bib0170) 2017; 107 Kliment (10.1016/j.mad.2018.03.013_bib0250) 2010; 49 Zhou (10.1016/j.mad.2018.03.013_bib0595) 2017; 20 Ame (10.1016/j.mad.2018.03.013_bib0035) 2009; 122 Letsolo (10.1016/j.mad.2018.03.013_bib0290) 2017; 12 Poljsak (10.1016/j.mad.2018.03.013_bib0415) 2014; 2014 Colussi (10.1016/j.mad.2018.03.013_bib0115) 2002; 12 Lu (10.1016/j.mad.2018.03.013_bib0300) 2010; 29 Henle (10.1016/j.mad.2018.03.013_bib0230) 1999; 274 Beneke (10.1016/j.mad.2018.03.013_bib0075) 2008; 36 Wallace (10.1016/j.mad.2018.03.013_bib0570) 2013; 54 Chang (10.1016/j.mad.2018.03.013_bib0110) 2016; 113 Forsyth (10.1016/j.mad.2018.03.013_bib0175) 2003; 2 Krokan (10.1016/j.mad.2018.03.013_bib0270) 2013; 5 Tong (10.1016/j.mad.2018.03.013_bib0540) 2001; 21 Sahin (10.1016/j.mad.2018.03.013_bib0475) 2011; 470 Malinin (10.1016/j.mad.2018.03.013_bib0315) 2011; 3 Markkanen (10.1016/j.mad.2018.03.013_bib0325) 2017; 59 Shimizu (10.1016/j.mad.2018.03.013_bib0510) 2010; 2010 Henderson (10.1016/j.mad.2018.03.013_bib0225) 2003; 42 Morland (10.1016/j.mad.2018.03.013_bib0360) 2005; 4 Cadet (10.1016/j.mad.2018.03.013_bib0085) 2013; 5 Baird (10.1016/j.mad.2018.03.013_bib0065) 2003; 33 Luo (10.1016/j.mad.2018.03.013_bib0305) 2001; 14 Srivastava (10.1016/j.mad.2018.03.013_bib0525) 1998; 273 Wallace (10.1016/j.mad.2018.03.013_bib0575) 2012; 327 Sfeir (10.1016/j.mad.2018.03.013_bib0500) 2009; 138 Kovtun (10.1016/j.mad.2018.03.013_bib0265) 2007; 447 Kolbanovskiy (10.1016/j.mad.2018.03.013_bib0260) 2017; 56 Petersen (10.1016/j.mad.2018.03.013_bib0410) 1998; 239 Rudd (10.1016/j.mad.2018.03.013_bib0465) 2016; 44 Larson (10.1016/j.mad.2018.03.013_bib0275) 2003; 2 Reuter (10.1016/j.mad.2018.03.013_bib0430) 2010; 49 Alder (10.1016/j.mad.2018.03.013_bib0030) 2008; 105 Askree (10.1016/j.mad.2018.03.013_bib0060) 2004; 101 Snetselaar (10.1016/j.mad.2018.03.013_bib0515) 2017; 12 Hill (10.1016/j.mad.2018.03.013_bib0235) 2001; 29 Mazurek (10.1016/j.mad.2018.03.013_bib0335) 2002; 277 Coluzzi (10.1016/j.mad.2018.03.013_bib0120) 2014; 9 Sanders (10.1016/j.mad.2018.03.013_bib0490) 2011; 66 Sobol (10.1016/j.mad.2018.03.013_bib0520) 2000; 405 Aeby (10.1016/j.mad.2018.03.013_bib0010) 2016; 17 Saretzki (10.1016/j.mad.2018.03.013_bib0495) 2003; 2 Shimizu (10.1016/j.mad.2018.03.013_bib0505) 2003; 22 Zhou (10.1016/j.mad.2018.03.013_bib0600) 2013; 288 Aikata (10.1016/j.mad.2018.03.013_bib0025) 2000; 256 Chakraborty (10.1016/j.mad.2018.03.013_bib0105) 2015; 290 Gomez (10.1016/j.mad.2018.03.013_bib0195) 2006; 17 Martens (10.1016/j.mad.2018.03.013_bib0330) 2016; 3 Vallabhaneni (10.1016/j.mad.2018.03.013_bib0555) 2013; 9 Doksani (10.1016/j.mad.2018.03.013_bib0150) 2014; 6 Mokkapati (10.1016/j.mad.2018.03.013_bib0355) 2004; 43 Gopalakrishnan (10.1016/j.mad.2018.03.013_bib0200) 2010; 1 Aseervatham (10.1016/j.mad.2018.03.013_bib0055) 2013; 20 Oikawa (10.1016/j.mad.2018.03.013_bib0385) 2001; 40 O’Donovan (10.1016/j.mad.2018.03.013_bib0370) 2011; 6 Campisi (10.1016/j.mad.2018.03.013_bib0090) 2011; 21 Richter (10.1016/j.mad.2018.03.013_bib0445) 2007; 128 Rey (10.1016/j.mad.2018.03.013_bib0435) 2017; 32 Aamann (10.1016/j.mad.2018.03.013_bib0005) 2014; 135 Artandi (10.1016/j.mad.2018.03.013_bib0050) 2000; 406 Miller (10.1016/j.mad.2018.03.013_bib0350) 2012; 11 Graham (10.1016/j.mad.2018.03.013_bib0205) 2017; 14 von Zglinicki (10.1016/j.mad.2018.03.013_bib0565) 2002; 27 O’Sullivan (10.1016/j.mad.2018.03.013_bib0375) 2002; 32 Opresko (10.1016/j.mad.2018.03.013_bib0390) 2005; 33 Cannan (10.1016/j.mad.2018.03.013_bib0095) 2014; 289 d’Adda di Fagagna (10.1016/j.mad.2018.03.013_bib0130) 2003; 426 Richter (10.1016/j.mad.2018.03.013_bib0450) 2007; 42 Cattan (10.1016/j.mad.2018.03.013_bib0100) 2008; 44 McNulty (10.1016/j.mad.2018.03.013_bib0340) 1998; 11 Jurk (10.1016/j.mad.2018.03.013_bib0240) 2014; 2 Palm (10.1016/j.mad.2018.03.013_bib0400) 2008; 42 Rhee (10.1016/j.mad.2018.03.013_bib0440) 2011; 10 Fouquerel (10.1016/j.mad.2018.03.013_bib0180) 2016; 23 Armanios (10.1016/j.mad.2018.03.013_bib0045) 2012; 13 Valdes (10.1016/j.mad.2018.03.013_bib0550) 2005; 366 Zhang (10.1016/j.mad.2018.03.013_bib0585) 2016; 25 Mao (10.1016/j.mad.2018.03.013_bib0320) 2017; 8 Epel (10.1016/j.mad.2018.03.013_bib0160) 2004; 101 Samper (10.1016/j.mad.2018.03.013_bib0485) 2001; 154 Stout (10.1016/j.mad.2018.03.013_bib0530) 2013; 73 Hegde (10.1016/j.mad.2018.03.013_bib0220) 2012; 133 Melis (10.1016/j.mad.2018.03.013_bib0345) 2013; 12 Opresko (10.1016/j.mad.2018.03.013_bib0395) 2017; 33 Passos (10.1016/j.mad.2018.03.013_bib0405) 2007; 5 Tan (10.1016/j.mad.2018.03.013_bib0535) 2017; 818–831 Risques (10.1016/j.mad.2018.03.013_bib0455) 2011; 71 Baltazar (10.1016/j.mad.2018.03.013_bib0070) 2014; 230 Amsellem (10.1016/j.mad.2018.03.013_bib0040) 2011; 184 Maga (10.1016/j.mad.2018.03.013_bib0310) 2007; 447 Sale (10.1016/j.mad.2018.03.013_bib0480) 2012; 13 Vidal (10.1016/j.mad.2018.03.013_bib0560) 2001; 29 |
| References_xml | – volume: 135 start-page: 1 year: 2014 end-page: 14 ident: bib0005 article-title: Cockayne syndrome group B protein stimulates NEIL2 DNA glycosylase activity publication-title: Mech. Ageing Dev. – volume: 405 start-page: 807 year: 2000 end-page: 810 ident: bib0520 article-title: The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity publication-title: Nature – volume: 290 start-page: 24636 year: 2015 end-page: 24648 ident: bib0105 article-title: Neil2-null mice accumulate oxidized DNA bases in the transcriptionally active sequences of the genome and are susceptible to innate inflammation publication-title: J. Biol. Chem. – volume: 6 start-page: e19687 year: 2011 ident: bib0370 article-title: Cumulative inflammatory load is associated with short leukocyte telomere length in the health, aging and body composition study publication-title: PLoS One – volume: 256 start-page: 578 year: 2000 end-page: 582 ident: bib0025 article-title: Telomere reduction in human liver tissues with age and chronic inflammation publication-title: Exp. Cell. Res. – volume: 4 start-page: 381 year: 2005 end-page: 387 ident: bib0360 article-title: Product inhibition and magnesium modulate the dual reaction mode of hOgg1 publication-title: DNA Repair (Amst) – volume: 818–831 start-page: e815 year: 2017 ident: bib0535 article-title: Nek7 protects telomeres from oxidative DNA damage by phosphorylation and stabilization of TRF1 publication-title: Mol. Cell – volume: 49 start-page: 707 year: 2010 end-page: 717 ident: bib0250 article-title: Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis publication-title: Free Radic. Biol. Med. – volume: 447 start-page: 447 year: 2007 end-page: 452 ident: bib0265 article-title: OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells publication-title: Nature – volume: 406 start-page: 641 year: 2000 end-page: 645 ident: bib0050 article-title: Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice publication-title: Nature – volume: 15 start-page: 153 year: 2011 end-page: 156 ident: bib0365 article-title: Telomere length in vascular tissues from patients with atherosclerotic disease publication-title: J. Nutr. Health Aging – volume: 121 start-page: 1046 year: 2008 end-page: 1053 ident: bib0020 article-title: Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress publication-title: J. Cell. Sci. – volume: 508 start-page: 215 year: 2014 end-page: 221 ident: bib0190 article-title: MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool publication-title: Nature – volume: 44 start-page: 1592 year: 2008 end-page: 1598 ident: bib0100 article-title: Chronic oxidative stress induces a tissue-specific reduction in telomere length in CAST/Ei mice publication-title: Free Radic. Biol. Med. – volume: 15 start-page: 1451 year: 2006 end-page: 1457 ident: bib0165 article-title: Chromosomal instability in Barrett’s esophagus is related to telomere shortening publication-title: Cancer Epidemiol. Biomarkers Prev. – volume: 29 start-page: 430 year: 2001 end-page: 438 ident: bib0235 article-title: Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair publication-title: Nucleic Acids Res. – volume: 277 start-page: 8260 year: 2002 end-page: 8266 ident: bib0335 article-title: Activation of human MutS homologs by 8-oxo-guanine DNA damage publication-title: J. Biol. Chem. – volume: 12 start-page: e0174833 year: 2017 ident: bib0290 article-title: Extensive telomere erosion is consistent with localised clonal expansions in Barrett’s metaplasia publication-title: PLoS One – volume: 13 start-page: 693 year: 2012 end-page: 704 ident: bib0045 article-title: The telomere syndromes publication-title: Nat. Rev. Genet. – volume: 12 start-page: 912 year: 2002 end-page: 918 ident: bib0115 article-title: The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool publication-title: Curr. Biol. – volume: 20 start-page: 2044 year: 2017 end-page: 2056 ident: bib0595 article-title: NEIL3 repairs telomere damage during S phase to secure chromosome segregation at mitosis publication-title: Cell Rep. – volume: 2 start-page: 1199 year: 2003 end-page: 1210 ident: bib0275 article-title: Strand-specific processing of 8-oxoguanine by the human mismatch repair pathway: inefficient removal of 8-oxoguanine paired with adenine or cytosine publication-title: DNA Repair (Amst) – volume: 23 start-page: 1092 year: 2016 end-page: 1100 ident: bib0180 article-title: Oxidative guanine base damage regulates human telomerase activity publication-title: Nat. Struct. Mol. Biol. – volume: 2010 year: 2010 ident: bib0510 article-title: Stimulation of DNA glycosylase activities by XPC protein complex: roles of protein-protein interactions publication-title: J. Nucleic Acids – volume: 11 start-page: 666 year: 1998 end-page: 673 ident: bib0340 article-title: Replication inhibition and miscoding properties of DNA templates containing a site-specific cis-thymine glycol or urea residue publication-title: Chem. Res. Toxicol. – volume: 154 start-page: 49 year: 2001 end-page: 60 ident: bib0485 article-title: Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase-deficient mice and primary cells despite increased chromosomal instability publication-title: J. Cell Biol. – volume: 274 start-page: 962 year: 1999 end-page: 971 ident: bib0230 article-title: Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications publication-title: J. Biol. Chem. – volume: 128 start-page: 1999 year: 2011 end-page: 2009 ident: bib0295 article-title: Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates publication-title: Int. J. Cancer – volume: 21 start-page: 354 year: 2011 end-page: 359 ident: bib0090 article-title: Cellular senescence: a link between cancer and age-related degenerative disease? publication-title: Semin Cancer Biol. – volume: 32 start-page: 280 year: 2002 end-page: 284 ident: bib0375 article-title: Chromosomal instability in ulcerative colitis is related to telomere shortening publication-title: Nat. Genet. – volume: 17 start-page: 1686 year: 2006 end-page: 1696 ident: bib0195 article-title: PARP1 Is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres publication-title: Mol. Biol. Cell – volume: 9 start-page: e1003639 year: 2013 ident: bib0555 article-title: Defective repair of oxidative base lesions by the DNA glycosylase Nth1 associates with multiple telomere defects publication-title: PLoS Genet. – volume: 13 year: 2017 ident: bib0425 article-title: Does oxidative stress shorten telomeres in vivo? A review publication-title: Biol. Lett. – volume: 17 start-page: 3107 year: 2016 end-page: 3114 ident: bib0010 article-title: Peroxiredoxin 1 protects telomeres from oxidative damage and preserves telomeric DNA for extension by telomerase publication-title: Cell. Rep. – volume: 42 start-page: 301 year: 2008 end-page: 334 ident: bib0400 article-title: How shelterin protects mammalian telomeres publication-title: Annu Rev. Genet. – volume: 65 start-page: 10977 year: 2005 end-page: 10983 ident: bib0420 article-title: Lack of poly(ADP-ribose) polymerase-1 gene product enhances cellular sensitivity to arsenite publication-title: Cancer Res. – volume: 42 start-page: 9257 year: 2003 end-page: 9262 ident: bib0225 article-title: The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo publication-title: Biochemistry – volume: 44 start-page: 193 year: 2016 end-page: 204 ident: bib0465 article-title: Pathways controlling dNTP pools to maintain genome stability publication-title: DNA Repair (Amst) – volume: 29 start-page: 398 year: 2010 end-page: 409 ident: bib0300 article-title: Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast publication-title: EMBO J. – volume: 9 start-page: e110963 year: 2014 ident: bib0120 article-title: Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells publication-title: PLoS One – volume: 40 start-page: 4763 year: 2001 end-page: 4768 ident: bib0385 article-title: Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening publication-title: Biochemistry – volume: 273 start-page: 21203 year: 1998 end-page: 21209 ident: bib0525 article-title: Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps publication-title: J. Biol. Chem. – volume: 21 start-page: 4046 year: 2001 end-page: 4054 ident: bib0540 article-title: DNA strand break-sensing molecule poly(ADP-Ribose) polymerase cooperates with p53 in telomere function, chromosome stability, and tumor suppression publication-title: Mol. Cell Biol. – volume: 10 start-page: 34 year: 2011 end-page: 44 ident: bib0440 article-title: Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1 publication-title: DNA Repair (Amst) – volume: 8 start-page: 81649 year: 2017 end-page: 81661 ident: bib0320 article-title: Oxidative stress-induced diseases and tea polyphenols publication-title: Oncotarget – volume: 2 start-page: 141 year: 2003 end-page: 143 ident: bib0495 article-title: MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress publication-title: Aging Cell – volume: 54 start-page: 691 year: 2013 end-page: 704 ident: bib0570 article-title: DNA glycosylases search for and remove oxidized DNA bases publication-title: Environ. Mol. Mutagen. – volume: 3 start-page: 258 year: 2016 end-page: 269 ident: bib0330 article-title: Air pollution stress and the aging phenotype: the telomere connection publication-title: Curr. Environ. Health Rep. – volume: 230 start-page: 85 year: 2014 end-page: 103 ident: bib0070 article-title: Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases--a mechanistic approach publication-title: Toxicol. Lett. – volume: 24 start-page: 1595 year: 2004 end-page: 1607 ident: bib0140 article-title: Functional interaction between poly(ADP-Ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2 publication-title: Mol. Cell Biol. – volume: 12 start-page: 558 year: 2013 end-page: 567 ident: bib0470 article-title: DNA strand break repair and neurodegeneration publication-title: DNA Repair (Amst) – volume: 5 year: 2013 ident: bib0085 article-title: DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation publication-title: Cold Spring Harb. Perspect Biol. – volume: 33 start-page: 52 year: 2017 end-page: 66 ident: bib0395 article-title: Telomere-associated aging disorders publication-title: Ageing Res. Rev. – volume: 7 start-page: 4384 year: 2017 ident: bib0460 article-title: No cancer predisposition or increased spontaneous mutation frequencies in NEIL DNA glycosylases-deficient mice publication-title: Sci. Rep. – volume: 12 start-page: 1081 year: 2013 end-page: 1086 ident: bib0345 article-title: Slow accumulation of mutations in Xpc-/- mice upon induction of oxidative stress publication-title: DNA Repair (Amst) – volume: 23 start-page: 76 year: 1999 end-page: 80 ident: bib0125 article-title: Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability publication-title: Nat. Genet. – volume: 36 start-page: 6309 year: 2008 end-page: 6317 ident: bib0075 article-title: Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1 publication-title: Nucleic Acids Res. – volume: 59 start-page: 82 year: 2017 end-page: 105 ident: bib0325 article-title: Not breathing is not an option: how to deal with oxidative DNA damage publication-title: DNA Repair (Amst) – volume: 27 start-page: 339 year: 2002 end-page: 344 ident: bib0565 article-title: Oxidative stress shortens telomeres publication-title: Trends Biochem. Sci. – volume: 1 start-page: 16 year: 2010 ident: bib0200 article-title: Hydrogen peroxide induced genomic instability in nucleotide excision repair-deficient lymphoblastoid cells publication-title: Genome Integr. – volume: 22 start-page: 164 year: 2003 end-page: 173 ident: bib0505 article-title: Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase publication-title: EMBO J. – volume: 101 start-page: 8658 year: 2004 end-page: 8663 ident: bib0060 article-title: A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 start-page: 33 year: 1999 end-page: 42 ident: bib0255 article-title: Base excision repair of oxidative DNA damage activated by XPG protein publication-title: Mol. Cell – volume: 42 start-page: 1733 year: 2014 end-page: 1746 ident: bib0285 article-title: Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes publication-title: Nucleic Acids Res. – volume: 122 start-page: 1990 year: 2009 end-page: 2002 ident: bib0035 article-title: Radiation-induced mitotic catastrophe in PARG-deficient cells publication-title: J. Cell. Sci. – volume: 25 start-page: 4305 year: 2006 end-page: 4315 ident: bib0135 article-title: New functions of XPC in the protection of human skin cells from oxidative damage publication-title: EMBO J. – year: 2016 ident: bib0185 article-title: DNA damage processing at telomeres: the ends justify the means publication-title: DNA Repair (Amst) – volume: 2014 start-page: 671539 year: 2014 ident: bib0415 article-title: The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution publication-title: Oxid. Med. Cell Longev. – volume: 33 start-page: 203 year: 2003 end-page: 207 ident: bib0065 article-title: Extensive allelic variation and ultrashort telomeres in senescent human cells publication-title: Nat. Genet. – volume: 14 start-page: 927 year: 2001 end-page: 938 ident: bib0305 article-title: Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model publication-title: Chem. Res. Toxicol. – volume: 3 start-page: 906 year: 2011 end-page: 910 ident: bib0315 article-title: Oxidation as "the stress of life" publication-title: Aging (Albany NY) – volume: 73 start-page: 1844 year: 2013 end-page: 1854 ident: bib0530 article-title: Telomere length and telomerase activity impact the UV sensitivity syndrome xeroderma pigmentosum C publication-title: Cancer Res. – volume: 101 start-page: 17312 year: 2004 end-page: 17315 ident: bib0160 article-title: Accelerated telomere shortening in response to life stress publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 5 start-page: e110 year: 2007 ident: bib0405 article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence publication-title: PLoS Biol. – volume: 32 start-page: 1480 year: 2017 end-page: 1486 ident: bib0435 article-title: Liver damage and senescence increases in patients developing hepatocellular carcinoma publication-title: J. Gastroenterol. Hepatol. – volume: 6 start-page: a016576 year: 2014 ident: bib0150 article-title: The role of double-strand break repair pathways at functional and dysfunctional telomeres publication-title: Cold Spring Harb. Perspect Biol. – volume: 70 start-page: 743 year: 2013 end-page: 749 ident: bib0590 article-title: Environmental and occupational exposure to chemicals and telomere length in human studies publication-title: Occup. Environ. Med. – volume: 326 start-page: 948 year: 2009 end-page: 952 ident: bib0145 article-title: How telomeres solve the end-protection problem publication-title: Science – volume: 2 start-page: 235 year: 2003 end-page: 243 ident: bib0175 article-title: Developmental differences in the immortalization of lung fibroblasts by telomerase publication-title: Aging Cell – volume: 45 start-page: 11752 year: 2017 end-page: 11765 ident: bib0280 article-title: Molecular mechanisms by which oxidative DNA damage promotes telomerase activity publication-title: Nucleic Acids Res. – volume: 10 start-page: 321 year: 2009 end-page: 322 ident: bib0080 article-title: A review of human carcinogens--Part B: biological agents publication-title: Lancet Oncol. – volume: 33 start-page: 1230 year: 2005 end-page: 1239 ident: bib0390 article-title: Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2 publication-title: Nucleic Acids Res. – volume: 128 start-page: 340 year: 2007 end-page: 345 ident: bib0445 article-title: TRF2 overexpression diminishes repair of telomeric single-strand breaks and accelerates telomere shortening in human fibroblasts publication-title: Mech. Ageing Dev. – volume: 288 start-page: 27263 year: 2013 end-page: 27272 ident: bib0600 article-title: Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context publication-title: J. Biol. Chem. – volume: 107 start-page: 35 year: 2017 end-page: 52 ident: bib0170 article-title: Formation and processing of DNA damage substrates for the hNEIL enzymes publication-title: Free Radic. Biol. Med. – volume: 345 start-page: 458 year: 1990 end-page: 460 ident: bib0215 article-title: Telomeres shorten during ageing of human fibroblasts publication-title: Nature – volume: 366 start-page: 662 year: 2005 end-page: 664 ident: bib0550 article-title: Obesity, cigarette smoking, and telomere length in women publication-title: Lancet – volume: 56 start-page: 3008 year: 2017 end-page: 3018 ident: bib0260 article-title: The nonbulky DNA lesions spiroiminodihydantoin and 5-Guanidinohydantoin significantly block human RNA polymerase II elongation in vitro publication-title: Biochemistry – volume: 426 start-page: 194 year: 2003 end-page: 198 ident: bib0130 article-title: A DNA damage checkpoint response in telomere-initiated senescence publication-title: Nature – volume: 470 start-page: 359 year: 2011 end-page: 365 ident: bib0475 article-title: Telomere dysfunction induces metabolic and mitochondrial compromise publication-title: Nature – volume: 14 start-page: 607 year: 2017 end-page: 619 ident: bib0205 article-title: Telomeres and telomerase in prostate cancer development and therapy publication-title: Nat. Rev. Urol. – volume: 66 start-page: 639 year: 2011 end-page: 645 ident: bib0490 article-title: The association of cataract with leukocyte telomere length in older adults: defining a new marker of aging publication-title: J. Gerontol. A Biol. Sci. Med. Sci. – volume: 289 start-page: 19881 year: 2014 end-page: 19893 ident: bib0095 article-title: Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages publication-title: J. Biol. Chem. – volume: 42 start-page: 1039 year: 2007 end-page: 1042 ident: bib0450 article-title: A continuous correlation between oxidative stress and telomere shortening in fibroblasts publication-title: Exp. Gerontol. – volume: 133 start-page: 157 year: 2012 end-page: 168 ident: bib0220 article-title: Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases publication-title: Mech. Ageing Dev. – volume: 71 start-page: 1669 year: 2011 end-page: 1679 ident: bib0455 article-title: Ulcerative colitis-associated colorectal cancer arises in a field of short telomeres, senescence, and inflammation publication-title: Cancer Res. – volume: 2 start-page: 4172 year: 2014 ident: bib0240 article-title: Chronic inflammation induces telomere dysfunction and accelerates ageing in mice publication-title: Nat. Commun. – volume: 6 start-page: e1000951 year: 2010 ident: bib0580 article-title: Characterization of oxidative guanine damage and repair in mammalian telomeres publication-title: PLoS Genet. – volume: 447 start-page: 606 year: 2007 end-page: 608 ident: bib0310 article-title: 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins publication-title: Nature – volume: 453 start-page: 365 year: 1999 end-page: 368 ident: bib0380 article-title: Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening publication-title: FEBS Lett. – volume: 13 start-page: 52 year: 2012 end-page: 59 ident: bib0245 article-title: Five dysfunctional telomeres predict onset of senescence in human cells publication-title: EMBO Rep. – volume: 11 start-page: 998 year: 2012 end-page: 1007 ident: bib0350 article-title: Telomere proteins POT1, TRF1 and TRF2 augment long-patch base excision repair in vitro publication-title: Cell Cycle – volume: 327 start-page: 73 year: 2012 end-page: 89 ident: bib0575 article-title: Base excision repair and cancer publication-title: Cancer Lett. – volume: 138 start-page: 90 year: 2009 end-page: 103 ident: bib0500 article-title: Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication publication-title: Cell – volume: 49 start-page: 1603 year: 2010 end-page: 1616 ident: bib0430 article-title: Oxidative stress, inflammation, and cancer: how are they linked? publication-title: Free Radic. Biol. Med. – volume: 111 start-page: E4878 year: 2014 end-page: 4886 ident: bib0155 article-title: Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 20 start-page: 4356 year: 2013 end-page: 4369 ident: bib0055 article-title: Environmental factors and unhealthy lifestyle influence oxidative stress in humans--an overview publication-title: Environ. Sci. Pollut. Res. Int. – volume: 11 start-page: 774 year: 2012 end-page: 779 ident: bib0210 article-title: Telomere dynamics in human mesenchymal stem cells after exposure to acute oxidative stress publication-title: DNA Repair (Amst) – volume: 105 start-page: 13051 year: 2008 end-page: 13056 ident: bib0030 article-title: Short telomeres are a risk factor for idiopathic pulmonary fibrosis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 113 start-page: 13120 year: 2016 end-page: 13125 ident: bib0110 article-title: Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 29 start-page: 1285 year: 2001 end-page: 1292 ident: bib0560 article-title: Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step publication-title: Nucleic Acids Res. – volume: 25 start-page: 55 year: 2016 end-page: 69 ident: bib0585 article-title: Ageing and the telomere connection: an intimate relationship with inflammation publication-title: Ageing Res. Rev. – volume: 43 start-page: 11596 year: 2004 end-page: 11604 ident: bib0355 article-title: Stimulation of DNA glycosylase activity of OGG1 by NEIL1: functional collaboration between two human DNA glycosylases publication-title: Biochemistry – volume: 12 start-page: e0189467 year: 2017 ident: bib0515 article-title: Short telomere length in IPF lung associates with fibrotic lesions and predicts survival publication-title: PLoS One – volume: 13 start-page: 141 year: 2012 end-page: 152 ident: bib0480 article-title: Y-family DNA polymerases and their role in tolerance of cellular DNA damage publication-title: Nat. Rev. Mol. Cell Biol. – volume: 184 start-page: 1358 year: 2011 end-page: 1366 ident: bib0040 article-title: Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease publication-title: Am. J. Respir. Crit. Care Med. – volume: 193 start-page: 4643 year: 2014 end-page: 4653 ident: bib0015 article-title: Innate inflammation induced by the 8-oxoguanine DNA glycosylase-1-KRAS-NF-kappaB pathway publication-title: J. Immunol. – volume: 5 start-page: a012583 year: 2013 ident: bib0270 article-title: Base excision repair publication-title: Cold Spring Harb. Perspect Biol. – volume: 239 start-page: 152 year: 1998 end-page: 160 ident: bib0410 article-title: Preferential accumulation of single-stranded regions in telomeres of human fibroblasts publication-title: Exp. Cell Res. – volume: 17 start-page: 668 year: 2003 end-page: 674 ident: bib0545 article-title: Primary fibroblasts of cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress publication-title: FASEB J. – volume: 40 start-page: 4763 year: 2001 ident: 10.1016/j.mad.2018.03.013_bib0385 article-title: Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening publication-title: Biochemistry doi: 10.1021/bi002721g – volume: 2014 start-page: 671539 year: 2014 ident: 10.1016/j.mad.2018.03.013_bib0415 article-title: The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution publication-title: Oxid. Med. Cell Longev. doi: 10.1155/2014/671539 – volume: 5 start-page: e110 year: 2007 ident: 10.1016/j.mad.2018.03.013_bib0405 article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050110 – volume: 138 start-page: 90 year: 2009 ident: 10.1016/j.mad.2018.03.013_bib0500 article-title: Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication publication-title: Cell doi: 10.1016/j.cell.2009.06.021 – volume: 2 start-page: 235 year: 2003 ident: 10.1016/j.mad.2018.03.013_bib0175 article-title: Developmental differences in the immortalization of lung fibroblasts by telomerase publication-title: Aging Cell doi: 10.1046/j.1474-9728.2003.00057.x – volume: 21 start-page: 354 year: 2011 ident: 10.1016/j.mad.2018.03.013_bib0090 article-title: Cellular senescence: a link between cancer and age-related degenerative disease? publication-title: Semin Cancer Biol. – volume: 15 start-page: 153 year: 2011 ident: 10.1016/j.mad.2018.03.013_bib0365 article-title: Telomere length in vascular tissues from patients with atherosclerotic disease publication-title: J. Nutr. Health Aging doi: 10.1007/s12603-011-0029-1 – volume: 326 start-page: 948 year: 2009 ident: 10.1016/j.mad.2018.03.013_bib0145 article-title: How telomeres solve the end-protection problem publication-title: Science doi: 10.1126/science.1170633 – volume: 13 start-page: 693 year: 2012 ident: 10.1016/j.mad.2018.03.013_bib0045 article-title: The telomere syndromes publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3246 – volume: 17 start-page: 3107 year: 2016 ident: 10.1016/j.mad.2018.03.013_bib0010 article-title: Peroxiredoxin 1 protects telomeres from oxidative damage and preserves telomeric DNA for extension by telomerase publication-title: Cell. Rep. doi: 10.1016/j.celrep.2016.11.071 – volume: 10 start-page: 34 year: 2011 ident: 10.1016/j.mad.2018.03.013_bib0440 article-title: Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1 publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2010.09.008 – volume: 29 start-page: 398 year: 2010 ident: 10.1016/j.mad.2018.03.013_bib0300 article-title: Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast publication-title: EMBO J. doi: 10.1038/emboj.2009.355 – volume: 11 start-page: 774 year: 2012 ident: 10.1016/j.mad.2018.03.013_bib0210 article-title: Telomere dynamics in human mesenchymal stem cells after exposure to acute oxidative stress publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2012.06.003 – volume: 45 start-page: 11752 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0280 article-title: Molecular mechanisms by which oxidative DNA damage promotes telomerase activity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx789 – volume: 22 start-page: 164 year: 2003 ident: 10.1016/j.mad.2018.03.013_bib0505 article-title: Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase publication-title: EMBO J. doi: 10.1093/emboj/cdg016 – volume: 345 start-page: 458 year: 1990 ident: 10.1016/j.mad.2018.03.013_bib0215 article-title: Telomeres shorten during ageing of human fibroblasts publication-title: Nature doi: 10.1038/345458a0 – volume: 54 start-page: 691 year: 2013 ident: 10.1016/j.mad.2018.03.013_bib0570 article-title: DNA glycosylases search for and remove oxidized DNA bases publication-title: Environ. Mol. Mutagen. doi: 10.1002/em.21820 – volume: 42 start-page: 301 year: 2008 ident: 10.1016/j.mad.2018.03.013_bib0400 article-title: How shelterin protects mammalian telomeres publication-title: Annu Rev. Genet. doi: 10.1146/annurev.genet.41.110306.130350 – volume: 818–831 start-page: e815 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0535 article-title: Nek7 protects telomeres from oxidative DNA damage by phosphorylation and stabilization of TRF1 publication-title: Mol. Cell – volume: 23 start-page: 76 year: 1999 ident: 10.1016/j.mad.2018.03.013_bib0125 article-title: Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability publication-title: Nat. Genet. doi: 10.1038/12680 – volume: 6 start-page: a016576 year: 2014 ident: 10.1016/j.mad.2018.03.013_bib0150 article-title: The role of double-strand break repair pathways at functional and dysfunctional telomeres publication-title: Cold Spring Harb. Perspect Biol. doi: 10.1101/cshperspect.a016576 – volume: 33 start-page: 203 year: 2003 ident: 10.1016/j.mad.2018.03.013_bib0065 article-title: Extensive allelic variation and ultrashort telomeres in senescent human cells publication-title: Nat. Genet. doi: 10.1038/ng1084 – volume: 11 start-page: 998 year: 2012 ident: 10.1016/j.mad.2018.03.013_bib0350 article-title: Telomere proteins POT1, TRF1 and TRF2 augment long-patch base excision repair in vitro publication-title: Cell Cycle doi: 10.4161/cc.11.5.19483 – volume: 44 start-page: 1592 year: 2008 ident: 10.1016/j.mad.2018.03.013_bib0100 article-title: Chronic oxidative stress induces a tissue-specific reduction in telomere length in CAST/Ei mice publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2008.01.007 – volume: 12 start-page: 912 year: 2002 ident: 10.1016/j.mad.2018.03.013_bib0115 article-title: The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00863-1 – volume: 14 start-page: 607 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0205 article-title: Telomeres and telomerase in prostate cancer development and therapy publication-title: Nat. Rev. Urol. doi: 10.1038/nrurol.2017.104 – volume: 470 start-page: 359 year: 2011 ident: 10.1016/j.mad.2018.03.013_bib0475 article-title: Telomere dysfunction induces metabolic and mitochondrial compromise publication-title: Nature doi: 10.1038/nature09787 – volume: 32 start-page: 280 year: 2002 ident: 10.1016/j.mad.2018.03.013_bib0375 article-title: Chromosomal instability in ulcerative colitis is related to telomere shortening publication-title: Nat. Genet. doi: 10.1038/ng989 – volume: 406 start-page: 641 year: 2000 ident: 10.1016/j.mad.2018.03.013_bib0050 article-title: Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice publication-title: Nature doi: 10.1038/35020592 – volume: 2010 year: 2010 ident: 10.1016/j.mad.2018.03.013_bib0510 article-title: Stimulation of DNA glycosylase activities by XPC protein complex: roles of protein-protein interactions publication-title: J. Nucleic Acids doi: 10.4061/2010/805698 – volume: 154 start-page: 49 year: 2001 ident: 10.1016/j.mad.2018.03.013_bib0485 article-title: Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase-deficient mice and primary cells despite increased chromosomal instability publication-title: J. Cell Biol. doi: 10.1083/jcb.200103049 – volume: 42 start-page: 9257 year: 2003 ident: 10.1016/j.mad.2018.03.013_bib0225 article-title: The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo publication-title: Biochemistry doi: 10.1021/bi0347252 – volume: 122 start-page: 1990 year: 2009 ident: 10.1016/j.mad.2018.03.013_bib0035 article-title: Radiation-induced mitotic catastrophe in PARG-deficient cells publication-title: J. Cell. Sci. doi: 10.1242/jcs.039115 – volume: 1 start-page: 16 year: 2010 ident: 10.1016/j.mad.2018.03.013_bib0200 article-title: Hydrogen peroxide induced genomic instability in nucleotide excision repair-deficient lymphoblastoid cells publication-title: Genome Integr. doi: 10.1186/2041-9414-1-16 – volume: 13 start-page: 52 year: 2012 ident: 10.1016/j.mad.2018.03.013_bib0245 article-title: Five dysfunctional telomeres predict onset of senescence in human cells publication-title: EMBO Rep. doi: 10.1038/embor.2011.227 – volume: 273 start-page: 21203 year: 1998 ident: 10.1016/j.mad.2018.03.013_bib0525 article-title: Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.33.21203 – volume: 11 start-page: 666 year: 1998 ident: 10.1016/j.mad.2018.03.013_bib0340 article-title: Replication inhibition and miscoding properties of DNA templates containing a site-specific cis-thymine glycol or urea residue publication-title: Chem. Res. Toxicol. doi: 10.1021/tx970225w – volume: 12 start-page: e0189467 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0515 article-title: Short telomere length in IPF lung associates with fibrotic lesions and predicts survival publication-title: PLoS One doi: 10.1371/journal.pone.0189467 – volume: 289 start-page: 19881 year: 2014 ident: 10.1016/j.mad.2018.03.013_bib0095 article-title: Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.571588 – volume: 49 start-page: 707 year: 2010 ident: 10.1016/j.mad.2018.03.013_bib0250 article-title: Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2010.04.036 – volume: 105 start-page: 13051 year: 2008 ident: 10.1016/j.mad.2018.03.013_bib0030 article-title: Short telomeres are a risk factor for idiopathic pulmonary fibrosis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0804280105 – volume: 59 start-page: 82 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0325 article-title: Not breathing is not an option: how to deal with oxidative DNA damage publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2017.09.007 – volume: 66 start-page: 639 year: 2011 ident: 10.1016/j.mad.2018.03.013_bib0490 article-title: The association of cataract with leukocyte telomere length in older adults: defining a new marker of aging publication-title: J. Gerontol. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/glr034 – volume: 2 start-page: 141 year: 2003 ident: 10.1016/j.mad.2018.03.013_bib0495 article-title: MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress publication-title: Aging Cell doi: 10.1046/j.1474-9728.2003.00040.x – volume: 128 start-page: 1999 year: 2011 ident: 10.1016/j.mad.2018.03.013_bib0295 article-title: Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates publication-title: Int. J. Cancer doi: 10.1002/ijc.25815 – volume: 5 start-page: a012583 year: 2013 ident: 10.1016/j.mad.2018.03.013_bib0270 article-title: Base excision repair publication-title: Cold Spring Harb. Perspect Biol. doi: 10.1101/cshperspect.a012583 – volume: 12 start-page: e0174833 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0290 article-title: Extensive telomere erosion is consistent with localised clonal expansions in Barrett’s metaplasia publication-title: PLoS One doi: 10.1371/journal.pone.0174833 – volume: 56 start-page: 3008 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0260 article-title: The nonbulky DNA lesions spiroiminodihydantoin and 5-Guanidinohydantoin significantly block human RNA polymerase II elongation in vitro publication-title: Biochemistry doi: 10.1021/acs.biochem.7b00295 – volume: 20 start-page: 2044 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0595 article-title: NEIL3 repairs telomere damage during S phase to secure chromosome segregation at mitosis publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.08.020 – volume: 239 start-page: 152 year: 1998 ident: 10.1016/j.mad.2018.03.013_bib0410 article-title: Preferential accumulation of single-stranded regions in telomeres of human fibroblasts publication-title: Exp. Cell Res. doi: 10.1006/excr.1997.3893 – volume: 107 start-page: 35 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0170 article-title: Formation and processing of DNA damage substrates for the hNEIL enzymes publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2016.11.030 – volume: 405 start-page: 807 year: 2000 ident: 10.1016/j.mad.2018.03.013_bib0520 article-title: The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity publication-title: Nature doi: 10.1038/35015598 – volume: 274 start-page: 962 year: 1999 ident: 10.1016/j.mad.2018.03.013_bib0230 article-title: Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.2.962 – volume: 43 start-page: 11596 year: 2004 ident: 10.1016/j.mad.2018.03.013_bib0355 article-title: Stimulation of DNA glycosylase activity of OGG1 by NEIL1: functional collaboration between two human DNA glycosylases publication-title: Biochemistry doi: 10.1021/bi049097i – volume: 327 start-page: 73 year: 2012 ident: 10.1016/j.mad.2018.03.013_bib0575 article-title: Base excision repair and cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2011.12.038 – volume: 17 start-page: 668 year: 2003 ident: 10.1016/j.mad.2018.03.013_bib0545 article-title: Primary fibroblasts of cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress publication-title: FASEB J. doi: 10.1096/fj.02-0851com – volume: 73 start-page: 1844 year: 2013 ident: 10.1016/j.mad.2018.03.013_bib0530 article-title: Telomere length and telomerase activity impact the UV sensitivity syndrome xeroderma pigmentosum C publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3125 – volume: 17 start-page: 1686 year: 2006 ident: 10.1016/j.mad.2018.03.013_bib0195 article-title: PARP1 Is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e05-07-0672 – volume: 426 start-page: 194 year: 2003 ident: 10.1016/j.mad.2018.03.013_bib0130 article-title: A DNA damage checkpoint response in telomere-initiated senescence publication-title: Nature doi: 10.1038/nature02118 – volume: 447 start-page: 447 year: 2007 ident: 10.1016/j.mad.2018.03.013_bib0265 article-title: OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells publication-title: Nature doi: 10.1038/nature05778 – volume: 36 start-page: 6309 year: 2008 ident: 10.1016/j.mad.2018.03.013_bib0075 article-title: Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn615 – volume: 3 start-page: 33 year: 1999 ident: 10.1016/j.mad.2018.03.013_bib0255 article-title: Base excision repair of oxidative DNA damage activated by XPG protein publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80172-0 – volume: 33 start-page: 1230 year: 2005 ident: 10.1016/j.mad.2018.03.013_bib0390 article-title: Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki273 – volume: 128 start-page: 340 year: 2007 ident: 10.1016/j.mad.2018.03.013_bib0445 article-title: TRF2 overexpression diminishes repair of telomeric single-strand breaks and accelerates telomere shortening in human fibroblasts publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2007.02.003 – volume: 70 start-page: 743 year: 2013 ident: 10.1016/j.mad.2018.03.013_bib0590 article-title: Environmental and occupational exposure to chemicals and telomere length in human studies publication-title: Occup. Environ. Med. doi: 10.1136/oemed-2012-101350 – volume: 101 start-page: 8658 year: 2004 ident: 10.1016/j.mad.2018.03.013_bib0060 article-title: A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0401263101 – volume: 14 start-page: 927 year: 2001 ident: 10.1016/j.mad.2018.03.013_bib0305 article-title: Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model publication-title: Chem. Res. Toxicol. doi: 10.1021/tx010072j – volume: 366 start-page: 662 year: 2005 ident: 10.1016/j.mad.2018.03.013_bib0550 article-title: Obesity, cigarette smoking, and telomere length in women publication-title: Lancet doi: 10.1016/S0140-6736(05)66630-5 – volume: 447 start-page: 606 year: 2007 ident: 10.1016/j.mad.2018.03.013_bib0310 article-title: 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins publication-title: Nature doi: 10.1038/nature05843 – year: 2016 ident: 10.1016/j.mad.2018.03.013_bib0185 article-title: DNA damage processing at telomeres: the ends justify the means publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2016.05.022 – volume: 29 start-page: 1285 year: 2001 ident: 10.1016/j.mad.2018.03.013_bib0560 article-title: Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.6.1285 – volume: 15 start-page: 1451 year: 2006 ident: 10.1016/j.mad.2018.03.013_bib0165 article-title: Chromosomal instability in Barrett’s esophagus is related to telomere shortening publication-title: Cancer Epidemiol. Biomarkers Prev. doi: 10.1158/1055-9965.EPI-05-0837 – volume: 49 start-page: 1603 year: 2010 ident: 10.1016/j.mad.2018.03.013_bib0430 article-title: Oxidative stress, inflammation, and cancer: how are they linked? publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2010.09.006 – volume: 111 start-page: E4878 year: 2014 ident: 10.1016/j.mad.2018.03.013_bib0155 article-title: Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1413582111 – volume: 256 start-page: 578 year: 2000 ident: 10.1016/j.mad.2018.03.013_bib0025 article-title: Telomere reduction in human liver tissues with age and chronic inflammation publication-title: Exp. Cell. Res. doi: 10.1006/excr.2000.4862 – volume: 13 start-page: 141 year: 2012 ident: 10.1016/j.mad.2018.03.013_bib0480 article-title: Y-family DNA polymerases and their role in tolerance of cellular DNA damage publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3289 – volume: 113 start-page: 13120 year: 2016 ident: 10.1016/j.mad.2018.03.013_bib0110 article-title: Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1615340113 – volume: 121 start-page: 1046 year: 2008 ident: 10.1016/j.mad.2018.03.013_bib0020 article-title: Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress publication-title: J. Cell. Sci. doi: 10.1242/jcs.019372 – volume: 3 start-page: 906 year: 2011 ident: 10.1016/j.mad.2018.03.013_bib0315 article-title: Oxidation as "the stress of life" publication-title: Aging (Albany NY) doi: 10.18632/aging.100385 – volume: 44 start-page: 193 year: 2016 ident: 10.1016/j.mad.2018.03.013_bib0465 article-title: Pathways controlling dNTP pools to maintain genome stability publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2016.05.032 – volume: 25 start-page: 4305 year: 2006 ident: 10.1016/j.mad.2018.03.013_bib0135 article-title: New functions of XPC in the protection of human skin cells from oxidative damage publication-title: EMBO J. doi: 10.1038/sj.emboj.7601277 – volume: 7 start-page: 4384 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0460 article-title: No cancer predisposition or increased spontaneous mutation frequencies in NEIL DNA glycosylases-deficient mice publication-title: Sci. Rep. doi: 10.1038/s41598-017-04472-4 – volume: 21 start-page: 4046 year: 2001 ident: 10.1016/j.mad.2018.03.013_bib0540 article-title: DNA strand break-sensing molecule poly(ADP-Ribose) polymerase cooperates with p53 in telomere function, chromosome stability, and tumor suppression publication-title: Mol. Cell Biol. doi: 10.1128/MCB.21.12.4046-4054.2001 – volume: 3 start-page: 258 year: 2016 ident: 10.1016/j.mad.2018.03.013_bib0330 article-title: Air pollution stress and the aging phenotype: the telomere connection publication-title: Curr. Environ. Health Rep. doi: 10.1007/s40572-016-0098-8 – volume: 33 start-page: 52 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0395 article-title: Telomere-associated aging disorders publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2016.05.009 – volume: 23 start-page: 1092 year: 2016 ident: 10.1016/j.mad.2018.03.013_bib0180 article-title: Oxidative guanine base damage regulates human telomerase activity publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3319 – volume: 508 start-page: 215 year: 2014 ident: 10.1016/j.mad.2018.03.013_bib0190 article-title: MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool publication-title: Nature doi: 10.1038/nature13181 – volume: 453 start-page: 365 year: 1999 ident: 10.1016/j.mad.2018.03.013_bib0380 article-title: Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)00748-6 – volume: 193 start-page: 4643 year: 2014 ident: 10.1016/j.mad.2018.03.013_bib0015 article-title: Innate inflammation induced by the 8-oxoguanine DNA glycosylase-1-KRAS-NF-kappaB pathway publication-title: J. Immunol. doi: 10.4049/jimmunol.1401625 – volume: 2 start-page: 4172 year: 2014 ident: 10.1016/j.mad.2018.03.013_bib0240 article-title: Chronic inflammation induces telomere dysfunction and accelerates ageing in mice publication-title: Nat. Commun. doi: 10.1038/ncomms5172 – volume: 27 start-page: 339 year: 2002 ident: 10.1016/j.mad.2018.03.013_bib0565 article-title: Oxidative stress shortens telomeres publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(02)02110-2 – volume: 135 start-page: 1 year: 2014 ident: 10.1016/j.mad.2018.03.013_bib0005 article-title: Cockayne syndrome group B protein stimulates NEIL2 DNA glycosylase activity publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2013.12.008 – volume: 5 year: 2013 ident: 10.1016/j.mad.2018.03.013_bib0085 article-title: DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation publication-title: Cold Spring Harb. Perspect Biol. doi: 10.1101/cshperspect.a012559 – volume: 29 start-page: 430 year: 2001 ident: 10.1016/j.mad.2018.03.013_bib0235 article-title: Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.2.430 – volume: 65 start-page: 10977 year: 2005 ident: 10.1016/j.mad.2018.03.013_bib0420 article-title: Lack of poly(ADP-ribose) polymerase-1 gene product enhances cellular sensitivity to arsenite publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-2336 – volume: 288 start-page: 27263 year: 2013 ident: 10.1016/j.mad.2018.03.013_bib0600 article-title: Neil3 and NEIL1 DNA glycosylases remove oxidative damages from quadruplex DNA and exhibit preferences for lesions in the telomeric sequence context publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.479055 – volume: 230 start-page: 85 year: 2014 ident: 10.1016/j.mad.2018.03.013_bib0070 article-title: Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases--a mechanistic approach publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2014.01.039 – volume: 277 start-page: 8260 year: 2002 ident: 10.1016/j.mad.2018.03.013_bib0335 article-title: Activation of human MutS homologs by 8-oxo-guanine DNA damage publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111269200 – volume: 4 start-page: 381 year: 2005 ident: 10.1016/j.mad.2018.03.013_bib0360 article-title: Product inhibition and magnesium modulate the dual reaction mode of hOgg1 publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2004.11.002 – volume: 6 start-page: e19687 year: 2011 ident: 10.1016/j.mad.2018.03.013_bib0370 article-title: Cumulative inflammatory load is associated with short leukocyte telomere length in the health, aging and body composition study publication-title: PLoS One doi: 10.1371/journal.pone.0019687 – volume: 24 start-page: 1595 year: 2004 ident: 10.1016/j.mad.2018.03.013_bib0140 article-title: Functional interaction between poly(ADP-Ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.24.4.1595-1607.2004 – volume: 71 start-page: 1669 year: 2011 ident: 10.1016/j.mad.2018.03.013_bib0455 article-title: Ulcerative colitis-associated colorectal cancer arises in a field of short telomeres, senescence, and inflammation publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-1966 – volume: 12 start-page: 558 year: 2013 ident: 10.1016/j.mad.2018.03.013_bib0470 article-title: DNA strand break repair and neurodegeneration publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2013.04.008 – volume: 8 start-page: 81649 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0320 article-title: Oxidative stress-induced diseases and tea polyphenols publication-title: Oncotarget doi: 10.18632/oncotarget.20887 – volume: 25 start-page: 55 year: 2016 ident: 10.1016/j.mad.2018.03.013_bib0585 article-title: Ageing and the telomere connection: an intimate relationship with inflammation publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2015.11.006 – volume: 12 start-page: 1081 year: 2013 ident: 10.1016/j.mad.2018.03.013_bib0345 article-title: Slow accumulation of mutations in Xpc-/- mice upon induction of oxidative stress publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2013.08.019 – volume: 290 start-page: 24636 year: 2015 ident: 10.1016/j.mad.2018.03.013_bib0105 article-title: Neil2-null mice accumulate oxidized DNA bases in the transcriptionally active sequences of the genome and are susceptible to innate inflammation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.658146 – volume: 133 start-page: 157 year: 2012 ident: 10.1016/j.mad.2018.03.013_bib0220 article-title: Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2012.01.005 – volume: 13 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0425 article-title: Does oxidative stress shorten telomeres in vivo? A review publication-title: Biol. Lett. doi: 10.1098/rsbl.2017.0463 – volume: 9 start-page: e110963 year: 2014 ident: 10.1016/j.mad.2018.03.013_bib0120 article-title: Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells publication-title: PLoS One doi: 10.1371/journal.pone.0110963 – volume: 20 start-page: 4356 year: 2013 ident: 10.1016/j.mad.2018.03.013_bib0055 article-title: Environmental factors and unhealthy lifestyle influence oxidative stress in humans--an overview publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-013-1748-0 – volume: 2 start-page: 1199 year: 2003 ident: 10.1016/j.mad.2018.03.013_bib0275 article-title: Strand-specific processing of 8-oxoguanine by the human mismatch repair pathway: inefficient removal of 8-oxoguanine paired with adenine or cytosine publication-title: DNA Repair (Amst) doi: 10.1016/S1568-7864(03)00140-X – volume: 10 start-page: 321 year: 2009 ident: 10.1016/j.mad.2018.03.013_bib0080 article-title: A review of human carcinogens--Part B: biological agents publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(09)70096-8 – volume: 32 start-page: 1480 year: 2017 ident: 10.1016/j.mad.2018.03.013_bib0435 article-title: Liver damage and senescence increases in patients developing hepatocellular carcinoma publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/jgh.13717 – volume: 42 start-page: 1039 year: 2007 ident: 10.1016/j.mad.2018.03.013_bib0450 article-title: A continuous correlation between oxidative stress and telomere shortening in fibroblasts publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2007.08.005 – volume: 42 start-page: 1733 year: 2014 ident: 10.1016/j.mad.2018.03.013_bib0285 article-title: Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1117 – volume: 101 start-page: 17312 year: 2004 ident: 10.1016/j.mad.2018.03.013_bib0160 article-title: Accelerated telomere shortening in response to life stress publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0407162101 – volume: 184 start-page: 1358 year: 2011 ident: 10.1016/j.mad.2018.03.013_bib0040 article-title: Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201105-0802OC – volume: 6 start-page: e1000951 year: 2010 ident: 10.1016/j.mad.2018.03.013_bib0580 article-title: Characterization of oxidative guanine damage and repair in mammalian telomeres publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000951 – volume: 9 start-page: e1003639 year: 2013 ident: 10.1016/j.mad.2018.03.013_bib0555 article-title: Defective repair of oxidative base lesions by the DNA glycosylase Nth1 associates with multiple telomere defects publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003639 |
| SSID | ssj0001426 |
| Score | 2.6684022 |
| SecondaryResourceType | review_article |
| Snippet | •Loss of telomere maintenance contributes ageing-related diseases and carcinogenesis.•Numerous diseases associated with oxidative stress are also associated... Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication,... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 37 |
| SubjectTerms | Aging - metabolism Aging - pathology Animals Base excision repair DNA Damage Environmental Exposure - adverse effects Humans Mice Oxidation-Reduction Oxidative DNA damage Oxidative Stress Telomeres |
| Title | The impact of oxidative DNA damage and stress on telomere homeostasis |
| URI | https://dx.doi.org/10.1016/j.mad.2018.03.013 https://www.ncbi.nlm.nih.gov/pubmed/29604323 https://www.proquest.com/docview/2020482857 https://www.proquest.com/docview/2834220102 https://pubmed.ncbi.nlm.nih.gov/PMC6162185 |
| Volume | 177 |
| WOSCitedRecordID | wos000456902900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6216 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001426 issn: 0047-6374 databaseCode: AIEXJ dateStart: 19950113 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYBhMvCDpg5TIZCfHAVJS7nccKigBpBaEhVbxETuxoGU1cJS3q_j3HlyRdp1XwwEtaOY5b-ftyfGyf8xmh16lPOHOUymcK7lsQRTG8UjkfCfCGUzd3BWXmsAkyndLZLP5mBRUafZwAqSq6XseL_wo1lAHYKnX2H-DuGoUC-A6gwxVgh-tfA9_nPsp1wY2294fp-JSzUsXo6MVykySi9grEXJaiFqcX8CHBW2yKZtNnPRMqO7hoSh31Ac-3eY28DzjqF0Rrq_3__UqZ136QW8EAVJuQgMm86LeEvqpI3F_SeLPquICC2UwIuxah0p-6tQhh7Ccl3ijyTPpkZ2DtQS3GRBqNlxuW2ywiXL4rmdJvdamWnjVpqhugLUqNmqckZXyTqLwll93e2kMHHgljMHQH48-T2ZdueHbBJ2m3t3Wg39YvKnlo28ZtvsrNuch2SO2Gj3L-ED2wkws8NqR4hO6IaoCOxhVbyvIKv8E63FfvowzQ4ZmNqhigez-lLjxCEyAPNuTBMscdeTCQBxvyYEAeG_JgWeGWPHiDPI_Rj4-T8_efRvagjVEG04HlKIxIxGLoGAbuIuUe94M4hy5wRORnNOa562R5HHgpGG9Kw9DnLuFKuxeGhEyw0H-C9itZiWOEc6VpyQnzOQ2CMMxSJ3Iy4YGf6mcwFQ-GyGm7NMmsCr06DGWetOGGlwkAkihAEsdPAJAhets9sjASLLsqBy1OifUhjW-YANF2PfaqxTQB-6o2zVgl5KqBSkra2qMh2VGH-oGnwkq8IXpqeND905ZLQ0SuMaSroPTdr9-pigut8x658CbR8NmtbT5H9_u38AXaX9Yr8RLdzX4vi6Y-QXtkRk8s_f8AP-K94Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+oxidative+DNA+damage+and+stress+on+telomere+homeostasis&rft.jtitle=Mechanisms+of+ageing+and+development&rft.au=Barnes%2C+Ryan+P&rft.au=Fouquerel%2C+Elise&rft.au=Opresko%2C+Patricia+L&rft.date=2019-01-01&rft.eissn=1872-6216&rft.volume=177&rft.spage=37&rft_id=info:doi/10.1016%2Fj.mad.2018.03.013&rft_id=info%3Apmid%2F29604323&rft.externalDocID=29604323 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-6374&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-6374&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-6374&client=summon |