Properties of the Augmented Lagrangian in Nonlinear Semidefinite Optimization

We study the properties of the augmented Lagrangian function for nonlinear semidenite programming. It is shown that, under a set of sufcient conditions, the augmented Lagrangian algorithm is locally convergent when the penalty parameter is larger than a certain threshold. An error estimate of the so...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 129; číslo 3; s. 437 - 456
Hlavní autoři: Sun, J., Zhang, L. W., Wu, Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Springer 01.06.2006
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the properties of the augmented Lagrangian function for nonlinear semidenite programming. It is shown that, under a set of sufcient conditions, the augmented Lagrangian algorithm is locally convergent when the penalty parameter is larger than a certain threshold. An error estimate of the solution, depending on the penalty parameter, is also established. [PUBLICATION ABSTRACT]
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-006-9078-8