Properties of the Augmented Lagrangian in Nonlinear Semidefinite Optimization
We study the properties of the augmented Lagrangian function for nonlinear semidenite programming. It is shown that, under a set of sufcient conditions, the augmented Lagrangian algorithm is locally convergent when the penalty parameter is larger than a certain threshold. An error estimate of the so...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 129; číslo 3; s. 437 - 456 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
Springer
01.06.2006
Springer Nature B.V |
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study the properties of the augmented Lagrangian function for nonlinear semidenite programming. It is shown that, under a set of sufcient conditions, the augmented Lagrangian algorithm is locally convergent when the penalty parameter is larger than a certain threshold. An error estimate of the solution, depending on the penalty parameter, is also established. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-006-9078-8 |