Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data
Flooding is one of the leading threats of natural disasters to human life and property, especially in densely populated urban areas. Rapid and precise extraction of the flooded areas is key to supporting emergency-response planning and providing damage assessment in both spatial and temporal measure...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 19; no. 7; p. 1486 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI
27.03.2019
MDPI AG |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Flooding is one of the leading threats of natural disasters to human life and property, especially in densely populated urban areas. Rapid and precise extraction of the flooded areas is key to supporting emergency-response planning and providing damage assessment in both spatial and temporal measurements. Unmanned Aerial Vehicles (UAV) technology has recently been recognized as an efficient photogrammetry data acquisition platform to quickly deliver high-resolution imagery because of its cost-effectiveness, ability to fly at lower altitudes, and ability to enter a hazardous area. Different image classification methods including SVM (Support Vector Machine) have been used for flood extent mapping. In recent years, there has been a significant improvement in remote sensing image classification using Convolutional Neural Networks (CNNs). CNNs have demonstrated excellent performance on various tasks including image classification, feature extraction, and segmentation. CNNs can learn features automatically from large datasets through the organization of multi-layers of neurons and have the ability to implement nonlinear decision functions. This study investigates the potential of CNN approaches to extract flooded areas from UAV imagery. A VGG-based fully convolutional network (FCN-16s) was used in this research. The model was fine-tuned and a k-fold cross-validation was applied to estimate the performance of the model on the new UAV imagery dataset. This approach allowed FCN-16s to be trained on the datasets that contained only one hundred training samples, and resulted in a highly accurate classification. Confusion matrix was calculated to estimate the accuracy of the proposed method. The image segmentation results obtained from FCN-16s were compared from the results obtained from FCN-8s, FCN-32s and SVMs. Experimental results showed that the FCNs could extract flooded areas precisely from UAV images compared to the traditional classifiers such as SVMs. The classification accuracy achieved by FCN-16s, FCN-8s, FCN-32s, and SVM for the water class was 97.52%, 97.8%, 94.20% and 89%, respectively. |
|---|---|
| AbstractList | Flooding is one of the leading threats of natural disasters to human life and property, especially in densely populated urban areas. Rapid and precise extraction of the flooded areas is key to supporting emergency-response planning and providing damage assessment in both spatial and temporal measurements. Unmanned Aerial Vehicles (UAV) technology has recently been recognized as an efficient photogrammetry data acquisition platform to quickly deliver high-resolution imagery because of its cost-effectiveness, ability to fly at lower altitudes, and ability to enter a hazardous area. Different image classification methods including SVM (Support Vector Machine) have been used for flood extent mapping. In recent years, there has been a significant improvement in remote sensing image classification using Convolutional Neural Networks (CNNs). CNNs have demonstrated excellent performance on various tasks including image classification, feature extraction, and segmentation. CNNs can learn features automatically from large datasets through the organization of multi-layers of neurons and have the ability to implement nonlinear decision functions. This study investigates the potential of CNN approaches to extract flooded areas from UAV imagery. A VGG-based fully convolutional network (FCN-16s) was used in this research. The model was fine-tuned and a k-fold cross-validation was applied to estimate the performance of the model on the new UAV imagery dataset. This approach allowed FCN-16s to be trained on the datasets that contained only one hundred training samples, and resulted in a highly accurate classification. Confusion matrix was calculated to estimate the accuracy of the proposed method. The image segmentation results obtained from FCN-16s were compared from the results obtained from FCN-8s, FCN-32s and SVMs. Experimental results showed that the FCNs could extract flooded areas precisely from UAV images compared to the traditional classifiers such as SVMs. The classification accuracy achieved by FCN-16s, FCN-8s, FCN-32s, and SVM for the water class was 97.52%, 97.8%, 94.20% and 89%, respectively. Flooding is one of the leading threats of natural disasters to human life and property, especially in densely populated urban areas. Rapid and precise extraction of the flooded areas is key to supporting emergency-response planning and providing damage assessment in both spatial and temporal measurements. Unmanned Aerial Vehicles (UAV) technology has recently been recognized as an efficient photogrammetry data acquisition platform to quickly deliver high-resolution imagery because of its cost-effectiveness, ability to fly at lower altitudes, and ability to enter a hazardous area. Different image classification methods including SVM (Support Vector Machine) have been used for flood extent mapping. In recent years, there has been a significant improvement in remote sensing image classification using Convolutional Neural Networks (CNNs). CNNs have demonstrated excellent performance on various tasks including image classification, feature extraction, and segmentation. CNNs can learn features automatically from large datasets through the organization of multi-layers of neurons and have the ability to implement nonlinear decision functions. This study investigates the potential of CNN approaches to extract flooded areas from UAV imagery. A VGG-based fully convolutional network (FCN-16s) was used in this research. The model was fine-tuned and a k-fold cross-validation was applied to estimate the performance of the model on the new UAV imagery dataset. This approach allowed FCN-16s to be trained on the datasets that contained only one hundred training samples, and resulted in a highly accurate classification. Confusion matrix was calculated to estimate the accuracy of the proposed method. The image segmentation results obtained from FCN-16s were compared from the results obtained from FCN-8s, FCN-32s and SVMs. Experimental results showed that the FCNs could extract flooded areas precisely from UAV images compared to the traditional classifiers such as SVMs. The classification accuracy achieved by FCN-16s, FCN-8s, FCN-32s, and SVM for the water class was 97.52%, 97.8%, 94.20% and 89%, respectively.Flooding is one of the leading threats of natural disasters to human life and property, especially in densely populated urban areas. Rapid and precise extraction of the flooded areas is key to supporting emergency-response planning and providing damage assessment in both spatial and temporal measurements. Unmanned Aerial Vehicles (UAV) technology has recently been recognized as an efficient photogrammetry data acquisition platform to quickly deliver high-resolution imagery because of its cost-effectiveness, ability to fly at lower altitudes, and ability to enter a hazardous area. Different image classification methods including SVM (Support Vector Machine) have been used for flood extent mapping. In recent years, there has been a significant improvement in remote sensing image classification using Convolutional Neural Networks (CNNs). CNNs have demonstrated excellent performance on various tasks including image classification, feature extraction, and segmentation. CNNs can learn features automatically from large datasets through the organization of multi-layers of neurons and have the ability to implement nonlinear decision functions. This study investigates the potential of CNN approaches to extract flooded areas from UAV imagery. A VGG-based fully convolutional network (FCN-16s) was used in this research. The model was fine-tuned and a k-fold cross-validation was applied to estimate the performance of the model on the new UAV imagery dataset. This approach allowed FCN-16s to be trained on the datasets that contained only one hundred training samples, and resulted in a highly accurate classification. Confusion matrix was calculated to estimate the accuracy of the proposed method. The image segmentation results obtained from FCN-16s were compared from the results obtained from FCN-8s, FCN-32s and SVMs. Experimental results showed that the FCNs could extract flooded areas precisely from UAV images compared to the traditional classifiers such as SVMs. The classification accuracy achieved by FCN-16s, FCN-8s, FCN-32s, and SVM for the water class was 97.52%, 97.8%, 94.20% and 89%, respectively. |
| Author | Hashemi-Beni, Leila Thompson, Gary Langan, Thomas E. Gebrehiwot, Asmamaw Kordjamshidi, Parisa |
| AuthorAffiliation | 3 Computer Science Department, Tulane University, 6823 St. Charles Avenue, Tulane University, New Orleans, LA 70118, USA; pkordjam@tulane.edu 1 Geomatics Program, Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA; aagebrehiwot@aggies.ncat.edu 4 Florida Institute for Human and Machine Cognition, Pensacola, FL 32502, USA 2 North Carolina Emergency Management, Geodetic Survey, Raleigh, NC 27699-4298, USA; gary.thompson@ncdps.gov (G.T.); tom.langan@ncdps.gov (T.E.L.) |
| AuthorAffiliation_xml | – name: 3 Computer Science Department, Tulane University, 6823 St. Charles Avenue, Tulane University, New Orleans, LA 70118, USA; pkordjam@tulane.edu – name: 1 Geomatics Program, Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA; aagebrehiwot@aggies.ncat.edu – name: 2 North Carolina Emergency Management, Geodetic Survey, Raleigh, NC 27699-4298, USA; gary.thompson@ncdps.gov (G.T.); tom.langan@ncdps.gov (T.E.L.) – name: 4 Florida Institute for Human and Machine Cognition, Pensacola, FL 32502, USA |
| Author_xml | – sequence: 1 givenname: Asmamaw surname: Gebrehiwot fullname: Gebrehiwot, Asmamaw – sequence: 2 givenname: Leila surname: Hashemi-Beni fullname: Hashemi-Beni, Leila – sequence: 3 givenname: Gary surname: Thompson fullname: Thompson, Gary – sequence: 4 givenname: Parisa surname: Kordjamshidi fullname: Kordjamshidi, Parisa – sequence: 5 givenname: Thomas E. surname: Langan fullname: Langan, Thomas E. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30934695$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkk1v1DAQhi1URD8P_AGUIxyW-itxfEGqth9UKnChPdaa2JOtS9ZO7aTAv292t61auHis8TvPa3tml2yFGJCQ94x-FkLTw8w0VUzW1RuywySXs5pzuvViv012c76llAsh6ndkW1AtZKXLHXJ9jNgX8xjuYzcOPgboiu84pnUYfsf0q2hjKk67GF1x8mfAMBTfoO99WBSXeb2GJYSArjjC5KeyK7zxtsNcHMMA--RtC13Gg8e4Ry5PT37Ov84ufpydz48uZrakaphJCdZh6TivLK1aq3TTWCegptZaxZzkjQYOnJWNUsKiqyVVXCNlCMIyEHvkfMN1EW5Nn_wS0l8TwZt1IqaFgTSs7mUqoKigdaypuWQ119IBVRQstLaRzYr1ZcPqx2aJzk5Pnr7jFfT1SfA3ZhHvTSWVLoWaAB8fASnejZgHs_TZYtdBwDhmMzWEM61LWU3SDy-9nk2eGjQJDjcCm2LOCVtj_QCrRk3WvjOMmtUImOcRmCo-_VPxBP1f-wAUs7IM |
| CitedBy_id | crossref_primary_10_3390_s24217090 crossref_primary_10_1016_j_jhydrol_2020_125092 crossref_primary_10_3390_jmse11112154 crossref_primary_10_1016_j_mehy_2019_109503 crossref_primary_10_1016_j_ijdrr_2020_102030 crossref_primary_10_1016_j_ijdrr_2019_101288 crossref_primary_10_1007_s11600_024_01481_6 crossref_primary_10_1029_2023WR034545 crossref_primary_10_1109_TGRS_2024_3494257 crossref_primary_10_1111_jfr3_12684 crossref_primary_10_3390_rs14246374 crossref_primary_10_1016_j_jclepro_2021_127594 crossref_primary_10_1061__ASCE_WR_1943_5452_0001615 crossref_primary_10_1016_j_envsoft_2021_105186 crossref_primary_10_1016_j_isprsjprs_2022_03_013 crossref_primary_10_3390_rs15133263 crossref_primary_10_1016_j_autcon_2021_103916 crossref_primary_10_1109_JSTARS_2025_3584282 crossref_primary_10_1016_j_jag_2025_104720 crossref_primary_10_3390_rs11212492 crossref_primary_10_1016_j_scitotenv_2021_146927 crossref_primary_10_1016_j_gsf_2020_09_007 crossref_primary_10_3390_rs12152455 crossref_primary_10_1088_1361_6501_adf871 crossref_primary_10_3390_rs13163165 crossref_primary_10_1007_s42979_024_03066_y crossref_primary_10_1080_10106049_2023_2252389 crossref_primary_10_3390_rs15225357 crossref_primary_10_1016_j_indcrop_2022_115762 crossref_primary_10_1016_j_rse_2023_113452 crossref_primary_10_3390_rs17081351 crossref_primary_10_1002_spe_2964 crossref_primary_10_1016_j_jhydrol_2022_127726 crossref_primary_10_1080_10106049_2022_2046866 crossref_primary_10_1016_j_jhydrol_2023_130148 crossref_primary_10_3390_s22051824 crossref_primary_10_3390_fractalfract6030134 crossref_primary_10_1016_j_ijdrr_2024_104359 crossref_primary_10_1007_s11707_022_0985_2 crossref_primary_10_1016_j_jhydrol_2024_131475 crossref_primary_10_3390_rs15082001 crossref_primary_10_1016_j_catena_2025_108919 crossref_primary_10_3390_rs16122193 crossref_primary_10_1016_j_jhydrol_2024_131755 crossref_primary_10_1016_j_jhydrol_2019_124482 crossref_primary_10_1109_JIOT_2021_3098379 crossref_primary_10_3390_rs14010223 crossref_primary_10_1007_s10586_021_03472_4 crossref_primary_10_1080_19475705_2022_2060138 crossref_primary_10_3390_w12020521 crossref_primary_10_3390_rs12193270 crossref_primary_10_1007_s44288_025_00145_2 crossref_primary_10_3390_electronics12234795 crossref_primary_10_1080_10106049_2022_2112982 crossref_primary_10_1016_j_earscirev_2024_104775 crossref_primary_10_1111_risa_14317 crossref_primary_10_1109_JSTARS_2023_3317500 crossref_primary_10_1016_j_engappai_2023_106476 crossref_primary_10_1109_ACCESS_2020_2965231 crossref_primary_10_1109_TGRS_2024_3502659 crossref_primary_10_1007_s40789_023_00622_4 crossref_primary_10_3390_geosciences10050177 crossref_primary_10_1016_j_jhydrol_2025_133687 crossref_primary_10_1016_j_ecohyd_2023_02_002 crossref_primary_10_1016_j_envsoft_2022_105333 crossref_primary_10_5194_hess_27_4135_2023 crossref_primary_10_1007_s10661_024_13597_9 crossref_primary_10_1016_j_isprsjprs_2021_08_016 crossref_primary_10_5194_hess_26_4345_2022 crossref_primary_10_1016_j_ijdrr_2024_104629 crossref_primary_10_1016_j_compenvurbsys_2021_101628 crossref_primary_10_1109_JSTARS_2022_3219724 crossref_primary_10_1080_19475705_2024_2364777 crossref_primary_10_3390_drones7010032 crossref_primary_10_1080_19479832_2020_1864787 crossref_primary_10_1016_j_envsoft_2023_105939 crossref_primary_10_1109_ACCESS_2024_3487413 crossref_primary_10_5194_nhess_20_907_2020 crossref_primary_10_1007_s10712_020_09611_7 crossref_primary_10_1016_j_procs_2024_09_395 crossref_primary_10_1016_j_wasec_2023_100141 crossref_primary_10_2166_bgs_2025_042 crossref_primary_10_1109_JSTARS_2022_3215730 crossref_primary_10_1016_j_jhydrol_2020_125734 crossref_primary_10_1080_10106049_2021_1986578 crossref_primary_10_1109_TGRS_2024_3407200 crossref_primary_10_3390_su13147547 crossref_primary_10_1080_10106049_2022_2032387 crossref_primary_10_1007_s11269_021_03051_7 crossref_primary_10_3390_rs12183053 crossref_primary_10_1109_JSTARS_2021_3092340 crossref_primary_10_1155_2023_5672401 crossref_primary_10_3390_geosciences9070323 crossref_primary_10_1016_j_inffus_2024_102445 crossref_primary_10_3390_rs11192331 crossref_primary_10_1109_JSTARS_2021_3051873 crossref_primary_10_3390_w17071005 crossref_primary_10_3390_math10244735 crossref_primary_10_1155_2022_2887502 crossref_primary_10_1002_gj_5196 crossref_primary_10_1145_3703157 crossref_primary_10_3389_frwa_2024_1346104 crossref_primary_10_3390_su15107897 crossref_primary_10_1016_j_rsase_2022_100896 crossref_primary_10_3390_rs12152490 crossref_primary_10_1007_s10812_023_01489_8 crossref_primary_10_3390_ijgi10030144 crossref_primary_10_1016_j_envsoft_2024_106252 crossref_primary_10_1016_j_jag_2021_102456 crossref_primary_10_1016_j_jhydrol_2020_125033 crossref_primary_10_3390_s22082888 crossref_primary_10_1016_j_rsase_2025_101571 crossref_primary_10_1109_ACCESS_2020_3030112 crossref_primary_10_3390_rs13071359 crossref_primary_10_1111_jfr3_12622 crossref_primary_10_1007_s40808_024_01972_x crossref_primary_10_1016_j_jag_2024_103996 crossref_primary_10_3390_ijgi13120419 crossref_primary_10_1002_sd_3074 crossref_primary_10_1002_ima_22781 crossref_primary_10_1016_j_rse_2023_113956 crossref_primary_10_1109_JSTARS_2020_3047677 crossref_primary_10_1007_s11356_022_22375_4 crossref_primary_10_3390_foods11213483 crossref_primary_10_1088_1742_6596_2774_1_012077 crossref_primary_10_3390_s19225012 crossref_primary_10_1016_j_jhydrol_2022_127788 crossref_primary_10_1016_j_rse_2023_113556 crossref_primary_10_3390_app11104493 crossref_primary_10_1007_s41748_023_00369_7 crossref_primary_10_1007_s11069_021_05098_6 |
| Cites_doi | 10.1007/978-3-319-24574-4_28 10.1117/1.JRS.11.042609 10.1109/TGRS.2005.846154 10.5194/isprs-annals-III-3-473-2016 10.3390/s18113843 10.1162/neco.2008.12-07-661 10.1016/j.isprsjprs.2017.11.021 10.1109/TPAMI.2016.2644615 10.1007/978-3-642-46466-9_18 10.1109/CVPR.2015.7298965 10.1109/CVPR.2015.7298594 10.1155/2015/258619 10.3390/rs9050498 10.3390/w7041437 10.1109/TGRS.2016.2539957 10.4249/scholarpedia.1888 10.1016/S0034-4257(97)00083-7 10.1109/ICASSP.2013.6639347 10.1063/1.4825984 10.1088/1757-899X/245/1/012004 10.1109/IACC.2016.20 10.1080/19475683.2018.1450787 10.3390/s150715717 10.3390/rs71115702 10.1007/978-1-4757-2440-0 10.3390/rs70303372 10.1007/s11069-004-8891-3 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3390/s19071486 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_6a0e7afd1b82418294da070acafcb4ba PMC6479537 30934695 10_3390_s19071486 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: North Carolina Collaboratory Policy grantid: Collaboratory – fundername: National Science Foundation grantid: 1800768 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7X8 5PM |
| ID | FETCH-LOGICAL-c507t-44acde5d226c06fc79bbcd3a80ccc71d42b9a2a215b773ced840729e01ea3c1a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 149 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465570700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:51:21 EDT 2025 Tue Nov 04 02:00:31 EST 2025 Sun Nov 09 05:15:55 EST 2025 Wed Feb 19 02:35:08 EST 2025 Tue Nov 18 21:06:59 EST 2025 Sat Nov 29 07:16:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | floodplain mapping fully convolutional network remote sensing convolutional neural networks unmanned aerial vehicles geospatial data processing |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c507t-44acde5d226c06fc79bbcd3a80ccc71d42b9a2a215b773ced840729e01ea3c1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/6a0e7afd1b82418294da070acafcb4ba |
| PMID | 30934695 |
| PQID | 2202199546 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6a0e7afd1b82418294da070acafcb4ba pubmedcentral_primary_oai_pubmedcentral_nih_gov_6479537 proquest_miscellaneous_2202199546 pubmed_primary_30934695 crossref_citationtrail_10_3390_s19071486 crossref_primary_10_3390_s19071486 |
| PublicationCentury | 2000 |
| PublicationDate | 20190327 |
| PublicationDateYYYYMMDD | 2019-03-27 |
| PublicationDate_xml | – month: 3 year: 2019 text: 20190327 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | Hirpa (ref_6) 2015; 7 Ball (ref_18) 2017; 11 ref_36 ref_13 ref_34 ref_33 Sugata (ref_31) 2017; 273 Paoletti (ref_26) 2018; 145 ref_30 Badrinarayanan (ref_20) 2017; 39 Nguyen (ref_24) 2013; 1558 Ireland (ref_11) 2015; 7 ref_19 LeCun (ref_28) 1995; Volume 3361 Pradhan (ref_7) 2016; 54 ref_17 Bruzzone (ref_35) 2005; 43 Boccardo (ref_10) 2015; 15 ref_15 ref_37 Hu (ref_16) 2015; 2015 ref_25 ref_23 Jonkman (ref_2) 2005; 34 ref_22 ref_21 Feng (ref_9) 2015; 7 Huang (ref_5) 2018; 24 ref_1 ref_3 Sutskever (ref_12) 2008; 20 Grossberg (ref_14) 2013; 8 ref_29 ref_27 ref_8 ref_4 Stehman (ref_32) 1997; 62 |
| References_xml | – ident: ref_21 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_3 – volume: 11 start-page: 042609 year: 2017 ident: ref_18 article-title: Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.11.042609 – volume: 43 start-page: 1351 year: 2005 ident: ref_35 article-title: Kernel-based methods for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.846154 – ident: ref_22 doi: 10.5194/isprs-annals-III-3-473-2016 – ident: ref_37 doi: 10.3390/s18113843 – volume: 20 start-page: 2629 year: 2008 ident: ref_12 article-title: Deep, narrow sigmoid belief networks are universal approximators publication-title: Neural Comput. doi: 10.1162/neco.2008.12-07-661 – ident: ref_1 – volume: 145 start-page: 120 year: 2018 ident: ref_26 article-title: A new deep convolutional neural network for fast hyperspectral image classification publication-title: SPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.021 – ident: ref_23 – volume: 39 start-page: 2481 year: 2017 ident: ref_20 article-title: Segnet: A deep convolutional encoder-decoder publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – ident: ref_27 doi: 10.1007/978-3-642-46466-9_18 – ident: ref_19 doi: 10.1109/CVPR.2015.7298965 – ident: ref_30 doi: 10.1109/CVPR.2015.7298594 – ident: ref_8 – volume: 2015 start-page: 258619 year: 2015 ident: ref_16 article-title: Deep convolutional neural networks for hyperspectral image classification publication-title: J. Sens. doi: 10.1155/2015/258619 – ident: ref_15 doi: 10.3390/rs9050498 – ident: ref_25 – ident: ref_4 – ident: ref_29 – volume: 7 start-page: 1437 year: 2015 ident: ref_9 article-title: Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—A case of Yuyao, China publication-title: Water doi: 10.3390/w7041437 – volume: Volume 3361 start-page: 1995 year: 1995 ident: ref_28 article-title: Convolutional networks for images, speech, and time series publication-title: The Handbook of Brain Theory and Neural Networks – volume: 54 start-page: 4331 year: 2016 ident: ref_7 article-title: A new semiautomated detection mapping of flood extent from TerraSAR-X satellite image using rule-based classification and taguchi optimization techniques publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2539957 – volume: 8 start-page: 1888 year: 2013 ident: ref_14 article-title: Recurrent neural networks publication-title: Scholarpedia doi: 10.4249/scholarpedia.1888 – volume: 62 start-page: 77 year: 1997 ident: ref_32 article-title: Selecting and interpreting measures of thematic classification accuracy publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00083-7 – ident: ref_17 doi: 10.1109/ICASSP.2013.6639347 – volume: 1558 start-page: 2237 year: 2013 ident: ref_24 article-title: Satellite image classification using convolutional learning publication-title: AIP Conf. Proc. doi: 10.1063/1.4825984 – volume: 273 start-page: 012004 year: 2017 ident: ref_31 article-title: Leaf App: Leaf recognition with deep convolutional neural networks publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/245/1/012004 – ident: ref_33 doi: 10.1109/IACC.2016.20 – volume: 24 start-page: 113 year: 2018 ident: ref_5 article-title: A near real-time flood-mapping approach by integrating social media and post-event satellite imagery publication-title: Ann. GIS doi: 10.1080/19475683.2018.1450787 – ident: ref_13 – volume: 15 start-page: 15717 year: 2015 ident: ref_10 article-title: UAV deployment exercise for mapping purposes: Evaluation of emergency response applications publication-title: Sensors doi: 10.3390/s150715717 – volume: 7 start-page: 15702 year: 2015 ident: ref_6 article-title: On the use of global flood forecasts and satellite-derived inundation maps for flood monitoring in data-sparse regions publication-title: Remote Sens. doi: 10.3390/rs71115702 – ident: ref_34 doi: 10.1007/978-1-4757-2440-0 – ident: ref_36 – volume: 7 start-page: 3372 year: 2015 ident: ref_11 article-title: Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: A case study from a Mediterranean flood publication-title: Remote Sens. doi: 10.3390/rs70303372 – volume: 34 start-page: 151 year: 2005 ident: ref_2 article-title: Global perspectives on loss of human life caused by floods publication-title: Nat. Hazards doi: 10.1007/s11069-004-8891-3 |
| SSID | ssj0023338 |
| Score | 2.6250565 |
| Snippet | Flooding is one of the leading threats of natural disasters to human life and property, especially in densely populated urban areas. Rapid and precise... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1486 |
| SubjectTerms | convolutional neural networks floodplain mapping fully convolutional network geospatial data processing remote sensing unmanned aerial vehicles |
| Title | Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30934695 https://www.proquest.com/docview/2202199546 https://pubmed.ncbi.nlm.nih.gov/PMC6479537 https://doaj.org/article/6a0e7afd1b82418294da070acafcb4ba |
| Volume | 19 |
| WOSCitedRecordID | wos000465570700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5B4UAPiHfDI1oQBy5WHXvt3T32kQgOiSJEUbhgzT5MK4FTNW6P_HZm1k6UoEpcuKwle6RdzYx3vvGOvwF4X9OOVyvnE1UWlKBY4xJEjYmXmo-RlNNZ12xCzWZ6sTDzrVZfXBPW0QN3ijssMQ0Kaz-ymoKNzoz0SG6KDmtnpY3QKFVmnUz1qVZOmVfHI5RTUn-4orCnCPiXO9EnkvTfhiz_LpDcijiTR_Cwh4riqFviY7gTmiewv0Ug-BS-n4ZwKU6WzU3vQSTPdBvxEuu7BYFSMeHqdDHm792tmCJTMvwQsVhAnDW_kLdacRRdUXwN57FQTpxii8_gbDL-cvIx6TsmJI5wXZtIic6HwhOmcin_xWOsdT5HnTrn1MjLzBrMkMK8VSp3wWvmRzMhHQXM3Qjz57DXLJtwAMIRciKwpTWaQlIQR-sIO5V1QOROuGoAH9aarFxPJ85dLX5WlFaw0quN0gfwbiN62XFo3CZ0zObYCDDtdbxBzlD1zlD9yxkG8HZtzIpeEz77wCYsr1dVlhGYYe47muhFZ9zNVHwYLEtTDEDtmH1nLbtPmovzSMVdSmWKXL38H4t_BQ8IjRkucMvUa9hrr67DG7jvbtqL1dUQ7qqFiqMewr3j8Wz-eRh9nsbp7zHdm3-azr_9AdRkCgc |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Neural+Network+for+Flood+Extent+Mapping+Using+Unmanned+Aerial+Vehicles+Data&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gebrehiwot%2C+Asmamaw&rft.au=Hashemi-Beni%2C+Leila&rft.au=Thompson%2C+Gary&rft.au=Kordjamshidi%2C+Parisa&rft.date=2019-03-27&rft.eissn=1424-8220&rft.volume=19&rft.issue=7&rft_id=info:doi/10.3390%2Fs19071486&rft_id=info%3Apmid%2F30934695&rft.externalDocID=30934695 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |