Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy
Muscle loss during aging and disuse is a highly prevalent and disabling condition, but knowledge about cellular pathways mediating muscle atrophy is still limited. Given the postmitotic nature of skeletal myocytes, the maintenance of cellular homeostasis relies on the efficiency of cellular quality...
Uloženo v:
| Vydáno v: | Biological chemistry Ročník 394; číslo 3; s. 393 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
01.03.2013
|
| Témata: | |
| ISSN: | 1437-4315, 1437-4315 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Muscle loss during aging and disuse is a highly prevalent and disabling condition, but knowledge about cellular pathways mediating muscle atrophy is still limited. Given the postmitotic nature of skeletal myocytes, the maintenance of cellular homeostasis relies on the efficiency of cellular quality control mechanisms. In this scenario, alterations in mitochondrial function are considered a major factor underlying sarcopenia and muscle atrophy. Damaged mitochondria are not only less bioenergetically efficient, but also generate increased amounts of reactive oxygen species, interfere with cellular quality control mechanisms, and display a greater propensity to trigger apoptosis. Thus, mitochondria stand at the crossroad of signaling pathways that regulate skeletal myocyte function and viability. Studies on these pathways have sometimes provided unexpected and counterintuitive results, which suggests that they are organized into a complex, heterarchical network that is currently insufficiently understood. Untangling the complexity of such a network will likely provide clinicians with novel and highly effective therapeutics to counter the muscle loss associated with aging and disuse. In this review, we summarize the current knowledge on the mechanisms whereby mitochondrial dysfunction intervenes in the pathogenesis of sarcopenia and disuse atrophy, and highlight the prospect of targeting specific processes to treat these conditions. |
|---|---|
| AbstractList | Muscle loss during aging and disuse is a highly prevalent and disabling condition, but knowledge about cellular pathways mediating muscle atrophy is still limited. Given the postmitotic nature of skeletal myocytes, the maintenance of cellular homeostasis relies on the efficiency of cellular quality control mechanisms. In this scenario, alterations in mitochondrial function are considered a major factor underlying sarcopenia and muscle atrophy. Damaged mitochondria are not only less bioenergetically efficient, but also generate increased amounts of reactive oxygen species, interfere with cellular quality control mechanisms, and display a greater propensity to trigger apoptosis. Thus, mitochondria stand at the crossroad of signaling pathways that regulate skeletal myocyte function and viability. Studies on these pathways have sometimes provided unexpected and counterintuitive results, which suggests that they are organized into a complex, heterarchical network that is currently insufficiently understood. Untangling the complexity of such a network will likely provide clinicians with novel and highly effective therapeutics to counter the muscle loss associated with aging and disuse. In this review, we summarize the current knowledge on the mechanisms whereby mitochondrial dysfunction intervenes in the pathogenesis of sarcopenia and disuse atrophy, and highlight the prospect of targeting specific processes to treat these conditions. Muscle loss during aging and disuse is a highly prevalent and disabling condition, but knowledge about cellular pathways mediating muscle atrophy is still limited. Given the postmitotic nature of skeletal myocytes, the maintenance of cellular homeostasis relies on the efficiency of cellular quality control mechanisms. In this scenario, alterations in mitochondrial function are considered a major factor underlying sarcopenia and muscle atrophy. Damaged mitochondria are not only less bioenergetically efficient, but also generate increased amounts of reactive oxygen species, interfere with cellular quality control mechanisms, and display a greater propensity to trigger apoptosis. Thus, mitochondria stand at the crossroad of signaling pathways that regulate skeletal myocyte function and viability. Studies on these pathways have sometimes provided unexpected and counterintuitive results, which suggests that they are organized into a complex, heterarchical network that is currently insufficiently understood. Untangling the complexity of such a network will likely provide clinicians with novel and highly effective therapeutics to counter the muscle loss associated with aging and disuse. In this review, we summarize the current knowledge on the mechanisms whereby mitochondrial dysfunction intervenes in the pathogenesis of sarcopenia and disuse atrophy, and highlight the prospect of targeting specific processes to treat these conditions.Muscle loss during aging and disuse is a highly prevalent and disabling condition, but knowledge about cellular pathways mediating muscle atrophy is still limited. Given the postmitotic nature of skeletal myocytes, the maintenance of cellular homeostasis relies on the efficiency of cellular quality control mechanisms. In this scenario, alterations in mitochondrial function are considered a major factor underlying sarcopenia and muscle atrophy. Damaged mitochondria are not only less bioenergetically efficient, but also generate increased amounts of reactive oxygen species, interfere with cellular quality control mechanisms, and display a greater propensity to trigger apoptosis. Thus, mitochondria stand at the crossroad of signaling pathways that regulate skeletal myocyte function and viability. Studies on these pathways have sometimes provided unexpected and counterintuitive results, which suggests that they are organized into a complex, heterarchical network that is currently insufficiently understood. Untangling the complexity of such a network will likely provide clinicians with novel and highly effective therapeutics to counter the muscle loss associated with aging and disuse. In this review, we summarize the current knowledge on the mechanisms whereby mitochondrial dysfunction intervenes in the pathogenesis of sarcopenia and disuse atrophy, and highlight the prospect of targeting specific processes to treat these conditions. |
| Author | Calvani, Riccardo Leeuwenburgh, Christiaan Adhihetty, Peter J Bernabei, Roberto Joseph, Anna-Maria Bossola, Maurizio Miccheli, Alfredo Marzetti, Emanuele |
| Author_xml | – sequence: 1 givenname: Riccardo surname: Calvani fullname: Calvani, Riccardo organization: Institute of Crystallography, Italian National Research Council (CNR), Bari 70126, Italy – sequence: 2 givenname: Anna-Maria surname: Joseph fullname: Joseph, Anna-Maria – sequence: 3 givenname: Peter J surname: Adhihetty fullname: Adhihetty, Peter J – sequence: 4 givenname: Alfredo surname: Miccheli fullname: Miccheli, Alfredo – sequence: 5 givenname: Maurizio surname: Bossola fullname: Bossola, Maurizio – sequence: 6 givenname: Christiaan surname: Leeuwenburgh fullname: Leeuwenburgh, Christiaan – sequence: 7 givenname: Roberto surname: Bernabei fullname: Bernabei, Roberto – sequence: 8 givenname: Emanuele surname: Marzetti fullname: Marzetti, Emanuele |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23154422$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj01LxDAYhIOsuB969Co5eokmadJ0j7K4q7DiRc_lbT62kTapTYusv96CK3iaYXgYZpZoFmKwCF0zesckk_d1-iacMk4oF-oMLZjIFBEZk7N_fo6WKX1QSgsqsgs051MmBOcLtHvxQ9R1DKb30OAOhvoLjgn7gBP0OnY2eMDRYTj4cMAQDDY-jcnidky6sRiGPnb18RKdO2iSvTrpCr1vH982T2T_unvePOyJljQfiBMUuFTG8AJytXaZAac0Y9Lo6QPQTBTTLAVOalpxoRXVhXE6FzkUtDIVX6Hb396uj5-jTUPZ-qRt00CwcUwl44XIOcvXakJvTuhYtdaUXe9b6I_l33n-A4xYXX8 |
| CitedBy_id | crossref_primary_10_1016_j_preteyeres_2020_100863 crossref_primary_10_1038_s41417_020_0178_7 crossref_primary_10_1155_2017_7083049 crossref_primary_10_3390_cells10081888 crossref_primary_10_3390_jcm11185370 crossref_primary_10_1097_MS9_0000000000003584 crossref_primary_10_3389_fphys_2014_00369 crossref_primary_10_3389_fphys_2020_01014 crossref_primary_10_1016_j_mito_2023_07_003 crossref_primary_10_1016_j_isci_2021_103715 crossref_primary_10_3389_fphys_2020_601189 crossref_primary_10_1371_journal_pone_0069327 crossref_primary_10_1096_fj_201802298R crossref_primary_10_1177_02692155211036956 crossref_primary_10_18632_oncotarget_14670 crossref_primary_10_3389_fphys_2021_727585 crossref_primary_10_3389_fnagi_2014_00233 crossref_primary_10_1152_japplphysiol_00090_2022 crossref_primary_10_1007_s40279_024_02072_7 crossref_primary_10_1007_s40266_015_0288_3 crossref_primary_10_1142_S0192415X21500701 crossref_primary_10_3390_cells12010183 crossref_primary_10_3390_antiox10020179 crossref_primary_10_1007_s10068_024_01606_z crossref_primary_10_1111_ggi_12688 crossref_primary_10_1007_s13300_024_01639_x crossref_primary_10_1016_j_mito_2019_10_007 crossref_primary_10_1016_j_exger_2023_112204 crossref_primary_10_3389_fmed_2020_559789 crossref_primary_10_3390_nu10111691 crossref_primary_10_1371_journal_pone_0181086 crossref_primary_10_3390_metabo11080512 crossref_primary_10_53469_jcmp_2025_07_03__36 crossref_primary_10_1016_j_exger_2016_10_003 crossref_primary_10_1016_j_mad_2024_112005 crossref_primary_10_3390_cells9122544 crossref_primary_10_1002_mnfr_201801102 crossref_primary_10_1016_j_exger_2013_05_061 crossref_primary_10_1002_jemt_22914 crossref_primary_10_1242_jcs_264018 crossref_primary_10_1038_nrd_2018_174 crossref_primary_10_3389_fendo_2024_1375610 crossref_primary_10_1016_j_acthis_2014_03_005 crossref_primary_10_1016_j_coph_2014_05_005 crossref_primary_10_1111_obr_13164 crossref_primary_10_1039_D0FO03346D crossref_primary_10_1097_ICO_0000000000001775 crossref_primary_10_2147_DMSO_S237362 crossref_primary_10_1177_0148607114567710 crossref_primary_10_3390_cells9020288 crossref_primary_10_1002_jez_2544 crossref_primary_10_1007_s10522_020_09879_7 crossref_primary_10_3390_ijms21186732 crossref_primary_10_17987_jcsm_cr_v2i2_45 crossref_primary_10_3390_ijms23136892 crossref_primary_10_1007_s10974_023_09643_7 crossref_primary_10_1113_JP270659 crossref_primary_10_1038_srep46208 crossref_primary_10_3389_fnagi_2014_00246 crossref_primary_10_1186_2046_2395_2_11 crossref_primary_10_1093_alcalc_agw107 crossref_primary_10_1126_science_abc8059 crossref_primary_10_3390_cells10123322 crossref_primary_10_1111_cge_13749 crossref_primary_10_3390_jcm9072188 crossref_primary_10_1016_j_exger_2017_02_075 crossref_primary_10_1515_hsz_2017_0331 crossref_primary_10_1038_s41598_018_21539_y crossref_primary_10_1186_s12877_018_0714_6 crossref_primary_10_1002_jcsm_12051 crossref_primary_10_3390_jfmk7040087 crossref_primary_10_1002_jbmr_4027 crossref_primary_10_1155_2014_384816 crossref_primary_10_1152_japplphysiol_00583_2016 crossref_primary_10_1016_j_pcad_2022_01_004 crossref_primary_10_1007_s40520_016_0705_4 crossref_primary_10_1007_s12033_025_01373_0 crossref_primary_10_3390_cells8121525 crossref_primary_10_1016_j_bbadis_2024_167302 crossref_primary_10_3390_ijms21155236 crossref_primary_10_1016_j_exger_2023_112082 crossref_primary_10_1016_j_mam_2016_06_001 crossref_primary_10_1002_jcsm_12043 crossref_primary_10_3390_life11020106 crossref_primary_10_1002_jcp_27034 crossref_primary_10_1186_s12967_023_04369_z crossref_primary_10_1016_j_mam_2024_101272 crossref_primary_10_1245_s10434_024_14936_3 crossref_primary_10_1242_jeb_196188 crossref_primary_10_1186_s12877_018_0759_6 crossref_primary_10_2147_IJGM_S462594 crossref_primary_10_3389_fphys_2022_1040381 crossref_primary_10_1007_s10068_024_01718_6 crossref_primary_10_3389_fcell_2025_1596204 crossref_primary_10_2106_JBJS_N_00648 crossref_primary_10_1016_j_molmet_2021_101185 crossref_primary_10_1093_jncics_pkaa024 crossref_primary_10_3389_fphys_2020_564555 crossref_primary_10_3389_fcell_2022_964130 crossref_primary_10_1080_14789450_2018_1505511 crossref_primary_10_1371_journal_pone_0077430 crossref_primary_10_1002_mus_25671 crossref_primary_10_1016_j_acthis_2021_151813 crossref_primary_10_1016_j_biocel_2013_06_024 crossref_primary_10_3390_ijms21228865 crossref_primary_10_1016_j_freeradbiomed_2015_06_024 crossref_primary_10_1016_j_freeradbiomed_2018_08_035 crossref_primary_10_1016_j_physbeh_2016_06_028 crossref_primary_10_1016_j_smhs_2019_08_008 crossref_primary_10_1089_sur_2015_184 crossref_primary_10_1371_journal_pone_0323905 crossref_primary_10_1152_japplphysiol_00674_2014 crossref_primary_10_1016_j_tvjl_2015_07_005 crossref_primary_10_3390_biomedicines8050122 crossref_primary_10_1016_j_gene_2022_146955 crossref_primary_10_3390_ijms24076097 crossref_primary_10_3390_nu14173567 crossref_primary_10_1002_mus_25221 crossref_primary_10_1002_jcsm_12007 crossref_primary_10_1186_s41110_019_0097_2 crossref_primary_10_1016_j_phanu_2019_100161 crossref_primary_10_15283_ijsc25037 crossref_primary_10_3390_metabo12070663 crossref_primary_10_1038_s41419_024_06582_0 crossref_primary_10_3390_molecules25143267 crossref_primary_10_3389_fspor_2020_00004 crossref_primary_10_1111_apha_13516 crossref_primary_10_1016_j_lfs_2019_05_070 crossref_primary_10_1155_2018_5095673 crossref_primary_10_1016_j_arr_2015_09_005 crossref_primary_10_1155_2019_4617801 crossref_primary_10_3390_biology12070892 crossref_primary_10_1155_2017_2672435 crossref_primary_10_3109_00016357_2014_954267 crossref_primary_10_1186_s13395_018_0164_z crossref_primary_10_3892_mmr_2017_7287 crossref_primary_10_1016_j_jdiacomp_2017_05_003 crossref_primary_10_1016_j_pharmthera_2021_107825 crossref_primary_10_1111_1756_185X_13082 crossref_primary_10_3390_nu10020255 crossref_primary_10_3389_fendo_2020_558271 crossref_primary_10_1007_s00198_013_2531_2 crossref_primary_10_36290_vnl_2018_149 crossref_primary_10_1007_s10067_020_05263_5 crossref_primary_10_4158_EP171795_RA crossref_primary_10_1007_s12035_024_04634_2 crossref_primary_10_1136_bmjsem_2020_000846 crossref_primary_10_1038_s41598_022_25359_z crossref_primary_10_1139_apnm_2019_0218 crossref_primary_10_1146_annurev_physiol_021115_105305 crossref_primary_10_3389_fmed_2021_694367 crossref_primary_10_1016_j_mam_2016_04_006 crossref_primary_10_1152_japplphysiol_01362_2013 crossref_primary_10_3390_ijms21093106 crossref_primary_10_18632_oncotarget_15728 crossref_primary_10_1002_agm2_12242 crossref_primary_10_1186_s13395_022_00312_w crossref_primary_10_3390_nu12082341 crossref_primary_10_1093_alcalc_agy016 crossref_primary_10_1038_s41598_017_02065_9 crossref_primary_10_3390_ijms20153815 crossref_primary_10_52586_4995 crossref_primary_10_3389_fnagi_2014_00274 crossref_primary_10_4330_wjc_v16_i1_27 crossref_primary_10_1249_JES_0000000000000101 crossref_primary_10_1016_j_exger_2024_112428 crossref_primary_10_3390_antiox11091706 crossref_primary_10_3389_fgene_2023_1136763 crossref_primary_10_4093_dmj_2022_0305 crossref_primary_10_3389_fcell_2022_826981 crossref_primary_10_3390_ijms23052808 crossref_primary_10_4103_1673_5374_251187 crossref_primary_10_3892_ijmm_2014_1737 crossref_primary_10_1016_j_exger_2017_06_005 crossref_primary_10_1016_j_abb_2014_10_008 crossref_primary_10_1007_s11515_014_1315_1 crossref_primary_10_3390_ijms22041937 crossref_primary_10_1016_j_freeradbiomed_2015_12_032 crossref_primary_10_1080_14728222_2019_1559827 crossref_primary_10_3390_antiox14091132 crossref_primary_10_1016_j_cpcardiol_2019_03_006 crossref_primary_10_1016_j_cct_2025_108074 crossref_primary_10_3389_fphys_2023_1263500 crossref_primary_10_1097_MCO_0000000000000361 crossref_primary_10_1016_j_freeradbiomed_2016_02_025 crossref_primary_10_3390_ijerph192114108 crossref_primary_10_1007_s13105_024_01062_7 crossref_primary_10_3390_nu13093133 crossref_primary_10_1242_jeb_194969 crossref_primary_10_1152_japplphysiol_00607_2021 crossref_primary_10_1159_000545298 crossref_primary_10_1002_jcp_25260 crossref_primary_10_3389_fpubh_2022_1042167 crossref_primary_10_1038_s41569_018_0059_z crossref_primary_10_3390_molecules25092117 crossref_primary_10_1186_s12877_021_02331_6 crossref_primary_10_1038_s41598_017_02089_1 crossref_primary_10_1016_j_biocel_2014_04_025 crossref_primary_10_1186_s12951_025_03480_1 crossref_primary_10_1002_biof_2054 crossref_primary_10_1038_s41380_020_00943_9 crossref_primary_10_1039_D1FO01135A crossref_primary_10_1152_japplphysiol_00192_2017 crossref_primary_10_3390_ph15040390 crossref_primary_10_1159_000365947 crossref_primary_10_1016_j_jff_2023_105954 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1515/hsz-2012-0247 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1437-4315 |
| ExternalDocumentID | 23154422 |
| Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG028740 – fundername: NIA NIH HHS grantid: 1P30AG028740 – fundername: NIA NIH HHS grantid: R01 AG021042 – fundername: NIDDK NIH HHS grantid: R01-DK090115-01A1 – fundername: NIDDK NIH HHS grantid: R01 DK090115 – fundername: NIA NIH HHS grantid: R01-AG21042 |
| GroupedDBID | --- -~0 -~X .55 .GJ 0R~ 0~D 23N 34G 354 36B 3O- 4.4 53G 5GY 5RE 9-L AAAEU AAFNC AAFPC AAGVJ AAKRG AALGR AAONY AAOTM AAOWA AAPJK AAQCX AASQH AASQN AAWFC AAXCG AAXMT ABABW ABAOT ABAQN ABCQX ABDRH ABFKT ABIQR ABJNI ABLVI ABMIY ABPLS ABRDF ABRQL ABUBZ ABUVI ABWLS ABXMZ ABYBW ACDEB ACEFL ACGFS ACIWK ACMKP ACPMA ACPRK ACRPL ACUND ACXLN ACYCL ACZBO ADALX ADEQT ADGQD ADGYE ADNMO ADOZN ADUQZ AECWL AEGVQ AEICA AEJTT AEKEB AENEX AEQDQ AERZL AEXIE AFAUI AFBAA AFBDD AFCXV AFFNX AFGNR AFQUK AFRAH AFSHE AFYRI AGBEV AGGNV AGQPQ AGWTP AHGSO AHVWV AHXUK AI. AIERV AIKXB AIWOI AJATJ AJPIC AKXKS ALMA_UNASSIGNED_HOLDINGS AMAVY ASPBG ASYPN AVWKF AZFZN AZMOX BAKPI BBCWN BBDJO BCIFA BDLBQ CAG CGR COF CS3 CUY CVF DA2 DU5 EBS ECM EIF EJD EMOBN F5P FEDTE FSTRU HVGLF HZ~ IL9 IY9 KDIRW L7B LVMAB NPM O9- OBS OES OHH OVD QD8 RDG SA. SLJYH TEORI UK5 VH1 WH7 WTRAM X7M ZXP ZY4 ~KM ~Z8 7X8 ADNPR DSRVY |
| ID | FETCH-LOGICAL-c506t-f40a257dd28a679f3daf7c115dc012a03484227af5c0b24c70c8dfc646a80bdb2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 247 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314757700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1437-4315 |
| IngestDate | Fri Sep 05 14:43:40 EDT 2025 Mon Jul 21 06:05:30 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c506t-f40a257dd28a679f3daf7c115dc012a03484227af5c0b24c70c8dfc646a80bdb2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.degruyter.com/document/doi/10.1515/hsz-2012-0247/pdf |
| PMID | 23154422 |
| PQID | 1284621697 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1284621697 pubmed_primary_23154422 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-03-01 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany |
| PublicationTitle | Biological chemistry |
| PublicationTitleAlternate | Biol Chem |
| PublicationYear | 2013 |
| References | 372199 - J Cell Sci. 1978 Dec;34:247-78 19997852 - Pflugers Arch. 2010 Mar;459(4):631-44 16647308 - Ageing Res Rev. 2006 May;5(2):179-95 716979 - Acta Physiol Scand. 1978 Nov;104(3):249-61 20886760 - Adv Exp Med Biol. 2010;694:108-25 21179058 - Nat Rev Mol Cell Biol. 2011 Jan;12(1):9-14 20649555 - Ann N Y Acad Sci. 2010 Jul;1201:183-8 9840742 - Free Radic Biol Med. 1998 Nov 15;25(8):964-72 17291986 - Free Radic Biol Med. 2007 Mar 1;42(5):627-35 19196905 - J Gerontol A Biol Sci Med Sci. 2009 Jan;64(1):21-33 19918075 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20405-10 8300268 - Int J Sports Med. 1993 Nov;14(8):437-9 14732288 - Free Radic Biol Med. 2004 Jan 1;36(1):27-39 19262508 - Nature. 2009 Apr 23;458(7241):1056-60 19200884 - Methods Enzymol. 2009;452:199-213 11452314 - Nature. 2001 Jul 5;412(6842):95-9 19098460 - Autophagy. 2009 Feb;5(2):230-1 11156948 - FASEB J. 2001 Feb;15(2):322-32 18580291 - Exerc Sport Sci Rev. 2008 Jul;36(3):116-21 17997255 - Exp Gerontol. 2008 Jan;43(1):24-33 11688969 - Biochem Biophys Res Commun. 2001 Nov 9;288(4):743-6 18054315 - Cell Metab. 2007 Dec;6(6):458-71 8279538 - Am J Physiol. 1993 Dec;265(6 Pt 1):E839-44 15800627 - Nature. 2005 Mar 31;434(7033):658-62 21410437 - Biochem J. 2011 Jun 1;436(2):493-505 11985575 - Eur J Biochem. 2002 Apr;269(8):1996-2002 16839885 - Cell. 2006 Jul 14;126(1):177-89 20713720 - Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15111-6 14724060 - Exp Gerontol. 2004 Jan;39(1):17-24 18461459 - Apoptosis. 2008 Jun;13(6):822-32 18426963 - J Gerontol A Biol Sci Med Sci. 2008 Apr;63(4):391-8 21952604 - Gerontology. 2012;58(2):99-106 19001413 - J Biol Chem. 2009 Jan 2;284(1):46-55 11038183 - J Cell Biol. 2000 Oct 16;151(2):367-80 17294083 - Apoptosis. 2007 May;12(5):877-85 11818330 - Am J Respir Crit Care Med. 2002 Feb 1;165(3):412-8 19584314 - Physiol Rev. 2009 Jul;89(3):799-845 15919734 - Am J Physiol Regul Integr Comp Physiol. 2005 Oct;289(4):R1015-26 10929711 - Cell. 2000 Jul 7;102(1):33-42 10631878 - Aging (Milano). 1999 Oct;11(5):294-300 15625686 - Muscle Nerve. 2005 Feb;31(2):175-81 22944659 - Biol Chem. 2012 Jul;393(7):547-64 20404107 - J Cell Biol. 2010 Apr 19;189(2):211-21 9989411 - Nature. 1999 Feb 4;397(6718):441-6 11943469 - Gene. 2002 Mar 6;286(1):135-41 19390003 - J Appl Physiol (1985). 2009 Jul;107(1):224-34 16020738 - Science. 2005 Jul 15;309(5733):481-4 22666256 - Int J Cell Biol. 2012;2012:219625 16873557 - Am J Physiol Regul Integr Comp Physiol. 2006 Dec;291(6):R1730-40 15800038 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5618-23 22416234 - Front Physiol. 2012 Mar 12;3:46 3555262 - Ann N Y Acad Sci. 1986;488:65-81 19945408 - Cell Metab. 2009 Dec;10(6):507-15 20400940 - EMBO J. 2010 May 19;29(10):1774-85 18519024 - Biochim Biophys Acta. 2008 Sep;1777(9):1092-7 16909385 - Am J Hum Genet. 2006 Sep;79(3):469-80 18843794 - Aging Cell. 2008 Oct;7(5):706-16 16763784 - Apoptosis. 2006 Jun;11(6):967-81 12763051 - Biochem Biophys Res Commun. 2003 Jun 6;305(3):709-18 21933339 - Aging Cell. 2011 Dec;10(6):1047-55 16675492 - J Physiol. 2006 Jul 1;574(Pt 1):319-27 22966490 - Autophagy. 2012 Apr;8(4):445-544 20940129 - J Cell Sci. 2010 Aug 1;123(Pt 15):2533-42 8089171 - J Cell Biol. 1994 Sep;126(6):1361-73 16731803 - J Exp Biol. 2006 Jun;209(Pt 12):2265-75 22101267 - Cell Cycle. 2011 Dec 1;10(23):4032-8 10409599 - J Appl Physiol (1985). 1999 Jul;87(1):386-90 19450666 - Biochim Biophys Acta. 2010 Mar;1800(3):235-44 20965422 - Mol Cell. 2010 Oct 22;40(2):280-93 11514614 - Mol Biol Cell. 2001 Aug;12(8):2245-56 15355853 - Am J Physiol Cell Physiol. 2004 Oct;287(4):C817-33 20434480 - Mech Ageing Dev. 2010 Jul-Aug;131(7-8):487-93 16479581 - Bioessays. 2006 Mar;28(3):253-60 16678239 - Mech Ageing Dev. 2006 Aug;127(8):670-9 18037131 - Free Radic Biol Med. 2007 Dec 15;43(12):1656-69 15901602 - Am J Physiol Cell Physiol. 2005 Oct;289(4):C994-C1001 18091317 - Appl Immunohistochem Mol Morphol. 2008 Jan;16(1):66-70 21172427 - Free Radic Biol Med. 2011 Mar 1;50(5):592-601 18054316 - Cell Metab. 2007 Dec;6(6):472-83 21242791 - Crit Care Med. 2011 Apr;39(4):777-82 18056959 - Ann N Y Acad Sci. 2007 Nov;1119:97-111 20628647 - PLoS One. 2010;5(7):e11468 16567372 - J Gerontol A Biol Sci Med Sci. 2006 Mar;61(3):245-55 11015441 - J Exp Med. 2000 Oct 2;192(7):1001-14 16977332 - Cell Death Differ. 2007 Jan;14(1):56-65 1950601 - Acta Physiol Scand. 1991 Aug;142(4):527-8 21457104 - Antioxid Redox Signal. 2011 Nov 1;15(9):2519-28 16172208 - J Cell Biol. 2005 Sep 26;170(7):1067-78 18579179 - Mech Ageing Dev. 2008 Sep;129(9):542-9 4628775 - Virchows Arch B Cell Pathol. 1972;11(3):268-73 22395111 - Am J Physiol Endocrinol Metab. 2012 Jul 1;303(1):E31-9 925018 - J Biol Chem. 1977 Dec 10;252(23):8731-9 10487900 - Muscle Nerve. 1999 Oct;22(10):1350-60 20671748 - Cell Death Differ. 2011 Feb;18(2):235-47 19813194 - Muscle Nerve. 2010 Jan;41(1):110-3 4281422 - J Anat. 1974 Dec;118(Pt 3):531-41 5016631 - J Am Geriatr Soc. 1972 Apr;20(4):145-7 20191247 - ScientificWorldJournal. 2010;10:340-9 19903516 - Exp Gerontol. 2010 Feb;45(2):138-48 15774533 - J Physiol. 2005 May 15;565(Pt 1):309-23 21631380 - Rejuvenation Res. 2011 Jun;14(3):315-24 19955483 - Am J Physiol Cell Physiol. 2010 Mar;298(3):C542-9 22410198 - Trends Biochem Sci. 2012 Jul;37(7):284-92 17101170 - Mech Ageing Dev. 2006 Dec;127(12):917-21 6880808 - Acta Physiol Scand. 1983 Mar;117(3):469-71 22146081 - Antioxid Redox Signal. 2012 Jun 1;16(11):1323-67 12761579 - Cell Death Differ. 2003 Jun;10(6):709-17 22389725 - PLoS One. 2012;7(2):e32829 18367868 - Autophagy. 2008 May;4(4):524-6 22496692 - Int J Cell Biol. 2012;2012:354914 17052879 - Exp Gerontol. 2006 Dec;41(12):1234-8 11792662 - Am J Physiol Regul Integr Comp Physiol. 2002 Feb;282(2):R519-27 19685011 - Cell Mol Biol Lett. 2010;15(1):1-12 19650712 - Antioxid Redox Signal. 2010 Apr;12(4):503-35 19029340 - J Cell Biol. 2008 Dec 1;183(5):795-803 20364102 - Autophagy. 2010 May;6(4):462-72 15155745 - J Biol Chem. 2004 Jul 23;279(30):31544-55 19046573 - Cell Metab. 2008 Nov;8(5):425-36 11703942 - Dev Cell. 2001 Oct;1(4):515-25 10732808 - Neurogenetics. 1997 Sep;1(2):81-7 18089948 - Curr Opin Clin Nutr Metab Care. 2007 Nov;10(6):688-92 22673615 - Am J Physiol Cell Physiol. 2012 Aug 15;303(4):C447-54 20089936 - Am J Physiol Cell Physiol. 2010 Jun;298(6):C1291-7 9012815 - Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):514-9 18028258 - Aging Cell. 2008 Jan;7(1):2-12 2144272 - J Appl Physiol (1985). 1990 Jul;69(1):58-66 21394548 - J Physiol Biochem. 2011 Sep;67(3):359-70 15650125 - Am J Physiol Regul Integr Comp Physiol. 2005 May;288(5):R1288-96 17705678 - Physiol Res. 2008;57(4):601-11 21817113 - J Appl Physiol (1985). 2011 Nov;111(5):1459-66 17035996 - Nature. 2006 Oct 12;443(7112):658-62 14561718 - J Biochem. 2003 Sep;134(3):333-44 12826251 - Free Radic Biol Med. 2003 Jul 1;35(1):9-16 9160899 - Neuropathol Appl Neurobiol. 1997 Apr;23(2):141-9 12773310 - Am J Physiol Cell Physiol. 2003 Oct;285(4):C806-12 11976190 - Ann N Y Acad Sci. 2002 Apr;959:108-16 16139996 - Biochim Biophys Acta. 2006 Jan;1762(1):103-9 20600829 - Free Radic Biol Med. 2010 Oct 15;49(7):1152-60 20943961 - Am J Physiol Cell Physiol. 2011 Jan;300(1):C138-45 16677102 - Antioxid Redox Signal. 2006 Mar-Apr;8(3-4):582-99 7009178 - Exp Gerontol. 1980;15(6):575-91 18317591 - J Clin Invest. 2008 Apr;118(4):1450-7 15935591 - Exp Gerontol. 2005 Jun;40(6):473-81 12055074 - Am J Physiol Cell Physiol. 2002 Jul;283(1):C66-76 11431699 - Nat Genet. 2001 Jul;28(3):272-5 22187934 - Biochem J. 2012 Jan 15;441(2):523-40 19776389 - Am J Physiol Cell Physiol. 2009 Dec;297(6):C1520-32 19193984 - J Appl Genet. 2009;50(1):55-62 17029665 - Exp Gerontol. 2006 Nov;41(11):1149-56 21997368 - Autophagy. 2011 Nov;7(11):1273-94 21829717 - PLoS One. 2011;6(8):e23211 17294079 - Apoptosis. 2007 May;12(5):857-68 8226515 - J Appl Physiol (1985). 1993 Sep;75(3):1081-7 2686838 - Cell. 1989 Dec 1;59(5):771-2 12867994 - Cell Death Differ. 2003 Aug;10(8):870-80 18799731 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14503-8 19453275 - Biol Chem. 2009 Aug;390(8):707-15 9277355 - Am J Physiol. 1997 Aug;273(2 Pt 1):C579-87 37532 - Physiol Rev. 1979 Jul;59(3):527-605 18440990 - J Physiol. 2008 Jun 1;586(Pt 11):2675-81 11131134 - Cell Tissue Res. 2000 Nov;302(2):235-41 20818934 - Rejuvenation Res. 2010 Oct;13(5):571-9 21460706 - Crit Care Med. 2011 Jul;39(7):1749-59 19427410 - Ageing Res Rev. 2009 Jul;8(3):199-213 18200046 - EMBO J. 2008 Jan 23;27(2):433-46 10529366 - Biochem Biophys Res Commun. 1999 Oct 22;264(2):343-7 8050561 - FEBS Lett. 1994 Aug 1;349(2):169-72 21385310 - Aging Cell. 2011 Jun;10(3):493-505 15541769 - Mech Ageing Dev. 2004 Oct-Nov;125(10-11):747-53 17110517 - J Appl Physiol (1985). 2007 Mar;102(3):956-64 12586737 - FASEB J. 2003 Apr;17(6):714-6 17122379 - J Appl Physiol (1985). 2007 Mar;102(3):1143-51 18314333 - Trends Cell Biol. 2008 Apr;18(4):157-64 16677096 - Antioxid Redox Signal. 2006 Mar-Apr;8(3-4):517-28 21109199 - Cell Metab. 2010 Dec 1;12(6):668-74 16883569 - J Cell Physiol. 2006 Nov;209(2):468-80 12826253 - Free Radic Biol Med. 2003 Jul 1;35(1):24-32 11847212 - J Biol Chem. 2002 May 3;277(18):15834-42 20403324 - Cell. 2010 Apr 16;141(2):280-9 16024660 - Genes Dev. 2005 Jul 15;19(14):1715-22 |
| References_xml | – reference: 22673615 - Am J Physiol Cell Physiol. 2012 Aug 15;303(4):C447-54 – reference: 15355853 - Am J Physiol Cell Physiol. 2004 Oct;287(4):C817-33 – reference: 14724060 - Exp Gerontol. 2004 Jan;39(1):17-24 – reference: 17294083 - Apoptosis. 2007 May;12(5):877-85 – reference: 21631380 - Rejuvenation Res. 2011 Jun;14(3):315-24 – reference: 9989411 - Nature. 1999 Feb 4;397(6718):441-6 – reference: 17705678 - Physiol Res. 2008;57(4):601-11 – reference: 15901602 - Am J Physiol Cell Physiol. 2005 Oct;289(4):C994-C1001 – reference: 15155745 - J Biol Chem. 2004 Jul 23;279(30):31544-55 – reference: 17997255 - Exp Gerontol. 2008 Jan;43(1):24-33 – reference: 15650125 - Am J Physiol Regul Integr Comp Physiol. 2005 May;288(5):R1288-96 – reference: 8279538 - Am J Physiol. 1993 Dec;265(6 Pt 1):E839-44 – reference: 19098460 - Autophagy. 2009 Feb;5(2):230-1 – reference: 20400940 - EMBO J. 2010 May 19;29(10):1774-85 – reference: 12055074 - Am J Physiol Cell Physiol. 2002 Jul;283(1):C66-76 – reference: 10929711 - Cell. 2000 Jul 7;102(1):33-42 – reference: 11818330 - Am J Respir Crit Care Med. 2002 Feb 1;165(3):412-8 – reference: 16883569 - J Cell Physiol. 2006 Nov;209(2):468-80 – reference: 22146081 - Antioxid Redox Signal. 2012 Jun 1;16(11):1323-67 – reference: 11038183 - J Cell Biol. 2000 Oct 16;151(2):367-80 – reference: 21394548 - J Physiol Biochem. 2011 Sep;67(3):359-70 – reference: 20628647 - PLoS One. 2010;5(7):e11468 – reference: 17291986 - Free Radic Biol Med. 2007 Mar 1;42(5):627-35 – reference: 19450666 - Biochim Biophys Acta. 2010 Mar;1800(3):235-44 – reference: 18054315 - Cell Metab. 2007 Dec;6(6):458-71 – reference: 21829717 - PLoS One. 2011;6(8):e23211 – reference: 12761579 - Cell Death Differ. 2003 Jun;10(6):709-17 – reference: 18317591 - J Clin Invest. 2008 Apr;118(4):1450-7 – reference: 17122379 - J Appl Physiol (1985). 2007 Mar;102(3):1143-51 – reference: 19918075 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20405-10 – reference: 20886760 - Adv Exp Med Biol. 2010;694:108-25 – reference: 11156948 - FASEB J. 2001 Feb;15(2):322-32 – reference: 16731803 - J Exp Biol. 2006 Jun;209(Pt 12):2265-75 – reference: 11431699 - Nat Genet. 2001 Jul;28(3):272-5 – reference: 21997368 - Autophagy. 2011 Nov;7(11):1273-94 – reference: 2144272 - J Appl Physiol (1985). 1990 Jul;69(1):58-66 – reference: 16479581 - Bioessays. 2006 Mar;28(3):253-60 – reference: 18426963 - J Gerontol A Biol Sci Med Sci. 2008 Apr;63(4):391-8 – reference: 20818934 - Rejuvenation Res. 2010 Oct;13(5):571-9 – reference: 11703942 - Dev Cell. 2001 Oct;1(4):515-25 – reference: 20403324 - Cell. 2010 Apr 16;141(2):280-9 – reference: 16909385 - Am J Hum Genet. 2006 Sep;79(3):469-80 – reference: 1950601 - Acta Physiol Scand. 1991 Aug;142(4):527-8 – reference: 12826253 - Free Radic Biol Med. 2003 Jul 1;35(1):24-32 – reference: 22944659 - Biol Chem. 2012 Jul;393(7):547-64 – reference: 15541769 - Mech Ageing Dev. 2004 Oct-Nov;125(10-11):747-53 – reference: 9012815 - Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):514-9 – reference: 16839885 - Cell. 2006 Jul 14;126(1):177-89 – reference: 8050561 - FEBS Lett. 1994 Aug 1;349(2):169-72 – reference: 19046573 - Cell Metab. 2008 Nov;8(5):425-36 – reference: 15919734 - Am J Physiol Regul Integr Comp Physiol. 2005 Oct;289(4):R1015-26 – reference: 18440990 - J Physiol. 2008 Jun 1;586(Pt 11):2675-81 – reference: 17029665 - Exp Gerontol. 2006 Nov;41(11):1149-56 – reference: 17294079 - Apoptosis. 2007 May;12(5):857-68 – reference: 20434480 - Mech Ageing Dev. 2010 Jul-Aug;131(7-8):487-93 – reference: 17110517 - J Appl Physiol (1985). 2007 Mar;102(3):956-64 – reference: 14561718 - J Biochem. 2003 Sep;134(3):333-44 – reference: 20671748 - Cell Death Differ. 2011 Feb;18(2):235-47 – reference: 3555262 - Ann N Y Acad Sci. 1986;488:65-81 – reference: 10409599 - J Appl Physiol (1985). 1999 Jul;87(1):386-90 – reference: 19903516 - Exp Gerontol. 2010 Feb;45(2):138-48 – reference: 18028258 - Aging Cell. 2008 Jan;7(1):2-12 – reference: 37532 - Physiol Rev. 1979 Jul;59(3):527-605 – reference: 19193984 - J Appl Genet. 2009;50(1):55-62 – reference: 15935591 - Exp Gerontol. 2005 Jun;40(6):473-81 – reference: 22389725 - PLoS One. 2012;7(2):e32829 – reference: 18519024 - Biochim Biophys Acta. 2008 Sep;1777(9):1092-7 – reference: 16675492 - J Physiol. 2006 Jul 1;574(Pt 1):319-27 – reference: 16677102 - Antioxid Redox Signal. 2006 Mar-Apr;8(3-4):582-99 – reference: 11792662 - Am J Physiol Regul Integr Comp Physiol. 2002 Feb;282(2):R519-27 – reference: 7009178 - Exp Gerontol. 1980;15(6):575-91 – reference: 19650712 - Antioxid Redox Signal. 2010 Apr;12(4):503-35 – reference: 12773310 - Am J Physiol Cell Physiol. 2003 Oct;285(4):C806-12 – reference: 10487900 - Muscle Nerve. 1999 Oct;22(10):1350-60 – reference: 11943469 - Gene. 2002 Mar 6;286(1):135-41 – reference: 19685011 - Cell Mol Biol Lett. 2010;15(1):1-12 – reference: 21933339 - Aging Cell. 2011 Dec;10(6):1047-55 – reference: 8089171 - J Cell Biol. 1994 Sep;126(6):1361-73 – reference: 16677096 - Antioxid Redox Signal. 2006 Mar-Apr;8(3-4):517-28 – reference: 10732808 - Neurogenetics. 1997 Sep;1(2):81-7 – reference: 4281422 - J Anat. 1974 Dec;118(Pt 3):531-41 – reference: 12826251 - Free Radic Biol Med. 2003 Jul 1;35(1):9-16 – reference: 925018 - J Biol Chem. 1977 Dec 10;252(23):8731-9 – reference: 18091317 - Appl Immunohistochem Mol Morphol. 2008 Jan;16(1):66-70 – reference: 21410437 - Biochem J. 2011 Jun 1;436(2):493-505 – reference: 18579179 - Mech Ageing Dev. 2008 Sep;129(9):542-9 – reference: 15800627 - Nature. 2005 Mar 31;434(7033):658-62 – reference: 19584314 - Physiol Rev. 2009 Jul;89(3):799-845 – reference: 11847212 - J Biol Chem. 2002 May 3;277(18):15834-42 – reference: 22496692 - Int J Cell Biol. 2012;2012:354914 – reference: 14732288 - Free Radic Biol Med. 2004 Jan 1;36(1):27-39 – reference: 4628775 - Virchows Arch B Cell Pathol. 1972;11(3):268-73 – reference: 22101267 - Cell Cycle. 2011 Dec 1;10(23):4032-8 – reference: 19813194 - Muscle Nerve. 2010 Jan;41(1):110-3 – reference: 10529366 - Biochem Biophys Res Commun. 1999 Oct 22;264(2):343-7 – reference: 16567372 - J Gerontol A Biol Sci Med Sci. 2006 Mar;61(3):245-55 – reference: 18799731 - Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14503-8 – reference: 15774533 - J Physiol. 2005 May 15;565(Pt 1):309-23 – reference: 21179058 - Nat Rev Mol Cell Biol. 2011 Jan;12(1):9-14 – reference: 19262508 - Nature. 2009 Apr 23;458(7241):1056-60 – reference: 11688969 - Biochem Biophys Res Commun. 2001 Nov 9;288(4):743-6 – reference: 16647308 - Ageing Res Rev. 2006 May;5(2):179-95 – reference: 17035996 - Nature. 2006 Oct 12;443(7112):658-62 – reference: 12586737 - FASEB J. 2003 Apr;17(6):714-6 – reference: 716979 - Acta Physiol Scand. 1978 Nov;104(3):249-61 – reference: 372199 - J Cell Sci. 1978 Dec;34:247-78 – reference: 22416234 - Front Physiol. 2012 Mar 12;3:46 – reference: 11985575 - Eur J Biochem. 2002 Apr;269(8):1996-2002 – reference: 19453275 - Biol Chem. 2009 Aug;390(8):707-15 – reference: 18843794 - Aging Cell. 2008 Oct;7(5):706-16 – reference: 16172208 - J Cell Biol. 2005 Sep 26;170(7):1067-78 – reference: 9840742 - Free Radic Biol Med. 1998 Nov 15;25(8):964-72 – reference: 20940129 - J Cell Sci. 2010 Aug 1;123(Pt 15):2533-42 – reference: 11976190 - Ann N Y Acad Sci. 2002 Apr;959:108-16 – reference: 18314333 - Trends Cell Biol. 2008 Apr;18(4):157-64 – reference: 20649555 - Ann N Y Acad Sci. 2010 Jul;1201:183-8 – reference: 18367868 - Autophagy. 2008 May;4(4):524-6 – reference: 9160899 - Neuropathol Appl Neurobiol. 1997 Apr;23(2):141-9 – reference: 18054316 - Cell Metab. 2007 Dec;6(6):472-83 – reference: 19776389 - Am J Physiol Cell Physiol. 2009 Dec;297(6):C1520-32 – reference: 11015441 - J Exp Med. 2000 Oct 2;192(7):1001-14 – reference: 19200884 - Methods Enzymol. 2009;452:199-213 – reference: 8226515 - J Appl Physiol (1985). 1993 Sep;75(3):1081-7 – reference: 16024660 - Genes Dev. 2005 Jul 15;19(14):1715-22 – reference: 19955483 - Am J Physiol Cell Physiol. 2010 Mar;298(3):C542-9 – reference: 22966490 - Autophagy. 2012 Apr;8(4):445-544 – reference: 21817113 - J Appl Physiol (1985). 2011 Nov;111(5):1459-66 – reference: 16020738 - Science. 2005 Jul 15;309(5733):481-4 – reference: 21457104 - Antioxid Redox Signal. 2011 Nov 1;15(9):2519-28 – reference: 11514614 - Mol Biol Cell. 2001 Aug;12(8):2245-56 – reference: 11131134 - Cell Tissue Res. 2000 Nov;302(2):235-41 – reference: 5016631 - J Am Geriatr Soc. 1972 Apr;20(4):145-7 – reference: 6880808 - Acta Physiol Scand. 1983 Mar;117(3):469-71 – reference: 11452314 - Nature. 2001 Jul 5;412(6842):95-9 – reference: 20965422 - Mol Cell. 2010 Oct 22;40(2):280-93 – reference: 18580291 - Exerc Sport Sci Rev. 2008 Jul;36(3):116-21 – reference: 21172427 - Free Radic Biol Med. 2011 Mar 1;50(5):592-601 – reference: 21460706 - Crit Care Med. 2011 Jul;39(7):1749-59 – reference: 21952604 - Gerontology. 2012;58(2):99-106 – reference: 22666256 - Int J Cell Biol. 2012;2012:219625 – reference: 12763051 - Biochem Biophys Res Commun. 2003 Jun 6;305(3):709-18 – reference: 19997852 - Pflugers Arch. 2010 Mar;459(4):631-44 – reference: 20191247 - ScientificWorldJournal. 2010;10:340-9 – reference: 18461459 - Apoptosis. 2008 Jun;13(6):822-32 – reference: 19427410 - Ageing Res Rev. 2009 Jul;8(3):199-213 – reference: 9277355 - Am J Physiol. 1997 Aug;273(2 Pt 1):C579-87 – reference: 22395111 - Am J Physiol Endocrinol Metab. 2012 Jul 1;303(1):E31-9 – reference: 19945408 - Cell Metab. 2009 Dec;10(6):507-15 – reference: 15625686 - Muscle Nerve. 2005 Feb;31(2):175-81 – reference: 20600829 - Free Radic Biol Med. 2010 Oct 15;49(7):1152-60 – reference: 21242791 - Crit Care Med. 2011 Apr;39(4):777-82 – reference: 22187934 - Biochem J. 2012 Jan 15;441(2):523-40 – reference: 21385310 - Aging Cell. 2011 Jun;10(3):493-505 – reference: 2686838 - Cell. 1989 Dec 1;59(5):771-2 – reference: 8300268 - Int J Sports Med. 1993 Nov;14(8):437-9 – reference: 17052879 - Exp Gerontol. 2006 Dec;41(12):1234-8 – reference: 10631878 - Aging (Milano). 1999 Oct;11(5):294-300 – reference: 16139996 - Biochim Biophys Acta. 2006 Jan;1762(1):103-9 – reference: 20089936 - Am J Physiol Cell Physiol. 2010 Jun;298(6):C1291-7 – reference: 12867994 - Cell Death Differ. 2003 Aug;10(8):870-80 – reference: 19390003 - J Appl Physiol (1985). 2009 Jul;107(1):224-34 – reference: 15800038 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5618-23 – reference: 20364102 - Autophagy. 2010 May;6(4):462-72 – reference: 19029340 - J Cell Biol. 2008 Dec 1;183(5):795-803 – reference: 17101170 - Mech Ageing Dev. 2006 Dec;127(12):917-21 – reference: 22410198 - Trends Biochem Sci. 2012 Jul;37(7):284-92 – reference: 16977332 - Cell Death Differ. 2007 Jan;14(1):56-65 – reference: 16763784 - Apoptosis. 2006 Jun;11(6):967-81 – reference: 18200046 - EMBO J. 2008 Jan 23;27(2):433-46 – reference: 16678239 - Mech Ageing Dev. 2006 Aug;127(8):670-9 – reference: 20713720 - Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15111-6 – reference: 20404107 - J Cell Biol. 2010 Apr 19;189(2):211-21 – reference: 19196905 - J Gerontol A Biol Sci Med Sci. 2009 Jan;64(1):21-33 – reference: 16873557 - Am J Physiol Regul Integr Comp Physiol. 2006 Dec;291(6):R1730-40 – reference: 18037131 - Free Radic Biol Med. 2007 Dec 15;43(12):1656-69 – reference: 18089948 - Curr Opin Clin Nutr Metab Care. 2007 Nov;10(6):688-92 – reference: 21109199 - Cell Metab. 2010 Dec 1;12(6):668-74 – reference: 18056959 - Ann N Y Acad Sci. 2007 Nov;1119:97-111 – reference: 19001413 - J Biol Chem. 2009 Jan 2;284(1):46-55 – reference: 20943961 - Am J Physiol Cell Physiol. 2011 Jan;300(1):C138-45 |
| SSID | ssj0008043 |
| Score | 2.5177011 |
| SecondaryResourceType | review_article |
| Snippet | Muscle loss during aging and disuse is a highly prevalent and disabling condition, but knowledge about cellular pathways mediating muscle atrophy is still... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 393 |
| SubjectTerms | Humans Mitochondria - pathology Muscular Disorders, Atrophic - physiopathology Oxidative Stress Sarcopenia - physiopathology Signal Transduction |
| Title | Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23154422 https://www.proquest.com/docview/1284621697 |
| Volume | 394 |
| WOSCitedRecordID | wos000314757700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qFL34_TG_iCDeijFNk_QkOpxeNjwo7DZekwZ3sJ1mU-Zf70vX4kkQvJRQCHl93315vB8h5ypWAliio0QYFQkLEGXKyEjaBGLmDIaorAKbUP2-HgzSx7rg5uu2ysYnVo7alibUyC-DH5X8SqbqevwWBdSocLtaQ2gsklaMqUzQajX4mRau2bzBXsRIRnyV1DM2MYRfvvgvVJDQlsCF-j27rKJMd-O_9G2S9Tq_pDdzhdgiC3mxTXZuCvy3fp3RC1p1fFal9G2yctusVjsN7tsOue-hkaNTLGzQTRogiz9h5umooB6tIsBtjYCWjlb4RhQKS-3IT31OX6cez6Shuo7C2yXP3bunzkNUwy1EJmFyEjnBAA3YWq5BqtTFFpwymDFag4wCFgstOFfgEsMyjqJlRltnpJCgWWYzvkeWirLIDwi1iukUUpuDYsKmFmKlDUh87UzKEt4mZw0Th_h14Y4Ciryc-uEPG9tkfy6J4Xg-d2OIqWgikITDP-w-Imu8Aq4I3WLHpOXQmPMTsmw-JiP_flrpCT77j71v6RTICw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+pathways+in+sarcopenia+of+aging+and+disuse+muscle+atrophy&rft.jtitle=Biological+chemistry&rft.au=Calvani%2C+Riccardo&rft.au=Joseph%2C+Anna-Maria&rft.au=Adhihetty%2C+Peter+J&rft.au=Miccheli%2C+Alfredo&rft.date=2013-03-01&rft.eissn=1437-4315&rft.volume=394&rft.issue=3&rft.spage=393&rft_id=info:doi/10.1515%2Fhsz-2012-0247&rft_id=info%3Apmid%2F23154422&rft_id=info%3Apmid%2F23154422&rft.externalDocID=23154422 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1437-4315&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1437-4315&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1437-4315&client=summon |