Incremental polynomial time dualization of quadratic functions and a subclass of degree-k functions
We consider the problem of dualizing a Boolean function f represented by a DNF. In its most general form, this problem is commonly believed not to be solvable by a quasi-polynomial total time algorithm. We show that if the input DNF is quadratic or is a special degree- k DNF, then dualization turns...
Uloženo v:
| Vydáno v: | Annals of operations research Ročník 188; číslo 1; s. 251 - 261 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.08.2011
Springer Science + Business Media Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0254-5330, 1572-9338 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the problem of dualizing a Boolean function
f
represented by a DNF. In its most general form, this problem is commonly believed not to be solvable by a quasi-polynomial total time algorithm. We show that if the input DNF is quadratic or is a special degree-
k
DNF, then dualization turns out to be equivalent to hypergraph dualization in hypergraphs of bounded degree and hence it can be achieved in incremental polynomial time. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0254-5330 1572-9338 |
| DOI: | 10.1007/s10479-009-0637-x |