Adachi-Like Chaotic Neural Networks Requiring Linear-Time Computations by Enforcing a Tree-Shaped Topology

The Adachi neural network (AdNN) is a fascinating neural network (NN) which has been shown to possess chaotic properties, and to also demonstrate associative memory (AM) and pattern recognition (PR) characteristics. Variants of the AdNN have also been used to obtain other PR phenomena, and even blur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on neural networks Ročník 20; číslo 11; s. 1797 - 1809
Hlavní autoři: Ke Qin, Oommen, B.J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.11.2009
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1045-9227, 1941-0093, 1941-0093
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Adachi neural network (AdNN) is a fascinating neural network (NN) which has been shown to possess chaotic properties, and to also demonstrate associative memory (AM) and pattern recognition (PR) characteristics. Variants of the AdNN have also been used to obtain other PR phenomena, and even blurring. An unsurmountable problem associated with the AdNN and the variants referred to above is that all of them require a quadratic number of computations. This is essentially because the NNs in each case are completely connected graphs. In this paper, we consider how the computations can be significantly reduced by merely using a linear number of computations. To achieves this, we extract from the original completely connected graph one of its spanning trees. We then address the problem of computing the weights for this spanning tree. This is done in such a manner that the modified tree-based NN has approximately the same input-output characteristics, and thus the new weights are themselves calculated using a gradient-based algorithm. By a detailed experimental analysis, we show that the new linear-time AdNN-like network possesses chaotic and PR properties for different settings. As far as we know, such a tree-based AdNN has not been reported, and the results given here are novel.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1045-9227
1941-0093
1941-0093
DOI:10.1109/TNN.2009.2030582