Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries

With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science Vol. 8; no. 17; pp. e2101111 - n/a
Main Authors: Wang, Qingyu, Liu, Bin, Shen, Yuanhao, Wu, Jingkun, Zhao, Zequan, Zhong, Cheng, Hu, Wenbin
Format: Journal Article
Language:English
Published: Weinheim John Wiley & Sons, Inc 01.09.2021
John Wiley and Sons Inc
Wiley
Subjects:
ISSN:2198-3844, 2198-3844
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium‐ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high‐energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium‐anode modification are presented to inspire innovation of lithium anode. The improvement of lithium anodes plays a great role in developing lithium metal batteries with high energy density. With the aim of enlighting the future directions of the researches on lithium anodes, the challenges and progress in the field of lithium anodes in recent years are presented.
AbstractList Abstract With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium‐ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high‐energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium‐anode modification are presented to inspire innovation of lithium anode.
With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium‐ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high‐energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium‐anode modification are presented to inspire innovation of lithium anode. The improvement of lithium anodes plays a great role in developing lithium metal batteries with high energy density. With the aim of enlighting the future directions of the researches on lithium anodes, the challenges and progress in the field of lithium anodes in recent years are presented.
With the low redox potential of -3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g-1 , lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium-ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high-energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium-anode modification are presented to inspire innovation of lithium anode.With the low redox potential of -3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g-1 , lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium-ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high-energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium-anode modification are presented to inspire innovation of lithium anode.
With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g −1 , lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium‐ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high‐energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium‐anode modification are presented to inspire innovation of lithium anode.
With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium‐ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high‐energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium‐anode modification are presented to inspire innovation of lithium anode.
With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode material. However, lithium metal battery has ever suffered a trough in the past few decades due to its safety issues. Over the years, the limited energy density of the lithium‐ion battery cannot meet the growing demands of the advanced energy storage devices. Therefore, lithium metal anodes receive renewed attention, which have the potential to achieve high‐energy batteries. In this review, the history of the lithium anode is reviewed first. Then the failure mechanism of the lithium anode is analyzed, including dendrite, dead lithium, corrosion, and volume expansion of the lithium anode. Further, the strategies to alleviate the lithium anode issues in recent years are discussed emphatically. Eventually, remaining challenges of these strategies and possible research directions of lithium‐anode modification are presented to inspire innovation of lithium anode. The improvement of lithium anodes plays a great role in developing lithium metal batteries with high energy density. With the aim of enlighting the future directions of the researches on lithium anodes, the challenges and progress in the field of lithium anodes in recent years are presented.
Author Wu, Jingkun
Liu, Bin
Zhong, Cheng
Wang, Qingyu
Hu, Wenbin
Zhao, Zequan
Shen, Yuanhao
AuthorAffiliation 2 Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 119077 China
1 Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) Tianjin Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300072 China
AuthorAffiliation_xml – name: 1 Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) Tianjin Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300072 China
– name: 2 Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 119077 China
Author_xml – sequence: 1
  givenname: Qingyu
  surname: Wang
  fullname: Wang, Qingyu
  organization: Tianjin University
– sequence: 2
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
  organization: Tianjin University
– sequence: 3
  givenname: Yuanhao
  surname: Shen
  fullname: Shen, Yuanhao
  organization: Tianjin University
– sequence: 4
  givenname: Jingkun
  surname: Wu
  fullname: Wu, Jingkun
  organization: Tianjin University
– sequence: 5
  givenname: Zequan
  surname: Zhao
  fullname: Zhao, Zequan
  organization: Tianjin University
– sequence: 6
  givenname: Cheng
  orcidid: 0000-0003-1852-5860
  surname: Zhong
  fullname: Zhong, Cheng
  email: cheng.zhong@tju.edu.cn
  organization: International Campus of Tianjin University
– sequence: 7
  givenname: Wenbin
  surname: Hu
  fullname: Hu, Wenbin
  organization: International Campus of Tianjin University
BookMark eNqFkUtvEzEUhS1URB90y3okNmwSrj0ez8wGKQRKKwWx4LG17oyvE0cTu9ieov57JqSKaDf1xtbxOZ-vfM7ZiQ-eGHvDYc4BxHs0d2kuQHDg03rBzgRvm1nZSHny3_mUXaa0BQBelbXkzSt2WkreKlk3Z-x6GbyNwWfn10XeULHc4DCQX1MqnC9WLm_cuCsWPphJsSEepa-UcSg-Ys4UHaXX7KXFIdHlw37Bfl59_rG8nq2-fblZLlazvgIlZx0qkFAaaxXWgNx2LQdqeS8VL9FSr0zXdJIqjhKtUUq1aJQg0wpJWFblBbs5cE3Arb6NbofxXgd0-p8Q4lpjzK4fSNsawQoDrSIrG2XbxlQ1QKlkbwx13cT6cGDdjt2OTE8-RxweQR_feLfR63CnGymqpq4nwLsHQAy_R0pZ71zqaRjQUxiTFpWsKwmNgMn69ol1G8bop6-aXPW-Q8nV5JofXH0MKUWyx2E46H3net-5PnY-BeSTQO8yZhf2A7vh2dgfN9D9M4_oxadf30UNsvwL6yTBAA
CitedBy_id crossref_primary_10_1002_ange_202204776
crossref_primary_10_1007_s10338_025_00581_0
crossref_primary_10_1002_aenm_202404295
crossref_primary_10_1016_j_carbon_2024_119647
crossref_primary_10_3390_molecules27165199
crossref_primary_10_1002_cssc_202500247
crossref_primary_10_1016_j_est_2024_114618
crossref_primary_10_1002_adfm_202409812
crossref_primary_10_1016_j_gee_2021_12_006
crossref_primary_10_1002_aenm_202203744
crossref_primary_10_1016_j_cej_2024_151780
crossref_primary_10_1002_adfm_202310516
crossref_primary_10_3390_molecules29092118
crossref_primary_10_1002_adfm_202512040
crossref_primary_10_1039_D3QM00604B
crossref_primary_10_1016_j_ijhydene_2022_01_146
crossref_primary_10_3390_batteries9030188
crossref_primary_10_1016_j_cej_2024_156790
crossref_primary_10_1149_1945_7111_ade938
crossref_primary_10_1002_smll_202311500
crossref_primary_10_34133_energymatadv_0168
crossref_primary_10_1002_adma_202110423
crossref_primary_10_1002_smll_202300734
crossref_primary_10_1002_smll_202408988
crossref_primary_10_1007_s10854_023_10304_1
crossref_primary_10_1016_j_cej_2024_158857
crossref_primary_10_1021_acsami_5c05073
crossref_primary_10_1007_s11581_023_04980_6
crossref_primary_10_1016_j_mtener_2024_101675
crossref_primary_10_1007_s40843_021_2036_x
crossref_primary_10_1016_j_jelechem_2025_118934
crossref_primary_10_1016_j_est_2023_107119
crossref_primary_10_1016_j_cej_2025_165412
crossref_primary_10_3390_batteries9080412
crossref_primary_10_1002_adfm_202504990
crossref_primary_10_1002_advs_202504997
crossref_primary_10_1002_smll_202408771
crossref_primary_10_1016_j_rser_2025_116126
crossref_primary_10_1002_adma_202404271
crossref_primary_10_1016_j_carbon_2023_118616
crossref_primary_10_1016_j_est_2025_116307
crossref_primary_10_1016_j_jpowsour_2024_234999
crossref_primary_10_1002_adma_202312773
crossref_primary_10_1016_j_jpowsour_2024_236019
crossref_primary_10_1016_j_cej_2022_138359
crossref_primary_10_1016_j_est_2024_115165
crossref_primary_10_1016_j_jpowsour_2025_236534
crossref_primary_10_1039_D5TA00725A
crossref_primary_10_1016_j_jpowsour_2022_232139
crossref_primary_10_1016_j_carbon_2023_118066
crossref_primary_10_1039_D5TA02754C
crossref_primary_10_1007_s40843_022_2370_1
crossref_primary_10_1016_j_est_2023_106854
crossref_primary_10_1557_s43581_025_00141_6
crossref_primary_10_1016_j_cej_2025_163231
crossref_primary_10_1016_j_cej_2025_166512
crossref_primary_10_1002_sus2_234
crossref_primary_10_1002_cjce_25272
crossref_primary_10_1021_acsaem_5c00138
crossref_primary_10_1039_D4QI00802B
crossref_primary_10_1007_s12274_024_6907_z
crossref_primary_10_1016_j_est_2024_114402
crossref_primary_10_1002_smll_202405143
crossref_primary_10_3390_ma16062240
crossref_primary_10_1007_s12598_023_02281_5
crossref_primary_10_1016_S1872_5805_23_60767_X
crossref_primary_10_1039_D5TA00237K
crossref_primary_10_1002_advs_202416120
crossref_primary_10_1002_smll_202308678
crossref_primary_10_1021_acs_nanolett_5c01606
crossref_primary_10_1002_smtd_202402082
crossref_primary_10_1016_j_jechem_2022_09_025
crossref_primary_10_1002_admt_202301902
crossref_primary_10_1002_cssc_202201352
crossref_primary_10_1002_aenm_202300042
crossref_primary_10_1038_s41598_023_36271_5
crossref_primary_10_1007_s11814_024_00241_y
crossref_primary_10_1002_cnl2_33
crossref_primary_10_1002_er_8124
crossref_primary_10_1002_advs_202200622
crossref_primary_10_1039_D3NR01306E
crossref_primary_10_26599_NRE_2025_9120173
crossref_primary_10_1039_D4TA07861F
crossref_primary_10_1002_chem_202402032
crossref_primary_10_3390_molecules29235487
crossref_primary_10_1002_ange_202215866
crossref_primary_10_1021_acsaem_5c00925
crossref_primary_10_1016_j_est_2024_111558
crossref_primary_10_1016_j_apenergy_2024_124750
crossref_primary_10_1021_acsaem_5c02097
crossref_primary_10_1002_ente_202500185
crossref_primary_10_1021_acsapm_4c03883
crossref_primary_10_1002_batt_202500227
crossref_primary_10_1016_j_jpowsour_2025_237733
crossref_primary_10_1016_j_cej_2023_147077
crossref_primary_10_1002_ange_202505626
crossref_primary_10_1016_j_cej_2023_144477
crossref_primary_10_1002_smll_202402108
crossref_primary_10_1002_smll_202506238
crossref_primary_10_1002_smll_202405731
crossref_primary_10_1016_j_jpowsour_2024_235494
crossref_primary_10_1002_aenm_202400108
crossref_primary_10_1039_D3RA03184E
crossref_primary_10_1149_1945_7111_ad4a10
crossref_primary_10_1016_j_jpcs_2023_111647
crossref_primary_10_1002_adfm_202314976
crossref_primary_10_1002_cnma_202300194
crossref_primary_10_1016_j_jcis_2024_06_116
crossref_primary_10_1002_admi_202102283
crossref_primary_10_1002_smll_202307951
crossref_primary_10_1039_D5QI00111K
crossref_primary_10_1021_acssuschemeng_5c02480
crossref_primary_10_1063_5_0279513
crossref_primary_10_1002_smll_202306868
crossref_primary_10_6023_A24090267
crossref_primary_10_1002_bte2_20240122
crossref_primary_10_1016_j_cej_2025_164411
crossref_primary_10_1007_s12598_022_02256_y
crossref_primary_10_1021_acsaem_5c00693
crossref_primary_10_1038_s41560_024_01624_5
crossref_primary_10_1016_j_joule_2023_03_001
crossref_primary_10_1002_anie_202505626
crossref_primary_10_1002_celc_202300216
crossref_primary_10_1002_batt_202500128
crossref_primary_10_1002_adfm_202407179
crossref_primary_10_1007_s43207_025_00524_y
crossref_primary_10_1007_s10008_025_06268_3
crossref_primary_10_1002_batt_202200088
crossref_primary_10_1002_celc_202400209
crossref_primary_10_1016_j_jechem_2022_01_033
crossref_primary_10_1002_advs_202403797
crossref_primary_10_1016_j_jcis_2025_138196
crossref_primary_10_1021_acsnano_4c10091
crossref_primary_10_7498_aps_74_20250588
crossref_primary_10_1016_j_electacta_2025_146234
crossref_primary_10_1088_1361_6463_ae01b3
crossref_primary_10_3390_batteries10100369
crossref_primary_10_1002_batt_202400821
crossref_primary_10_1002_smll_202300106
crossref_primary_10_1002_metm_16
crossref_primary_10_1002_adfm_202310358
crossref_primary_10_1002_celc_202500171
crossref_primary_10_1021_acsnano_4c17836
crossref_primary_10_3390_molecules29112454
crossref_primary_10_1016_j_jpowsour_2025_237268
crossref_primary_10_1002_celc_202400219
crossref_primary_10_1039_D2CC02932D
crossref_primary_10_1002_aenm_202200889
crossref_primary_10_1039_D4PY00741G
crossref_primary_10_1002_sstr_202500449
crossref_primary_10_1002_adfm_202110110
crossref_primary_10_1002_ente_202201397
crossref_primary_10_1007_s11431_023_2594_8
crossref_primary_10_1016_j_cej_2022_134945
crossref_primary_10_1002_slct_202302517
crossref_primary_10_1016_j_nxener_2024_100237
crossref_primary_10_1002_adfm_202404427
crossref_primary_10_1016_j_colsurfa_2023_132703
crossref_primary_10_1002_adfm_202308022
crossref_primary_10_1002_smll_202503607
crossref_primary_10_1007_s12598_024_03102_z
crossref_primary_10_1016_j_cej_2022_138993
crossref_primary_10_1002_batt_202200394
crossref_primary_10_1063_5_0233513
crossref_primary_10_1016_j_cossms_2023_101079
crossref_primary_10_1039_D4EE03468F
crossref_primary_10_1002_adfm_202506529
crossref_primary_10_1039_D5TA03664J
crossref_primary_10_1002_batt_202300303
crossref_primary_10_1016_j_cej_2023_148105
crossref_primary_10_1002_advs_202301737
crossref_primary_10_12677_JAPC_2023_124040
crossref_primary_10_1039_D5SE00848D
crossref_primary_10_1002_smll_202310912
crossref_primary_10_3390_ma18112415
crossref_primary_10_1002_smll_202407395
crossref_primary_10_1002_sstr_202400174
crossref_primary_10_1016_j_jechem_2023_06_002
crossref_primary_10_1002_cphc_202400239
crossref_primary_10_1016_j_jcis_2024_06_043
crossref_primary_10_3390_molecules29174114
crossref_primary_10_1016_j_jcis_2022_12_081
crossref_primary_10_1002_adfm_202306868
crossref_primary_10_1002_aenm_202405307
crossref_primary_10_1002_cey2_423
crossref_primary_10_1002_cjoc_202200816
crossref_primary_10_1088_2752_5724_ace7e4
crossref_primary_10_1002_anie_202215866
crossref_primary_10_1021_acsami_5c06587
crossref_primary_10_1002_smsc_202500277
crossref_primary_10_1002_mats_202400029
crossref_primary_10_1002_smll_202506417
crossref_primary_10_1002_smll_202312124
crossref_primary_10_1016_j_cej_2024_149821
crossref_primary_10_1016_j_apsusc_2025_163688
crossref_primary_10_3390_molecules27217488
crossref_primary_10_1002_smll_202301237
crossref_primary_10_1016_j_cej_2024_158547
crossref_primary_10_1039_D4RA00333K
crossref_primary_10_1016_j_est_2024_113683
crossref_primary_10_1002_aenm_202400722
crossref_primary_10_1002_smll_202503382
crossref_primary_10_1002_aenm_202301385
crossref_primary_10_1002_aenm_202304530
crossref_primary_10_1016_j_cej_2023_143681
crossref_primary_10_1016_j_jcis_2025_138323
crossref_primary_10_1016_j_cej_2024_150700
crossref_primary_10_1016_j_cej_2023_144888
crossref_primary_10_1002_adfm_202401442
crossref_primary_10_1002_inc2_12006
crossref_primary_10_1039_D4RA05371K
crossref_primary_10_1016_j_est_2025_117547
crossref_primary_10_1063_5_0285201
crossref_primary_10_1002_adfm_202505390
crossref_primary_10_1039_D5MH00583C
crossref_primary_10_1016_j_cej_2024_157202
crossref_primary_10_1002_smll_202200919
crossref_primary_10_1038_s41560_024_01519_5
crossref_primary_10_1007_s11814_025_00395_3
crossref_primary_10_1002_adfm_202403196
crossref_primary_10_1016_j_nanoen_2024_109836
crossref_primary_10_1002_aenm_202301035
crossref_primary_10_1039_D5TA04976H
crossref_primary_10_1039_D5EB00042D
crossref_primary_10_1016_j_carbon_2023_118498
crossref_primary_10_1002_aenm_202401289
crossref_primary_10_1016_j_elecom_2023_107537
crossref_primary_10_1002_batt_202300230
crossref_primary_10_1016_j_jcis_2023_08_075
crossref_primary_10_1002_ange_202407315
crossref_primary_10_1002_sstr_202200114
crossref_primary_10_1007_s40820_023_01055_z
crossref_primary_10_1039_D2QM01283A
crossref_primary_10_1002_advs_202417306
crossref_primary_10_1021_acsami_4c06822
crossref_primary_10_1016_j_carbon_2025_120497
crossref_primary_10_1002_advs_202105723
crossref_primary_10_1002_smll_202405909
crossref_primary_10_1016_j_desal_2023_116891
crossref_primary_10_1002_smll_202500300
crossref_primary_10_1002_eom2_12283
crossref_primary_10_1002_aenm_202103972
crossref_primary_10_1016_j_cej_2022_135293
crossref_primary_10_1002_aenm_202202843
crossref_primary_10_1002_smll_202405227
crossref_primary_10_3390_nano14110975
crossref_primary_10_1021_acsaem_5c00292
crossref_primary_10_1016_j_jcis_2023_08_187
crossref_primary_10_1002_anie_202204776
crossref_primary_10_1002_adfm_202413205
crossref_primary_10_1002_anie_202407315
crossref_primary_10_3389_fenrg_2023_1325316
crossref_primary_10_1002_smll_202412784
crossref_primary_10_1002_adfm_202303319
Cites_doi 10.1103/PhysRevB.91.134116
10.1038/s41560-019-0338-x
10.1021/acsaem.8b00821
10.1002/adma.202006702
10.1016/j.ceramint.2018.09.287
10.1016/j.ensm.2018.02.014
10.1039/C9TA11542K
10.1002/anie.202013812
10.1002/adma.201905517
10.1021/acsami.6b00831
10.1021/acsaem.9b00027
10.1021/acsami.6b13925
10.1002/adfm.201605989
10.1016/j.cej.2020.124789
10.1016/j.ensm.2017.11.003
10.1039/C9TA07551H
10.1002/adfm.202009694
10.1016/j.nanoen.2018.03.036
10.1016/j.mattod.2019.09.018
10.1002/adfm.201806752
10.1021/ja502133j
10.1039/C3EE40795K
10.1016/0025-5408(78)90023-5
10.1021/cm901452z
10.1002/aenm.201703022
10.1038/s41560-018-0199-8
10.1016/j.jpowsour.2019.01.074
10.1021/jacs.8b10488
10.1039/C9TA08415K
10.1016/j.ensm.2018.12.007
10.1039/C8TA05069D
10.1021/acs.chemmater.7b03027
10.1002/adfm.202008514
10.1201/9780824741389
10.1016/j.jpowsour.2019.05.003
10.1016/j.ensm.2019.03.029
10.1016/j.ensm.2019.09.020
10.1016/0167-2738(94)90408-1
10.1016/j.electacta.2019.05.061
10.1021/acsenergylett.8b02527
10.1016/j.jiec.2018.04.022
10.1021/ja312241y
10.1002/anie.201801737
10.1016/j.joule.2017.11.004
10.1021/acsami.9b03940
10.1038/nenergy.2017.12
10.1002/smll.201905620
10.1149/1.1519970
10.1039/C8NR06980H
10.1016/j.electacta.2004.03.065
10.1002/adma.202002325
10.1073/pnas.1712895115
10.1016/j.jpowsour.2010.07.020
10.1016/j.mattod.2018.04.007
10.1038/ncomms11794
10.1021/acscentsci.7b00480
10.1016/j.elecom.2006.07.037
10.1021/acsami.8b05185
10.1126/science.192.4244.1126
10.1016/j.jallcom.2019.06.321
10.1039/C7CS00863E
10.1016/j.joule.2018.11.025
10.1016/j.trechm.2019.06.007
10.1039/C9TA09935B
10.1016/j.nanoen.2019.104172
10.1126/science.aay8672
10.1002/adma.202006323
10.1002/aenm.201901604
10.1002/aenm.202003521
10.1126/science.1212741
10.1002/anie.201811955
10.1016/j.ensm.2019.04.013
10.1016/j.ensm.2018.09.015
10.1021/cr030203g
10.1021/acsami.7b15117
10.1039/C9TA07876B
10.1149/1.2095462
10.1002/adfm.202009805
10.1021/acsami.8b22156
10.1016/j.joule.2018.03.008
10.1002/aenm.201901796
10.1021/acsenergylett.8b00935
10.1002/cssc.201801445
10.1021/acs.nanolett.8b00183
10.1002/aenm.202002373
10.1002/aenm.202001440
10.1021/acsenergylett.6b00650
10.1002/aenm.201903422
10.1149/1.1850854
10.1038/s41560-021-00783-z
10.1039/C8TA11193F
10.1039/C8TA05354E
10.1021/acsnano.9b08803
10.1002/adma.201903248
10.1002/adfm.201908868
10.1016/j.nanoen.2018.04.078
10.1142/S1793292020500332
10.1002/smll.201704371
10.1002/smll.201802244
10.1016/j.nanoen.2019.02.048
10.1016/j.jpowsour.2007.12.081
10.1016/j.nanoen.2020.105481
10.1016/S0167-2738(02)00080-2
10.1002/anie.201807034
10.1038/nnano.2017.16
10.1002/aenm.201901932
10.1016/j.electacta.2015.04.168
10.1002/adfm.201902220
10.1002/adfm.201904547
10.1016/j.jpowsour.2013.12.099
10.1016/j.jpowsour.2019.226912
10.1039/C4CP03590A
10.1002/adfm.201910777
10.1021/acs.nanolett.0c00316
10.1073/pnas.1803634115
10.1016/j.ensm.2019.11.005
10.1002/adma.202008084
10.1021/acsami.9b07942
10.1002/aenm.202003416
10.1016/j.jpowsour.2020.227833
10.1016/j.joule.2017.06.004
10.1002/aenm.202003520
10.1016/B978-044452745-5.00184-2
10.1002/adfm.201808847
10.1021/acsaem.9b00537
10.1103/PhysRevA.42.7355
10.1002/adma.202000399
10.1002/adfm.202009917
10.1016/j.chempr.2018.05.002
10.1002/aenm.201803722
10.1038/s41560-017-0047-2
10.1002/smll.201804413
10.1002/adma.201905219
10.1246/cl.181050
10.1016/j.ensm.2019.11.007
10.1038/s41467-020-20339-1
10.1002/admi.201900186
10.1038/s41467-020-14550-3
10.1021/jacs.9b11750
10.1016/S0378-7753(02)00603-1
10.1016/j.jpowsour.2012.12.106
10.1039/C8TA09380F
10.1021/acsenergylett.7b00149
10.1038/s41560-020-0575-z
10.1021/acsaem.9b00369
10.1002/adma.202008081
10.1016/j.nanoen.2018.11.005
10.1149/2.0991914jes
10.1021/cr020731c
10.1016/j.ensm.2018.12.020
10.1002/adfm.202001444
10.1016/0378-7753(93)80099-B
10.1038/s41586-018-0397-3
10.1002/9783527637188
10.1002/advs.201900943
10.1016/j.nanoen.2019.103854
10.1039/C8TA11449H
10.1038/35104644
10.1039/C9TA03713F
10.1039/C8TA12539B
10.1002/aenm.201400993
10.1016/j.ensm.2018.11.003
10.1016/S0378-7753(98)00067-6
10.1002/adfm.201902496
10.1002/adma.201906221
10.1016/S0378-7753(98)00242-0
ContentType Journal Article
Copyright 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
Copyright_xml – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202101111
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection (via ProQuest)
ProQuest research library
Science Database (via ProQuest SciTech Premium Collection)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_f7a0f2d096ef486f98d5700364cddebb
PMC8425877
10_1002_advs_202101111
ADVS2704
Genre reviewArticle
GrantInformation_xml – fundername: Tianjin Natural Science Foundation for Distinguished Young Scholar
  funderid: 18JCJQJC46500
– fundername: National Youth Talent Support Program
– fundername: National Natural Science Foundation of China and Guangdong Province
  funderid: U1601216
– fundername: National Natural Science Foundation for Excellent Young Scholar
  funderid: 51722403
– fundername: National Natural Science Foundation for Excellent Young Scholar
  grantid: 51722403
– fundername: National Natural Science Foundation of China and Guangdong Province
  grantid: U1601216
– fundername: Tianjin Natural Science Foundation for Distinguished Young Scholar
  grantid: 18JCJQJC46500
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IGS
PHGZM
PHGZT
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5064-ba60403dff6a70a1fb910e91c4613afec6db8b4e51a4afd6669ad62ed924ea353
IEDL.DBID DOA
ISICitedReferencesCount 441
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000668526600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Tue Oct 14 18:59:12 EDT 2025
Tue Nov 04 01:52:00 EST 2025
Fri Sep 05 09:51:37 EDT 2025
Fri Jul 25 05:42:32 EDT 2025
Sat Nov 29 07:25:19 EST 2025
Tue Nov 18 20:05:28 EST 2025
Wed Jan 22 16:29:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5064-ba60403dff6a70a1fb910e91c4613afec6db8b4e51a4afd6669ad62ed924ea353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1852-5860
OpenAccessLink https://doaj.org/article/f7a0f2d096ef486f98d5700364cddebb
PMID 34196478
PQID 2570210416
PQPubID 4365299
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_f7a0f2d096ef486f98d5700364cddebb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8425877
proquest_miscellaneous_2547540820
proquest_journals_2570210416
crossref_primary_10_1002_advs_202101111
crossref_citationtrail_10_1002_advs_202101111
wiley_primary_10_1002_advs_202101111_ADVS2704
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2018; 560
2020; 20
2019; 11
2019; 13
2019; 15
2019; 17
2013; 244
2020; 16
2020; 15
1994; 69
2019; 18
2020; 11
2020; 10
2011; 196
2014; 254
2014; 136
2019; 166
2018; 49
2018; 47
1997; 268
2018; 6
2021; 79
2010; 22
1990; 42
2018; 8
2018; 3
2018; 2
2018; 4
2019; 20
2018; 1
2019; 22
2019; 21
2019; 23
2014; 16
2002; 148
2019; 29
2020; 452
2015; 91
2019; 316
2019; 437
2019; 430
2001; 414
2019; 7
2019; 9
2019; 4
2019; 3
2019; 6
2019; 31
2020; 142
2019; 2
2019; 1
2002; 5
1993; 43
2020; 33
2020; 32
1999
2018; 18
2016; 7
2004; 50
2020; 30
2020; 393
2019; 45
2018; 115
2019; 48
2020; 26
2020; 25
1998; 74
2021; 60
2018; 11
2018; 10
2016; 8
2018; 14
2017; 1
2017; 2
2019; 803
2019; 55
2019; 59
2019; 58
2019; 366
2003; 114
1999; 81
2017; 9
2020; 8
2020; 5
2021; 31
2015; 170
2021; 33
2019; 63
2020; 49
1988; 135
2014; 7
2011; 334
2021; 6
2004; 104
2015; 5
2005; 152
2018; 140
2017; 27
2009
2006; 8
2017; 29
1978; 13
1976; 192
2018; 65
2021; 12
2021; 11
2021
2017; 12
2013; 135
2019; 416
2020; 67
2008; 178
2012; 159
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
Ferrese A. (e_1_2_8_9_1) 2012; 159
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Boyle D. T. (e_1_2_8_171_1) 2021
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
Barton J. L. (e_1_2_8_42_1) 1997; 268
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Kurzweil P. (e_1_2_8_8_1) 2009
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
Kanamura K. (e_1_2_8_27_1) 2009
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 186
  year: 2021
  publication-title: Nat. Commun.
– volume: 60
  start-page: 7770
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 42
  start-page: 7355
  year: 1990
  publication-title: Phys. Rev. A
– volume: 49
  start-page: 403
  year: 2018
  publication-title: Nano Energy
– volume: 192
  start-page: 1126
  year: 1976
  publication-title: Science
– volume: 45
  start-page: 30
  year: 2019
  publication-title: Ceram. Int.
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 10
  start-page: 2469
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  year: 2018
  publication-title: Small
– volume: 152
  start-page: A396
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 4426
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 26
  start-page: 334
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 732
  year: 2019
  publication-title: Joule
– volume: 7
  start-page: 513
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 1569
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 104
  start-page: 4271
  year: 2004
  publication-title: Chem. Rev.
– volume: 48
  start-page: 429
  year: 2019
  publication-title: Chem. Lett.
– volume: 148
  start-page: 405
  year: 2002
  publication-title: Solid State Ionics
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 23
  year: 1978
  publication-title: Mater. Res. Bull.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 97
  year: 2018
  publication-title: ACS Cent. Sci.
– volume: 7
  start-page: 2184
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 1877
  year: 2018
  publication-title: Chem
– volume: 115
  start-page: 1156
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 69
  start-page: 173
  year: 1994
  publication-title: Solid State Ionics
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 2
  start-page: 3896
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 50
  start-page: 535
  year: 2004
  publication-title: Electrochim. Acta
– volume: 81
  start-page: 925
  year: 1999
  publication-title: J. Power Sources
– volume: 22
  start-page: 142
  year: 2019
  publication-title: Mater. Today
– volume: 14
  start-page: 22
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 135
  start-page: 2914
  year: 1988
  publication-title: J. Electrochem. Soc.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 63
  year: 2019
  publication-title: Nano Energy
– volume: 21
  start-page: 180
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 15
  year: 2020
  publication-title: Nano
– volume: 18
  start-page: 205
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 560
  start-page: 345
  year: 2018
  publication-title: Nature
– volume: 79
  year: 2021
  publication-title: Nano Energy
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 159
  year: 2012
  publication-title: Elsevier
– volume: 7
  start-page: 594
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 587
  year: 2010
  publication-title: Chem. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3808
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 371
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 47
  start-page: 503
  year: 2018
  publication-title: Nano Energy
– volume: 104
  start-page: 4303
  year: 2004
  publication-title: Chem. Rev.
– volume: 4
  start-page: 483
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 563
  year: 2017
  publication-title: Joule
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 267
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 55
  start-page: 316
  year: 2019
  publication-title: Nano Energy
– volume: 5
  start-page: 299
  year: 2020
  publication-title: Nat. Energy
– volume: 58
  start-page: 1094
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 833
  year: 2018
  publication-title: Joule
– volume: 803
  start-page: 1075
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 178
  start-page: 765
  year: 2008
  publication-title: J. Power Sources
– volume: 3
  start-page: 739
  year: 2018
  publication-title: Nat. Energy
– volume: 11
  start-page: 2710
  year: 2019
  publication-title: Nanoscale
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 303
  year: 2021
  publication-title: Nat. Energy
– volume: 135
  start-page: 4450
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 430
  start-page: 130
  year: 2019
  publication-title: J. Power Sources
– year: 2009
– volume: 91
  year: 2015
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 3642
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 7
  start-page: 9530
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 254
  start-page: 168
  year: 2014
  publication-title: J. Power Sources
– volume: 20
  start-page: 3403
  year: 2020
  publication-title: Nano Lett.
– volume: 316
  start-page: 52
  year: 2019
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 664
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 184
  year: 2018
  publication-title: Joule
– volume: 196
  start-page: 13
  year: 2011
  publication-title: J. Power Sources
– volume: 393
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 25
  start-page: 644
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 2059
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 268
  start-page: 485
  year: 1997
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 11
  start-page: 829
  year: 2020
  publication-title: Nat. Commun.
– volume: 3
  start-page: 16
  year: 2018
  publication-title: Nat. Energy
– volume: 16
  year: 2020
  publication-title: Small
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 924
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 416
  start-page: 141
  year: 2019
  publication-title: J. Power Sources
– volume: 18
  start-page: 2067
  year: 2018
  publication-title: Nano Lett.
– volume: 244
  start-page: 363
  year: 2013
  publication-title: J. Power Sources
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 170
  start-page: 353
  year: 2015
  publication-title: Electrochim. Acta
– volume: 142
  start-page: 2438
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 3821
  year: 2018
  publication-title: ChemSusChem
– volume: 5
  start-page: A286
  year: 2002
  publication-title: Electrochem. Solid‐State Lett.
– volume: 43
  start-page: 27
  year: 1993
  publication-title: J. Power Sources
– volume: 59
  start-page: 500
  year: 2019
  publication-title: Nano Energy
– volume: 33
  start-page: 56
  year: 2020
  publication-title: Mater. Today
– volume: 8
  start-page: 2021
  year: 2020
  publication-title: J. Mater. Chem. A
– year: 2021
  publication-title: Nat. Energy
– volume: 57
  start-page: 5072
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 136
  start-page: 7395
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 115
  start-page: 5676
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 23
  start-page: 556
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 17
  start-page: 284
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 114
  start-page: 277
  year: 2003
  publication-title: J. Power Sources
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 15
  year: 2019
  publication-title: Small
– volume: 1
  start-page: 693
  year: 2019
  publication-title: Trends Chem.
– volume: 20
  start-page: 291
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 437
  year: 2019
  publication-title: J. Power Sources
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 1639
  year: 2006
  publication-title: Electrochem. Commun.
– volume: 29
  start-page: 9182
  year: 2017
  publication-title: Chem. Mater.
– volume: 7
  start-page: 3391
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 452
  year: 2020
  publication-title: J. Power Sources
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 74
  start-page: 219
  year: 1998
  publication-title: J. Power Sources
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 65
  start-page: 137
  year: 2018
  publication-title: J. Ind. Eng. Chem.
– volume: 22
  start-page: 29
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 366
  start-page: 426
  year: 2019
  publication-title: Science
– volume: 2
  start-page: 2708
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 4
  start-page: 180
  year: 2019
  publication-title: Nat. Energy
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
– year: 1999
– ident: e_1_2_8_83_1
  doi: 10.1103/PhysRevB.91.134116
– ident: e_1_2_8_58_1
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_8_94_1
  doi: 10.1021/acsaem.8b00821
– ident: e_1_2_8_124_1
  doi: 10.1002/adma.202006702
– ident: e_1_2_8_51_1
  doi: 10.1016/j.ceramint.2018.09.287
– ident: e_1_2_8_67_1
  doi: 10.1016/j.ensm.2018.02.014
– ident: e_1_2_8_112_1
  doi: 10.1039/C9TA11542K
– ident: e_1_2_8_17_1
  doi: 10.1002/anie.202013812
– volume-title: Encyclopedia of Electrochemical Power Sources
  year: 2009
  ident: e_1_2_8_8_1
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201905517
– ident: e_1_2_8_117_1
  doi: 10.1021/acsami.6b00831
– ident: e_1_2_8_159_1
  doi: 10.1021/acsaem.9b00027
– ident: e_1_2_8_118_1
  doi: 10.1021/acsami.6b13925
– ident: e_1_2_8_73_1
  doi: 10.1002/adfm.201605989
– ident: e_1_2_8_96_1
  doi: 10.1016/j.cej.2020.124789
– ident: e_1_2_8_123_1
  doi: 10.1016/j.ensm.2017.11.003
– ident: e_1_2_8_151_1
  doi: 10.1039/C9TA07551H
– ident: e_1_2_8_45_1
  doi: 10.1002/adfm.202009694
– ident: e_1_2_8_170_1
  doi: 10.1016/j.nanoen.2018.03.036
– ident: e_1_2_8_11_1
  doi: 10.1016/j.mattod.2019.09.018
– ident: e_1_2_8_121_1
  doi: 10.1002/adfm.201806752
– ident: e_1_2_8_37_1
  doi: 10.1021/ja502133j
– ident: e_1_2_8_65_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_8_84_1
  doi: 10.1016/0025-5408(78)90023-5
– ident: e_1_2_8_157_1
  doi: 10.1021/cm901452z
– ident: e_1_2_8_48_1
  doi: 10.1002/aenm.201703022
– ident: e_1_2_8_53_1
  doi: 10.1038/s41560-018-0199-8
– ident: e_1_2_8_135_1
  doi: 10.1016/j.jpowsour.2019.01.074
– ident: e_1_2_8_133_1
  doi: 10.1021/jacs.8b10488
– ident: e_1_2_8_114_1
  doi: 10.1039/C9TA08415K
– ident: e_1_2_8_140_1
  doi: 10.1016/j.ensm.2018.12.007
– ident: e_1_2_8_131_1
  doi: 10.1039/C8TA05069D
– ident: e_1_2_8_81_1
  doi: 10.1021/acs.chemmater.7b03027
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.202008514
– ident: e_1_2_8_85_1
  doi: 10.1201/9780824741389
– ident: e_1_2_8_127_1
  doi: 10.1016/j.jpowsour.2019.05.003
– ident: e_1_2_8_144_1
  doi: 10.1016/j.ensm.2019.03.029
– ident: e_1_2_8_41_1
  doi: 10.1016/j.ensm.2019.09.020
– ident: e_1_2_8_6_1
  doi: 10.1016/0167-2738(94)90408-1
– ident: e_1_2_8_153_1
  doi: 10.1016/j.electacta.2019.05.061
– ident: e_1_2_8_158_1
  doi: 10.1021/acsenergylett.8b02527
– ident: e_1_2_8_108_1
  doi: 10.1016/j.jiec.2018.04.022
– ident: e_1_2_8_154_1
  doi: 10.1021/ja312241y
– ident: e_1_2_8_91_1
  doi: 10.1002/anie.201801737
– ident: e_1_2_8_62_1
  doi: 10.1016/j.joule.2017.11.004
– ident: e_1_2_8_155_1
  doi: 10.1021/acsami.9b03940
– ident: e_1_2_8_77_1
  doi: 10.1038/nenergy.2017.12
– ident: e_1_2_8_137_1
  doi: 10.1002/smll.201905620
– ident: e_1_2_8_15_1
  doi: 10.1149/1.1519970
– ident: e_1_2_8_126_1
  doi: 10.1039/C8NR06980H
– ident: e_1_2_8_34_1
  doi: 10.1016/j.electacta.2004.03.065
– ident: e_1_2_8_56_1
  doi: 10.1002/adma.202002325
– ident: e_1_2_8_93_1
  doi: 10.1073/pnas.1712895115
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jpowsour.2010.07.020
– ident: e_1_2_8_167_1
  doi: 10.1016/j.mattod.2018.04.007
– ident: e_1_2_8_95_1
  doi: 10.1038/ncomms11794
– ident: e_1_2_8_86_1
  doi: 10.1021/acscentsci.7b00480
– volume: 159
  start-page: A1615
  year: 2012
  ident: e_1_2_8_9_1
  publication-title: Elsevier
– ident: e_1_2_8_35_1
  doi: 10.1016/j.elecom.2006.07.037
– ident: e_1_2_8_78_1
  doi: 10.1021/acsami.8b05185
– ident: e_1_2_8_13_1
  doi: 10.1126/science.192.4244.1126
– ident: e_1_2_8_116_1
  doi: 10.1016/j.jallcom.2019.06.321
– ident: e_1_2_8_5_1
  doi: 10.1039/C7CS00863E
– ident: e_1_2_8_40_1
  doi: 10.1016/j.joule.2018.11.025
– ident: e_1_2_8_60_1
  doi: 10.1016/j.trechm.2019.06.007
– ident: e_1_2_8_100_1
  doi: 10.1039/C9TA09935B
– ident: e_1_2_8_125_1
  doi: 10.1016/j.nanoen.2019.104172
– ident: e_1_2_8_57_1
  doi: 10.1126/science.aay8672
– ident: e_1_2_8_150_1
  doi: 10.1002/adma.202006323
– ident: e_1_2_8_97_1
  doi: 10.1002/aenm.201901604
– ident: e_1_2_8_26_1
  doi: 10.1002/aenm.202003521
– ident: e_1_2_8_10_1
  doi: 10.1126/science.1212741
– ident: e_1_2_8_47_1
  doi: 10.1002/anie.201811955
– ident: e_1_2_8_165_1
  doi: 10.1016/j.ensm.2019.04.013
– ident: e_1_2_8_92_1
  doi: 10.1016/j.ensm.2018.09.015
– ident: e_1_2_8_46_1
  doi: 10.1021/cr030203g
– ident: e_1_2_8_69_1
  doi: 10.1021/acsami.7b15117
– ident: e_1_2_8_115_1
  doi: 10.1039/C9TA07876B
– ident: e_1_2_8_66_1
  doi: 10.1149/1.2095462
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.202009805
– ident: e_1_2_8_68_1
  doi: 10.1021/acsami.8b22156
– ident: e_1_2_8_28_1
  doi: 10.1016/j.joule.2018.03.008
– ident: e_1_2_8_141_1
  doi: 10.1002/aenm.201901796
– ident: e_1_2_8_163_1
  doi: 10.1021/acsenergylett.8b00935
– ident: e_1_2_8_44_1
  doi: 10.1002/cssc.201801445
– ident: e_1_2_8_145_1
  doi: 10.1021/acs.nanolett.8b00183
– volume: 268
  start-page: 485
  year: 1997
  ident: e_1_2_8_42_1
  publication-title: Proc. R. Soc. London, Ser. A
– ident: e_1_2_8_166_1
  doi: 10.1002/aenm.202002373
– ident: e_1_2_8_18_1
  doi: 10.1002/aenm.202001440
– ident: e_1_2_8_52_1
  doi: 10.1021/acsenergylett.6b00650
– ident: e_1_2_8_103_1
  doi: 10.1002/aenm.201903422
– ident: e_1_2_8_98_1
  doi: 10.1149/1.1850854
– ident: e_1_2_8_162_1
  doi: 10.1038/s41560-021-00783-z
– ident: e_1_2_8_132_1
  doi: 10.1039/C8TA11193F
– ident: e_1_2_8_90_1
  doi: 10.1039/C8TA05354E
– ident: e_1_2_8_105_1
  doi: 10.1021/acsnano.9b08803
– ident: e_1_2_8_74_1
  doi: 10.1002/adma.201903248
– ident: e_1_2_8_22_1
  doi: 10.1002/adfm.201908868
– ident: e_1_2_8_164_1
  doi: 10.1016/j.nanoen.2018.04.078
– ident: e_1_2_8_1_1
  doi: 10.1142/S1793292020500332
– ident: e_1_2_8_147_1
  doi: 10.1002/smll.201704371
– ident: e_1_2_8_88_1
  doi: 10.1002/smll.201802244
– ident: e_1_2_8_128_1
  doi: 10.1016/j.nanoen.2019.02.048
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jpowsour.2007.12.081
– ident: e_1_2_8_152_1
  doi: 10.1016/j.nanoen.2020.105481
– ident: e_1_2_8_55_1
  doi: 10.1016/S0167-2738(02)00080-2
– ident: e_1_2_8_79_1
  doi: 10.1002/anie.201807034
– year: 2021
  ident: e_1_2_8_171_1
  publication-title: Nat. Energy
– ident: e_1_2_8_4_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_8_119_1
  doi: 10.1002/aenm.201901932
– ident: e_1_2_8_72_1
  doi: 10.1016/j.electacta.2015.04.168
– ident: e_1_2_8_76_1
  doi: 10.1002/adfm.201902220
– ident: e_1_2_8_107_1
  doi: 10.1002/adfm.201904547
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jpowsour.2013.12.099
– ident: e_1_2_8_156_1
  doi: 10.1016/j.jpowsour.2019.226912
– ident: e_1_2_8_32_1
  doi: 10.1039/C4CP03590A
– ident: e_1_2_8_49_1
  doi: 10.1002/adfm.201910777
– ident: e_1_2_8_129_1
  doi: 10.1021/acs.nanolett.0c00316
– ident: e_1_2_8_80_1
  doi: 10.1073/pnas.1803634115
– ident: e_1_2_8_109_1
  doi: 10.1016/j.ensm.2019.11.005
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.202008084
– ident: e_1_2_8_71_1
  doi: 10.1021/acsami.9b07942
– ident: e_1_2_8_16_1
  doi: 10.1002/aenm.202003416
– ident: e_1_2_8_82_1
  doi: 10.1016/j.jpowsour.2020.227833
– ident: e_1_2_8_61_1
  doi: 10.1016/j.joule.2017.06.004
– ident: e_1_2_8_24_1
  doi: 10.1002/aenm.202003520
– ident: e_1_2_8_29_1
  doi: 10.1016/B978-044452745-5.00184-2
– ident: e_1_2_8_139_1
  doi: 10.1002/adfm.201808847
– ident: e_1_2_8_146_1
  doi: 10.1021/acsaem.9b00537
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevA.42.7355
– ident: e_1_2_8_113_1
  doi: 10.1002/adma.202000399
– ident: e_1_2_8_143_1
  doi: 10.1002/adfm.202009917
– ident: e_1_2_8_160_1
  doi: 10.1016/j.chempr.2018.05.002
– ident: e_1_2_8_169_1
  doi: 10.1002/aenm.201803722
– ident: e_1_2_8_59_1
  doi: 10.1038/s41560-017-0047-2
– ident: e_1_2_8_111_1
  doi: 10.1002/smll.201804413
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201905219
– ident: e_1_2_8_148_1
  doi: 10.1246/cl.181050
– ident: e_1_2_8_130_1
  doi: 10.1016/j.ensm.2019.11.007
– ident: e_1_2_8_87_1
  doi: 10.1038/s41467-020-20339-1
– ident: e_1_2_8_106_1
  doi: 10.1002/admi.201900186
– ident: e_1_2_8_142_1
  doi: 10.1038/s41467-020-14550-3
– ident: e_1_2_8_30_1
  doi: 10.1021/jacs.9b11750
– ident: e_1_2_8_31_1
  doi: 10.1016/S0378-7753(02)00603-1
– ident: e_1_2_8_89_1
  doi: 10.1016/j.jpowsour.2012.12.106
– ident: e_1_2_8_70_1
  doi: 10.1039/C8TA09380F
– ident: e_1_2_8_120_1
  doi: 10.1021/acsenergylett.7b00149
– ident: e_1_2_8_104_1
  doi: 10.1038/s41560-020-0575-z
– ident: e_1_2_8_136_1
  doi: 10.1021/acsaem.9b00369
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.202008081
– ident: e_1_2_8_149_1
  doi: 10.1016/j.nanoen.2018.11.005
– ident: e_1_2_8_54_1
  doi: 10.1149/2.0991914jes
– ident: e_1_2_8_7_1
  doi: 10.1021/cr020731c
– ident: e_1_2_8_161_1
  doi: 10.1016/j.ensm.2018.12.020
– ident: e_1_2_8_99_1
  doi: 10.1002/adfm.202001444
– ident: e_1_2_8_39_1
  doi: 10.1016/0378-7753(93)80099-B
– ident: e_1_2_8_168_1
  doi: 10.1038/s41586-018-0397-3
– ident: e_1_2_8_14_1
  doi: 10.1002/9783527637188
– ident: e_1_2_8_138_1
  doi: 10.1002/advs.201900943
– ident: e_1_2_8_134_1
  doi: 10.1016/j.nanoen.2019.103854
– ident: e_1_2_8_102_1
  doi: 10.1039/C8TA11449H
– ident: e_1_2_8_2_1
  doi: 10.1038/35104644
– ident: e_1_2_8_63_1
  doi: 10.1039/C9TA03713F
– ident: e_1_2_8_110_1
  doi: 10.1039/C8TA12539B
– ident: e_1_2_8_50_1
  doi: 10.1002/aenm.201400993
– ident: e_1_2_8_64_1
  doi: 10.1016/j.ensm.2018.11.003
– ident: e_1_2_8_43_1
  doi: 10.1016/S0378-7753(98)00067-6
– ident: e_1_2_8_75_1
  doi: 10.1002/adfm.201902496
– ident: e_1_2_8_101_1
  doi: 10.1002/adma.201906221
– ident: e_1_2_8_122_1
  doi: 10.1016/S0378-7753(98)00242-0
– volume-title: Encyclopedia of Electrochemical Power Sources
  year: 2009
  ident: e_1_2_8_27_1
SSID ssj0001537418
Score 2.6498713
SecondaryResourceType review_article
Snippet With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising anode...
With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g −1 , lithium metal has been considered as promising anode...
With the low redox potential of -3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g-1 , lithium metal has been considered as promising anode...
Abstract With the low redox potential of −3.04 V (vs SHE) and ultrahigh theoretical capacity of 3862 mAh g−1, lithium metal has been considered as promising...
SourceID doaj
pubmedcentral
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2101111
SubjectTerms Corrosion
coulombic efficiency
cyclic performance
Electric vehicles
Electrolytes
Energy
high energy density
Lithium
lithium anodes, lithium metal batteries
practical application
Review
Reviews
Simulation
Sulfur
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwEB7BKwcuLWVRHy0oSEjAIWoWx3ZOqK1a9QBPFYvUW-SVRqJJ-5b-fmYSJxAk4MDVcRLHM-P5xuN8A_A6ybyXnDKsPs1i5kodS3R8ccal5l5oVCHdFZsQi4W8vCwvwobbKhyrHNbEbqG2raE98kOqtobhCeKH9ze3MVWNouxqKKFxH7aIqYzNYOv4dHHx6ecuS5ETPcvA1phkh8reEUs3PooWi4k36kj7J0jz93OSv-LXzgGd7fzv0B_BdoCe0VGvK7twzzWPYTcY9yp6Gxio3z2Bc_oPkJgN0K9FiBCjk6Hkyiqqm-hDvb6qN9fRUdNabEHYOzZ9dAjmo560E2Pwp_D17PTLyXkcSi7EhpjrYq04WnVuvedKJCr1GuGEK1PD0O0r7wy3WmrmilQx5S3GPqWyPHMWwzin8iJ_BrOmbdweRCXTRYGS9poIdIRHHFpK1BhhjE6l0XOIh6mvTOAjp7IY36ueSTmrSFTVKKo5vBn73_RMHH_seUySHHsRg3bX0C6_VcEgKy9U4jOLEZzzTHJfSktU_zlnBld8jcM7GIRZBbPGV4ySnMOr8TIaJGVZVOPaDfVhoqAy3skcxER_JgOaXmnqq47am5KiUgicm07T_vGhFUKXz5lI2PO_D3YfHtI9_dG4A5itlxv3Ah6Yu3W9Wr4MNvMDQzogiQ
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS91AEB6s9tBLq7bFZ1W2UGh7CCabze7mqFLxYEWoBW9hf9aA5pX3w7_fmSQvmoKU0utmSDaz8-1-k81-A_Ap5TFqSTusMeOJCKVNNC58CZfayqgshpBti02oiwt9fV1ePjnF3-lDDB_cCBntfE0AN3Z--Cgaavw9yW1jykKofwEbWZZrKt7AxeXjV5YiJ3kWqjCH2XWSayFWyo0pPxzfYrQytQL-I9b55z-TT7lsuxidvvn_19iE1z0RZUdd5GzBWmi2YauH-px96fWov76FMzoVSDoHuMox5IvsZFWAZc7qhp3Xi5t6eceOmqnHFiTBQ9P3gNSedRKemJG_g5-n365OzpK-AEPiSMcusUYixnMfozQqNVm0SC5CmTmBJMDE4KS32opQZEaY6DETKo2XPHhM6oLJi_w9rDfTJuwAK4UtChz3aElOR0VkpaXG-FHO2Uw7O4Fk5fzK9erkVCTjtup0lXlFjqoGR03g82D_u9PleNbymMZysCI97bZhOvtV9fCsojJp5B7zuRCFlrHUnoT_cykczv8Wu7e3ioSqBzk-Ak3wIUhpJ_BxuIzwpD0X04TpkmyEKqiodzoBNYqgUYfGV5r6phX6pi1SrRT6po2gv7xohUTmB1ep2P1H-w_wihq7P-f2YH0xW4Z9eOnuF_V8dtAC6gHaqyIE
  priority: 102
  providerName: Wiley-Blackwell
Title Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202101111
https://www.proquest.com/docview/2570210416
https://www.proquest.com/docview/2547540820
https://pubmed.ncbi.nlm.nih.gov/PMC8425877
https://doaj.org/article/f7a0f2d096ef486f98d5700364cddebb
Volume 8
WOSCitedRecordID wos000668526600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7apIdeStMHdZsuKhTaHkxsWZbkYxMSEuhuTR90ezKSLBFD6pTsbn5_Z2yvWRdKLr0IVhrW9jw83yD5G4C3CQ9BS9phDSmPhS9srDHxxVxqK4Oy6EK2azahFgu9XBblTqsvOhPW0wP3ijsKyiSB14i0fRBahkLXRMmeSeEwMq2lty-inp1iqv8-OCNali1LY8KPTH1L7NxY4dBLYpKFOrL-CcL8-3zkLm7tEs_ZY3g0IEb2sb_TA7jn2ydwMMTkir0fiKM_PIVz-nyPCAkwHTEEduxk2yllxZqWfWrWl83mF8OKv8YZRKvj1NwjBmc91yaWzs_g-9npt5PzeOiUEDsinIutkRiMWR2CNCoxabCIAnyROoHZ2gTvZG21FT5PjTChxpKlMLXkvsbqy5ssz57DXnvd-hfACmHzHA0ULPHeqIDwsdBoaOWcTbWzEcRbzVVuoBGnbhZXVU-AzCvSdDVqOoJ3o_zvnkDjn5LHZIhRioivuwl0h2pwh-oud4jgcGvGaohGvASK4EUQe0bwZlzGOKLNEdP66w3JCJVT9-0kAjUx_-SGpittc9kxctNeplYKddM5yh0PWiHi-MpVIl7-jyd-BQ_pn_tzb4ewt77Z-NfwwN2um9XNDO5zUeKolnoG-8eni_LLrAsVHOf8czfi-n55MS9_4q8fF4s_tdgaNA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqKRJsgPIQAwWMBAIWUROPEzsLhEqhmlFnRiNRpLIKftJIkJR5FPFTfCP35gVBAlZdsHUcxUmO7z03ds4h5HHIvJcJrrD6iAXcpTqQkPgClkideKEBQroymxDzuTw5SRdb5Hv7Lwxuq2xjYhWobWnwG_keuq1BeQL84eXZlwBdo3B1tbXQqGFx5L59hZJt9WLyGt7vE8YO3xwfjIPGVSAwKM4WaJUAcEfW-0SJUEVeQ8Z0aWQ4ZDblnUmslpq7OFJceQv0PlU2Yc5CpeJU5RIBIX-bA9jlgGwvJrPF-59fdeIRysG06pAh21P2HFXBYegYnHrZrzIJ6DHb3_dl_sqXq4R3eO1_e1TXydWGWtP9ei7skC1X3CA7TfBa0WeNwvbzm2SM_zmicgPkbQoMmB60ljIrmhd0mq9P881nul-UFlqA1ndNMwfFCq1FSXO3ukXeXcgd3SaDoizcHUJTruMYkOw1CgQJDzw7lTAjhDE6kkYPSdC-6sw0euto-_Epq5WiWYbQyDpoDMnTrv9ZrTTyx56vEDldL1QIrxrK5cesCTiZFyr0zEKF6jyXiU-lRSuDUcINZDQNw9ttwZM1YQsu0SFnSB51hyHg4CqSKly5wT5cxGhTHg6J6OG1N6D-kSI_raTLcdFXCgHPpkL2P240A2r2lomQ3_37YB-Sy-Pj2TSbTuZH98gVPL_eBrhLBuvlxt0nl8z5Ol8tHzTzlZIPF437HyQgfzI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqghAboDzE0AJGAgGLaBKPEzsLhErLqFXb0UiA1F3wk0aCpJ3MtOqv8XXcmxcECVh1wdbxaOzk-N5zY-ccQp6HzHuZ4A6rj1jAXaoDCYkvYInUiRcaIKRrswkxm8nj43S-Rr5338LgscouJtaB2pYG35GP0W0NyhPgD2PfHouY707fnp4F6CCFO62dnUYDkQN3eQHlW_Vmfxee9QvGpu8_7uwFrcNAYFCoLdAqARBPrPeJEqGKvIbs6dLIcMhyyjuTWC01d3GkuPIWqH6qbMKcharFqdoxAsL_NcHjGFfXEZv_fL8TT1AYptOJDNlY2XPUB4dJYJga5MHaLmDAcX8_ofkrc65T3_T2_3zT7pBbLeGm280K2SBrrrhLNtqQVtFXre7263tkD79-RD0HyOYUeDHd6YxmKpoX9DBfnuSrb3S7KC20ANnvm44clDC0kSrNXXWffLqSGT0g60VZuIeEplzHMeDba5QNEh7YdyphnQhjdCSNHpGge-yZaVXY0Qzka9boR7MMYZL1MBmRl33_00Z_5I893yGK-l6oG143lIsvWRuGMi9U6JmFutV5LhOfSosGB5OEG8hzGoa31QEpa4MZ_EWPohF51l-GMIR7S6pw5Qr7cBGjeXk4ImKA3cGAhleK_KQWNMetYCkE3Jsa5f-YaAaE7QMTIX_098E-JTcA7Nnh_uxgk9zEnzdnA7fI-nKxco_JdXO-zKvFk3rhUvL5qkH_A7fEhnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confronting+the+Challenges+in+Lithium+Anodes+for+Lithium+Metal+Batteries&rft.jtitle=Advanced+science&rft.au=Qingyu+Wang&rft.au=Bin+Liu&rft.au=Yuanhao+Shen&rft.au=Jingkun+Wu&rft.date=2021-09-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=8&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202101111&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f7a0f2d096ef486f98d5700364cddebb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon