NiftyNet: a deep-learning platform for medical imaging
•An open-source platform is implemented based on TensorFlow APIs for deep learning in medical imaging domain.•A modular implementation of the typical medical imaging machine learning pipeline facilitates (1) warm starts with established pre-trained networks, (2) adapting existing neural network arch...
Saved in:
| Published in: | Computer methods and programs in biomedicine Vol. 158; pp. 113 - 122 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Ireland
Elsevier B.V
01.05.2018
Elsevier Scientific Publishers |
| Subjects: | |
| ISSN: | 0169-2607, 1872-7565, 1872-7565 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •An open-source platform is implemented based on TensorFlow APIs for deep learning in medical imaging domain.•A modular implementation of the typical medical imaging machine learning pipeline facilitates (1) warm starts with established pre-trained networks, (2) adapting existing neural network architectures to new problems, and (3) rapid prototyping of new solutions.•Three deep-learning applications, including segmentation, regression, image generation and representation learning, are presented as concrete examples illustrating the platform’s key features.
Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon.
The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default.
We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses.
The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. |
|---|---|
| AbstractList | •
An open-source platform is implemented based on TensorFlow APIs for deep learning in medical imaging domain.
•
A modular implementation of the typical medical imaging machine learning pipeline facilitates (1) warm starts with established pre-trained networks, (2) adapting existing neural network architectures to new problems, and (3) rapid prototyping of new solutions.
•
Three deep-learning applications, including segmentation, regression, image generation and representation learning, are presented as concrete examples illustrating the platform’s key features. •An open-source platform is implemented based on TensorFlow APIs for deep learning in medical imaging domain.•A modular implementation of the typical medical imaging machine learning pipeline facilitates (1) warm starts with established pre-trained networks, (2) adapting existing neural network architectures to new problems, and (3) rapid prototyping of new solutions.•Three deep-learning applications, including segmentation, regression, image generation and representation learning, are presented as concrete examples illustrating the platform’s key features. Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon.BACKGROUND AND OBJECTIVESMedical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon.The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default.METHODSThe NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default.We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses.RESULTSWe present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses.The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications.CONCLUSIONSThe NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. |
| Author | Eaton-Rosen, Zach Doel, Tom Barratt, Dean C. Vercauteren, Tom Gray, Robert Whyntie, Tom Ourselin, Sébastien Fidon, Lucas Sudre, Carole Modat, Marc Li, Wenqi Wang, Guotai Gibson, Eli Shakir, Dzhoshkun I. Hu, Yipeng Cardoso, M. Jorge Nachev, Parashkev |
| AuthorAffiliation | c Institute of Neurology, University College London, UK b Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK d National Hospital for Neurology and Neurosurgery, London, UK a Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK |
| AuthorAffiliation_xml | – name: a Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK – name: d National Hospital for Neurology and Neurosurgery, London, UK – name: b Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK – name: c Institute of Neurology, University College London, UK |
| Author_xml | – sequence: 1 givenname: Eli orcidid: 0000-0001-9207-7280 surname: Gibson fullname: Gibson, Eli organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK – sequence: 2 givenname: Wenqi orcidid: 0000-0002-7432-7386 surname: Li fullname: Li, Wenqi email: wenqi.li@ucl.ac.uk organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK – sequence: 3 givenname: Carole orcidid: 0000-0001-5753-428X surname: Sudre fullname: Sudre, Carole organization: Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK – sequence: 4 givenname: Lucas orcidid: 0000-0003-1450-1634 surname: Fidon fullname: Fidon, Lucas organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK – sequence: 5 givenname: Dzhoshkun I. orcidid: 0000-0003-3009-4178 surname: Shakir fullname: Shakir, Dzhoshkun I. organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK – sequence: 6 givenname: Guotai orcidid: 0000-0002-8632-158X surname: Wang fullname: Wang, Guotai organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK – sequence: 7 givenname: Zach surname: Eaton-Rosen fullname: Eaton-Rosen, Zach organization: Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK – sequence: 8 givenname: Robert surname: Gray fullname: Gray, Robert organization: Institute of Neurology, University College London, UK – sequence: 9 givenname: Tom orcidid: 0000-0001-8092-9378 surname: Doel fullname: Doel, Tom organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK – sequence: 10 givenname: Yipeng orcidid: 0000-0003-4902-0486 surname: Hu fullname: Hu, Yipeng organization: Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK – sequence: 11 givenname: Tom orcidid: 0000-0003-0501-1377 surname: Whyntie fullname: Whyntie, Tom organization: Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK – sequence: 12 givenname: Parashkev surname: Nachev fullname: Nachev, Parashkev organization: Institute of Neurology, University College London, UK – sequence: 13 givenname: Marc orcidid: 0000-0002-5277-8530 surname: Modat fullname: Modat, Marc organization: Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK – sequence: 14 givenname: Dean C. surname: Barratt fullname: Barratt, Dean C. organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK – sequence: 15 givenname: Sébastien surname: Ourselin fullname: Ourselin, Sébastien organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK – sequence: 16 givenname: M. Jorge surname: Cardoso fullname: Cardoso, M. Jorge organization: Centre for Medical Image Computing (CMIC), Departments of Medical Physics & Biomedical Engineering and Computer Science, University College London, UK – sequence: 17 givenname: Tom orcidid: 0000-0003-1794-0456 surname: Vercauteren fullname: Vercauteren, Tom organization: Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29544777$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtr3DAUhUVJaCZp_0AXxctu7OjKo4dDKZTQRyAkm3YtZFmeaipLrqQJzL-vzKShySLZSIt7vnMv55yiIx-8Qegd4AYwsPNto6e5bwgG0WBoMKGv0AoEJzWnjB6hVRF1NWGYn6DTlLYYFwllr9EJ6eh6zTlfIXZjx7y_MfmiUtVgzFw7o6K3flPNTuUxxKkqTzWZwWrlKjupTRm-Qcejcsm8vf_P0M-vX35cfq-vb79dXX6-rjXFLNcai56BGFXLgMOguQZFW6CgeA-4BQBFNBuKyJB1O3LdE8H42GrWQ6cEbs_Qp4PvvOvLCdr4HJWTcyx3xL0MysrHE29_yU24k1SwDlNSDD7cG8TwZ2dSlpNN2jinvAm7JEt4646CYMuu9__veljyL6wiIAeBjiGlaMYHCWC5NCK3cmlkMRUSgyxxF0g8gbTNKtuw3Gvd8-jHA2pKwnfWRJm0NV6XKqLRWQ7BPo9fPMG1s35p8bfZvwT_Bfn_uYQ |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3138162 crossref_primary_10_1038_s41598_025_92423_9 crossref_primary_10_1016_j_inffus_2025_103283 crossref_primary_10_1109_ACCESS_2019_2957233 crossref_primary_10_1088_1361_6560_ac0e79 crossref_primary_10_1016_j_media_2025_103469 crossref_primary_10_1016_j_media_2018_07_002 crossref_primary_10_1109_ACCESS_2020_3016223 crossref_primary_10_7554_eLife_77945 crossref_primary_10_1016_j_media_2021_101960 crossref_primary_10_1109_ACCESS_2021_3052501 crossref_primary_10_1038_s41592_021_01284_3 crossref_primary_10_1007_s00521_018_3877_3 crossref_primary_10_1145_3457187 crossref_primary_10_3390_jcm12155143 crossref_primary_10_1007_s11042_023_17243_3 crossref_primary_10_1007_s10143_025_03719_3 crossref_primary_10_1145_3501305 crossref_primary_10_1002_btm2_10641 crossref_primary_10_1016_j_cmpb_2019_05_016 crossref_primary_10_1016_j_cmpb_2023_107398 crossref_primary_10_1016_j_neucom_2019_01_103 crossref_primary_10_1016_j_media_2019_101558 crossref_primary_10_1016_j_neuroimage_2021_117756 crossref_primary_10_1371_journal_pone_0263126 crossref_primary_10_1166_jmihi_2021_3917 crossref_primary_10_3390_opt3010002 crossref_primary_10_26634_jpr_11_1_20824 crossref_primary_10_1016_j_cmpb_2020_105700 crossref_primary_10_1007_s12350_020_02119_y crossref_primary_10_1016_j_engappai_2022_105532 crossref_primary_10_1109_TNNLS_2023_3308712 crossref_primary_10_1038_s41598_022_14672_2 crossref_primary_10_1007_s12021_022_09587_2 crossref_primary_10_1155_2020_9843275 crossref_primary_10_1088_1361_6560_abe3d1 crossref_primary_10_1088_1361_6560_ac4fa1 crossref_primary_10_1080_17461391_2020_1866081 crossref_primary_10_3390_app11062721 crossref_primary_10_1007_s11604_022_01311_z crossref_primary_10_3389_fmicb_2024_1488106 crossref_primary_10_1016_j_rcl_2021_06_005 crossref_primary_10_1002_acm2_13321 crossref_primary_10_1007_s11042_020_09871_w crossref_primary_10_1038_s44172_023_00066_3 crossref_primary_10_3390_app9245540 crossref_primary_10_1016_j_ymeth_2020_09_007 crossref_primary_10_1088_1361_6560_ab7630 crossref_primary_10_3390_electronics11091363 crossref_primary_10_1016_j_mri_2019_05_037 crossref_primary_10_1007_s11517_024_03127_7 crossref_primary_10_1166_jmihi_2021_3335 crossref_primary_10_1088_1361_6560_ab99e5 crossref_primary_10_1088_1742_6596_1497_1_012009 crossref_primary_10_1016_j_ejmp_2022_05_016 crossref_primary_10_1088_1361_6560_ac97d8 crossref_primary_10_1109_ACCESS_2022_3204147 crossref_primary_10_3390_healthcare9010054 crossref_primary_10_1016_j_cmpb_2022_106818 crossref_primary_10_3390_app9010090 crossref_primary_10_1016_j_ejmp_2021_02_006 crossref_primary_10_1016_j_media_2021_102336 crossref_primary_10_1002_jmri_28643 crossref_primary_10_1016_j_ejmp_2020_04_011 crossref_primary_10_1016_j_cmpb_2019_105277 crossref_primary_10_3390_diagnostics11010013 crossref_primary_10_1186_s13244_023_01487_6 crossref_primary_10_1007_s12149_025_02031_w crossref_primary_10_3390_s23114993 crossref_primary_10_1007_s11831_022_09785_w crossref_primary_10_3390_sym11081001 crossref_primary_10_1186_s12880_020_00543_7 crossref_primary_10_1155_2020_8861035 crossref_primary_10_1038_s41598_022_09264_z crossref_primary_10_1016_j_bbe_2021_01_001 crossref_primary_10_1016_j_neuroimage_2019_116324 crossref_primary_10_1016_j_ymeth_2020_10_004 crossref_primary_10_1002_jmri_28519 crossref_primary_10_1002_spe_2894 crossref_primary_10_1016_j_bspc_2019_04_002 crossref_primary_10_1186_s12859_019_3069_x crossref_primary_10_1016_j_nec_2020_03_005 crossref_primary_10_1002_mp_14168 crossref_primary_10_1007_s00772_019_00574_7 crossref_primary_10_1016_j_cmpb_2020_105796 crossref_primary_10_1162_imag_a_00294 crossref_primary_10_4274_mirt_galenos_2024_86422 crossref_primary_10_1109_TRPMS_2018_2876562 crossref_primary_10_32604_cmes_2022_018424 crossref_primary_10_1007_s13246_022_01202_7 crossref_primary_10_1109_TMI_2020_2972547 crossref_primary_10_1007_s00259_022_05867_w crossref_primary_10_1109_TIP_2020_3003735 crossref_primary_10_1109_TIP_2020_3038363 crossref_primary_10_3390_brainsci10120974 crossref_primary_10_1007_s00106_019_0665_z crossref_primary_10_1111_bju_14985 crossref_primary_10_1108_IDD_07_2019_0049 crossref_primary_10_3389_fnins_2019_01053 crossref_primary_10_1109_ACCESS_2020_2980025 crossref_primary_10_1016_j_cmpb_2021_106037 crossref_primary_10_1007_s13246_023_01295_8 crossref_primary_10_1016_j_zemedi_2018_11_004 crossref_primary_10_1145_3447243 crossref_primary_10_1002_mp_16811 crossref_primary_10_1155_2021_7171816 crossref_primary_10_1016_j_ijmedinf_2025_105875 crossref_primary_10_1016_j_zemedi_2018_11_002 crossref_primary_10_1016_j_neuroimage_2021_118697 crossref_primary_10_1371_journal_pone_0223010 crossref_primary_10_1109_ACCESS_2020_2998901 crossref_primary_10_1109_ACCESS_2020_2970210 crossref_primary_10_1016_j_media_2023_102802 crossref_primary_10_1093_jrr_rraa132 crossref_primary_10_3390_s23042195 crossref_primary_10_1002_mp_16369 crossref_primary_10_1002_mp_16914 crossref_primary_10_1007_s10916_019_1228_2 crossref_primary_10_1093_jcde_qwac008 crossref_primary_10_1016_j_forsciint_2020_110538 crossref_primary_10_1109_TMI_2021_3060634 crossref_primary_10_1007_s11042_024_20405_6 crossref_primary_10_3390_electronics13132630 crossref_primary_10_1073_pnas_1812995116 crossref_primary_10_1007_s00261_024_04640_x crossref_primary_10_1016_j_cmpb_2020_105524 crossref_primary_10_3390_s21217018 crossref_primary_10_1007_s00530_021_00783_9 crossref_primary_10_1016_j_media_2020_101840 crossref_primary_10_1142_S2196888824500076 crossref_primary_10_1016_j_cmpb_2023_107428 crossref_primary_10_1002_mp_14134 crossref_primary_10_1016_j_nicl_2020_102542 crossref_primary_10_1016_j_neucom_2023_01_012 crossref_primary_10_1148_ryai_2020190103 crossref_primary_10_3389_fcell_2022_842342 crossref_primary_10_1371_journal_pone_0227791 crossref_primary_10_1002_cam4_5097 crossref_primary_10_1007_s12652_020_02328_w crossref_primary_10_1038_s41598_019_44416_8 crossref_primary_10_15187_adr_2021_02_34_1_133 crossref_primary_10_1088_1361_6560_ac9449 crossref_primary_10_3389_fnins_2021_670287 crossref_primary_10_1007_s12021_020_09477_5 crossref_primary_10_1109_TRPMS_2023_3265863 crossref_primary_10_1016_j_compmedimag_2023_102241 crossref_primary_10_1016_j_media_2020_101950 crossref_primary_10_1016_j_bspc_2021_103170 crossref_primary_10_1007_s11042_023_16654_6 crossref_primary_10_1016_j_imu_2020_100335 crossref_primary_10_1016_j_media_2020_101718 crossref_primary_10_1016_j_ins_2019_03_080 crossref_primary_10_1016_j_xnsj_2023_100236 crossref_primary_10_1007_s40846_024_00882_8 crossref_primary_10_1016_j_cmpb_2024_108377 crossref_primary_10_1109_ACCESS_2020_3027887 crossref_primary_10_1097_MNM_0000000000001891 crossref_primary_10_1002_ima_22804 crossref_primary_10_3390_bioengineering10121349 crossref_primary_10_1109_ACCESS_2020_2974887 crossref_primary_10_3390_s20102962 crossref_primary_10_1007_s00432_023_04956_z crossref_primary_10_1038_s41598_021_04247_y crossref_primary_10_3389_fncom_2019_00056 crossref_primary_10_1002_nbm_4609 crossref_primary_10_1016_j_cmpb_2022_106959 crossref_primary_10_1007_s00259_020_04852_5 crossref_primary_10_1109_ACCESS_2019_2941154 crossref_primary_10_1002_jmri_27498 crossref_primary_10_3390_cancers15133369 crossref_primary_10_1016_j_cmpb_2021_106236 crossref_primary_10_1109_JBHI_2021_3049452 crossref_primary_10_26634_jip_11_2_20915 crossref_primary_10_7717_peerj_cs_773 crossref_primary_10_1016_j_semradonc_2019_02_001 crossref_primary_10_1016_j_cmpb_2018_05_027 crossref_primary_10_1002_mp_14822 crossref_primary_10_1080_23311975_2024_2391122 crossref_primary_10_1016_j_artmed_2020_101878 crossref_primary_10_1109_ACCESS_2024_3385573 crossref_primary_10_7759_cureus_50203 crossref_primary_10_1002_spe_2878 crossref_primary_10_1016_j_ejmp_2021_05_003 crossref_primary_10_1016_j_media_2021_102079 crossref_primary_10_1007_s10278_018_0101_z crossref_primary_10_1212_WNL_0000000000201710 crossref_primary_10_1002_jmri_27129 crossref_primary_10_1007_s13748_021_00232_8 crossref_primary_10_1016_j_injury_2020_09_010 crossref_primary_10_1016_j_cmpb_2025_109063 crossref_primary_10_1016_j_knosys_2024_112307 crossref_primary_10_3390_bioengineering9100579 crossref_primary_10_1002_mp_14141 crossref_primary_10_3389_fncom_2019_00083 crossref_primary_10_1155_2022_5797431 crossref_primary_10_1371_journal_pone_0253863 crossref_primary_10_1016_j_cmpb_2020_105531 crossref_primary_10_3390_s21165381 crossref_primary_10_1088_2399_6528_ac24d8 crossref_primary_10_1186_s12874_022_01768_6 crossref_primary_10_3389_fnins_2020_00260 crossref_primary_10_1038_s41598_023_38105_w crossref_primary_10_1016_j_compbiomed_2020_103693 crossref_primary_10_1002_aisy_201900048 crossref_primary_10_1002_jmri_29543 crossref_primary_10_1016_j_csbj_2021_05_023 crossref_primary_10_1109_ACCESS_2021_3113611 crossref_primary_10_1002_hbm_25039 crossref_primary_10_1038_s41598_020_80068_9 crossref_primary_10_1007_s11042_019_07988_1 crossref_primary_10_3389_fcvm_2021_787614 crossref_primary_10_3389_fbioe_2021_636953 crossref_primary_10_3390_s23249872 crossref_primary_10_1007_s11633_022_1407_3 crossref_primary_10_1097_MNM_0000000000001436 crossref_primary_10_1007_s00129_021_04808_2 crossref_primary_10_1016_j_mri_2020_09_013 crossref_primary_10_1109_TETCI_2024_3369868 crossref_primary_10_1007_s00330_021_07709_z crossref_primary_10_1109_ACCESS_2021_3095312 crossref_primary_10_3390_ijms22157911 crossref_primary_10_1007_s11517_020_02171_3 crossref_primary_10_1109_JPROC_2019_2946993 crossref_primary_10_1097_RLU_0000000000003585 crossref_primary_10_1007_s11517_024_03084_1 crossref_primary_10_1038_s41598_021_95972_x crossref_primary_10_1016_j_mri_2019_04_009 crossref_primary_10_1088_1361_6560_ab8cd6 crossref_primary_10_1016_j_bspc_2024_106667 crossref_primary_10_1016_j_nicl_2020_102335 crossref_primary_10_1016_j_bbe_2021_08_011 crossref_primary_10_1007_s11548_024_03258_0 crossref_primary_10_1088_2632_2153_ab6d5e crossref_primary_10_1016_j_compbiomed_2023_106963 crossref_primary_10_1007_s12652_020_01998_w crossref_primary_10_1016_j_morpho_2019_09_002 crossref_primary_10_1038_s41598_020_57951_6 crossref_primary_10_1016_j_cmpb_2019_06_016 crossref_primary_10_1161_STROKEAHA_119_027457 crossref_primary_10_1016_j_media_2022_102444 crossref_primary_10_1016_j_neucom_2022_05_053 crossref_primary_10_1038_s41467_020_19866_8 crossref_primary_10_1016_j_media_2021_102038 crossref_primary_10_1109_ACCESS_2019_2895129 crossref_primary_10_1109_ACCESS_2021_3078430 crossref_primary_10_1159_000525929 crossref_primary_10_1016_j_cmpb_2022_106752 crossref_primary_10_1109_JBHI_2018_2874033 crossref_primary_10_3171_2019_9_JNS191949 crossref_primary_10_1002_mrm_28285 crossref_primary_10_1016_j_neuroimage_2021_118606 crossref_primary_10_3390_app11041667 crossref_primary_10_1016_j_engappai_2025_110563 crossref_primary_10_1007_s00234_024_03429_5 crossref_primary_10_1088_1361_6560_abb0f9 crossref_primary_10_1007_s11042_022_12484_0 crossref_primary_10_1016_j_neucom_2019_03_103 crossref_primary_10_1007_s00530_023_01083_0 crossref_primary_10_1016_j_bbe_2020_07_011 crossref_primary_10_1016_j_neurad_2023_01_157 crossref_primary_10_3390_app13095472 crossref_primary_10_1016_j_media_2021_102273 crossref_primary_10_1007_s11042_025_21068_7 crossref_primary_10_1016_j_ejmp_2021_09_006 crossref_primary_10_3390_app11041675 crossref_primary_10_1109_ACCESS_2019_2923318 crossref_primary_10_1002_mrm_29003 crossref_primary_10_1016_j_cmpb_2019_105088 crossref_primary_10_1016_j_cmpb_2022_106620 crossref_primary_10_5334_cstp_739 crossref_primary_10_3390_bdcc8030033 crossref_primary_10_1007_s11042_022_14223_x crossref_primary_10_1007_s10916_019_1494_z crossref_primary_10_1016_j_bspc_2021_103027 crossref_primary_10_3390_jimaging10010001 crossref_primary_10_1007_s00330_019_06630_w crossref_primary_10_1186_s12891_023_06153_y crossref_primary_10_1016_j_eswa_2020_114161 crossref_primary_10_1088_1361_6560_abb02c crossref_primary_10_1016_j_compbiomed_2021_104643 crossref_primary_10_1016_j_ultrasmedbio_2021_08_009 crossref_primary_10_1109_ACCESS_2018_2885639 crossref_primary_10_1016_j_bspc_2023_104836 crossref_primary_10_1016_j_neurad_2020_10_001 crossref_primary_10_1016_j_artmed_2022_102332 crossref_primary_10_1166_jmihi_2021_3537 |
| Cites_doi | 10.1016/j.cmpb.2016.11.004 10.1016/j.neuroimage.2004.07.051 10.1016/j.media.2016.10.004 10.1109/TMI.2009.2035616 10.1109/TMI.2014.2377694 10.3389/fninf.2013.00045 10.1146/annurev-bioeng-071516-044442 10.1109/42.476112 10.1007/s11548-014-1124-7 10.1016/j.neuroimage.2010.09.025 10.1109/TMI.2014.2340135 10.1016/j.cmpb.2009.09.002 10.1007/s11548-014-1118-5 10.1016/j.media.2017.07.005 10.1006/nimg.1998.0396 10.1007/s11548-013-0840-8 10.1006/nimg.1998.0395 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. 2018 The Authors 2018 |
| Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2018 The Authors 2018 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.cmpb.2018.01.025 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-7565 |
| EndPage | 122 |
| ExternalDocumentID | PMC5869052 29544777 10_1016_j_cmpb_2018_01_025 S0169260717311823 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Cancer Research UK grantid: 19985 – fundername: Wellcome Trust |
| GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- ~HD 6I. AACTN AAFTH AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW LCYCR RIG 9DU AAYXX CITATION AFCTW AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c506t-c08b618fa36171dc7c1a53151a7b103111a2c6d8b6e243f7cb2867f3c6b19a803 |
| ISICitedReferencesCount | 377 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000427786400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-2607 1872-7565 |
| IngestDate | Tue Sep 30 15:35:48 EDT 2025 Thu Oct 02 12:02:45 EDT 2025 Mon Jul 21 06:05:43 EDT 2025 Sat Nov 29 03:57:41 EST 2025 Tue Nov 18 22:51:06 EST 2025 Fri Feb 23 02:26:01 EST 2024 Tue Oct 14 19:32:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Segmentation Convolutional neural network Medical image analysis Generative adversarial network Image regression |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c506t-c08b618fa36171dc7c1a53151a7b103111a2c6d8b6e243f7cb2867f3c6b19a803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 M. Jorge Cardoso and Tom Vercauteren contributed equally to this work. Wenqi Li and Eli Gibson contributed equally to this work. |
| ORCID | 0000-0003-1794-0456 0000-0002-8632-158X 0000-0003-0501-1377 0000-0001-5753-428X 0000-0003-1450-1634 0000-0002-7432-7386 0000-0002-5277-8530 0000-0003-4902-0486 0000-0001-9207-7280 0000-0003-3009-4178 0000-0001-8092-9378 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5869052 |
| PMID | 29544777 |
| PQID | 2014951860 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5869052 proquest_miscellaneous_2014951860 pubmed_primary_29544777 crossref_primary_10_1016_j_cmpb_2018_01_025 crossref_citationtrail_10_1016_j_cmpb_2018_01_025 elsevier_sciencedirect_doi_10_1016_j_cmpb_2018_01_025 elsevier_clinicalkey_doi_10_1016_j_cmpb_2018_01_025 |
| PublicationCentury | 2000 |
| PublicationDate | May 2018 2018-05-00 2018-May 20180501 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland |
| PublicationTitle | Computer methods and programs in biomedicine |
| PublicationTitleAlternate | Comput Methods Programs Biomed |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier Scientific Publishers |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Scientific Publishers |
| References | B. Landman, Z. Xu, J.E. Igelsias, M. Styner, T.R. Langerak, A. Klein, Multi-atlas labeling beyond the cranial vault, 2015, URL Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib0011) 2016 Milletari, Navab, Ahmadi (bib0040) 2016 Roth, Lu, Seff, Cherry, Hoffman, Wang, Liu, Turkbey, Summers (bib0048) 2014 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mane, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viegas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (bib0001) 2016 D. Mané, et al., TensorBoard: TensorFlow’s visualization toolkit, 2015 L. Berger, E. Hyde, M.J. Cardoso, S. Ourselin, An adaptive sampling scheme to efficiently train fully convolutional networks for semantic segmentation, (2017). ArXiv e-prints arXiv Shen, Wu, Suk (bib0051) 2017 Roth, Farag, Turkbey, Lu, Liu, Summers (bib0047) 1994 S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, cuDNN: efficient primitives for deep learning, arXiv Doel, Shakir, Pratt, Aertsen, Moggridge, Bellon, David, Deprest, Vercauteren, Ourselin (bib0016) 2017; 139 Li, Wang, Fidon, Ourselin, Cardoso, Vercauteren (bib0033) 2017 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, De Stefano, Brady, Matthews (bib0052) 2004; 23 J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization (2016). arXiv M. Reynolds, et al., Sonnet, 2017 Dale, Fischl, Sereno (bib0014) 1999; 9 . Johnsen, Taylor, Clarkson, Hipwell, Modat, Eiben, Han, Hu, Mertzanidou, Hawkes, Ourselin (bib0029) 2015; 10 Burgos, Cardoso, Thielemans, Modat, Pedemonte, Dickson, Barnes, Ahmed, Mahoney, Schott, Duncan, Atkinson, Arridge, Hutton, Ourselin (bib0007) 2014; 33 Klein, Staring, Murphy, Viergever, Pluim (bib0031) 2010; 29 Gamma, Vlissides, Johnson, Helm (bib0020) 1994 Cardoso, Clarkson, Modat, Ourselin (bib0008) 2012 G. Wang, W. Li, S. Ourselin, T. Vercauteren, Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks, Proc. Multimodal Brain Tumor Segmentation (BRATS) Challenge 2017 - MICCAI workshop. 2016 (2017). arXiv Garcia-Peraza-Herrera, Li, Fidon, Gruijthuijsen, Devreker, Attilakos, Deprest, Poorten, Stoyanov, Vercauteren, Ourselin (bib0021) 2017 Gibson, Robu, Thompson, Edwards, Schneider, Gurusamy, Davidson, Hawkes, Barratt, Clarkson (bib0024) 2017; vol. 10135 G. Wang, M.A. Zuluaga, W. Li, R. Pratt, P.A. Patel, M. Aertsen, T. Doel, A.L. David, J. Deprest, S. Ourselin, T. Vercauteren, DeepIGeoS: a deep interactive geodesic framework for medical image segmentation, (2017). arXiv I. Goodfellow, NIPS 2016 tutorial: generative adversarial networks (2016). arXiv Seide, Agarwal (bib0050) 2016 Fischl, Sereno, Dale (bib0019) 1999; 9 Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest, Lanczi, Gerstner, Weber, Arbel, Avants, Ayache, Buendia, Collins, Cordier, Corso, Criminisi, Das, Delingette, Ç. Demiralp, Durst, Dojat, Doyle, Festa, Forbes, Geremia, Glocker, Golland, Guo, Hamamci, Iftekharuddin, Jena, John, Konukoglu, Lashkari, Mariz, Meier, Pereira, Precup, Price, Raviv, Reza, Ryan, Sarikaya, Schwartz, Shin, Shotton, Silva, Sousa, Subbanna, Szekely, Taylor, Thomas, Tustison, Unal, Vasseur, Wintermark, Ye, Zhao, Zhao, Zikic, Prastawa, Reyes, Leemput (bib0039) 2015; 34 Modat, Ridgway, Taylor, Lehmann, Barnes, Hawkes, Fox, Ourselin (bib0042) 2010; 98 Vedaldi, Lenc (bib0054) 2015 F. Chollet, et al., Keras, 2015 Ioffe (bib0027) 2017 Hu, Gibson, Lee, Xie, Barratt, Vercauteren, Noble (bib0026) 2017 M. Brett, M. Hanke, B. Cipollini, M.-A. Côté, C. Markiewicz, S. Gerhard, E. Larson, Nibabel, 2016, Online. doi Collobert, Kavukcuoglu, Farabet (bib0013) 2011 Gibson, Giganti, Hu, Bonmati, Bandula, Gurusamy, Davidson, Pereira, Clarkson, Barratt (bib0022) 2017 S. Dieleman, J. Schlter, C. Raffel, E. Olson, S.K. Snderby, D. Nouri, D. Maturana, M. Thoma, E. Battenberg, J. Kelly, J.D. Fauw, M. Heilman, D.M. de Almeida, B. McFee, H. Weideman, G. TakÃ!‘cs, P. de Rivaz, J. Crall, G. Sanders, K. Rasul, C. Liu, G. French, J. Degrave, Lasagne: first release, 2015, 10.5281/zenodo.27878 T. Preston-Werner, Semantic versioning, Technical Report, T. Preston-Werner, 2015. URL Bastien, Lamblin, Pascanu, Bergstra, Goodfellow, Bergeron, Bouchard, Bengio (bib0004) 2012 Lo, Lou, Lin, Freedman, Chien, Mun (bib0035) 1995; 14 L. Fidon, W. Li, L.C. Garcia-Peraza-Herrera, J. Ekanayake, N. Kitchen, S. Ourselin, T. Vercauteren, Generalised Wasserstein Dice score for imbalanced multi-class segmentation using holistic convolutional networks, (2017). arXiv Gibson, Giganti, Hu, Bonmati, Bandula, Gurusamy, Davidson, Pereira, Clarkson, Barratt (bib0023) 2017 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken, Sánchez (bib0034) 2017; 42 accessed July 2017. 10.7303/syn3193805. Pieper, Lorensen, Schroeder, Kikinis (bib0044) 2006 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (bib0030) 2017; 36 M. Mirza, S. Osindero, Conditional generative adversarial nets. Proc. NIPS 2016 Workshop on Adversarial Training. 2016 (2014), arXiv Nolden, Zelzer, Seitel, Wald, Müller, Franz, Maleike, Fangerau, Baumhauer, Maier-Hein, Maier-Hein, Meinzer, Wolf (bib0043) 2013; 8 Lowekamp, Chen, Ibáñez, Blezek (bib0036) 2013; 7 Sudre, Li, Vercauteren, Ourselin, Cardoso (bib0053) 2017 Dong, Supratak, Mai, Liu, Oehmichen, Yu, Guo (bib0017) 2017 Zhou, Ito, Takayama, Wang, Hara, Fujita (bib0057) 2016 Avants, Tustison, Song, Cook, Klein, Gee (bib0002) 2011; 54 Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0028) 2014 Clarkson, Zombori, Thompson, Totz, Song, Espak, Johnsen, Hawkes, Ourselin (bib0012) 2015; 10 Mehrtash, Pesteie, Hetherington, Behringer, Kapur, Wells III, Rohling, Fedorov, Abolmaesumi (bib0038) 2017; 10135 T. Salimans, D.P. Kingma, Weight normalization: a simple reparameterization to accelerate training of deep neural networks (2016). arXiv 10.1016/j.cmpb.2018.01.025_bib0025 Litjens (10.1016/j.cmpb.2018.01.025_bib0034) 2017; 42 Collobert (10.1016/j.cmpb.2018.01.025_bib0013) 2011 Ioffe (10.1016/j.cmpb.2018.01.025_bib0027) 2017 Lowekamp (10.1016/j.cmpb.2018.01.025_bib0036) 2013; 7 Clarkson (10.1016/j.cmpb.2018.01.025_bib0012) 2015; 10 Dale (10.1016/j.cmpb.2018.01.025_bib0014) 1999; 9 Hu (10.1016/j.cmpb.2018.01.025_bib0026) 2017 10.1016/j.cmpb.2018.01.025_bib0018 Shen (10.1016/j.cmpb.2018.01.025_bib0051) 2017 Cardoso (10.1016/j.cmpb.2018.01.025_bib0008) 2012 Gamma (10.1016/j.cmpb.2018.01.025_bib0020) 1994 10.1016/j.cmpb.2018.01.025_bib0015 Seide (10.1016/j.cmpb.2018.01.025_bib0050) 2016 10.1016/j.cmpb.2018.01.025_bib0010 Mehrtash (10.1016/j.cmpb.2018.01.025_bib0038) 2017; 10135 Burgos (10.1016/j.cmpb.2018.01.025_bib0007) 2014; 33 10.1016/j.cmpb.2018.01.025_bib0055 Vedaldi (10.1016/j.cmpb.2018.01.025_bib0054) 2015 10.1016/j.cmpb.2018.01.025_bib0056 Bastien (10.1016/j.cmpb.2018.01.025_bib0004) 2012 Abadi (10.1016/j.cmpb.2018.01.025_sbref0001) 2016 Doel (10.1016/j.cmpb.2018.01.025_bib0016) 2017; 139 Kamnitsas (10.1016/j.cmpb.2018.01.025_bib0030) 2017; 36 Fischl (10.1016/j.cmpb.2018.01.025_bib0019) 1999; 9 Li (10.1016/j.cmpb.2018.01.025_bib0033) 2017 10.1016/j.cmpb.2018.01.025_bib0009 Johnsen (10.1016/j.cmpb.2018.01.025_bib0029) 2015; 10 Menze (10.1016/j.cmpb.2018.01.025_bib0039) 2015; 34 10.1016/j.cmpb.2018.01.025_bib0003 10.1016/j.cmpb.2018.01.025_bib0005 Roth (10.1016/j.cmpb.2018.01.025_bib0047) 1994 10.1016/j.cmpb.2018.01.025_bib0049 10.1016/j.cmpb.2018.01.025_bib0006 Avants (10.1016/j.cmpb.2018.01.025_bib0002) 2011; 54 10.1016/j.cmpb.2018.01.025_bib0045 10.1016/j.cmpb.2018.01.025_bib0046 10.1016/j.cmpb.2018.01.025_bib0041 Zhou (10.1016/j.cmpb.2018.01.025_bib0057) 2016 Milletari (10.1016/j.cmpb.2018.01.025_bib0040) 2016 Sudre (10.1016/j.cmpb.2018.01.025_bib0053) 2017 Modat (10.1016/j.cmpb.2018.01.025_bib0042) 2010; 98 Lo (10.1016/j.cmpb.2018.01.025_bib0035) 1995; 14 Gibson (10.1016/j.cmpb.2018.01.025_sbref0015) 2017 Nolden (10.1016/j.cmpb.2018.01.025_bib0043) 2013; 8 Pieper (10.1016/j.cmpb.2018.01.025_bib0044) 2006 Roth (10.1016/j.cmpb.2018.01.025_bib0048) 2014 10.1016/j.cmpb.2018.01.025_bib0037 10.1016/j.cmpb.2018.01.025_bib0032 Smith (10.1016/j.cmpb.2018.01.025_bib0052) 2004; 23 Garcia-Peraza-Herrera (10.1016/j.cmpb.2018.01.025_bib0021) 2017 Gibson (10.1016/j.cmpb.2018.01.025_bib0023) 2017 Dong (10.1016/j.cmpb.2018.01.025_bib0017) 2017 Klein (10.1016/j.cmpb.2018.01.025_bib0031) 2010; 29 Jia (10.1016/j.cmpb.2018.01.025_bib0028) 2014 Gibson (10.1016/j.cmpb.2018.01.025_sbref0017) 2017; vol. 10135 Çiçek (10.1016/j.cmpb.2018.01.025_bib0011) 2016 |
| References_xml | – reference: G. Wang, W. Li, S. Ourselin, T. Vercauteren, Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks, Proc. Multimodal Brain Tumor Segmentation (BRATS) Challenge 2017 - MICCAI workshop. 2016 (2017). arXiv: – start-page: 2135 year: 2016 ident: bib0050 article-title: CNTK: Microsoft’s open-source deep-learning toolkit publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – reference: M. Mirza, S. Osindero, Conditional generative adversarial nets. Proc. NIPS 2016 Workshop on Adversarial Training. 2016 (2014), arXiv: – year: 2014 ident: bib0048 article-title: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations publication-title: Proceedings of the MICCAI – volume: 54 start-page: 2033 year: 2011 end-page: 2044 ident: bib0002 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: Neuroimage – reference: M. Reynolds, et al., Sonnet, 2017, – start-page: 675 year: 2014 end-page: 678 ident: bib0028 article-title: Caffe: Convolutional architecture for fast feature embedding publication-title: Proceedings of the 22nd ACM International Conference on Multimedia (ACMMM) – reference: T. Preston-Werner, Semantic versioning, Technical Report, T. Preston-Werner, 2015. URL: – reference: F. Chollet, et al., Keras, 2015, – volume: 10 start-page: 301 year: 2015 end-page: 316 ident: bib0012 article-title: The NifTK software platform for image-guided interventions: platform overview and NiftyLink messaging publication-title: Int. J. Comput. Assist. Radiol. Surg. – start-page: 565 year: 2016 end-page: 571 ident: bib0040 article-title: V-Net: Fully convolutional neural networks for volumetric medical image segmentation publication-title: Proceedings of the Fourth International Conference on 3D Vision (3DV) – volume: 10135 year: 2017 ident: bib0038 article-title: DeepInfer: Open-source deep learning deployment toolkit for image-guided therapy publication-title: Proceedings of the SPIE, Medical Imaging – volume: 7 year: 2013 ident: bib0036 article-title: The design of SimpleITK publication-title: Front. Neuroinf. – volume: 10 start-page: 1077 year: 2015 end-page: 1095 ident: bib0029 article-title: NiftySim: a GPU-based nonlinear finite element package for simulation of soft tissue biomechanics publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 34 start-page: 1993 year: 2015 end-page: 2024 ident: bib0039 article-title: The multimodal brain tumor image segmentation benchmark (BraTS) publication-title: IEEE Trans. Med. Imaging – volume: 9 start-page: 195 year: 1999 end-page: 207 ident: bib0019 article-title: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system publication-title: Neuroimage – reference: J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization (2016). arXiv: – start-page: 348 year: 2017 end-page: 360 ident: bib0033 article-title: On the compactness, efficiency, and representation of 3D convolutional networks: Brain parcellation as a pretext task publication-title: Proceedings of Information Processing in Medical Imaging (IPMI) – reference: M. Brett, M. Hanke, B. Cipollini, M.-A. Côté, C. Markiewicz, S. Gerhard, E. Larson, Nibabel, 2016, Online. doi: – year: 2017 ident: bib0022 article-title: Automatic multi-organ segmentation on abdominal CT with dense v-networks publication-title: IEEE Trans. Med. Imaging – year: 2015 ident: bib0054 article-title: MatConvNet – convolutional neural networks for MATLAB publication-title: Proceedings of the ACMM – start-page: 424 year: 2016 end-page: 432 ident: bib0011 article-title: 3D U-net: learning dense volumetric segmentation from sparse annotation publication-title: Proceedings of the MICCAI – volume: 29 start-page: 196 year: 2010 end-page: 205 ident: bib0031 article-title: Elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Trans. Med. Imaging – reference: L. Berger, E. Hyde, M.J. Cardoso, S. Ourselin, An adaptive sampling scheme to efficiently train fully convolutional networks for semantic segmentation, (2017). ArXiv e-prints arXiv: – reference: S. Dieleman, J. Schlter, C. Raffel, E. Olson, S.K. Snderby, D. Nouri, D. Maturana, M. Thoma, E. Battenberg, J. Kelly, J.D. Fauw, M. Heilman, D.M. de Almeida, B. McFee, H. Weideman, G. TakÃ!‘cs, P. de Rivaz, J. Crall, G. Sanders, K. Rasul, C. Liu, G. French, J. Degrave, Lasagne: first release, 2015, 10.5281/zenodo.27878 – volume: 14 start-page: 711 year: 1995 end-page: 718 ident: bib0035 article-title: Artificial convolution neural network techniques and applications for lung nodule detection publication-title: IEEE Trans. Med. Imaging – year: 2017 ident: bib0017 article-title: TensorLayer: a versatile library for efficient deep learning development – start-page: 698 year: 2006 end-page: 701 ident: bib0044 article-title: The NA-MIC kit: ITK, VTK, pipelines, grids and 3D Slicer as an open platform for the medical image computing community publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI) – reference: I. Goodfellow, NIPS 2016 tutorial: generative adversarial networks (2016). arXiv: – volume: 33 start-page: 2332 year: 2014 end-page: 2341 ident: bib0007 article-title: Attenuation correction synthesis for hybrid PET-MR scanners: Application to brain studies publication-title: Med. Imaging IEEE Trans. – start-page: 5717 year: 2017 end-page: 5722 ident: bib0021 article-title: ToolNet: holistically-nested real-time segmentation of robotic surgical tools publication-title: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC – year: 2012 ident: bib0008 article-title: NiftySeg: open-source software for medical image segmentation, label fusion and cortical thickness estimation publication-title: Proceedings of the ISBI Workshop on Open Source Medical Image Analysis Software – year: 2011 ident: bib0013 article-title: Torch7: A MATLAB-like environment for machine learning publication-title: Proceedings of the NIPS Workshop on Algorithms, Systems, and Tools for Learning at Scale (Big Learning) – reference: , accessed July 2017. 10.7303/syn3193805. – reference: D. Mané, et al., TensorBoard: TensorFlow’s visualization toolkit, 2015, – year: 2017 ident: bib0023 article-title: Towards image-guided pancreas and biliary endoscopy: automatic multi-organ segmentation on abdominal CT with dense dilated networks publication-title: Proceedings of the 20th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bib0014 article-title: Cortical surface-based analysis:I. Segmentation and surface reconstruction publication-title: Neuroimage – reference: L. Fidon, W. Li, L.C. Garcia-Peraza-Herrera, J. Ekanayake, N. Kitchen, S. Ourselin, T. Vercauteren, Generalised Wasserstein Dice score for imbalanced multi-class segmentation using holistic convolutional networks, (2017). arXiv: – volume: 98 start-page: 278 year: 2010 end-page: 284 ident: bib0042 article-title: Fast free-form deformation using graphics processing units publication-title: Comput. Methods Progr. Biomed. – reference: S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, cuDNN: efficient primitives for deep learning, arXiv: – start-page: 111 year: 2016 end-page: 120 ident: bib0057 article-title: Three-dimensional CT image segmentation by combining 2D fully convolutional network with 3D majority voting publication-title: Proceedings of the LABELS – reference: B. Landman, Z. Xu, J.E. Igelsias, M. Styner, T.R. Langerak, A. Klein, Multi-atlas labeling beyond the cranial vault, 2015, URL: – year: 2012 ident: bib0004 article-title: Theano: new features and speed improvements publication-title: Proceedings of the Workshop on Deep Learning and Unsupervised Feature Learning NIPS – reference: G. Wang, M.A. Zuluaga, W. Li, R. Pratt, P.A. Patel, M. Aertsen, T. Doel, A.L. David, J. Deprest, S. Ourselin, T. Vercauteren, DeepIGeoS: a deep interactive geodesic framework for medical image segmentation, (2017). arXiv: – start-page: 221 year: 2017 end-page: 248 ident: bib0051 article-title: Deep learning in medical image analysis publication-title: Ann. Rev. Biomed. Eng. – start-page: 1942 year: 2017 end-page: 1950 ident: bib0027 article-title: Batch renormalization: towards reducing minibatch dependence in batch-normalized models publication-title: Advances in Neural Information Processing Systems 30 – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: bib0030 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. – reference: T. Salimans, D.P. Kingma, Weight normalization: a simple reparameterization to accelerate training of deep neural networks (2016). arXiv: – year: 2017 ident: bib0026 article-title: Freehand ultrasound image simulation with spatially-conditioned generative adversarial networks publication-title: Proceedings of MICCAI Workshop on Reconstruction and Analysis of Moving Body Organs (RAMBO) – volume: 8 start-page: 607 year: 2013 end-page: 620 ident: bib0043 article-title: The medical imaging interaction toolkit: challenges and advances publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 23 start-page: S208 year: 2004 end-page: S219 ident: bib0052 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – year: 1994 ident: bib0047 publication-title: Data from TCIA pancreas-CT – reference: . – year: 2016 ident: bib0001 article-title: TensorFlow: large-scale machine learning on heterogeneous distributed systems – year: 2017 ident: bib0053 article-title: Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations publication-title: Proceedings of MICCAI Workshop on Deep Learning in Medical Image Analysis (DLMIA) – volume: vol. 10135 year: 2017 ident: bib0024 article-title: Deep residual networks for automatic segmentation of laparoscopic videos of the liver publication-title: Proceedings of the SPIE, Medical Imaging – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: bib0034 article-title: A survey on deep learning in medical image analysis publication-title: Medical Image Analysis – volume: 139 start-page: 181 year: 2017 end-page: 190 ident: bib0016 article-title: GIFT-Cloud: A data sharing and collaboration platform for medical imaging research publication-title: Comput. Methods Programs Biomed. – year: 1994 ident: bib0020 publication-title: Design Patterns: Elements of Reusable Object-Oriented Software – ident: 10.1016/j.cmpb.2018.01.025_bib0005 – start-page: 2135 year: 2016 ident: 10.1016/j.cmpb.2018.01.025_bib0050 article-title: CNTK: Microsoft’s open-source deep-learning toolkit – start-page: 111 year: 2016 ident: 10.1016/j.cmpb.2018.01.025_bib0057 article-title: Three-dimensional CT image segmentation by combining 2D fully convolutional network with 3D majority voting – volume: 139 start-page: 181 year: 2017 ident: 10.1016/j.cmpb.2018.01.025_bib0016 article-title: GIFT-Cloud: A data sharing and collaboration platform for medical imaging research publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.11.004 – year: 2011 ident: 10.1016/j.cmpb.2018.01.025_bib0013 article-title: Torch7: A MATLAB-like environment for machine learning – year: 2017 ident: 10.1016/j.cmpb.2018.01.025_bib0023 article-title: Towards image-guided pancreas and biliary endoscopy: automatic multi-organ segmentation on abdominal CT with dense dilated networks – year: 2014 ident: 10.1016/j.cmpb.2018.01.025_bib0048 article-title: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations – volume: 23 start-page: S208 year: 2004 ident: 10.1016/j.cmpb.2018.01.025_bib0052 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – ident: 10.1016/j.cmpb.2018.01.025_bib0015 – volume: 36 start-page: 61 year: 2017 ident: 10.1016/j.cmpb.2018.01.025_bib0030 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – volume: 29 start-page: 196 issue: 1 year: 2010 ident: 10.1016/j.cmpb.2018.01.025_bib0031 article-title: Elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2035616 – volume: 34 start-page: 1993 issue: 10 year: 2015 ident: 10.1016/j.cmpb.2018.01.025_bib0039 article-title: The multimodal brain tumor image segmentation benchmark (BraTS) publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – volume: 7 year: 2013 ident: 10.1016/j.cmpb.2018.01.025_bib0036 article-title: The design of SimpleITK publication-title: Front. Neuroinf. doi: 10.3389/fninf.2013.00045 – ident: 10.1016/j.cmpb.2018.01.025_bib0009 – volume: vol. 10135 year: 2017 ident: 10.1016/j.cmpb.2018.01.025_sbref0017 article-title: Deep residual networks for automatic segmentation of laparoscopic videos of the liver – start-page: 221 issue: 19 year: 2017 ident: 10.1016/j.cmpb.2018.01.025_bib0051 article-title: Deep learning in medical image analysis publication-title: Ann. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – volume: 14 start-page: 711 issue: 4 year: 1995 ident: 10.1016/j.cmpb.2018.01.025_bib0035 article-title: Artificial convolution neural network techniques and applications for lung nodule detection publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.476112 – year: 1994 ident: 10.1016/j.cmpb.2018.01.025_bib0047 – volume: 10 start-page: 301 issue: 3 year: 2015 ident: 10.1016/j.cmpb.2018.01.025_bib0012 article-title: The NifTK software platform for image-guided interventions: platform overview and NiftyLink messaging publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-014-1124-7 – ident: 10.1016/j.cmpb.2018.01.025_bib0037 – start-page: 424 year: 2016 ident: 10.1016/j.cmpb.2018.01.025_bib0011 article-title: 3D U-net: learning dense volumetric segmentation from sparse annotation – start-page: 348 year: 2017 ident: 10.1016/j.cmpb.2018.01.025_bib0033 article-title: On the compactness, efficiency, and representation of 3D convolutional networks: Brain parcellation as a pretext task – year: 2012 ident: 10.1016/j.cmpb.2018.01.025_bib0008 article-title: NiftySeg: open-source software for medical image segmentation, label fusion and cortical thickness estimation – volume: 54 start-page: 2033 issue: 3 year: 2011 ident: 10.1016/j.cmpb.2018.01.025_bib0002 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.025 – volume: 33 start-page: 2332 issue: 12 year: 2014 ident: 10.1016/j.cmpb.2018.01.025_bib0007 article-title: Attenuation correction synthesis for hybrid PET-MR scanners: Application to brain studies publication-title: Med. Imaging IEEE Trans. doi: 10.1109/TMI.2014.2340135 – volume: 98 start-page: 278 issue: 3 year: 2010 ident: 10.1016/j.cmpb.2018.01.025_bib0042 article-title: Fast free-form deformation using graphics processing units publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2009.09.002 – volume: 10 start-page: 1077 issue: 7 year: 2015 ident: 10.1016/j.cmpb.2018.01.025_bib0029 article-title: NiftySim: a GPU-based nonlinear finite element package for simulation of soft tissue biomechanics publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-014-1118-5 – year: 2017 ident: 10.1016/j.cmpb.2018.01.025_bib0053 article-title: Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations – start-page: 565 year: 2016 ident: 10.1016/j.cmpb.2018.01.025_bib0040 article-title: V-Net: Fully convolutional neural networks for volumetric medical image segmentation – ident: 10.1016/j.cmpb.2018.01.025_bib0006 – start-page: 675 year: 2014 ident: 10.1016/j.cmpb.2018.01.025_bib0028 article-title: Caffe: Convolutional architecture for fast feature embedding – ident: 10.1016/j.cmpb.2018.01.025_bib0055 – ident: 10.1016/j.cmpb.2018.01.025_bib0049 – volume: 42 start-page: 60 year: 2017 ident: 10.1016/j.cmpb.2018.01.025_bib0034 article-title: A survey on deep learning in medical image analysis publication-title: Medical Image Analysis doi: 10.1016/j.media.2017.07.005 – year: 2017 ident: 10.1016/j.cmpb.2018.01.025_sbref0015 article-title: Automatic multi-organ segmentation on abdominal CT with dense v-networks publication-title: IEEE Trans. Med. Imaging – year: 2017 ident: 10.1016/j.cmpb.2018.01.025_bib0017 – year: 1994 ident: 10.1016/j.cmpb.2018.01.025_bib0020 – ident: 10.1016/j.cmpb.2018.01.025_bib0032 – start-page: 698 year: 2006 ident: 10.1016/j.cmpb.2018.01.025_bib0044 article-title: The NA-MIC kit: ITK, VTK, pipelines, grids and 3D Slicer as an open platform for the medical image computing community – ident: 10.1016/j.cmpb.2018.01.025_bib0041 – year: 2016 ident: 10.1016/j.cmpb.2018.01.025_sbref0001 – ident: 10.1016/j.cmpb.2018.01.025_bib0045 – ident: 10.1016/j.cmpb.2018.01.025_bib0003 – start-page: 1942 year: 2017 ident: 10.1016/j.cmpb.2018.01.025_bib0027 article-title: Batch renormalization: towards reducing minibatch dependence in batch-normalized models – volume: 9 start-page: 195 issue: 2 year: 1999 ident: 10.1016/j.cmpb.2018.01.025_bib0019 article-title: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system publication-title: Neuroimage doi: 10.1006/nimg.1998.0396 – ident: 10.1016/j.cmpb.2018.01.025_bib0056 – year: 2017 ident: 10.1016/j.cmpb.2018.01.025_bib0026 article-title: Freehand ultrasound image simulation with spatially-conditioned generative adversarial networks – volume: 8 start-page: 607 issue: 4 year: 2013 ident: 10.1016/j.cmpb.2018.01.025_bib0043 article-title: The medical imaging interaction toolkit: challenges and advances publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-013-0840-8 – volume: 10135 year: 2017 ident: 10.1016/j.cmpb.2018.01.025_bib0038 article-title: DeepInfer: Open-source deep learning deployment toolkit for image-guided therapy – volume: 9 start-page: 179 issue: 2 year: 1999 ident: 10.1016/j.cmpb.2018.01.025_bib0014 article-title: Cortical surface-based analysis:I. Segmentation and surface reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – ident: 10.1016/j.cmpb.2018.01.025_bib0010 – ident: 10.1016/j.cmpb.2018.01.025_bib0018 – ident: 10.1016/j.cmpb.2018.01.025_bib0025 – ident: 10.1016/j.cmpb.2018.01.025_bib0046 – start-page: 5717 year: 2017 ident: 10.1016/j.cmpb.2018.01.025_bib0021 article-title: ToolNet: holistically-nested real-time segmentation of robotic surgical tools – year: 2015 ident: 10.1016/j.cmpb.2018.01.025_bib0054 article-title: MatConvNet – convolutional neural networks for MATLAB – year: 2012 ident: 10.1016/j.cmpb.2018.01.025_bib0004 article-title: Theano: new features and speed improvements |
| SSID | ssj0002556 |
| Score | 2.6570523 |
| Snippet | •An open-source platform is implemented based on TensorFlow APIs for deep learning in medical imaging domain.•A modular implementation of the typical medical... Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established... • An open-source platform is implemented based on TensorFlow APIs for deep learning in medical imaging domain. • A modular implementation of the typical... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 113 |
| SubjectTerms | Abdomen - diagnostic imaging Brain - diagnostic imaging Computer Simulation Convolutional neural network Databases, Factual Deep learning Diagnostic Imaging - instrumentation Diagnostic Imaging - methods Generative adversarial network Humans Image Processing, Computer-Assisted - instrumentation Image Processing, Computer-Assisted - methods Image regression Machine Learning Magnetic Resonance Imaging Medical image analysis Neural Networks, Computer Segmentation Ultrasonography |
| Title | NiftyNet: a deep-learning platform for medical imaging |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260717311823 https://dx.doi.org/10.1016/j.cmpb.2018.01.025 https://www.ncbi.nlm.nih.gov/pubmed/29544777 https://www.proquest.com/docview/2014951860 https://pubmed.ncbi.nlm.nih.gov/PMC5869052 |
| Volume | 158 |
| WOSCitedRecordID | wos000427786400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZoixAXxJvlUQWJGwqKncR2uFVoK0CwQqKIvUW244hUu2nazVbl3zOOH_uoWuiBixV5bSvrmYzH9jfzIfQGXHpCsKjiolYqzkRBYy5rEmtNdU5hk8tzOZBNsMmET6fFNwcrWgx0Aqxt-cVF0f1XUUMdCNuEzt5A3GFQqIBnEDqUIHYo_0nwk6buf090b8OYK627eObPP7qZ6I2XOoAL5-6OppkPTEXrbqrnenAE0wuXTmCAcg0AWhu1v3Erv6IiH8-agPMZwAI_dXsaqr4vK3vuPWBNQvfDxtGKfDE0bOuHEZivoH_-fJIWMWyR2IaBtcnZnYnENvbUrbbYRiVfMuT2TOH4nZp30gDwuE2umq-WLX9Vv7WaBYyhh68dl2aM0oxRJriEMXbQHmF5ATZw7-DTePo5rNwmHZvNBW__hAuysnjA7Te5ypG5vFHZxtuuOTBH99E9t_OIDqzGPEC3dPsQ3fnqpPgIUa847yMRbahN5NUmgiJyahM5tXmMfhyOjz58jB2rRqzyhPaxSrikmNciBecVV4opLMAQ51gwaTg_MBZE0QoaaZKlNVOScMrqVFGJC8GT9AnabU9a_QxFXBLwscCBZ1pnQjFZZKKiTJE6zZSs8AhhP0WlcinnDfPJrLxaOCP0NvTpbMKVa1unfuZLH0oMi18JanRtrzz0co6mdSD_2u-1F24JVthcrYlWnywXplEGexVOkxF6aoUd3t7cpGeMsRFiG2oQGpgM75u_tM2vIdN7bvjicvL8RnPyAt1dfZov0W5_ttSv0G113jeLs320w6Z832n-Hw8rxvM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NiftyNet%3A+a+deep-learning+platform+for+medical+imaging&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Gibson%2C+Eli&rft.au=Li%2C+Wenqi&rft.au=Sudre%2C+Carole&rft.au=Fidon%2C+Lucas&rft.date=2018-05-01&rft.issn=0169-2607&rft.volume=158&rft.spage=113&rft.epage=122&rft_id=info:doi/10.1016%2Fj.cmpb.2018.01.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2018_01_025 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |