Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior
Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire‐induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experi...
Uložené v:
| Vydané v: | Global change biology Ročník 18; číslo 2; s. 630 - 641 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Blackwell Publishing Ltd
01.02.2012
Wiley-Blackwell |
| Predmet: | |
| ISSN: | 1354-1013, 1365-2486 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire‐induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates (R) through bark during experimental bole heating. Second, using data from a large‐scale fire experiment, we tested the effects of tree wood density (WD), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R, while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire‐induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low (≤20%) for thick‐barked individuals (≥18 mm) subjected to medium‐intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire‐induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests. |
|---|---|
| AbstractList | Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire‐induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates (R) through bark during experimental bole heating. Second, using data from a large‐scale fire experiment, we tested the effects of tree wood density (WD), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R, while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire‐induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low (≤20%) for thick‐barked individuals (≥18 mm) subjected to medium‐intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire‐induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests. Abstract Large-scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire-induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates (R ) through bark during experimental bole heating. Second, using data from a large-scale fire experiment, we tested the effects of tree wood density (WD), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R , while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire-induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low (≤20%) for thick-barked individuals (≥18 mm) subjected to medium-intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire-induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests. [PUBLICATION ABSTRACT] Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire‐induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates ( R ) through bark during experimental bole heating. Second, using data from a large‐scale fire experiment, we tested the effects of tree wood density ( WD ), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R , while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire‐induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low (≤20%) for thick‐barked individuals (≥18 mm) subjected to medium‐intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire‐induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests. Large-scale wildfires are expected to accelerate forest dieback in Amazonia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire-induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates (R) through bark during experimental bole heating. Second, using data from a large-scale fire experiment, we tested the effects of tree wood density (WD), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R, while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire-induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low ( less than or equal to 20%) for thick-barked individuals ( greater than or equal to 18 mm) subjected to medium-intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire-induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests. |
| Author | Coe, Michael Nepstad, Daniel C. Putz, Francis E. Bolker, Benjamin Christman, Mary C. Balch, Jennifer K. Brando, Paulo M. |
| Author_xml | – sequence: 1 givenname: Paulo M. surname: Brando fullname: Brando, Paulo M. email: pmbrando@ipam.org.br organization: Instituto de Pesquisa Ambiental da Amazônia, Av. Nazaré 669, 66035-170, Belém, Brazil – sequence: 2 givenname: Daniel C. surname: Nepstad fullname: Nepstad, Daniel C. organization: Instituto de Pesquisa Ambiental da Amazônia, Av. Nazaré 669, 66035-170, Belém, Brazil – sequence: 3 givenname: Jennifer K. surname: Balch fullname: Balch, Jennifer K. organization: Woods Hole Research Center, 149 Woods Hole Road, 02450, Falmouth, MA, USA – sequence: 4 givenname: Benjamin surname: Bolker fullname: Bolker, Benjamin organization: Departments of Mathematics & Statistics and Biology, McMaster University, 1280 Main St WStreet West Hamilton, ON, L8S4K1, Ontario, Canada – sequence: 5 givenname: Mary C. surname: Christman fullname: Christman, Mary C. organization: Department of Statistics and Institute of Food and Agricultural Sciences, University of Florida, FL, PO Box 11033932611, Gainesville, USA – sequence: 6 givenname: Michael surname: Coe fullname: Coe, Michael organization: Woods Hole Research Center, 149 Woods Hole Road, MA, 02450, Falmouth, USA – sequence: 7 givenname: Francis E. surname: Putz fullname: Putz, Francis E. organization: Department of Biology and School of Natural Resources and Environment, University of Florida, FL, PO Box 11852632611, Gainesville, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25407414$$DView record in Pascal Francis |
| BookMark | eNqNkV9rFDEUxQepYFv9DkEQXzrTm2QykwgKdbFbsfgHlIIvITOT0KyzyZpk7W4_vRmn9qFPzUsu5PzOvbnnqDhw3umiQBgqnM_pqsK0YSWpeVMRwLgCwiitdk-Kw_uHg6lmdYkB02fFUYwrAKAEmsNid26DLq0btr0eUApao7UPSY027ZF1SCGnfQp-Y3s1IuODjukNStcaBT_qiLxBnQq_MqlsiiezQ7S3-gTdeD-gQbs4WSk3IJNboU5fqz_Wh-fFU6PGqF_c3cfFj_MP3xcX5eWX5cfF2WXZM2hoqSgxAyjKOWlY13KFgUIDhLedwm0NgxCgMRhsOAfeDx3vhGqZoILoxtQ9PS5ez76b4H9v8_RybWOvx1Hlj22jFAQ41KJts_LlA-XKb4PLw0mBWS1420yiV3ciFfNGTFCut1Fugl2rsJeE1dDWuM66d7OuDz7GoI3sbVLJejdtapQY5BSfXMkpJTmlJKf45L_45C4b8AcG_3s8An07ozd21PtHc3K5eD9VmS9n3sakd_d8jlnmDbRMXn1eyk_s21d2sfgpr-hf2_bCKg |
| CitedBy_id | crossref_primary_10_1007_s11258_022_01239_4 crossref_primary_10_3732_ajb_1400412 crossref_primary_10_1007_s10669_017_9625_x crossref_primary_10_1038_s41586_021_03876_7 crossref_primary_10_3390_e26060506 crossref_primary_10_1111_1365_2745_13343 crossref_primary_10_1073_pnas_1712356115 crossref_primary_10_1071_WF14182 crossref_primary_10_5194_bg_15_233_2018 crossref_primary_10_1007_s11056_017_9594_4 crossref_primary_10_1029_2020JG005677 crossref_primary_10_1111_brv_12687 crossref_primary_10_1016_j_foreco_2019_117497 crossref_primary_10_1002_2015GB005135 crossref_primary_10_1111_nph_14628 crossref_primary_10_1016_j_foreco_2017_02_042 crossref_primary_10_1111_j_1469_8137_2012_04079_x crossref_primary_10_1371_journal_pone_0039810 crossref_primary_10_1038_s41598_024_77924_3 crossref_primary_10_1111_ele_13409 crossref_primary_10_1111_ele_13974 crossref_primary_10_3390_fire8010002 crossref_primary_10_7717_peerj_13270 crossref_primary_10_1002_ece3_1143 crossref_primary_10_1016_j_foreco_2020_118372 crossref_primary_10_1111_jvs_12086 crossref_primary_10_3389_ffgc_2020_00082 crossref_primary_10_1016_j_jhazmat_2025_138881 crossref_primary_10_1016_j_foreco_2019_117587 crossref_primary_10_1111_nph_15027 crossref_primary_10_1111_pce_14097 crossref_primary_10_1111_nph_13889 crossref_primary_10_1007_s40626_014_0002_6 crossref_primary_10_1088_1748_9326_aae934 crossref_primary_10_1016_j_foreco_2025_122584 crossref_primary_10_1111_gcb_14659 crossref_primary_10_1016_j_ecolecon_2016_09_019 crossref_primary_10_1111_nph_15013 crossref_primary_10_1371_journal_pbio_1001569 crossref_primary_10_1111_gcb_12916 crossref_primary_10_1016_j_foreco_2020_118361 crossref_primary_10_1186_s42408_022_00128_5 crossref_primary_10_1016_j_rse_2018_03_019 crossref_primary_10_1186_s42408_021_00093_5 crossref_primary_10_1111_j_1461_0248_2012_01771_x crossref_primary_10_1016_j_scitotenv_2022_158705 crossref_primary_10_1016_j_foreco_2014_12_020 crossref_primary_10_1016_j_foreco_2022_120070 crossref_primary_10_1016_j_ppees_2018_07_006 crossref_primary_10_1016_j_foreco_2016_08_047 crossref_primary_10_1016_j_tree_2012_10_004 crossref_primary_10_3389_ffgc_2021_731020 crossref_primary_10_1111_aec_12318 crossref_primary_10_1186_s42408_024_00250_6 crossref_primary_10_1029_2021RG000766 crossref_primary_10_1111_jvs_12823 crossref_primary_10_3390_fire8090342 crossref_primary_10_1016_j_biocon_2018_02_008 crossref_primary_10_1007_s00468_022_02364_3 crossref_primary_10_5194_bg_13_5799_2016 crossref_primary_10_1007_s10452_021_09904_y crossref_primary_10_1016_j_foreco_2024_122265 crossref_primary_10_1017_S0266467420000176 crossref_primary_10_1111_nph_15871 crossref_primary_10_3390_f11010105 crossref_primary_10_1111_nph_12001 crossref_primary_10_1111_btp_70000 crossref_primary_10_1111_1365_2745_12160 crossref_primary_10_3390_atmos10100588 crossref_primary_10_3390_fire7060171 crossref_primary_10_1038_s41477_021_00879_0 crossref_primary_10_1016_j_foreco_2020_118292 crossref_primary_10_1016_j_foreco_2014_04_009 crossref_primary_10_1111_ele_13251 crossref_primary_10_1007_s00468_013_0971_0 crossref_primary_10_1007_s40626_021_00201_5 crossref_primary_10_1111_j_1654_1103_2012_01448_x crossref_primary_10_1016_j_ppees_2021_125632 crossref_primary_10_3390_f11020164 crossref_primary_10_1016_j_foreco_2016_03_008 crossref_primary_10_1016_j_ppees_2021_125630 crossref_primary_10_1029_2021GL093789 crossref_primary_10_1111_1365_2745_12991 crossref_primary_10_1111_ele_12725 crossref_primary_10_1038_s41559_019_0882_6 crossref_primary_10_1177_0734904114568858 crossref_primary_10_1017_S0266467412000636 crossref_primary_10_1073_pnas_2019377118 crossref_primary_10_1111_j_1461_0248_2012_01789_x crossref_primary_10_1111_gcb_15028 crossref_primary_10_1111_1365_2664_12737 crossref_primary_10_1002_jqs_3521 crossref_primary_10_1071_WF12215 crossref_primary_10_1111_jvs_12171 crossref_primary_10_3390_rs12233864 crossref_primary_10_1016_j_foreco_2013_08_036 crossref_primary_10_1038_s41597_023_02468_6 crossref_primary_10_1111_gcb_13087 crossref_primary_10_1007_s12080_018_0366_3 crossref_primary_10_3389_ffgc_2023_1024101 crossref_primary_10_1111_1365_2435_12158 crossref_primary_10_1002_2014GB005008 crossref_primary_10_1002_pan3_10510 crossref_primary_10_1371_journal_pone_0191027 crossref_primary_10_3389_ffgc_2022_793385 crossref_primary_10_1016_j_foreco_2021_119202 crossref_primary_10_1890_12_1629_1 crossref_primary_10_1186_s42408_024_00294_8 crossref_primary_10_1111_nph_14916 crossref_primary_10_1016_j_pecon_2024_03_002 crossref_primary_10_1080_17550874_2013_816800 crossref_primary_10_1186_s42408_025_00360_9 crossref_primary_10_3390_rs14071545 crossref_primary_10_3390_f12030365 crossref_primary_10_1111_aec_12084 crossref_primary_10_3389_fenvs_2021_649835 crossref_primary_10_1007_s11258_017_0751_9 crossref_primary_10_1016_j_ppees_2025_125867 crossref_primary_10_1073_pnas_1305499111 crossref_primary_10_1002_ece3_1532 crossref_primary_10_1007_s11258_015_0531_3 crossref_primary_10_1007_s40725_018_0082_7 crossref_primary_10_1111_1365_2745_13851 crossref_primary_10_1007_s11676_019_00990_1 crossref_primary_10_1016_j_foreco_2013_11_015 crossref_primary_10_1016_j_foreco_2016_01_027 crossref_primary_10_1080_17550874_2021_2008040 crossref_primary_10_1002_eap_1371 crossref_primary_10_3390_fire5020045 crossref_primary_10_1016_j_flora_2020_151609 crossref_primary_10_1016_j_foreco_2020_118095 crossref_primary_10_1111_geoj_12276 crossref_primary_10_1515_hf_2025_0069 crossref_primary_10_1016_j_ppees_2018_10_002 crossref_primary_10_1186_s40529_018_0223_0 crossref_primary_10_1111_gcb_13172 crossref_primary_10_1111_gcb_13173 crossref_primary_10_1016_j_biocon_2017_08_020 crossref_primary_10_1007_s00442_015_3259_9 crossref_primary_10_3389_ffgc_2020_00010 crossref_primary_10_1111_btp_12380 crossref_primary_10_1071_WF18118 crossref_primary_10_3390_f15122264 crossref_primary_10_1890_ES15_00065_1 crossref_primary_10_3390_rs15030696 crossref_primary_10_1071_WF18232 crossref_primary_10_1002_ece3_1317 crossref_primary_10_1111_1365_2745_13076 crossref_primary_10_1002_ajb2_70066 crossref_primary_10_1111_j_1365_2745_2012_02026_x crossref_primary_10_1016_j_foreco_2022_120354 crossref_primary_10_1111_1365_2745_13549 crossref_primary_10_3389_fpls_2024_1501584 crossref_primary_10_1088_1748_9326_aa69ce crossref_primary_10_1016_j_scitotenv_2023_164832 crossref_primary_10_1002_ecs2_2493 crossref_primary_10_1111_jbi_13386 crossref_primary_10_1007_s11258_022_01241_w crossref_primary_10_1111_gcb_13110 crossref_primary_10_1029_2018MS001368 crossref_primary_10_1007_s11295_022_01572_9 crossref_primary_10_1002_ecs2_3347 crossref_primary_10_3390_rs8100839 crossref_primary_10_1007_s40626_014_0007_1 crossref_primary_10_1111_jbi_12292 crossref_primary_10_1017_S0266467413000904 crossref_primary_10_1186_s42408_023_00205_3 crossref_primary_10_1016_j_flora_2021_151865 crossref_primary_10_1016_j_pecon_2023_04_003 crossref_primary_10_1088_1748_9326_aac331 crossref_primary_10_3390_f15020290 crossref_primary_10_1016_j_foreco_2021_119255 crossref_primary_10_1371_journal_pone_0084378 crossref_primary_10_1002_ecs2_4780 crossref_primary_10_1093_biosci_biv106 crossref_primary_10_1002_ecs2_3458 crossref_primary_10_1080_17550874_2013_798368 crossref_primary_10_3390_f16050817 crossref_primary_10_3390_f16101504 crossref_primary_10_1111_1365_2435_12372 crossref_primary_10_1111_gcb_13259 crossref_primary_10_1111_1365_2745_12118 crossref_primary_10_1017_S0266467416000559 crossref_primary_10_3389_ffgc_2022_815438 crossref_primary_10_1007_s00442_016_3638_x crossref_primary_10_1016_j_foreco_2022_120326 crossref_primary_10_1111_1365_2664_12687 crossref_primary_10_1016_j_foreco_2022_120443 crossref_primary_10_1071_WF24136 crossref_primary_10_1111_nph_17995 crossref_primary_10_1890_14_1740_1 crossref_primary_10_1146_annurev_earth_082517_010235 crossref_primary_10_3390_fire6110430 crossref_primary_10_1016_j_foreco_2023_120977 crossref_primary_10_1111_nph_12502 crossref_primary_10_3390_fire6060234 crossref_primary_10_1002_ecm_1285 crossref_primary_10_3390_rs16213943 crossref_primary_10_1073_pnas_2203200119 crossref_primary_10_1371_journal_pone_0228539 |
| Cites_doi | 10.1046/j.1365-2486.2001.00383.x 10.1016/j.tree.2008.10.008 10.1007/978-0-387-21706-2 10.1098/rstb.2007.0013 10.1111/j.1365-2486.2008.01655.x 10.1139/x26-020 10.1890/04-0385 10.1080/02827580701803544 10.1046/j.1461-0248.2003.00394.x 10.1016/S0378-1127(02)00554-6 10.1126/science.1164033 10.1016/S0378-1127(98)00447-2 10.1016/B978-012386660-8/50016-7 10.1029/2007GB003166 10.1071/WF07147 10.1017/S0266467403003328 10.1126/science.284.5421.1832 10.1126/science.1146961 10.2307/1940299 10.1038/35041539 10.1098/rstb.2007.0036 10.1890/05-0404 10.1073/pnas.0804619106 10.1016/j.foreco.2011.01.044 10.1016/S0006-3207(01)00177-X 10.1017/S0266467400010890 10.1111/j.1469-8137.2010.03350.x 10.1016/S0378-1127(01)00511-4 10.1139/X07-205 10.1890/08-0741.1 10.1126/science.1086112 10.1890/01-6029 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2 10.1126/science.1186925 10.1111/j.1365-2486.2008.01626.x 10.1175/EI150.1 10.1016/j.foreco.2010.09.029 |
| ContentType | Journal Article |
| Copyright | 2011 Blackwell Publishing Ltd 2015 INIST-CNRS Copyright © 2012 Blackwell Publishing Ltd |
| Copyright_xml | – notice: 2011 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2012 Blackwell Publishing Ltd |
| DBID | BSCLL AAYXX CITATION IQODW 7SN 7UA C1K F1W H97 L.G 7ST SOI |
| DOI | 10.1111/j.1365-2486.2011.02533.x |
| DatabaseName | Istex CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Ecology Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Environmental Sciences |
| EISSN | 1365-2486 |
| EndPage | 641 |
| ExternalDocumentID | 2558828321 25407414 10_1111_j_1365_2486_2011_02533_x GCB2533 ark_67375_WNG_K5QP5HCZ_W |
| Genre | article Feature |
| GeographicLocations | South America America Amazon Basin South America, Amazonia |
| GeographicLocations_xml | – name: Amazon Basin – name: South America, Amazonia |
| GrantInformation_xml | – fundername: NSF funderid: DEB‐ 0743703 – fundername: Gordon and Betty Moore Foundation funderid: #1963 |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN ESX WRC WUP AAYXX CITATION O8X IQODW 7SN 7UA C1K F1W H97 L.G 7ST SOI |
| ID | FETCH-LOGICAL-c5063-a32fd0a388265b78a103060287ba1740d990e10f1f8808cdb8b9a759392e6f4c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 240 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299042500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1354-1013 |
| IngestDate | Mon Oct 06 17:47:27 EDT 2025 Mon Nov 10 02:58:47 EST 2025 Mon Jul 21 09:16:21 EDT 2025 Sat Nov 29 06:02:16 EST 2025 Tue Nov 18 21:49:39 EST 2025 Wed Jan 22 16:56:08 EST 2025 Tue Nov 11 03:32:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | generalized linear models Forests Generalized linear model tree mortality Wood Mortality Tropical zone Bark forest dieback Density Dynamical climatology Thickness Climate change bark thickness Dieback Fires wood density Newton's law of cooling Tree fire Behavior Neotropical Region Amazon plant traits |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5063-a32fd0a388265b78a103060287ba1740d990e10f1f8808cdb8b9a759392e6f4c3 |
| Notes | NSF - No. DEB- 0743703 Gordon and Betty Moore Foundation - No. #1963 istex:6CA4707D266A5C284B2AC1E7D6F52181BF976BD9 ArticleID:GCB2533 Appendix S1. Equations for heat transfer rates.Appendix S2. Parameter estimates for Model I.Appendix S3. Weather conditions and flame heights.Appendix S4. Probability of fire-induced tree mortality as a function of tree size and wood density. ark:/67375/WNG-K5QP5HCZ-W SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 915498767 |
| PQPubID | 30327 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_920804977 proquest_journals_915498767 pascalfrancis_primary_25407414 crossref_citationtrail_10_1111_j_1365_2486_2011_02533_x crossref_primary_10_1111_j_1365_2486_2011_02533_x wiley_primary_10_1111_j_1365_2486_2011_02533_x_GCB2533 istex_primary_ark_67375_WNG_K5QP5HCZ_W |
| PublicationCentury | 2000 |
| PublicationDate | February 2012 |
| PublicationDateYYYYMMDD | 2012-02-01 |
| PublicationDate_xml | – month: 02 year: 2012 text: February 2012 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Global change biology |
| PublicationTitleAlternate | Glob. Change Biol |
| PublicationYear | 2012 |
| Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
| References | Heckenberger MJ, Kuikuro A, Kuikuro UT, Russell JC, Schmidt M, Fausto C, Franchetto B (2003) Amazonia 1492: pristine forest or cultural parkland? Science, 301, 1710-1714. Barlow J, Peres CA, Lagan BO, Haugaasen T (2003b) Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters, 6, 6-8. Pinard MA, Huffman J (1997) Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia. Journal of Tropical Ecology, 13, 727-740. Mantgem P van, Schwartz M (2003) Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions. Forest Ecology and Management, 178, 341-352. Balch JK, Nepstad DC, Brando PM et al. (2008) Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14, 2276-2287. Cochrane MA, Alencar A, Schulze MD, Souza CM Jr, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832. Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science, 319, 169. Nepstad D, Carvalho G, Barros A, Alencar A, Capobianco J, Bishop J (2001) Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management, 154, 395-407. Baker PJ, Bunyavejchewin S, Robinson AR (2008) The impacts of large-scale, low-intensity fires on the forests of continental South-east Asia. International Journal of Wildland Fire, 17, 782-792. Barlow J, Haugaasen T, Peres CA (2002) Effects of ground fires on understorey bird assemblages in Amazonian forests. Biological Conservation, 105, 157-169. Gutsell S, Johnson E (1996) How fire scars are formed: coupling a disturbance process to its ecological effect. Canadian Journal of Forest Research, 26, 166-174. Martin RE (1963) Thermal properties of bark. Forest Products Journal, 13, 419-426. Golding N, Betts R (2008) Fire risk in Amazonia due to climate change in the HadCM3 climate model: potential interactions with deforestation. Global Biogeochemical Cycles, 22, GB4007, doi: 10.1029/2007GB003166. Hoffmann WA, Adasme R, Haridasan M et al. (2009) Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna-forest boundaries under frequent fire in central Brazil. Ecology, 90, 1326-1337. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. Malhi Y, Aragão LEOC, Galbraith D et al. (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences, 106, 20610-20615. Sitch S, Huntingford C, Gedney N et al. (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015-2039. Phillips OL, Aragão L, Lewis S et al. (2009) Drought sensitivity of the Amazon rainforest. Science, 323, 1344-1347. VanderWeide BL, Hartnett DC (2011) Fire resistance of tree species explains historical gallery forest community composition. Forest Ecology and Management, 261, 1530-1538. Barlow J, Peres CA (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 1787. Galbraith D, Levy PE, Sitch S, Huntingford C, Cox P, Williams M, Meir P (2010) Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist, 187, 647-665. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24, 127-135. Gelman A, Hill J (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge. Barlow J, Lagan BO, Peres CA (2003a) Morphological correlates of fire-induced tree mortality in a central Amazonian forest. Journal of Tropical Ecology, 19, 291-299. Cramer W, Bondeau A, Woodward FI et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357-373. Balch JK, Nepstad DC, Curran LM et al. (2011) Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management, 261, 68-77. Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications, 16, 2356-2367. Alencar A, Solórzano L, Nepstad D (2004) Modeling forest understory fires in an eastern Amazonian landscape. Ecological Applications, 14, 139-149. Blate GM (2005) Modest trade-offs between timber management and fire susceptibility of a Bolivian semi-deciduous forest. Ecological Applications, 15, 1649-1663. Michaletz ST, Johnson EA (2007) How forest fires kill trees: a review of the fundamental biophysical processes. Scandinavian Journal of Forest Research, 22, 500-515. Romero C, Bolker BM (2008) Effects of stem anatomical and structural traits on responses to stem damage: an experimental study in the Bolivian Amazon. Canadian Journal of Forest Research, 38, 611-618. Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. (2nd edn), 488 pp. Springer Verlag, New York, NY, USA. ISBN 0-387-95364-7. Alencar A, Nepstad D, Diaz MCV (2006) Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions, 10, 1-17. Bates D, Maechler M (2009) Lme4: Linear Mixed-Effects Models Using S4 Classes. R package version 0. 999375-32. Agee JK (1993) Fire Ecology of Pacific Northwest forests. Island Press, Washington, DC, 493 pp. Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology, 71, 437-449. Pinard MA, Putz FE, Licona JC (1999) Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management, 116, 247-252. Ray D, Nepstad D, Moutinhos P (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecological Applications, 15, 1664-1678. Aragão LEOC, Shimabukuro YE (2010) The incidence of fire in Amazonian forests with implications for REDD. Science, 328, 1275. Nepstad DC, Stickler CM, Filho BS, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 1737. Venables WN, Ripley BD (2002) Modern Applied Statistics with S. (4th edn), 495 pp. Springer Verlag, New York, NY, USA. ISBN 0-387-95457-0. 2009; 24 2010; 328 2006; 10 2006; 16 2008; 38 2008; 17 2008; 14 2009 2010; 187 2007 1999; 284 1993 2003a; 19 2002 2008; 363 2003; 178 1963; 13 2000; 408 2001; 154 2001; 7 2001 2004; 14 2009; 90 1997; 13 2008; 319 2002; 105 2008; 22 2005; 15 2011; 261 2003; 301 2003b; 6 2007; 22 1996; 26 1999; 116 2009; 323 1990; 71 2009; 106 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Gelman A (e_1_2_7_23_1) 2007 Bates D (e_1_2_7_13_1) 2009 Burnham KP (e_1_2_7_16_1) 2002 Martin RE (e_1_2_7_31_1) 1963; 13 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – reference: Barlow J, Haugaasen T, Peres CA (2002) Effects of ground fires on understorey bird assemblages in Amazonian forests. Biological Conservation, 105, 157-169. – reference: Ray D, Nepstad D, Moutinhos P (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecological Applications, 15, 1664-1678. – reference: Alencar A, Solórzano L, Nepstad D (2004) Modeling forest understory fires in an eastern Amazonian landscape. Ecological Applications, 14, 139-149. – reference: Gelman A, Hill J (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge. – reference: Heckenberger MJ, Kuikuro A, Kuikuro UT, Russell JC, Schmidt M, Fausto C, Franchetto B (2003) Amazonia 1492: pristine forest or cultural parkland? Science, 301, 1710-1714. – reference: Venables WN, Ripley BD (2002) Modern Applied Statistics with S. (4th edn), 495 pp. Springer Verlag, New York, NY, USA. ISBN 0-387-95457-0. – reference: Barlow J, Peres CA, Lagan BO, Haugaasen T (2003b) Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters, 6, 6-8. – reference: Malhi Y, Aragão LEOC, Galbraith D et al. (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences, 106, 20610-20615. – reference: Barlow J, Lagan BO, Peres CA (2003a) Morphological correlates of fire-induced tree mortality in a central Amazonian forest. Journal of Tropical Ecology, 19, 291-299. – reference: Sitch S, Huntingford C, Gedney N et al. (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015-2039. – reference: Michaletz ST, Johnson EA (2007) How forest fires kill trees: a review of the fundamental biophysical processes. Scandinavian Journal of Forest Research, 22, 500-515. – reference: Aragão LEOC, Shimabukuro YE (2010) The incidence of fire in Amazonian forests with implications for REDD. Science, 328, 1275. – reference: Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24, 127-135. – reference: Blate GM (2005) Modest trade-offs between timber management and fire susceptibility of a Bolivian semi-deciduous forest. Ecological Applications, 15, 1649-1663. – reference: Cochrane MA, Alencar A, Schulze MD, Souza CM Jr, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832. – reference: Balch JK, Nepstad DC, Curran LM et al. (2011) Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management, 261, 68-77. – reference: Bates D, Maechler M (2009) Lme4: Linear Mixed-Effects Models Using S4 Classes. R package version 0. 999375-32. – reference: Golding N, Betts R (2008) Fire risk in Amazonia due to climate change in the HadCM3 climate model: potential interactions with deforestation. Global Biogeochemical Cycles, 22, GB4007, doi: 10.1029/2007GB003166. – reference: Romero C, Bolker BM (2008) Effects of stem anatomical and structural traits on responses to stem damage: an experimental study in the Bolivian Amazon. Canadian Journal of Forest Research, 38, 611-618. – reference: Baker PJ, Bunyavejchewin S, Robinson AR (2008) The impacts of large-scale, low-intensity fires on the forests of continental South-east Asia. International Journal of Wildland Fire, 17, 782-792. – reference: Barlow J, Peres CA (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 1787. – reference: Phillips OL, Aragão L, Lewis S et al. (2009) Drought sensitivity of the Amazon rainforest. Science, 323, 1344-1347. – reference: Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. – reference: Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science, 319, 169. – reference: Galbraith D, Levy PE, Sitch S, Huntingford C, Cox P, Williams M, Meir P (2010) Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist, 187, 647-665. – reference: Mantgem P van, Schwartz M (2003) Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions. Forest Ecology and Management, 178, 341-352. – reference: Martin RE (1963) Thermal properties of bark. Forest Products Journal, 13, 419-426. – reference: Balch JK, Nepstad DC, Brando PM et al. (2008) Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14, 2276-2287. – reference: Pinard MA, Putz FE, Licona JC (1999) Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management, 116, 247-252. – reference: Nepstad DC, Stickler CM, Filho BS, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 1737. – reference: Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications, 16, 2356-2367. – reference: Cramer W, Bondeau A, Woodward FI et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357-373. – reference: Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. (2nd edn), 488 pp. Springer Verlag, New York, NY, USA. ISBN 0-387-95364-7. – reference: Pinard MA, Huffman J (1997) Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia. Journal of Tropical Ecology, 13, 727-740. – reference: Agee JK (1993) Fire Ecology of Pacific Northwest forests. Island Press, Washington, DC, 493 pp. – reference: Alencar A, Nepstad D, Diaz MCV (2006) Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions, 10, 1-17. – reference: Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology, 71, 437-449. – reference: Gutsell S, Johnson E (1996) How fire scars are formed: coupling a disturbance process to its ecological effect. Canadian Journal of Forest Research, 26, 166-174. – reference: Hoffmann WA, Adasme R, Haridasan M et al. (2009) Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna-forest boundaries under frequent fire in central Brazil. Ecology, 90, 1326-1337. – reference: Nepstad D, Carvalho G, Barros A, Alencar A, Capobianco J, Bishop J (2001) Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management, 154, 395-407. – reference: VanderWeide BL, Hartnett DC (2011) Fire resistance of tree species explains historical gallery forest community composition. Forest Ecology and Management, 261, 1530-1538. – year: 2009 – volume: 323 start-page: 1344 year: 2009 end-page: 1347 article-title: Drought sensitivity of the Amazon rainforest publication-title: Science – volume: 13 start-page: 727 year: 1997 end-page: 740 article-title: Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia publication-title: Journal of Tropical Ecology – volume: 284 start-page: 1832 year: 1999 article-title: Positive feedbacks in the fire dynamic of closed canopy tropical forests publication-title: Science – volume: 178 start-page: 341 year: 2003 end-page: 352 article-title: Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions publication-title: Forest Ecology and Management – volume: 15 start-page: 1649 year: 2005 end-page: 1663 article-title: Modest trade‐offs between timber management and fire susceptibility of a Bolivian semi‐deciduous forest publication-title: Ecological Applications – volume: 319 start-page: 169 year: 2008 article-title: Climate change, deforestation, and the fate of the Amazon publication-title: Science – volume: 22 start-page: 500 year: 2007 end-page: 515 article-title: How forest fires kill trees: a review of the fundamental biophysical processes publication-title: Scandinavian Journal of Forest Research – year: 2007 – volume: 71 start-page: 437 year: 1990 end-page: 449 article-title: Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon publication-title: Ecology – volume: 24 start-page: 127 year: 2009 end-page: 135 article-title: Generalized linear mixed models: a practical guide for ecology and evolution publication-title: Trends in Ecology & Evolution – volume: 408 start-page: 184 year: 2000 end-page: 187 article-title: Acceleration of global warming due to carbon‐cycle feedbacks in a coupled climate model publication-title: Nature – volume: 17 start-page: 782 year: 2008 end-page: 792 article-title: The impacts of large‐scale, low‐intensity fires on the forests of continental South‐east Asia publication-title: International Journal of Wildland Fire – volume: 363 start-page: 1787 year: 2008 article-title: Fire‐mediated dieback and compositional cascade in an Amazonian forest publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 154 start-page: 395 year: 2001 end-page: 407 article-title: Road paving, fire regime feedbacks, and the future of Amazon forests publication-title: Forest Ecology and Management – volume: 363 start-page: 1737 year: 2008 article-title: Interactions among Amazon land use, forests and climate: prospects for a near‐term forest tipping point publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 105 start-page: 157 year: 2002 end-page: 169 article-title: Effects of ground fires on understorey bird assemblages in Amazonian forests publication-title: Biological Conservation – volume: 14 start-page: 139 year: 2004 end-page: 149 article-title: Modeling forest understory fires in an eastern Amazonian landscape publication-title: Ecological Applications – volume: 328 start-page: 1275 year: 2010 article-title: The incidence of fire in Amazonian forests with implications for REDD publication-title: Science – volume: 15 start-page: 1664 year: 2005 end-page: 1678 article-title: Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape publication-title: Ecological Applications – start-page: 477 year: 2001 end-page: 526 – volume: 38 start-page: 611 year: 2008 end-page: 618 article-title: Effects of stem anatomical and structural traits on responses to stem damage: an experimental study in the Bolivian Amazon publication-title: Canadian Journal of Forest Research – volume: 116 start-page: 247 year: 1999 end-page: 252 article-title: Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia publication-title: Forest Ecology and Management – volume: 261 start-page: 68 year: 2011 end-page: 77 article-title: Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon publication-title: Forest Ecology and Management – volume: 90 start-page: 1326 year: 2009 end-page: 1337 article-title: Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna‐forest boundaries under frequent fire in central Brazil publication-title: Ecology – volume: 26 start-page: 166 year: 1996 end-page: 174 article-title: How fire scars are formed: coupling a disturbance process to its ecological effect publication-title: Canadian Journal of Forest Research – volume: 301 start-page: 1710 year: 2003 end-page: 1714 article-title: Amazonia 1492: pristine forest or cultural parkland? publication-title: Science – volume: 7 start-page: 357 year: 2001 end-page: 373 article-title: Global response of terrestrial ecosystem structure and function to CO and climate change: results from six dynamic global vegetation models publication-title: Global Change Biology – year: 2002 – volume: 22 start-page: GB4007 year: 2008 article-title: Fire risk in Amazonia due to climate change in the HadCM3 climate model: potential interactions with deforestation publication-title: Global Biogeochemical Cycles – volume: 14 start-page: 2276 year: 2008 end-page: 2287 article-title: Negative fire feedback in a transitional forest of southeastern Amazonia publication-title: Global Change Biology – volume: 261 start-page: 1530 year: 2011 end-page: 1538 article-title: Fire resistance of tree species explains historical gallery forest community composition publication-title: Forest Ecology and Management – volume: 13 start-page: 419 year: 1963 end-page: 426 article-title: Thermal properties of bark publication-title: Forest Products Journal – volume: 6 start-page: 6 year: 2003b end-page: 8 article-title: Large tree mortality and the decline of forest biomass following Amazonian wildfires publication-title: Ecology Letters – volume: 10 start-page: 1 year: 2006 end-page: 17 article-title: Forest understory fire in the Brazilian Amazon in ENSO and non‐ENSO years: area burned and committed carbon emissions publication-title: Earth Interactions – volume: 16 start-page: 2356 year: 2006 end-page: 2367 article-title: Regional and phylogenetic variation of wood density across 2456 neotropical tree species publication-title: Ecological Applications – volume: 14 start-page: 2015 year: 2008 end-page: 2039 article-title: Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs) publication-title: Global Change Biology – year: 1993 – volume: 19 start-page: 291 year: 2003a end-page: 299 article-title: Morphological correlates of fire‐induced tree mortality in a central Amazonian forest publication-title: Journal of Tropical Ecology – volume: 187 start-page: 647 year: 2010 end-page: 665 article-title: Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change publication-title: New Phytologist – volume: 106 start-page: 20610 year: 2009 end-page: 20615 article-title: Exploring the likelihood and mechanism of a climate‐change‐induced dieback of the Amazon rainforest publication-title: Proceedings of the National Academy of Sciences – ident: e_1_2_7_20_1 doi: 10.1046/j.1365-2486.2001.00383.x – ident: e_1_2_7_15_1 doi: 10.1016/j.tree.2008.10.008 – ident: e_1_2_7_43_1 doi: 10.1007/978-0-387-21706-2 – ident: e_1_2_7_9_1 doi: 10.1098/rstb.2007.0013 – ident: e_1_2_7_7_1 doi: 10.1111/j.1365-2486.2008.01655.x – volume-title: Lme4: Linear Mixed‐Effects Models Using S4 Classes year: 2009 ident: e_1_2_7_13_1 – volume-title: Data Analysis Using Regression and Multilevel/Hierarchical Models year: 2007 ident: e_1_2_7_23_1 – ident: e_1_2_7_25_1 doi: 10.1139/x26-020 – ident: e_1_2_7_14_1 doi: 10.1890/04-0385 – volume: 13 start-page: 419 year: 1963 ident: e_1_2_7_31_1 article-title: Thermal properties of bark publication-title: Forest Products Journal – ident: e_1_2_7_32_1 doi: 10.1080/02827580701803544 – ident: e_1_2_7_12_1 doi: 10.1046/j.1461-0248.2003.00394.x – ident: e_1_2_7_30_1 doi: 10.1016/S0378-1127(02)00554-6 – ident: e_1_2_7_35_1 doi: 10.1126/science.1164033 – ident: e_1_2_7_37_1 doi: 10.1016/S0378-1127(98)00447-2 – ident: e_1_2_7_21_1 doi: 10.1016/B978-012386660-8/50016-7 – ident: e_1_2_7_24_1 doi: 10.1029/2007GB003166 – ident: e_1_2_7_6_1 doi: 10.1071/WF07147 – ident: e_1_2_7_11_1 doi: 10.1017/S0266467403003328 – ident: e_1_2_7_18_1 doi: 10.1126/science.284.5421.1832 – ident: e_1_2_7_28_1 doi: 10.1126/science.1146961 – ident: e_1_2_7_41_1 doi: 10.2307/1940299 – ident: e_1_2_7_2_1 – ident: e_1_2_7_19_1 doi: 10.1038/35041539 – ident: e_1_2_7_34_1 doi: 10.1098/rstb.2007.0036 – ident: e_1_2_7_38_1 doi: 10.1890/05-0404 – ident: e_1_2_7_29_1 doi: 10.1073/pnas.0804619106 – ident: e_1_2_7_42_1 doi: 10.1016/j.foreco.2011.01.044 – ident: e_1_2_7_10_1 doi: 10.1016/S0006-3207(01)00177-X – ident: e_1_2_7_36_1 doi: 10.1017/S0266467400010890 – ident: e_1_2_7_22_1 doi: 10.1111/j.1469-8137.2010.03350.x – ident: e_1_2_7_33_1 doi: 10.1016/S0378-1127(01)00511-4 – ident: e_1_2_7_39_1 doi: 10.1139/X07-205 – ident: e_1_2_7_27_1 doi: 10.1890/08-0741.1 – ident: e_1_2_7_26_1 doi: 10.1126/science.1086112 – ident: e_1_2_7_3_1 doi: 10.1890/01-6029 – ident: e_1_2_7_17_1 doi: 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2 – volume-title: Model Selection and Multimodel Inference: A Practical Information‐Theoretic Approach year: 2002 ident: e_1_2_7_16_1 – ident: e_1_2_7_5_1 doi: 10.1126/science.1186925 – ident: e_1_2_7_40_1 doi: 10.1111/j.1365-2486.2008.01626.x – ident: e_1_2_7_4_1 doi: 10.1175/EI150.1 – ident: e_1_2_7_8_1 doi: 10.1016/j.foreco.2010.09.029 |
| SSID | ssj0003206 |
| Score | 2.5004816 |
| Snippet | Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the... Abstract Large-scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due... Large-scale wildfires are expected to accelerate forest dieback in Amazonia, but the fire vulnerability of tree species remains uncertain, in part due to the... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 630 |
| SubjectTerms | Amazon Animal and plant ecology Animal, plant and microbial ecology Bark bark thickness Biological and medical sciences climate change Density Dieback Drought fire Forest & brush fires Forest and land fires forest dieback Fundamental and applied biological sciences. Psychology General aspects generalized linear models Heat transfer Insulation Latent heat Mortality Newton's law of cooling Phytopathology. Animal pests. Plant and forest protection Plant species plant traits Rainforests tree mortality Trees Tropical forests Vaporization Weather damages. Fires Wildfires Wood wood density |
| Title | Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior |
| URI | https://api.istex.fr/ark:/67375/WNG-K5QP5HCZ-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2011.02533.x https://www.proquest.com/docview/915498767 https://www.proquest.com/docview/920804977 |
| Volume | 18 |
| WOSCitedRecordID | wos000299042500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 issn: 1354-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hXZC48LNQkRYqH1BPDdrEdn64wdJtJcqqIKpWXCw7TqSIklTJtio98Qg8I0_CjJMNXYlDhbhtNh5n7RnPfN58ngF4KUzCiygSfhra3Kfatn4SJXRiOTCcx8YWXdWSw3ixSE5P06Oe_0RnYbr8EMMfbrQynL-mBa5Nu77IHUNLJFGfiTNE6PIK8eQ4RDOWIxi_-zQ_Phz8Mg9dpc2AS4HOJ-DrvJ6_9rUWrMY071dEntQtzl_RFb5YQ6Y38a0LUPOH_3Noj-BBD1PZm86uHsOdvJrAva5w5fcJbOz9OR-HzXoH0U7A-4AgvG5cM7bDZmclImJ39QSu5-hef_34WVYW7ckyeh_Ovjn4j1sBVlZMsyqvl019TpbDEE7jcF8zhKiMSJAtqwtmdPOVUV2LZbvb9dCW1_kuI-oQs8TGx650ZVmBD2OrJARP4Xi-93l24PelH_xMImjyNQ8LO9Uc8X8kTZxoqoYWIRaKjcY91NRiEM2DaREU6H-SzJrEpDqWKaK9PCpExjdgVNVV_gyYRExoM6kNAj0RpcIInmVCTjOLUTvR0oN4pWOV9XnRaRhn6sb-CNWhSB2K1KGcOtSVB8Eged7lBrmFzI4zo0EAZ424dbFUJ4t99V5-PJIHsy_qxIPtNTsbBEJKmSgC4cHWyvBU73dalVLGPQxwsQdsuIsOg94CaVThBTYJcZMgEPZ7EDkjvPVvV_uzt_Rp818Ft-A-fh12pPfnMFo2F_kLuJtdLsu22e7X62-Y7Twk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hLgguBRYq0kLxAfXUoE1s54cbLN0u6nZVUKtWXCw7TqSIklTJFpWeeASekSdhJsmGrsShQtwSxePEnvHMN854BuCVMBHPgkC4sW9Tl2rbulEQ0Yllz3AeGpu1VUtm4XwenZ3FR105IDoL0-aH6DfcaGU0-poWOG1Ir67yJkRLREGXitNH7PIaAeVAoFShuA_ef5qczHrFzP2m1KbHpUDt4_HVwJ6_9rVirQY08VcUPalrnMCsrXyxAk1vAtzGQk0e_texPYL1Dqiyt61kPYY7aTGEe23pyu9D2Nj7c0IOm3Uqoh6Cc4gwvKyaZmyHjc9zxMTN3RO4nqCC_fXjZ15YlCjL6I84-9o4AOgMsLxgmhVpuajKC5IdhoAax_uGIUhlFAZZszJjRldfGFW2WNS7bQ91fp3uMgoeYpbi8bErXViW4cvYMg3BUziZ7B2Pp25X_MFNJMImV3M_syPN0QMIpAkjTfXQAkRDodHoRY0smtHUG2VehhooSqyJTKxDGSPeS4NMJHwD1oqySJ8Bk4gKbSK1QagnglgYwZNEyFFi0W5HWjoQLpmski4zOg3jXN3wkJAditihiB2qYYe6csDrKS_a7CC3oNlp5KgnwFmj6LpQqtP5vjqQH4_kdPxZnTqwvSJoPYFPSROFJxzYWkqe6jRPrWLKuYcmLnSA9U9RZdB_II0svMQmProJAoG_A0Ejhbf-drU_fkdXm_9K-BLuT48PZ2r2YX6wBQ-wid-GwD-HtUV1mb6Au8m3RV5X293i_Q2K6EAU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB6hBBAXfgIVbqHsAfVUo9i76x9ukDYtaogComrFZbX22pLV1o7sFJWeeASekSdhxnZMLXGoELdE2dlkd2Znvoln5wN4LaKAp54n7NA1iU3ctnbgBXRj2Yk49yOTNqwlM38-D05Pw0VLB0R3YZr-EN0fbnQyan9NBzxZmrR_yusSLRF4bStOF7HLGwSUQ0GcMgMY7n2eHs86x8zdmmrT4VKg93F4v7Dnr3P1otWQNv6Kqid1hRuYNswXPWh6E-DWEWr66L-u7TE8bIEqe9dY1hO4k-QjuNdQV34fwcb-nxtyOKx1EdUIrI8Iw4uyHsZ22OQ8Q0xcv3sK11N0sL9-_MxygxZlGD0RZxd1AoDJAMtyplmeFKuyWJLtMATUuN63DEEqozLIihUpi3R5xojZYlXtNjNU2XWyy6h4iBmqx8epdG5Yil_G1m0InsHxdP_L5NBuyR_sWCJssjV3UzPWHDMAT0Z-oIkPzUM05Ecas6ixwTCaOOPUSdEDBbGJgijUvgwR7yVeKmK-AYO8yJPnwCSiQhNLHSHUE14oIsHjWMhxbDBuB1pa4K-VrOK2Mzot41zdyJBQHYrUoUgdqlaHurLA6SSXTXeQW8js1HbUCeCuUXWdL9XJ_EAdyU8LeTj5qk4s2O4ZWifgUtNE4QgLttaWp1rPU6mQeu5hiPMtYN2n6DLoOZBGFV7iEBfTBIHA3wKvtsJb_3Z1MHlPrzb_VfAV3F_sTdXsw_xoCx7gCLepgH8Bg1V5mbyEu_G3VVaV2-3Z_Q21ND-P |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fire-induced+tree+mortality+in+a+neotropical+forest%3A+the+roles+of+bark+traits%2C+tree+size%2C+wood+density+and+fire+behavior&rft.jtitle=Global+change+biology&rft.au=BRANDO%2C+Paulo+M&rft.au=NEPSTAD%2C+Daniel+C&rft.au=BALCH%2C+Jennifer+K&rft.au=BOLKER%2C+Benjamin&rft.date=2012-02-01&rft.pub=Wiley-Blackwell&rft.issn=1354-1013&rft.volume=18&rft.issue=2&rft.spage=630&rft.epage=641&rft_id=info:doi/10.1111%2Fj.1365-2486.2011.02533.x&rft.externalDBID=n%2Fa&rft.externalDocID=25407414 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |