Parallel Stochastic Global Optimization Using Radial Basis Functions

We develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007a. A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19 (4) 497...

Full description

Saved in:
Bibliographic Details
Published in:INFORMS journal on computing Vol. 21; no. 3; pp. 411 - 426
Main Authors: Regis, Rommel G, Shoemaker, Christine A
Format: Journal Article
Language:English
Published: Linthicum INFORMS 22.06.2009
Institute for Operations Research and the Management Sciences
Subjects:
ISSN:1091-9856, 1526-5528, 1091-9856
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007a. A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19 (4) 497–509]. The proposed parallel algorithm is suitable for the global optimization of computationally expensive objective functions and does not require derivatives. Each iteration of the algorithm consists of building an RBF model to approximate the expensive function and using this model to select multiple points for simultaneous function evaluation on multiple processors. The function evaluation points are selected from a set of random candidate points according to two criteria: estimated function value based on the RBF model, and minimum distance from previously evaluated points and previously selected points within each iteration. We compare the performance of our parallel stochastic RBF algorithm against alternative parallel global optimization methods, including two multistart parallel finite-difference quasi-Newton methods, a multistart implementation of Asynchronous Parallel Pattern Search [Hough, P., T. G. Kolda, V. J. Torczon. 2001. Asynchronous parallel pattern search for nonlinear optimization. SIAM J. Sci. Comput. 23 (1) 134–156], a parallel implementation of Probabilistic Global Search Lausanne [Raphael, B., I. F. C. Smith. 2003. A direct stochastic algorithm for global search. Appl. Math. Comput. 146 729–758], a parallel evolutionary algorithm, and a deterministic parallel RBF algorithm by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007c. Parallel radial basis function methods for the global optimization of expensive functions. Eur. J. Oper. Res. 182 (2) 514–535]. We report good results for our parallel stochastic RBF method when using one, four, or eight processors in comparison with the alternatives on 20 test problems and on 3 optimization problems involving groundwater bioremediation.
AbstractList We develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007a. A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19(4) 497–509]. The proposed parallel algorithm is suitable for the global optimization of computationally expensive objective functions and does not require derivatives. Each iteration of the algorithm consists of building an RBF model to approximate the expensive function and using this model to select multiple points for simultaneous function evaluation on multiple processors. The function evaluation points are selected from a set of random candidate points according to two criteria: estimated function value based on the RBF model, and minimum distance from previously evaluated points and previously selected points within each iteration. We compare the performance of our parallel stochastic RBF algorithm against alternative parallel global optimization methods, including two multistart parallel finite-difference quasi-Newton methods, a multistart implementation of Asynchronous Parallel Pattern Search [Hough, P., T. G. Kolda, V. J. Torczon. 2001. Asynchronous parallel pattern search for nonlinear optimization. SIAM J. Sci. Comput. 23(1) 134–156], a parallel implementation of Probabilistic Global Search Lausanne [Raphael, B., I. F. C. Smith. 2003. A direct stochastic algorithm for global search. Appl. Math. Comput. 146 729–758], a parallel evolutionary algorithm, and a deterministic parallel RBF algorithm by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007c. Parallel radial basis function methods for the global optimization of expensive functions. Eur. J. Oper. Res. 182(2) 514–535]. We report good results for our parallel stochastic RBF method when using one, four, or eight processors in comparison with the alternatives on 20 test problems and on 3 optimization problems involving groundwater bioremediation.
We develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007a. A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19 (4) 497-509]. The proposed parallel algorithm is suitable for the global optimization of computationally expensive objective functions and does not require derivatives. Each iteration of the algorithm consists of building an RBF model to approximate the expensive function and using this model to select multiple points for simultaneous function evaluation on multiple processors. The function evaluation points are selected from a set of random candidate points according to two criteria: estimated function value based on the RBF model, and minimum distance from previously evaluated points and previously selected points within each iteration. We compare the performance of our parallel stochastic RBF algorithm against alternative parallel global optimization methods, including two multistart parallel finite-difference quasi-Newton methods, a multistart implementation of Asynchronous Parallel Pattern Search [Hough, P., T. G. Kolda, V. J. Torczon. 2001. Asynchronous parallel pattern search for nonlinear optimization. SIAM J. Sci. Comput. 23 (1) 134-156], a parallel implementation of Probabilistic Global Search Lausanne [Raphael, B., I. F. C. Smith. 2003. A direct stochastic algorithm for global search. Appl. Math. Comput. 146 729-758], a parallel evolutionary algorithm, and a deterministic parallel RBF algorithm by Regis and Shoemaker [Regis, R. G., C. A. Shoemaker. 2007c. Parallel radial basis function methods for the global optimization of expensive functions. Eur. J. Oper. Res. 182 (2) 514-535]. We report good results for our parallel stochastic RBF method when using one, four, or eight processors in comparison with the alternatives on 20 test problems and on 3 optimization problems involving groundwater bioremediation.
The authors develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker. The proposed parallel algorithm is suitable for the global optimization of computationally expensive objective functions and does not require derivatives. Each iteration of the algorithm consists of building an RBF model to approximate the expensive function and using this model to select multiple points for simultaneous function evaluation on multiple processors. The function evaluation points are selected from a set of random candidate points according to two criteria: estimated function value based on the RBF model, and minimum distance from previously evaluated points and previously selected points within each iteration. They report good results for their parallel stochastic RBF method when using one, four, or eight processors in comparison with the alternatives on 20 test problems and on 3 optimization problems involving groundwater bioremediation.
Audience Academic
Author Shoemaker, Christine A
Regis, Rommel G
Author_xml – sequence: 1
  fullname: Regis, Rommel G
– sequence: 2
  fullname: Shoemaker, Christine A
BookMark eNqFkUtv1DAUhS1UJNrClnUELMngZxIvS6EFqVIR0LVlO3bGoyQefB1V8OtxmC4ADUKWbMv-zn2dM3Qyx9kh9JzgDaFd-ybsot0QLPEGMyoeoVMiaFMLQbuTcseS1LITzRN0BrDDGHPG5Sl690knPY5urL7kaLcacrDV9RiNHqvbfQ5T-KFziHN1B2Eeqs-6D-XnrYYA1dUy2_UPnqLHXo_gnj2c5-ju6v3Xyw_1ze31x8uLm9oK3OTaCKk7aaTuvRdG8JZ4bXzXCi5901jOe9nrpveCtcy0otVGcseMJU4bgo1l5-jFIe4-xW-Lg6x2cUlzSakoxoJySUmBXh6gQY9OhdnHnLSdAlh1QXEjmGw4LlR9hBrc7Mo4ylx9KM9_8JsjfFm9m4I9Knj9m8AsZXwOygZh2GYY9AJwNL5NESA5r_YpTDp9VwSr1V612qtWe9VqbxHwvwQ25F9WlcLC-G_ZQ99rC2mC_6d5deC3pe77kA69r8KVo0QxxQlhPwG8aMWG
CitedBy_id crossref_primary_10_1016_j_jhydrol_2023_129414
crossref_primary_10_1016_j_advwatres_2013_01_003
crossref_primary_10_1016_j_agwat_2015_08_022
crossref_primary_10_1007_s10898_017_0599_5
crossref_primary_10_1016_j_envsoft_2015_12_008
crossref_primary_10_1080_10556788_2022_2091560
crossref_primary_10_1177_1477153517691331
crossref_primary_10_1145_3721296
crossref_primary_10_1029_2022WR032945
crossref_primary_10_1080_0305215X_2012_687731
crossref_primary_10_1016_j_jenvman_2022_114753
crossref_primary_10_1007_s10040_015_1272_z
crossref_primary_10_1029_2011WR011527
crossref_primary_10_1007_s13253_012_0091_0
crossref_primary_10_1016_j_jconhyd_2024_104423
crossref_primary_10_1007_s11081_020_09556_1
crossref_primary_10_1007_s00366_012_0263_0
crossref_primary_10_1007_s10898_014_0184_0
crossref_primary_10_1016_j_advengsoft_2014_05_001
crossref_primary_10_2166_hydro_2020_036
crossref_primary_10_1016_j_envsoft_2014_09_023
crossref_primary_10_1080_0305215X_2023_2247369
crossref_primary_10_1007_s42979_023_02227_9
crossref_primary_10_1029_2022GL098893
crossref_primary_10_3390_a17090394
crossref_primary_10_1007_s10898_016_0407_7
crossref_primary_10_1016_j_future_2020_07_005
crossref_primary_10_1016_j_jobe_2025_112579
crossref_primary_10_1016_j_envsoft_2021_105237
crossref_primary_10_1029_2023WR034453
crossref_primary_10_1016_j_scitotenv_2022_159544
crossref_primary_10_1287_ijoc_2025_ed_v37_n4
crossref_primary_10_1016_j_jhydrol_2020_125752
crossref_primary_10_1016_j_envsoft_2011_09_010
crossref_primary_10_1007_s11081_015_9281_2
crossref_primary_10_1021_acs_iecr_6b04395
crossref_primary_10_3390_w15020253
crossref_primary_10_1016_j_conengprac_2018_06_004
crossref_primary_10_5194_gmd_11_3027_2018
crossref_primary_10_1002_2014WR016825
crossref_primary_10_1016_j_envsoft_2020_104910
crossref_primary_10_1007_s11081_020_09526_7
crossref_primary_10_1016_j_ijggc_2016_01_009
crossref_primary_10_3390_math10162906
crossref_primary_10_1080_02331934_2016_1266627
crossref_primary_10_1007_s10898_020_00937_5
crossref_primary_10_1007_s00158_016_1432_3
crossref_primary_10_1007_s11265_020_01540_3
crossref_primary_10_1029_2022WR033673
crossref_primary_10_1016_j_mineng_2023_108081
crossref_primary_10_5004_dwt_2017_20381
crossref_primary_10_1007_s10898_015_0270_y
Cites_doi 10.1007/BF01197708
10.1023/A:1011255519438
10.1093/oso/9780198534396.003.0003
10.1016/S0096-3003(02)00629-X
10.1007/BF01096734
10.1007/s10107-003-0430-6
10.1287/ijoc.1060.0182
10.1137/S1052623401398107
10.1007/978-1-4615-0337-8
10.1007/BFb0026589
10.1137/S003614450242889
10.1007/s10898-004-0570-0
10.1007/s101070100290
10.1029/2005WR004134
10.1016/S0378-3758(00)00105-1
10.1017/CBO9780511543241
10.1023/A:1008306431147
10.1137/070691814
10.1145/355934.355936
10.1137/S1052623493250780
10.1007/BF02614326
10.2514/2.1234
10.1287/ijoc.5.1.2
10.1061/(ASCE)0733-9496(1999)125:1(54)
10.1017/S0001924000066045
10.1214/ss/1177012413
10.1007/s00158-004-0397-9
10.1002/9781119115151
10.1137/S1064827599365823
10.1007/s10898-006-9040-1
10.1016/S0169-7161(96)13011-X
10.1016/j.ejor.2006.08.040
10.1287/ijoc.1060.0175
ContentType Journal Article
Copyright COPYRIGHT 2009 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Summer 2009
Copyright_xml – notice: COPYRIGHT 2009 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Summer 2009
DBID AAYXX
CITATION
N95
3V.
7WY
7WZ
7XB
87Z
8AL
8AO
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1287/ijoc.1090.0325
DatabaseName CrossRef
Gale Business: Insights
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef


ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1526-5528
1091-9856
EndPage 426
ExternalDocumentID 1833826561
A206539640
10_1287_ijoc_1090_0325
ijoc.1090.0325
joc_21_3_411
Genre Research Article
Feature
GroupedDBID 1AW
29I
3V.
4.4
4S
5GY
7WY
8AL
8AO
8FE
8FG
8FL
8VB
AAPBV
ABDBF
ABFLS
ABPTK
ABUWG
ACNCT
ADCOW
AEILP
AENEX
AFKRA
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BENPR
BEZIV
BGLVJ
BPHCQ
CS3
DU5
DWQXO
EAD
EAP
EBA
EBE
EBR
EBS
EBU
ECS
EDO
EHE
EJD
EMI
EMK
EPL
EST
ESX
F5P
FRNLG
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
HCIFZ
I-F
IAO
ICD
IEA
IGS
IL9
IOF
ITC
K6
K60
K6V
K7-
M0C
M0N
MV1
N95
NIEAY
P2P
P62
PQEST
PQQKQ
PQUKI
PRINS
PROAC
QWB
RPU
TH9
TN5
TUS
XI7
Y99
ZL0
ZY4
ACYGS
XFK
.4S
.DC
18M
AADHG
AAYXX
ABDNZ
ACGFO
AEGXH
AEMOZ
AFFHD
AHQJS
AIAGR
BAAKF
CCPQU
CITATION
EBO
K1G
K6~
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
XOL
7XB
8FK
JQ2
L.-
PKEHL
Q9U
ID FETCH-LOGICAL-c506t-b59a89b9adff5b5471fabf87549f66c44d9da6df5373b757ab94e3bc1eab10bc3
IEDL.DBID M0C
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268558800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-9856
IngestDate Fri Jul 25 23:54:04 EDT 2025
Tue Nov 11 11:17:48 EST 2025
Sat Nov 29 12:07:07 EST 2025
Tue Nov 04 18:44:40 EST 2025
Sat Nov 29 08:25:53 EST 2025
Sat Nov 29 03:32:09 EST 2025
Tue Nov 18 21:46:33 EST 2025
Wed Jan 06 02:47:43 EST 2021
Fri Jan 15 03:35:52 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c506t-b59a89b9adff5b5471fabf87549f66c44d9da6df5373b757ab94e3bc1eab10bc3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 200524921
PQPubID 46392
PageCount 16
ParticipantIDs gale_infotracmisc_A206539640
informs_primary_10_1287_ijoc_1090_0325
proquest_journals_200524921
highwire_informs_joc_21_3_411
gale_infotracgeneralonefile_A206539640
crossref_primary_10_1287_ijoc_1090_0325
gale_infotracacademiconefile_A206539640
gale_businessinsightsgauss_A206539640
crossref_citationtrail_10_1287_ijoc_1090_0325
ProviderPackageCode Y99
RPU
NIEAY
PublicationCentury 2000
PublicationDate 20090622
PublicationDateYYYYMMDD 2009-06-22
PublicationDate_xml – month: 06
  year: 2009
  text: 20090622
  day: 22
PublicationDecade 2000
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle INFORMS journal on computing
PublicationYear 2009
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
Giunta A. A. (B9) 1997; 101
Myers R. H. (B21) 1995
Powell M. J. D. (B23) 1992
Dixon L. C. W. (B8) 1978; 2
MathWorks (B18) 2008
Box G. E. P. (B4) 1987
Numerical Algorithms Group (B22) 2005
References_xml – ident: B12
– ident: B9
– ident: B35
– ident: B14
– ident: B10
– ident: B3
– ident: B20
– ident: B1
– ident: B27
– ident: B7
– ident: B5
– ident: B29
– ident: B25
– ident: B23
– ident: B21
– ident: B18
– ident: B16
– ident: B31
– ident: B33
– ident: B37
– ident: B39
– ident: B8
– ident: B36
– ident: B11
– ident: B13
– ident: B2
– ident: B26
– ident: B4
– ident: B28
– ident: B6
– ident: B24
– ident: B22
– ident: B17
– ident: B32
– ident: B15
– ident: B30
– ident: B34
– ident: B19
– ident: B38
– ident: B3
  doi: 10.1007/BF01197708
– ident: B11
  doi: 10.1023/A:1011255519438
– start-page: 105
  volume-title: Advances in Numerical Analysis, Volume 2: Wavelets, Subdivision Algorithms and Radial Basis Functions
  year: 1992
  ident: B23
  doi: 10.1093/oso/9780198534396.003.0003
– ident: B26
  doi: 10.1016/S0096-3003(02)00629-X
– volume-title: NAG C Library Manual, Mark 8
  year: 2005
  ident: B22
– ident: B32
  doi: 10.1007/BF01096734
– volume-title: Matlab Compiler: User's Guide, Version 4
  year: 2008
  ident: B18
– ident: B25
  doi: 10.1007/s10107-003-0430-6
– ident: B28
  doi: 10.1287/ijoc.1060.0182
– ident: B15
  doi: 10.1137/S1052623401398107
– ident: B17
  doi: 10.1007/978-1-4615-0337-8
– ident: B10
  doi: 10.1007/BFb0026589
– volume-title: Response Surface Methodology: Process and Product Optimization Using Designed Experiments
  year: 1995
  ident: B21
– ident: B16
  doi: 10.1137/S003614450242889
– ident: B27
  doi: 10.1007/s10898-004-0570-0
– ident: B24
  doi: 10.1007/s101070100290
– ident: B20
  doi: 10.1029/2005WR004134
– ident: B38
  doi: 10.1016/S0378-3758(00)00105-1
– ident: B5
  doi: 10.1017/CBO9780511543241
– ident: B13
  doi: 10.1023/A:1008306431147
– ident: B37
  doi: 10.1137/070691814
– ident: B19
  doi: 10.1145/355934.355936
– ident: B35
  doi: 10.1137/S1052623493250780
– ident: B6
  doi: 10.1007/BF02614326
– ident: B33
  doi: 10.2514/2.1234
– ident: B1
  doi: 10.1287/ijoc.5.1.2
– ident: B39
  doi: 10.1061/(ASCE)0733-9496(1999)125:1(54)
– volume-title: Empirical Model-Building and Response Surfaces
  year: 1987
  ident: B4
– volume: 101
  start-page: 347
  issue: 1008
  year: 1997
  ident: B9
  publication-title: Aeronautical J.
  doi: 10.1017/S0001924000066045
– ident: B31
  doi: 10.1214/ss/1177012413
– volume: 2
  start-page: 1
  volume-title: Towards Global Optimization
  year: 1978
  ident: B8
– ident: B34
  doi: 10.1007/s00158-004-0397-9
– ident: B7
  doi: 10.1002/9781119115151
– ident: B12
  doi: 10.1137/S1064827599365823
– ident: B29
  doi: 10.1007/s10898-006-9040-1
– ident: B14
  doi: 10.1016/S0169-7161(96)13011-X
– ident: B30
  doi: 10.1016/j.ejor.2006.08.040
– ident: B36
  doi: 10.1287/ijoc.1060.0175
SSID ssj0004349
Score 2.117671
Snippet We develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker [Regis, R. G., C. A....
The authors develop a parallel implementation of a stochastic radial basis function (RBF) algorithm for global optimization by Regis and Shoemaker. The...
SourceID proquest
gale
crossref
informs
highwire
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 411
SubjectTerms Algorithms
Bioremediation
expensive function
global optimization
Groundwater
groundwater bioremediation
Mathematical optimization
Methods
Multiprocessing
Optimization
Optimization algorithms
parallel optimization
Properties
radial basis function
stochastic algorithm
Stochastic models
Stochastic programming
Studies
surrogate model
Water, Underground
Title Parallel Stochastic Global Optimization Using Radial Basis Functions
URI http://joc.journal.informs.org/cgi/content/abstract/21/3/411
https://www.proquest.com/docview/200524921
Volume 21
WOSCitedRecordID wos000268558800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1526-5528
  dateEnd: 20091031
  omitProxy: false
  ssIdentifier: ssj0004349
  issn: 1091-9856
  databaseCode: 7WY
  dateStart: 19990401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1526-5528
  dateEnd: 20091031
  omitProxy: false
  ssIdentifier: ssj0004349
  issn: 1091-9856
  databaseCode: M0C
  dateStart: 19990401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1526-5528
  dateEnd: 20091031
  omitProxy: false
  ssIdentifier: ssj0004349
  issn: 1091-9856
  databaseCode: P5Z
  dateStart: 19990401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1526-5528
  dateEnd: 20091031
  omitProxy: false
  ssIdentifier: ssj0004349
  issn: 1091-9856
  databaseCode: K7-
  dateStart: 19990401
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest
  customDbUrl:
  eissn: 1526-5528
  dateEnd: 20091031
  omitProxy: false
  ssIdentifier: ssj0004349
  issn: 1091-9856
  databaseCode: BENPR
  dateStart: 19990401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoywEOFAqI0nblA4-TqePYTnxCbekKCbGsCojCxbKduCxadst6y-_H4zilK14HLpGSjBInM54ZP-b7EHpU85YBiguhxtWEc0FJHQMnqQTjjY85h6Ud2UQ1GtWnp2qc9-aEvK2y94nJUTdzB3Pk-wkhiCtWPD__RoA0ChZXM4PGGtqAxAZ29L2mRz_LIsuU_QL0JVG1kBmzMY4R9idf5g6QlOgzWgJL9pWY1HvmHi44lTlBAhl-cdcpBg03_7P1t9GtnHzig85a7qBr7WwLbfbEDjj38y108wpK4V30YmwWwLgyxW-Xc_fZALIz7rgC8Jvocb7mUk6cth_gE0A7mOJDEyYBD2PYTJZ9D70fHr87ekky-QJxgsolsUKZWlllGu-FFTGGeWN9HN1w5aV0nDeqMbLxoqxKW4nKWMXb0rqiNbag1pX30fpsPmsfIOx4zHmkVxXznCsbMwQOJbGylt6p0rFtRPrfr11GJgeCjKmGEUpUlwZ1wVo51aCubfT0Uv68w-T4o-Rj0KbOhJ7xEGDKI5yZixD0AUvAvJLT-MQkB4qOb3Ym1ybE9gM81orkkxXJsw4c_HeCuyuCsde6ldt7vYHpbF4ams4KXWpeFPE9_eV_feJOb3E6u5-gL83t4V_v7qAb3eKYJIztovXl4qLdQ9fd9-UkLAZorfrwcYA2Do9H45N49qoig9TB4nEsPv0A7c0o3A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQQIWFAqI0ha8oLBymziOEy8QKpRRqylDBUXqzthOXAYNM2U8BfFR_CO-jl064rXqgk0WyVWe5z7s-J6D0KOatRRYXEimTE0YKzNS-8RJqpKyxvqaQ2ed2EQ1GNRHR-JgAX1PvTCwrDLFxBCom4mBOfKtwBDEBM2fnXwmIBoFP1eTgkaHin777asfsbmnezv-825Q2nt5-GKXRFEBYsqMz4guhaqFFqqxttSlj81WaeurdiYs54axRjSKN7YsqkJXZaW0YG2hTd4qnWfaFP68l9BlVtQVuFW_Ij_bMItQbQPVJhF1ySNHpB-TbA0_TgwwN2WbWQGq3OdyYMoEiZ44tFVBwep-SQ8h5_WW_rO3dRPdiMU13u684RZaaMfLaCkJV-AYx5bR9XMsjLfRzoGagqLMCL-dTcwHBczVuNNCwK99RP0UW1VxWF6B3wCbwwg_V27ocM-XBcFz76B3F_Jkd9HieDJu7yFsmK_puBUVtYwJ7SsgBi2_vObWiMLQFUTS55YmMq-DAMhIwgjMw0MCPGAtQCYBHivoyZn9Scc58kfLDUCPjIKlfuNgSscdq1Pn5DYNxMOcZf6MwQ6A5a9sVOy98PcP9F9zlo_nLI878vPfGa7NGfqoZOYOrydAywhnCbdOc1lIluf-Omn3vx5xNSFcxvDq5Bm87__16EN0dffw1b7c3xv0V9G17kcgJ5SuocXZ9LRdR1fMl9nQTR8ER8bo_UX7wg_MHYSE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQgOFAqI0hZ8oHAymziOEx8QKiwrqqJlxUOquBjbicuiZbdstiB-Gv-OmcQuXfE69cBlD5tRnt88nMx8HyH3SlFzZHFhiXElEyJPWAmJkxU5F5WHmsMmndhEMRyWBwdqtEK-x1kYbKuMMbEN1NXM4TvyXssQJBRPez50RYz6g8dHnxkKSOGH1qim0SFkv_72FVZvzaO9PjzqHc4Hz948fc6CwABzeSIXzObKlMoqU3mf2xzitDfWQwUvlJfSCVGpysjK51mR2SIvjFWizqxLa2PTxLoM9nuOnC9giYndhKP83c-RzKytvJF2k6kyl4EvEtYnvfHHmUMWp-RhkqFC96l8GLNCpCpuR6yweG1-SRVt_hus_cd37iq5Eopuutt5yTWyUk_XyVoUtKAhvq2Ty6fYGa-T_sjMUWlmQl8vZu6DQUZr2mkk0JcQaT-FEVbatl3QV8jyMKFPTDNu6ADKhdajb5C3Z3JlN8nqdDatbxHqBNR60quCeyGUhcpI4CiwLKV3KnN8g7D46LULjOwoDDLRuDIDqGiECvYIJBqhskEenNgfdVwkf7TcQSTpIGQKPw2-6mkOzXHT6F3eEhJLkcAeWzsEGRzZmTCTAeePtGBLlveXLA87UvTfGW4tGUK0ckubtyO4dYC2xlPnqc60SFM4Tvz7X5e4GdGuQ9ht9AnUb_91611yEVxAv9gb7m-SS933Qck43yKri_lxvU0uuC-LcTO_0_o0Je_P2hV-AMIQjag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+stochastic+global+optimization+using+radial+basis+functions&rft.jtitle=INFORMS+journal+on+computing&rft.au=Regis%2C+Rommel+G&rft.au=Shoemaker%2C+Christine+A&rft.date=2009-06-22&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=1091-9856&rft.volume=21&rft.issue=3&rft.spage=411&rft_id=info:doi/10.1287%2Fijoc.1090.0325&rft.externalDocID=A206539640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-9856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-9856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-9856&client=summon