NiftyNet: a deep-learning platform for medical imaging

•An open-source platform is implemented based on TensorFlow APIs for deep learning in medical imaging domain.•A modular implementation of the typical medical imaging machine learning pipeline facilitates (1) warm starts with established pre-trained networks, (2) adapting existing neural network arch...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods and programs in biomedicine Vol. 158; pp. 113 - 122
Main Authors: Gibson, Eli, Li, Wenqi, Sudre, Carole, Fidon, Lucas, Shakir, Dzhoshkun I., Wang, Guotai, Eaton-Rosen, Zach, Gray, Robert, Doel, Tom, Hu, Yipeng, Whyntie, Tom, Nachev, Parashkev, Modat, Marc, Barratt, Dean C., Ourselin, Sébastien, Cardoso, M. Jorge, Vercauteren, Tom
Format: Journal Article
Language:English
Published: Ireland Elsevier B.V 01.05.2018
Elsevier Scientific Publishers
Subjects:
ISSN:0169-2607, 1872-7565, 1872-7565
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •An open-source platform is implemented based on TensorFlow APIs for deep learning in medical imaging domain.•A modular implementation of the typical medical imaging machine learning pipeline facilitates (1) warm starts with established pre-trained networks, (2) adapting existing neural network architectures to new problems, and (3) rapid prototyping of new solutions.•Three deep-learning applications, including segmentation, regression, image generation and representation learning, are presented as concrete examples illustrating the platform’s key features. Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications.
AbstractList • An open-source platform is implemented based on TensorFlow APIs for deep learning in medical imaging domain. • A modular implementation of the typical medical imaging machine learning pipeline facilitates (1) warm starts with established pre-trained networks, (2) adapting existing neural network architectures to new problems, and (3) rapid prototyping of new solutions. • Three deep-learning applications, including segmentation, regression, image generation and representation learning, are presented as concrete examples illustrating the platform’s key features.
•An open-source platform is implemented based on TensorFlow APIs for deep learning in medical imaging domain.•A modular implementation of the typical medical imaging machine learning pipeline facilitates (1) warm starts with established pre-trained networks, (2) adapting existing neural network architectures to new problems, and (3) rapid prototyping of new solutions.•Three deep-learning applications, including segmentation, regression, image generation and representation learning, are presented as concrete examples illustrating the platform’s key features. Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications.
Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon.BACKGROUND AND OBJECTIVESMedical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon.The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default.METHODSThe NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default.We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses.RESULTSWe present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses.The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications.CONCLUSIONSThe NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications.
Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications.
Author Eaton-Rosen, Zach
Doel, Tom
Barratt, Dean C.
Vercauteren, Tom
Gray, Robert
Whyntie, Tom
Ourselin, Sébastien
Fidon, Lucas
Sudre, Carole
Modat, Marc
Li, Wenqi
Wang, Guotai
Gibson, Eli
Shakir, Dzhoshkun I.
Hu, Yipeng
Cardoso, M. Jorge
Nachev, Parashkev
AuthorAffiliation c Institute of Neurology, University College London, UK
b Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK
d National Hospital for Neurology and Neurosurgery, London, UK
a Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK
AuthorAffiliation_xml – name: a Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK
– name: d National Hospital for Neurology and Neurosurgery, London, UK
– name: b Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK
– name: c Institute of Neurology, University College London, UK
Author_xml – sequence: 1
  givenname: Eli
  orcidid: 0000-0001-9207-7280
  surname: Gibson
  fullname: Gibson, Eli
  organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK
– sequence: 2
  givenname: Wenqi
  orcidid: 0000-0002-7432-7386
  surname: Li
  fullname: Li, Wenqi
  email: wenqi.li@ucl.ac.uk
  organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK
– sequence: 3
  givenname: Carole
  orcidid: 0000-0001-5753-428X
  surname: Sudre
  fullname: Sudre, Carole
  organization: Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK
– sequence: 4
  givenname: Lucas
  orcidid: 0000-0003-1450-1634
  surname: Fidon
  fullname: Fidon, Lucas
  organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK
– sequence: 5
  givenname: Dzhoshkun I.
  orcidid: 0000-0003-3009-4178
  surname: Shakir
  fullname: Shakir, Dzhoshkun I.
  organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK
– sequence: 6
  givenname: Guotai
  orcidid: 0000-0002-8632-158X
  surname: Wang
  fullname: Wang, Guotai
  organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK
– sequence: 7
  givenname: Zach
  surname: Eaton-Rosen
  fullname: Eaton-Rosen, Zach
  organization: Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK
– sequence: 8
  givenname: Robert
  surname: Gray
  fullname: Gray, Robert
  organization: Institute of Neurology, University College London, UK
– sequence: 9
  givenname: Tom
  orcidid: 0000-0001-8092-9378
  surname: Doel
  fullname: Doel, Tom
  organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK
– sequence: 10
  givenname: Yipeng
  orcidid: 0000-0003-4902-0486
  surname: Hu
  fullname: Hu, Yipeng
  organization: Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK
– sequence: 11
  givenname: Tom
  orcidid: 0000-0003-0501-1377
  surname: Whyntie
  fullname: Whyntie, Tom
  organization: Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK
– sequence: 12
  givenname: Parashkev
  surname: Nachev
  fullname: Nachev, Parashkev
  organization: Institute of Neurology, University College London, UK
– sequence: 13
  givenname: Marc
  orcidid: 0000-0002-5277-8530
  surname: Modat
  fullname: Modat, Marc
  organization: Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK
– sequence: 14
  givenname: Dean C.
  surname: Barratt
  fullname: Barratt, Dean C.
  organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK
– sequence: 15
  givenname: Sébastien
  surname: Ourselin
  fullname: Ourselin, Sébastien
  organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK
– sequence: 16
  givenname: M. Jorge
  surname: Cardoso
  fullname: Cardoso, M. Jorge
  organization: Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK
– sequence: 17
  givenname: Tom
  orcidid: 0000-0003-1794-0456
  surname: Vercauteren
  fullname: Vercauteren, Tom
  organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29544777$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVJaCZp_0AXxctu7OjKo4dDKZTQRyAkm3YtZFmeaipLrqQJzL-vzKShySLZSIt7vnMv55yiIx-8Qegd4AYwsPNto6e5bwgG0WBoMKGv0AoEJzWnjB6hVRF1NWGYn6DTlLYYFwllr9EJ6eh6zTlfIXZjx7y_MfmiUtVgzFw7o6K3flPNTuUxxKkqTzWZwWrlKjupTRm-Qcejcsm8vf_P0M-vX35cfq-vb79dXX6-rjXFLNcai56BGFXLgMOguQZFW6CgeA-4BQBFNBuKyJB1O3LdE8H42GrWQ6cEbs_Qp4PvvOvLCdr4HJWTcyx3xL0MysrHE29_yU24k1SwDlNSDD7cG8TwZ2dSlpNN2jinvAm7JEt4646CYMuu9__veljyL6wiIAeBjiGlaMYHCWC5NCK3cmlkMRUSgyxxF0g8gbTNKtuw3Gvd8-jHA2pKwnfWRJm0NV6XKqLRWQ7BPo9fPMG1s35p8bfZvwT_Bfn_uYQ
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3138162
crossref_primary_10_1038_s41598_025_92423_9
crossref_primary_10_1016_j_inffus_2025_103283
crossref_primary_10_1109_ACCESS_2019_2957233
crossref_primary_10_1088_1361_6560_ac0e79
crossref_primary_10_1016_j_media_2025_103469
crossref_primary_10_1016_j_media_2018_07_002
crossref_primary_10_1109_ACCESS_2020_3016223
crossref_primary_10_7554_eLife_77945
crossref_primary_10_1016_j_media_2021_101960
crossref_primary_10_1109_ACCESS_2021_3052501
crossref_primary_10_1038_s41592_021_01284_3
crossref_primary_10_1007_s00521_018_3877_3
crossref_primary_10_1145_3457187
crossref_primary_10_3390_jcm12155143
crossref_primary_10_1007_s11042_023_17243_3
crossref_primary_10_1007_s10143_025_03719_3
crossref_primary_10_1145_3501305
crossref_primary_10_1002_btm2_10641
crossref_primary_10_1016_j_cmpb_2019_05_016
crossref_primary_10_1016_j_cmpb_2023_107398
crossref_primary_10_1016_j_neucom_2019_01_103
crossref_primary_10_1016_j_media_2019_101558
crossref_primary_10_1016_j_neuroimage_2021_117756
crossref_primary_10_1371_journal_pone_0263126
crossref_primary_10_1166_jmihi_2021_3917
crossref_primary_10_3390_opt3010002
crossref_primary_10_26634_jpr_11_1_20824
crossref_primary_10_1016_j_cmpb_2020_105700
crossref_primary_10_1007_s12350_020_02119_y
crossref_primary_10_1016_j_engappai_2022_105532
crossref_primary_10_1109_TNNLS_2023_3308712
crossref_primary_10_1038_s41598_022_14672_2
crossref_primary_10_1007_s12021_022_09587_2
crossref_primary_10_1155_2020_9843275
crossref_primary_10_1088_1361_6560_abe3d1
crossref_primary_10_1088_1361_6560_ac4fa1
crossref_primary_10_1080_17461391_2020_1866081
crossref_primary_10_3390_app11062721
crossref_primary_10_1007_s11604_022_01311_z
crossref_primary_10_3389_fmicb_2024_1488106
crossref_primary_10_1016_j_rcl_2021_06_005
crossref_primary_10_1002_acm2_13321
crossref_primary_10_1007_s11042_020_09871_w
crossref_primary_10_1038_s44172_023_00066_3
crossref_primary_10_3390_app9245540
crossref_primary_10_1016_j_ymeth_2020_09_007
crossref_primary_10_1088_1361_6560_ab7630
crossref_primary_10_3390_electronics11091363
crossref_primary_10_1016_j_mri_2019_05_037
crossref_primary_10_1007_s11517_024_03127_7
crossref_primary_10_1166_jmihi_2021_3335
crossref_primary_10_1088_1361_6560_ab99e5
crossref_primary_10_1088_1742_6596_1497_1_012009
crossref_primary_10_1016_j_ejmp_2022_05_016
crossref_primary_10_1088_1361_6560_ac97d8
crossref_primary_10_1109_ACCESS_2022_3204147
crossref_primary_10_3390_healthcare9010054
crossref_primary_10_1016_j_cmpb_2022_106818
crossref_primary_10_3390_app9010090
crossref_primary_10_1016_j_ejmp_2021_02_006
crossref_primary_10_1016_j_media_2021_102336
crossref_primary_10_1002_jmri_28643
crossref_primary_10_1016_j_ejmp_2020_04_011
crossref_primary_10_1016_j_cmpb_2019_105277
crossref_primary_10_3390_diagnostics11010013
crossref_primary_10_1186_s13244_023_01487_6
crossref_primary_10_1007_s12149_025_02031_w
crossref_primary_10_3390_s23114993
crossref_primary_10_1007_s11831_022_09785_w
crossref_primary_10_3390_sym11081001
crossref_primary_10_1186_s12880_020_00543_7
crossref_primary_10_1155_2020_8861035
crossref_primary_10_1038_s41598_022_09264_z
crossref_primary_10_1016_j_bbe_2021_01_001
crossref_primary_10_1016_j_neuroimage_2019_116324
crossref_primary_10_1016_j_ymeth_2020_10_004
crossref_primary_10_1002_jmri_28519
crossref_primary_10_1002_spe_2894
crossref_primary_10_1016_j_bspc_2019_04_002
crossref_primary_10_1186_s12859_019_3069_x
crossref_primary_10_1016_j_nec_2020_03_005
crossref_primary_10_1002_mp_14168
crossref_primary_10_1007_s00772_019_00574_7
crossref_primary_10_1016_j_cmpb_2020_105796
crossref_primary_10_1162_imag_a_00294
crossref_primary_10_4274_mirt_galenos_2024_86422
crossref_primary_10_1109_TRPMS_2018_2876562
crossref_primary_10_32604_cmes_2022_018424
crossref_primary_10_1007_s13246_022_01202_7
crossref_primary_10_1109_TMI_2020_2972547
crossref_primary_10_1007_s00259_022_05867_w
crossref_primary_10_1109_TIP_2020_3003735
crossref_primary_10_1109_TIP_2020_3038363
crossref_primary_10_3390_brainsci10120974
crossref_primary_10_1007_s00106_019_0665_z
crossref_primary_10_1111_bju_14985
crossref_primary_10_1108_IDD_07_2019_0049
crossref_primary_10_3389_fnins_2019_01053
crossref_primary_10_1109_ACCESS_2020_2980025
crossref_primary_10_1016_j_cmpb_2021_106037
crossref_primary_10_1007_s13246_023_01295_8
crossref_primary_10_1016_j_zemedi_2018_11_004
crossref_primary_10_1145_3447243
crossref_primary_10_1002_mp_16811
crossref_primary_10_1155_2021_7171816
crossref_primary_10_1016_j_ijmedinf_2025_105875
crossref_primary_10_1016_j_zemedi_2018_11_002
crossref_primary_10_1016_j_neuroimage_2021_118697
crossref_primary_10_1371_journal_pone_0223010
crossref_primary_10_1109_ACCESS_2020_2998901
crossref_primary_10_1109_ACCESS_2020_2970210
crossref_primary_10_1016_j_media_2023_102802
crossref_primary_10_1093_jrr_rraa132
crossref_primary_10_3390_s23042195
crossref_primary_10_1002_mp_16369
crossref_primary_10_1002_mp_16914
crossref_primary_10_1007_s10916_019_1228_2
crossref_primary_10_1093_jcde_qwac008
crossref_primary_10_1016_j_forsciint_2020_110538
crossref_primary_10_1109_TMI_2021_3060634
crossref_primary_10_1007_s11042_024_20405_6
crossref_primary_10_3390_electronics13132630
crossref_primary_10_1073_pnas_1812995116
crossref_primary_10_1007_s00261_024_04640_x
crossref_primary_10_1016_j_cmpb_2020_105524
crossref_primary_10_3390_s21217018
crossref_primary_10_1007_s00530_021_00783_9
crossref_primary_10_1016_j_media_2020_101840
crossref_primary_10_1142_S2196888824500076
crossref_primary_10_1016_j_cmpb_2023_107428
crossref_primary_10_1002_mp_14134
crossref_primary_10_1016_j_nicl_2020_102542
crossref_primary_10_1016_j_neucom_2023_01_012
crossref_primary_10_1148_ryai_2020190103
crossref_primary_10_3389_fcell_2022_842342
crossref_primary_10_1371_journal_pone_0227791
crossref_primary_10_1002_cam4_5097
crossref_primary_10_1007_s12652_020_02328_w
crossref_primary_10_1038_s41598_019_44416_8
crossref_primary_10_15187_adr_2021_02_34_1_133
crossref_primary_10_1088_1361_6560_ac9449
crossref_primary_10_3389_fnins_2021_670287
crossref_primary_10_1007_s12021_020_09477_5
crossref_primary_10_1109_TRPMS_2023_3265863
crossref_primary_10_1016_j_compmedimag_2023_102241
crossref_primary_10_1016_j_media_2020_101950
crossref_primary_10_1016_j_bspc_2021_103170
crossref_primary_10_1007_s11042_023_16654_6
crossref_primary_10_1016_j_imu_2020_100335
crossref_primary_10_1016_j_media_2020_101718
crossref_primary_10_1016_j_ins_2019_03_080
crossref_primary_10_1016_j_xnsj_2023_100236
crossref_primary_10_1007_s40846_024_00882_8
crossref_primary_10_1016_j_cmpb_2024_108377
crossref_primary_10_1109_ACCESS_2020_3027887
crossref_primary_10_1097_MNM_0000000000001891
crossref_primary_10_1002_ima_22804
crossref_primary_10_3390_bioengineering10121349
crossref_primary_10_1109_ACCESS_2020_2974887
crossref_primary_10_3390_s20102962
crossref_primary_10_1007_s00432_023_04956_z
crossref_primary_10_1038_s41598_021_04247_y
crossref_primary_10_3389_fncom_2019_00056
crossref_primary_10_1002_nbm_4609
crossref_primary_10_1016_j_cmpb_2022_106959
crossref_primary_10_1007_s00259_020_04852_5
crossref_primary_10_1109_ACCESS_2019_2941154
crossref_primary_10_1002_jmri_27498
crossref_primary_10_3390_cancers15133369
crossref_primary_10_1016_j_cmpb_2021_106236
crossref_primary_10_1109_JBHI_2021_3049452
crossref_primary_10_26634_jip_11_2_20915
crossref_primary_10_7717_peerj_cs_773
crossref_primary_10_1016_j_semradonc_2019_02_001
crossref_primary_10_1016_j_cmpb_2018_05_027
crossref_primary_10_1002_mp_14822
crossref_primary_10_1080_23311975_2024_2391122
crossref_primary_10_1016_j_artmed_2020_101878
crossref_primary_10_1109_ACCESS_2024_3385573
crossref_primary_10_7759_cureus_50203
crossref_primary_10_1002_spe_2878
crossref_primary_10_1016_j_ejmp_2021_05_003
crossref_primary_10_1016_j_media_2021_102079
crossref_primary_10_1007_s10278_018_0101_z
crossref_primary_10_1212_WNL_0000000000201710
crossref_primary_10_1002_jmri_27129
crossref_primary_10_1007_s13748_021_00232_8
crossref_primary_10_1016_j_injury_2020_09_010
crossref_primary_10_1016_j_cmpb_2025_109063
crossref_primary_10_1016_j_knosys_2024_112307
crossref_primary_10_3390_bioengineering9100579
crossref_primary_10_1002_mp_14141
crossref_primary_10_3389_fncom_2019_00083
crossref_primary_10_1155_2022_5797431
crossref_primary_10_1371_journal_pone_0253863
crossref_primary_10_1016_j_cmpb_2020_105531
crossref_primary_10_3390_s21165381
crossref_primary_10_1088_2399_6528_ac24d8
crossref_primary_10_1186_s12874_022_01768_6
crossref_primary_10_3389_fnins_2020_00260
crossref_primary_10_1038_s41598_023_38105_w
crossref_primary_10_1016_j_compbiomed_2020_103693
crossref_primary_10_1002_aisy_201900048
crossref_primary_10_1002_jmri_29543
crossref_primary_10_1016_j_csbj_2021_05_023
crossref_primary_10_1109_ACCESS_2021_3113611
crossref_primary_10_1002_hbm_25039
crossref_primary_10_1038_s41598_020_80068_9
crossref_primary_10_1007_s11042_019_07988_1
crossref_primary_10_3389_fcvm_2021_787614
crossref_primary_10_3389_fbioe_2021_636953
crossref_primary_10_3390_s23249872
crossref_primary_10_1007_s11633_022_1407_3
crossref_primary_10_1097_MNM_0000000000001436
crossref_primary_10_1007_s00129_021_04808_2
crossref_primary_10_1016_j_mri_2020_09_013
crossref_primary_10_1109_TETCI_2024_3369868
crossref_primary_10_1007_s00330_021_07709_z
crossref_primary_10_1109_ACCESS_2021_3095312
crossref_primary_10_3390_ijms22157911
crossref_primary_10_1007_s11517_020_02171_3
crossref_primary_10_1109_JPROC_2019_2946993
crossref_primary_10_1097_RLU_0000000000003585
crossref_primary_10_1007_s11517_024_03084_1
crossref_primary_10_1038_s41598_021_95972_x
crossref_primary_10_1016_j_mri_2019_04_009
crossref_primary_10_1088_1361_6560_ab8cd6
crossref_primary_10_1016_j_bspc_2024_106667
crossref_primary_10_1016_j_nicl_2020_102335
crossref_primary_10_1016_j_bbe_2021_08_011
crossref_primary_10_1007_s11548_024_03258_0
crossref_primary_10_1088_2632_2153_ab6d5e
crossref_primary_10_1016_j_compbiomed_2023_106963
crossref_primary_10_1007_s12652_020_01998_w
crossref_primary_10_1016_j_morpho_2019_09_002
crossref_primary_10_1038_s41598_020_57951_6
crossref_primary_10_1016_j_cmpb_2019_06_016
crossref_primary_10_1161_STROKEAHA_119_027457
crossref_primary_10_1016_j_media_2022_102444
crossref_primary_10_1016_j_neucom_2022_05_053
crossref_primary_10_1038_s41467_020_19866_8
crossref_primary_10_1016_j_media_2021_102038
crossref_primary_10_1109_ACCESS_2019_2895129
crossref_primary_10_1109_ACCESS_2021_3078430
crossref_primary_10_1159_000525929
crossref_primary_10_1016_j_cmpb_2022_106752
crossref_primary_10_1109_JBHI_2018_2874033
crossref_primary_10_3171_2019_9_JNS191949
crossref_primary_10_1002_mrm_28285
crossref_primary_10_1016_j_neuroimage_2021_118606
crossref_primary_10_3390_app11041667
crossref_primary_10_1016_j_engappai_2025_110563
crossref_primary_10_1007_s00234_024_03429_5
crossref_primary_10_1088_1361_6560_abb0f9
crossref_primary_10_1007_s11042_022_12484_0
crossref_primary_10_1016_j_neucom_2019_03_103
crossref_primary_10_1007_s00530_023_01083_0
crossref_primary_10_1016_j_bbe_2020_07_011
crossref_primary_10_1016_j_neurad_2023_01_157
crossref_primary_10_3390_app13095472
crossref_primary_10_1016_j_media_2021_102273
crossref_primary_10_1007_s11042_025_21068_7
crossref_primary_10_1016_j_ejmp_2021_09_006
crossref_primary_10_3390_app11041675
crossref_primary_10_1109_ACCESS_2019_2923318
crossref_primary_10_1002_mrm_29003
crossref_primary_10_1016_j_cmpb_2019_105088
crossref_primary_10_1016_j_cmpb_2022_106620
crossref_primary_10_5334_cstp_739
crossref_primary_10_3390_bdcc8030033
crossref_primary_10_1007_s11042_022_14223_x
crossref_primary_10_1007_s10916_019_1494_z
crossref_primary_10_1016_j_bspc_2021_103027
crossref_primary_10_3390_jimaging10010001
crossref_primary_10_1007_s00330_019_06630_w
crossref_primary_10_1186_s12891_023_06153_y
crossref_primary_10_1016_j_eswa_2020_114161
crossref_primary_10_1088_1361_6560_abb02c
crossref_primary_10_1016_j_compbiomed_2021_104643
crossref_primary_10_1016_j_ultrasmedbio_2021_08_009
crossref_primary_10_1109_ACCESS_2018_2885639
crossref_primary_10_1016_j_bspc_2023_104836
crossref_primary_10_1016_j_neurad_2020_10_001
crossref_primary_10_1016_j_artmed_2022_102332
crossref_primary_10_1166_jmihi_2021_3537
Cites_doi 10.1016/j.cmpb.2016.11.004
10.1016/j.neuroimage.2004.07.051
10.1016/j.media.2016.10.004
10.1109/TMI.2009.2035616
10.1109/TMI.2014.2377694
10.3389/fninf.2013.00045
10.1146/annurev-bioeng-071516-044442
10.1109/42.476112
10.1007/s11548-014-1124-7
10.1016/j.neuroimage.2010.09.025
10.1109/TMI.2014.2340135
10.1016/j.cmpb.2009.09.002
10.1007/s11548-014-1118-5
10.1016/j.media.2017.07.005
10.1006/nimg.1998.0396
10.1007/s11548-013-0840-8
10.1006/nimg.1998.0395
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
2018 The Authors 2018
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2018 The Authors 2018
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmpb.2018.01.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 122
ExternalDocumentID PMC5869052
29544777
10_1016_j_cmpb_2018_01_025
S0169260717311823
Genre Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 19985
– fundername: Wellcome Trust
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
AFCTW
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c506t-c08b618fa36171dc7c1a53151a7b103111a2c6d8b6e243f7cb2867f3c6b19a803
ISICitedReferencesCount 377
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000427786400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-2607
1872-7565
IngestDate Tue Sep 30 15:35:48 EDT 2025
Thu Oct 02 12:02:45 EDT 2025
Mon Jul 21 06:05:43 EDT 2025
Sat Nov 29 03:57:41 EST 2025
Tue Nov 18 22:51:06 EST 2025
Fri Feb 23 02:26:01 EST 2024
Tue Oct 14 19:32:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Segmentation
Convolutional neural network
Medical image analysis
Generative adversarial network
Image regression
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c506t-c08b618fa36171dc7c1a53151a7b103111a2c6d8b6e243f7cb2867f3c6b19a803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
M. Jorge Cardoso and Tom Vercauteren contributed equally to this work.
Wenqi Li and Eli Gibson contributed equally to this work.
ORCID 0000-0003-1794-0456
0000-0002-8632-158X
0000-0003-0501-1377
0000-0001-5753-428X
0000-0003-1450-1634
0000-0002-7432-7386
0000-0002-5277-8530
0000-0003-4902-0486
0000-0001-9207-7280
0000-0003-3009-4178
0000-0001-8092-9378
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5869052
PMID 29544777
PQID 2014951860
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5869052
proquest_miscellaneous_2014951860
pubmed_primary_29544777
crossref_primary_10_1016_j_cmpb_2018_01_025
crossref_citationtrail_10_1016_j_cmpb_2018_01_025
elsevier_sciencedirect_doi_10_1016_j_cmpb_2018_01_025
elsevier_clinicalkey_doi_10_1016_j_cmpb_2018_01_025
PublicationCentury 2000
PublicationDate May 2018
2018-05-00
2018-May
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2018
Publisher Elsevier B.V
Elsevier Scientific Publishers
Publisher_xml – name: Elsevier B.V
– name: Elsevier Scientific Publishers
References B. Landman, Z. Xu, J.E. Igelsias, M. Styner, T.R. Langerak, A. Klein, Multi-atlas labeling beyond the cranial vault, 2015, URL
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib0011) 2016
Milletari, Navab, Ahmadi (bib0040) 2016
Roth, Lu, Seff, Cherry, Hoffman, Wang, Liu, Turkbey, Summers (bib0048) 2014
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mane, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viegas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (bib0001) 2016
D. Mané, et al., TensorBoard: TensorFlow’s visualization toolkit, 2015
L. Berger, E. Hyde, M.J. Cardoso, S. Ourselin, An adaptive sampling scheme to efficiently train fully convolutional networks for semantic segmentation, (2017). ArXiv e-prints arXiv
Shen, Wu, Suk (bib0051) 2017
Roth, Farag, Turkbey, Lu, Liu, Summers (bib0047) 1994
S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, cuDNN: efficient primitives for deep learning, arXiv
Doel, Shakir, Pratt, Aertsen, Moggridge, Bellon, David, Deprest, Vercauteren, Ourselin (bib0016) 2017; 139
Li, Wang, Fidon, Ourselin, Cardoso, Vercauteren (bib0033) 2017
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, De Stefano, Brady, Matthews (bib0052) 2004; 23
J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization (2016). arXiv
M. Reynolds, et al., Sonnet, 2017
Dale, Fischl, Sereno (bib0014) 1999; 9
.
Johnsen, Taylor, Clarkson, Hipwell, Modat, Eiben, Han, Hu, Mertzanidou, Hawkes, Ourselin (bib0029) 2015; 10
Burgos, Cardoso, Thielemans, Modat, Pedemonte, Dickson, Barnes, Ahmed, Mahoney, Schott, Duncan, Atkinson, Arridge, Hutton, Ourselin (bib0007) 2014; 33
Klein, Staring, Murphy, Viergever, Pluim (bib0031) 2010; 29
Gamma, Vlissides, Johnson, Helm (bib0020) 1994
Cardoso, Clarkson, Modat, Ourselin (bib0008) 2012
G. Wang, W. Li, S. Ourselin, T. Vercauteren, Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks, Proc. Multimodal Brain Tumor Segmentation (BRATS) Challenge 2017 - MICCAI workshop. 2016 (2017). arXiv
Garcia-Peraza-Herrera, Li, Fidon, Gruijthuijsen, Devreker, Attilakos, Deprest, Poorten, Stoyanov, Vercauteren, Ourselin (bib0021) 2017
Gibson, Robu, Thompson, Edwards, Schneider, Gurusamy, Davidson, Hawkes, Barratt, Clarkson (bib0024) 2017; vol. 10135
G. Wang, M.A. Zuluaga, W. Li, R. Pratt, P.A. Patel, M. Aertsen, T. Doel, A.L. David, J. Deprest, S. Ourselin, T. Vercauteren, DeepIGeoS: a deep interactive geodesic framework for medical image segmentation, (2017). arXiv
I. Goodfellow, NIPS 2016 tutorial: generative adversarial networks (2016). arXiv
Seide, Agarwal (bib0050) 2016
Fischl, Sereno, Dale (bib0019) 1999; 9
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest, Lanczi, Gerstner, Weber, Arbel, Avants, Ayache, Buendia, Collins, Cordier, Corso, Criminisi, Das, Delingette, Ç. Demiralp, Durst, Dojat, Doyle, Festa, Forbes, Geremia, Glocker, Golland, Guo, Hamamci, Iftekharuddin, Jena, John, Konukoglu, Lashkari, Mariz, Meier, Pereira, Precup, Price, Raviv, Reza, Ryan, Sarikaya, Schwartz, Shin, Shotton, Silva, Sousa, Subbanna, Szekely, Taylor, Thomas, Tustison, Unal, Vasseur, Wintermark, Ye, Zhao, Zhao, Zikic, Prastawa, Reyes, Leemput (bib0039) 2015; 34
Modat, Ridgway, Taylor, Lehmann, Barnes, Hawkes, Fox, Ourselin (bib0042) 2010; 98
Vedaldi, Lenc (bib0054) 2015
F. Chollet, et al., Keras, 2015
Ioffe (bib0027) 2017
Hu, Gibson, Lee, Xie, Barratt, Vercauteren, Noble (bib0026) 2017
M. Brett, M. Hanke, B. Cipollini, M.-A. Côté, C. Markiewicz, S. Gerhard, E. Larson, Nibabel, 2016, Online. doi
Collobert, Kavukcuoglu, Farabet (bib0013) 2011
Gibson, Giganti, Hu, Bonmati, Bandula, Gurusamy, Davidson, Pereira, Clarkson, Barratt (bib0022) 2017
S. Dieleman, J. Schlter, C. Raffel, E. Olson, S.K. Snderby, D. Nouri, D. Maturana, M. Thoma, E. Battenberg, J. Kelly, J.D. Fauw, M. Heilman, D.M. de Almeida, B. McFee, H. Weideman, G. TakÃ!‘cs, P. de Rivaz, J. Crall, G. Sanders, K. Rasul, C. Liu, G. French, J. Degrave, Lasagne: first release, 2015, 10.5281/zenodo.27878
T. Preston-Werner, Semantic versioning, Technical Report, T. Preston-Werner, 2015. URL
Bastien, Lamblin, Pascanu, Bergstra, Goodfellow, Bergeron, Bouchard, Bengio (bib0004) 2012
Lo, Lou, Lin, Freedman, Chien, Mun (bib0035) 1995; 14
L. Fidon, W. Li, L.C. Garcia-Peraza-Herrera, J. Ekanayake, N. Kitchen, S. Ourselin, T. Vercauteren, Generalised Wasserstein Dice score for imbalanced multi-class segmentation using holistic convolutional networks, (2017). arXiv
Gibson, Giganti, Hu, Bonmati, Bandula, Gurusamy, Davidson, Pereira, Clarkson, Barratt (bib0023) 2017
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken, Sánchez (bib0034) 2017; 42
accessed July 2017. 10.7303/syn3193805.
Pieper, Lorensen, Schroeder, Kikinis (bib0044) 2006
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (bib0030) 2017; 36
M. Mirza, S. Osindero, Conditional generative adversarial nets. Proc. NIPS 2016 Workshop on Adversarial Training. 2016 (2014), arXiv
Nolden, Zelzer, Seitel, Wald, Müller, Franz, Maleike, Fangerau, Baumhauer, Maier-Hein, Maier-Hein, Meinzer, Wolf (bib0043) 2013; 8
Lowekamp, Chen, Ibáñez, Blezek (bib0036) 2013; 7
Sudre, Li, Vercauteren, Ourselin, Cardoso (bib0053) 2017
Dong, Supratak, Mai, Liu, Oehmichen, Yu, Guo (bib0017) 2017
Zhou, Ito, Takayama, Wang, Hara, Fujita (bib0057) 2016
Avants, Tustison, Song, Cook, Klein, Gee (bib0002) 2011; 54
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0028) 2014
Clarkson, Zombori, Thompson, Totz, Song, Espak, Johnsen, Hawkes, Ourselin (bib0012) 2015; 10
Mehrtash, Pesteie, Hetherington, Behringer, Kapur, Wells III, Rohling, Fedorov, Abolmaesumi (bib0038) 2017; 10135
T. Salimans, D.P. Kingma, Weight normalization: a simple reparameterization to accelerate training of deep neural networks (2016). arXiv
10.1016/j.cmpb.2018.01.025_bib0025
Litjens (10.1016/j.cmpb.2018.01.025_bib0034) 2017; 42
Collobert (10.1016/j.cmpb.2018.01.025_bib0013) 2011
Ioffe (10.1016/j.cmpb.2018.01.025_bib0027) 2017
Lowekamp (10.1016/j.cmpb.2018.01.025_bib0036) 2013; 7
Clarkson (10.1016/j.cmpb.2018.01.025_bib0012) 2015; 10
Dale (10.1016/j.cmpb.2018.01.025_bib0014) 1999; 9
Hu (10.1016/j.cmpb.2018.01.025_bib0026) 2017
10.1016/j.cmpb.2018.01.025_bib0018
Shen (10.1016/j.cmpb.2018.01.025_bib0051) 2017
Cardoso (10.1016/j.cmpb.2018.01.025_bib0008) 2012
Gamma (10.1016/j.cmpb.2018.01.025_bib0020) 1994
10.1016/j.cmpb.2018.01.025_bib0015
Seide (10.1016/j.cmpb.2018.01.025_bib0050) 2016
10.1016/j.cmpb.2018.01.025_bib0010
Mehrtash (10.1016/j.cmpb.2018.01.025_bib0038) 2017; 10135
Burgos (10.1016/j.cmpb.2018.01.025_bib0007) 2014; 33
10.1016/j.cmpb.2018.01.025_bib0055
Vedaldi (10.1016/j.cmpb.2018.01.025_bib0054) 2015
10.1016/j.cmpb.2018.01.025_bib0056
Bastien (10.1016/j.cmpb.2018.01.025_bib0004) 2012
Abadi (10.1016/j.cmpb.2018.01.025_sbref0001) 2016
Doel (10.1016/j.cmpb.2018.01.025_bib0016) 2017; 139
Kamnitsas (10.1016/j.cmpb.2018.01.025_bib0030) 2017; 36
Fischl (10.1016/j.cmpb.2018.01.025_bib0019) 1999; 9
Li (10.1016/j.cmpb.2018.01.025_bib0033) 2017
10.1016/j.cmpb.2018.01.025_bib0009
Johnsen (10.1016/j.cmpb.2018.01.025_bib0029) 2015; 10
Menze (10.1016/j.cmpb.2018.01.025_bib0039) 2015; 34
10.1016/j.cmpb.2018.01.025_bib0003
10.1016/j.cmpb.2018.01.025_bib0005
Roth (10.1016/j.cmpb.2018.01.025_bib0047) 1994
10.1016/j.cmpb.2018.01.025_bib0049
10.1016/j.cmpb.2018.01.025_bib0006
Avants (10.1016/j.cmpb.2018.01.025_bib0002) 2011; 54
10.1016/j.cmpb.2018.01.025_bib0045
10.1016/j.cmpb.2018.01.025_bib0046
10.1016/j.cmpb.2018.01.025_bib0041
Zhou (10.1016/j.cmpb.2018.01.025_bib0057) 2016
Milletari (10.1016/j.cmpb.2018.01.025_bib0040) 2016
Sudre (10.1016/j.cmpb.2018.01.025_bib0053) 2017
Modat (10.1016/j.cmpb.2018.01.025_bib0042) 2010; 98
Lo (10.1016/j.cmpb.2018.01.025_bib0035) 1995; 14
Gibson (10.1016/j.cmpb.2018.01.025_sbref0015) 2017
Nolden (10.1016/j.cmpb.2018.01.025_bib0043) 2013; 8
Pieper (10.1016/j.cmpb.2018.01.025_bib0044) 2006
Roth (10.1016/j.cmpb.2018.01.025_bib0048) 2014
10.1016/j.cmpb.2018.01.025_bib0037
10.1016/j.cmpb.2018.01.025_bib0032
Smith (10.1016/j.cmpb.2018.01.025_bib0052) 2004; 23
Garcia-Peraza-Herrera (10.1016/j.cmpb.2018.01.025_bib0021) 2017
Gibson (10.1016/j.cmpb.2018.01.025_bib0023) 2017
Dong (10.1016/j.cmpb.2018.01.025_bib0017) 2017
Klein (10.1016/j.cmpb.2018.01.025_bib0031) 2010; 29
Jia (10.1016/j.cmpb.2018.01.025_bib0028) 2014
Gibson (10.1016/j.cmpb.2018.01.025_sbref0017) 2017; vol. 10135
Çiçek (10.1016/j.cmpb.2018.01.025_bib0011) 2016
References_xml – reference: G. Wang, W. Li, S. Ourselin, T. Vercauteren, Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks, Proc. Multimodal Brain Tumor Segmentation (BRATS) Challenge 2017 - MICCAI workshop. 2016 (2017). arXiv:
– start-page: 2135
  year: 2016
  ident: bib0050
  article-title: CNTK: Microsoft’s open-source deep-learning toolkit
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– reference: M. Mirza, S. Osindero, Conditional generative adversarial nets. Proc. NIPS 2016 Workshop on Adversarial Training. 2016 (2014), arXiv:
– year: 2014
  ident: bib0048
  article-title: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations
  publication-title: Proceedings of the MICCAI
– volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  ident: bib0002
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: Neuroimage
– reference: M. Reynolds, et al., Sonnet, 2017,
– start-page: 675
  year: 2014
  end-page: 678
  ident: bib0028
  article-title: Caffe: Convolutional architecture for fast feature embedding
  publication-title: Proceedings of the 22nd ACM International Conference on Multimedia (ACMMM)
– reference: T. Preston-Werner, Semantic versioning, Technical Report, T. Preston-Werner, 2015. URL:
– reference: F. Chollet, et al., Keras, 2015,
– volume: 10
  start-page: 301
  year: 2015
  end-page: 316
  ident: bib0012
  article-title: The NifTK software platform for image-guided interventions: platform overview and NiftyLink messaging
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– start-page: 565
  year: 2016
  end-page: 571
  ident: bib0040
  article-title: V-Net: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: Proceedings of the Fourth International Conference on 3D Vision (3DV)
– volume: 10135
  year: 2017
  ident: bib0038
  article-title: DeepInfer: Open-source deep learning deployment toolkit for image-guided therapy
  publication-title: Proceedings of the SPIE, Medical Imaging
– volume: 7
  year: 2013
  ident: bib0036
  article-title: The design of SimpleITK
  publication-title: Front. Neuroinf.
– volume: 10
  start-page: 1077
  year: 2015
  end-page: 1095
  ident: bib0029
  article-title: NiftySim: a GPU-based nonlinear finite element package for simulation of soft tissue biomechanics
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 34
  start-page: 1993
  year: 2015
  end-page: 2024
  ident: bib0039
  article-title: The multimodal brain tumor image segmentation benchmark (BraTS)
  publication-title: IEEE Trans. Med. Imaging
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  ident: bib0019
  article-title: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system
  publication-title: Neuroimage
– reference: J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization (2016). arXiv:
– start-page: 348
  year: 2017
  end-page: 360
  ident: bib0033
  article-title: On the compactness, efficiency, and representation of 3D convolutional networks: Brain parcellation as a pretext task
  publication-title: Proceedings of Information Processing in Medical Imaging (IPMI)
– reference: M. Brett, M. Hanke, B. Cipollini, M.-A. Côté, C. Markiewicz, S. Gerhard, E. Larson, Nibabel, 2016, Online. doi:
– year: 2017
  ident: bib0022
  article-title: Automatic multi-organ segmentation on abdominal CT with dense v-networks
  publication-title: IEEE Trans. Med. Imaging
– year: 2015
  ident: bib0054
  article-title: MatConvNet – convolutional neural networks for MATLAB
  publication-title: Proceedings of the ACMM
– start-page: 424
  year: 2016
  end-page: 432
  ident: bib0011
  article-title: 3D U-net: learning dense volumetric segmentation from sparse annotation
  publication-title: Proceedings of the MICCAI
– volume: 29
  start-page: 196
  year: 2010
  end-page: 205
  ident: bib0031
  article-title: Elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEE Trans. Med. Imaging
– reference: L. Berger, E. Hyde, M.J. Cardoso, S. Ourselin, An adaptive sampling scheme to efficiently train fully convolutional networks for semantic segmentation, (2017). ArXiv e-prints arXiv:
– reference: S. Dieleman, J. Schlter, C. Raffel, E. Olson, S.K. Snderby, D. Nouri, D. Maturana, M. Thoma, E. Battenberg, J. Kelly, J.D. Fauw, M. Heilman, D.M. de Almeida, B. McFee, H. Weideman, G. TakÃ!‘cs, P. de Rivaz, J. Crall, G. Sanders, K. Rasul, C. Liu, G. French, J. Degrave, Lasagne: first release, 2015, 10.5281/zenodo.27878
– volume: 14
  start-page: 711
  year: 1995
  end-page: 718
  ident: bib0035
  article-title: Artificial convolution neural network techniques and applications for lung nodule detection
  publication-title: IEEE Trans. Med. Imaging
– year: 2017
  ident: bib0017
  article-title: TensorLayer: a versatile library for efficient deep learning development
– start-page: 698
  year: 2006
  end-page: 701
  ident: bib0044
  article-title: The NA-MIC kit: ITK, VTK, pipelines, grids and 3D Slicer as an open platform for the medical image computing community
  publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI)
– reference: I. Goodfellow, NIPS 2016 tutorial: generative adversarial networks (2016). arXiv:
– volume: 33
  start-page: 2332
  year: 2014
  end-page: 2341
  ident: bib0007
  article-title: Attenuation correction synthesis for hybrid PET-MR scanners: Application to brain studies
  publication-title: Med. Imaging IEEE Trans.
– start-page: 5717
  year: 2017
  end-page: 5722
  ident: bib0021
  article-title: ToolNet: holistically-nested real-time segmentation of robotic surgical tools
  publication-title: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC
– year: 2012
  ident: bib0008
  article-title: NiftySeg: open-source software for medical image segmentation, label fusion and cortical thickness estimation
  publication-title: Proceedings of the ISBI Workshop on Open Source Medical Image Analysis Software
– year: 2011
  ident: bib0013
  article-title: Torch7: A MATLAB-like environment for machine learning
  publication-title: Proceedings of the NIPS Workshop on Algorithms, Systems, and Tools for Learning at Scale (Big Learning)
– reference: , accessed July 2017. 10.7303/syn3193805.
– reference: D. Mané, et al., TensorBoard: TensorFlow’s visualization toolkit, 2015,
– year: 2017
  ident: bib0023
  article-title: Towards image-guided pancreas and biliary endoscopy: automatic multi-organ segmentation on abdominal CT with dense dilated networks
  publication-title: Proceedings of the 20th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bib0014
  article-title: Cortical surface-based analysis:I. Segmentation and surface reconstruction
  publication-title: Neuroimage
– reference: L. Fidon, W. Li, L.C. Garcia-Peraza-Herrera, J. Ekanayake, N. Kitchen, S. Ourselin, T. Vercauteren, Generalised Wasserstein Dice score for imbalanced multi-class segmentation using holistic convolutional networks, (2017). arXiv:
– volume: 98
  start-page: 278
  year: 2010
  end-page: 284
  ident: bib0042
  article-title: Fast free-form deformation using graphics processing units
  publication-title: Comput. Methods Progr. Biomed.
– reference: S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, cuDNN: efficient primitives for deep learning, arXiv:
– start-page: 111
  year: 2016
  end-page: 120
  ident: bib0057
  article-title: Three-dimensional CT image segmentation by combining 2D fully convolutional network with 3D majority voting
  publication-title: Proceedings of the LABELS
– reference: B. Landman, Z. Xu, J.E. Igelsias, M. Styner, T.R. Langerak, A. Klein, Multi-atlas labeling beyond the cranial vault, 2015, URL:
– year: 2012
  ident: bib0004
  article-title: Theano: new features and speed improvements
  publication-title: Proceedings of the Workshop on Deep Learning and Unsupervised Feature Learning NIPS
– reference: G. Wang, M.A. Zuluaga, W. Li, R. Pratt, P.A. Patel, M. Aertsen, T. Doel, A.L. David, J. Deprest, S. Ourselin, T. Vercauteren, DeepIGeoS: a deep interactive geodesic framework for medical image segmentation, (2017). arXiv:
– start-page: 221
  year: 2017
  end-page: 248
  ident: bib0051
  article-title: Deep learning in medical image analysis
  publication-title: Ann. Rev. Biomed. Eng.
– start-page: 1942
  year: 2017
  end-page: 1950
  ident: bib0027
  article-title: Batch renormalization: towards reducing minibatch dependence in batch-normalized models
  publication-title: Advances in Neural Information Processing Systems 30
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: bib0030
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
– reference: T. Salimans, D.P. Kingma, Weight normalization: a simple reparameterization to accelerate training of deep neural networks (2016). arXiv:
– year: 2017
  ident: bib0026
  article-title: Freehand ultrasound image simulation with spatially-conditioned generative adversarial networks
  publication-title: Proceedings of MICCAI Workshop on Reconstruction and Analysis of Moving Body Organs (RAMBO)
– volume: 8
  start-page: 607
  year: 2013
  end-page: 620
  ident: bib0043
  article-title: The medical imaging interaction toolkit: challenges and advances
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: bib0052
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– year: 1994
  ident: bib0047
  publication-title: Data from TCIA pancreas-CT
– reference: .
– year: 2016
  ident: bib0001
  article-title: TensorFlow: large-scale machine learning on heterogeneous distributed systems
– year: 2017
  ident: bib0053
  article-title: Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations
  publication-title: Proceedings of MICCAI Workshop on Deep Learning in Medical Image Analysis (DLMIA)
– volume: vol. 10135
  year: 2017
  ident: bib0024
  article-title: Deep residual networks for automatic segmentation of laparoscopic videos of the liver
  publication-title: Proceedings of the SPIE, Medical Imaging
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: bib0034
  article-title: A survey on deep learning in medical image analysis
  publication-title: Medical Image Analysis
– volume: 139
  start-page: 181
  year: 2017
  end-page: 190
  ident: bib0016
  article-title: GIFT-Cloud: A data sharing and collaboration platform for medical imaging research
  publication-title: Comput. Methods Programs Biomed.
– year: 1994
  ident: bib0020
  publication-title: Design Patterns: Elements of Reusable Object-Oriented Software
– ident: 10.1016/j.cmpb.2018.01.025_bib0005
– start-page: 2135
  year: 2016
  ident: 10.1016/j.cmpb.2018.01.025_bib0050
  article-title: CNTK: Microsoft’s open-source deep-learning toolkit
– start-page: 111
  year: 2016
  ident: 10.1016/j.cmpb.2018.01.025_bib0057
  article-title: Three-dimensional CT image segmentation by combining 2D fully convolutional network with 3D majority voting
– volume: 139
  start-page: 181
  year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_bib0016
  article-title: GIFT-Cloud: A data sharing and collaboration platform for medical imaging research
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.11.004
– year: 2011
  ident: 10.1016/j.cmpb.2018.01.025_bib0013
  article-title: Torch7: A MATLAB-like environment for machine learning
– year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_bib0023
  article-title: Towards image-guided pancreas and biliary endoscopy: automatic multi-organ segmentation on abdominal CT with dense dilated networks
– year: 2014
  ident: 10.1016/j.cmpb.2018.01.025_bib0048
  article-title: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations
– volume: 23
  start-page: S208
  year: 2004
  ident: 10.1016/j.cmpb.2018.01.025_bib0052
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: 10.1016/j.cmpb.2018.01.025_bib0015
– volume: 36
  start-page: 61
  year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_bib0030
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 29
  start-page: 196
  issue: 1
  year: 2010
  ident: 10.1016/j.cmpb.2018.01.025_bib0031
  article-title: Elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2035616
– volume: 34
  start-page: 1993
  issue: 10
  year: 2015
  ident: 10.1016/j.cmpb.2018.01.025_bib0039
  article-title: The multimodal brain tumor image segmentation benchmark (BraTS)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 7
  year: 2013
  ident: 10.1016/j.cmpb.2018.01.025_bib0036
  article-title: The design of SimpleITK
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2013.00045
– ident: 10.1016/j.cmpb.2018.01.025_bib0009
– volume: vol. 10135
  year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_sbref0017
  article-title: Deep residual networks for automatic segmentation of laparoscopic videos of the liver
– start-page: 221
  issue: 19
  year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_bib0051
  article-title: Deep learning in medical image analysis
  publication-title: Ann. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 14
  start-page: 711
  issue: 4
  year: 1995
  ident: 10.1016/j.cmpb.2018.01.025_bib0035
  article-title: Artificial convolution neural network techniques and applications for lung nodule detection
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.476112
– year: 1994
  ident: 10.1016/j.cmpb.2018.01.025_bib0047
– volume: 10
  start-page: 301
  issue: 3
  year: 2015
  ident: 10.1016/j.cmpb.2018.01.025_bib0012
  article-title: The NifTK software platform for image-guided interventions: platform overview and NiftyLink messaging
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-014-1124-7
– ident: 10.1016/j.cmpb.2018.01.025_bib0037
– start-page: 424
  year: 2016
  ident: 10.1016/j.cmpb.2018.01.025_bib0011
  article-title: 3D U-net: learning dense volumetric segmentation from sparse annotation
– start-page: 348
  year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_bib0033
  article-title: On the compactness, efficiency, and representation of 3D convolutional networks: Brain parcellation as a pretext task
– year: 2012
  ident: 10.1016/j.cmpb.2018.01.025_bib0008
  article-title: NiftySeg: open-source software for medical image segmentation, label fusion and cortical thickness estimation
– volume: 54
  start-page: 2033
  issue: 3
  year: 2011
  ident: 10.1016/j.cmpb.2018.01.025_bib0002
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.025
– volume: 33
  start-page: 2332
  issue: 12
  year: 2014
  ident: 10.1016/j.cmpb.2018.01.025_bib0007
  article-title: Attenuation correction synthesis for hybrid PET-MR scanners: Application to brain studies
  publication-title: Med. Imaging IEEE Trans.
  doi: 10.1109/TMI.2014.2340135
– volume: 98
  start-page: 278
  issue: 3
  year: 2010
  ident: 10.1016/j.cmpb.2018.01.025_bib0042
  article-title: Fast free-form deformation using graphics processing units
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2009.09.002
– volume: 10
  start-page: 1077
  issue: 7
  year: 2015
  ident: 10.1016/j.cmpb.2018.01.025_bib0029
  article-title: NiftySim: a GPU-based nonlinear finite element package for simulation of soft tissue biomechanics
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-014-1118-5
– year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_bib0053
  article-title: Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations
– start-page: 565
  year: 2016
  ident: 10.1016/j.cmpb.2018.01.025_bib0040
  article-title: V-Net: Fully convolutional neural networks for volumetric medical image segmentation
– ident: 10.1016/j.cmpb.2018.01.025_bib0006
– start-page: 675
  year: 2014
  ident: 10.1016/j.cmpb.2018.01.025_bib0028
  article-title: Caffe: Convolutional architecture for fast feature embedding
– ident: 10.1016/j.cmpb.2018.01.025_bib0055
– ident: 10.1016/j.cmpb.2018.01.025_bib0049
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_bib0034
  article-title: A survey on deep learning in medical image analysis
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2017.07.005
– year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_sbref0015
  article-title: Automatic multi-organ segmentation on abdominal CT with dense v-networks
  publication-title: IEEE Trans. Med. Imaging
– year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_bib0017
– year: 1994
  ident: 10.1016/j.cmpb.2018.01.025_bib0020
– ident: 10.1016/j.cmpb.2018.01.025_bib0032
– start-page: 698
  year: 2006
  ident: 10.1016/j.cmpb.2018.01.025_bib0044
  article-title: The NA-MIC kit: ITK, VTK, pipelines, grids and 3D Slicer as an open platform for the medical image computing community
– ident: 10.1016/j.cmpb.2018.01.025_bib0041
– year: 2016
  ident: 10.1016/j.cmpb.2018.01.025_sbref0001
– ident: 10.1016/j.cmpb.2018.01.025_bib0045
– ident: 10.1016/j.cmpb.2018.01.025_bib0003
– start-page: 1942
  year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_bib0027
  article-title: Batch renormalization: towards reducing minibatch dependence in batch-normalized models
– volume: 9
  start-page: 195
  issue: 2
  year: 1999
  ident: 10.1016/j.cmpb.2018.01.025_bib0019
  article-title: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0396
– ident: 10.1016/j.cmpb.2018.01.025_bib0056
– year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_bib0026
  article-title: Freehand ultrasound image simulation with spatially-conditioned generative adversarial networks
– volume: 8
  start-page: 607
  issue: 4
  year: 2013
  ident: 10.1016/j.cmpb.2018.01.025_bib0043
  article-title: The medical imaging interaction toolkit: challenges and advances
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-013-0840-8
– volume: 10135
  year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_bib0038
  article-title: DeepInfer: Open-source deep learning deployment toolkit for image-guided therapy
– volume: 9
  start-page: 179
  issue: 2
  year: 1999
  ident: 10.1016/j.cmpb.2018.01.025_bib0014
  article-title: Cortical surface-based analysis:I. Segmentation and surface reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– ident: 10.1016/j.cmpb.2018.01.025_bib0010
– ident: 10.1016/j.cmpb.2018.01.025_bib0018
– ident: 10.1016/j.cmpb.2018.01.025_bib0025
– ident: 10.1016/j.cmpb.2018.01.025_bib0046
– start-page: 5717
  year: 2017
  ident: 10.1016/j.cmpb.2018.01.025_bib0021
  article-title: ToolNet: holistically-nested real-time segmentation of robotic surgical tools
– year: 2015
  ident: 10.1016/j.cmpb.2018.01.025_bib0054
  article-title: MatConvNet – convolutional neural networks for MATLAB
– year: 2012
  ident: 10.1016/j.cmpb.2018.01.025_bib0004
  article-title: Theano: new features and speed improvements
SSID ssj0002556
Score 2.6570523
Snippet •An open-source platform is implemented based on TensorFlow APIs for deep learning in medical imaging domain.•A modular implementation of the typical medical...
Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established...
• An open-source platform is implemented based on TensorFlow APIs for deep learning in medical imaging domain. • A modular implementation of the typical...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113
SubjectTerms Abdomen - diagnostic imaging
Brain - diagnostic imaging
Computer Simulation
Convolutional neural network
Databases, Factual
Deep learning
Diagnostic Imaging - instrumentation
Diagnostic Imaging - methods
Generative adversarial network
Humans
Image Processing, Computer-Assisted - instrumentation
Image Processing, Computer-Assisted - methods
Image regression
Machine Learning
Magnetic Resonance Imaging
Medical image analysis
Neural Networks, Computer
Segmentation
Ultrasonography
Title NiftyNet: a deep-learning platform for medical imaging
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260717311823
https://dx.doi.org/10.1016/j.cmpb.2018.01.025
https://www.ncbi.nlm.nih.gov/pubmed/29544777
https://www.proquest.com/docview/2014951860
https://pubmed.ncbi.nlm.nih.gov/PMC5869052
Volume 158
WOSCitedRecordID wos000427786400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZoixAXxJvlUQWJGwqKncR2uFVoK0CwQqKIvUW244hUu2nazVbl3zOOH_uoWuiBixV5bSvrmYzH9jfzIfQGXHpCsKjiolYqzkRBYy5rEmtNdU5hk8tzOZBNsMmET6fFNwcrWgx0Aqxt-cVF0f1XUUMdCNuEzt5A3GFQqIBnEDqUIHYo_0nwk6buf090b8OYK627eObPP7qZ6I2XOoAL5-6OppkPTEXrbqrnenAE0wuXTmCAcg0AWhu1v3Erv6IiH8-agPMZwAI_dXsaqr4vK3vuPWBNQvfDxtGKfDE0bOuHEZivoH_-fJIWMWyR2IaBtcnZnYnENvbUrbbYRiVfMuT2TOH4nZp30gDwuE2umq-WLX9Vv7WaBYyhh68dl2aM0oxRJriEMXbQHmF5ATZw7-DTePo5rNwmHZvNBW__hAuysnjA7Te5ypG5vFHZxtuuOTBH99E9t_OIDqzGPEC3dPsQ3fnqpPgIUa847yMRbahN5NUmgiJyahM5tXmMfhyOjz58jB2rRqzyhPaxSrikmNciBecVV4opLMAQ51gwaTg_MBZE0QoaaZKlNVOScMrqVFGJC8GT9AnabU9a_QxFXBLwscCBZ1pnQjFZZKKiTJE6zZSs8AhhP0WlcinnDfPJrLxaOCP0NvTpbMKVa1unfuZLH0oMi18JanRtrzz0co6mdSD_2u-1F24JVthcrYlWnywXplEGexVOkxF6aoUd3t7cpGeMsRFiG2oQGpgM75u_tM2vIdN7bvjicvL8RnPyAt1dfZov0W5_ttSv0G113jeLs320w6Z832n-Hw8rxvM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NiftyNet%3A+a+deep-learning+platform+for+medical+imaging&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Gibson%2C+Eli&rft.au=Li%2C+Wenqi&rft.au=Sudre%2C+Carole&rft.au=Fidon%2C+Lucas&rft.date=2018-05-01&rft.issn=0169-2607&rft.volume=158&rft.spage=113&rft.epage=122&rft_id=info:doi/10.1016%2Fj.cmpb.2018.01.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2018_01_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon