Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior

Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire‐induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Global change biology Ročník 18; číslo 2; s. 630 - 641
Hlavní autori: Brando, Paulo M., Nepstad, Daniel C., Balch, Jennifer K., Bolker, Benjamin, Christman, Mary C., Coe, Michael, Putz, Francis E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.02.2012
Wiley-Blackwell
Predmet:
ISSN:1354-1013, 1365-2486
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire‐induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates (R) through bark during experimental bole heating. Second, using data from a large‐scale fire experiment, we tested the effects of tree wood density (WD), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R, while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire‐induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low (≤20%) for thick‐barked individuals (≥18 mm) subjected to medium‐intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire‐induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests.
AbstractList Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire‐induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates (R) through bark during experimental bole heating. Second, using data from a large‐scale fire experiment, we tested the effects of tree wood density (WD), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R, while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire‐induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low (≤20%) for thick‐barked individuals (≥18 mm) subjected to medium‐intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire‐induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests.
Abstract Large-scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire-induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates (R ) through bark during experimental bole heating. Second, using data from a large-scale fire experiment, we tested the effects of tree wood density (WD), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R , while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire-induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low (≤20%) for thick-barked individuals (≥18 mm) subjected to medium-intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire-induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests. [PUBLICATION ABSTRACT]
Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire‐induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates ( R ) through bark during experimental bole heating. Second, using data from a large‐scale fire experiment, we tested the effects of tree wood density ( WD ), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R , while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire‐induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low (≤20%) for thick‐barked individuals (≥18 mm) subjected to medium‐intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire‐induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests.
Large-scale wildfires are expected to accelerate forest dieback in Amazonia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire-induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates (R) through bark during experimental bole heating. Second, using data from a large-scale fire experiment, we tested the effects of tree wood density (WD), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R, while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire-induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low ( less than or equal to 20%) for thick-barked individuals ( greater than or equal to 18 mm) subjected to medium-intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire-induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests.
Author Coe, Michael
Nepstad, Daniel C.
Putz, Francis E.
Bolker, Benjamin
Christman, Mary C.
Balch, Jennifer K.
Brando, Paulo M.
Author_xml – sequence: 1
  givenname: Paulo M.
  surname: Brando
  fullname: Brando, Paulo M.
  email: pmbrando@ipam.org.br
  organization: Instituto de Pesquisa Ambiental da Amazônia, Av. Nazaré 669, 66035-170, Belém, Brazil
– sequence: 2
  givenname: Daniel C.
  surname: Nepstad
  fullname: Nepstad, Daniel C.
  organization: Instituto de Pesquisa Ambiental da Amazônia, Av. Nazaré 669, 66035-170, Belém, Brazil
– sequence: 3
  givenname: Jennifer K.
  surname: Balch
  fullname: Balch, Jennifer K.
  organization: Woods Hole Research Center, 149 Woods Hole Road, 02450, Falmouth, MA, USA
– sequence: 4
  givenname: Benjamin
  surname: Bolker
  fullname: Bolker, Benjamin
  organization: Departments of Mathematics & Statistics and Biology, McMaster University, 1280 Main St WStreet West Hamilton, ON, L8S4K1, Ontario, Canada
– sequence: 5
  givenname: Mary C.
  surname: Christman
  fullname: Christman, Mary C.
  organization: Department of Statistics and Institute of Food and Agricultural Sciences, University of Florida, FL, PO Box 11033932611, Gainesville, USA
– sequence: 6
  givenname: Michael
  surname: Coe
  fullname: Coe, Michael
  organization: Woods Hole Research Center, 149 Woods Hole Road, MA, 02450, Falmouth, USA
– sequence: 7
  givenname: Francis E.
  surname: Putz
  fullname: Putz, Francis E.
  organization: Department of Biology and School of Natural Resources and Environment, University of Florida, FL, PO Box 11852632611, Gainesville, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25407414$$DView record in Pascal Francis
BookMark eNqNkV9rFDEUxQepYFv9DkEQXzrTm2QykwgKdbFbsfgHlIIvITOT0KyzyZpk7W4_vRmn9qFPzUsu5PzOvbnnqDhw3umiQBgqnM_pqsK0YSWpeVMRwLgCwiitdk-Kw_uHg6lmdYkB02fFUYwrAKAEmsNid26DLq0btr0eUApao7UPSY027ZF1SCGnfQp-Y3s1IuODjukNStcaBT_qiLxBnQq_MqlsiiezQ7S3-gTdeD-gQbs4WSk3IJNboU5fqz_Wh-fFU6PGqF_c3cfFj_MP3xcX5eWX5cfF2WXZM2hoqSgxAyjKOWlY13KFgUIDhLedwm0NgxCgMRhsOAfeDx3vhGqZoILoxtQ9PS5ez76b4H9v8_RybWOvx1Hlj22jFAQ41KJts_LlA-XKb4PLw0mBWS1420yiV3ciFfNGTFCut1Fugl2rsJeE1dDWuM66d7OuDz7GoI3sbVLJejdtapQY5BSfXMkpJTmlJKf45L_45C4b8AcG_3s8An07ozd21PtHc3K5eD9VmS9n3sakd_d8jlnmDbRMXn1eyk_s21d2sfgpr-hf2_bCKg
CitedBy_id crossref_primary_10_1007_s11258_022_01239_4
crossref_primary_10_3732_ajb_1400412
crossref_primary_10_1007_s10669_017_9625_x
crossref_primary_10_1038_s41586_021_03876_7
crossref_primary_10_3390_e26060506
crossref_primary_10_1111_1365_2745_13343
crossref_primary_10_1073_pnas_1712356115
crossref_primary_10_1071_WF14182
crossref_primary_10_5194_bg_15_233_2018
crossref_primary_10_1007_s11056_017_9594_4
crossref_primary_10_1029_2020JG005677
crossref_primary_10_1111_brv_12687
crossref_primary_10_1016_j_foreco_2019_117497
crossref_primary_10_1002_2015GB005135
crossref_primary_10_1111_nph_14628
crossref_primary_10_1016_j_foreco_2017_02_042
crossref_primary_10_1111_j_1469_8137_2012_04079_x
crossref_primary_10_1371_journal_pone_0039810
crossref_primary_10_1038_s41598_024_77924_3
crossref_primary_10_1111_ele_13409
crossref_primary_10_1111_ele_13974
crossref_primary_10_3390_fire8010002
crossref_primary_10_7717_peerj_13270
crossref_primary_10_1002_ece3_1143
crossref_primary_10_1016_j_foreco_2020_118372
crossref_primary_10_1111_jvs_12086
crossref_primary_10_3389_ffgc_2020_00082
crossref_primary_10_1016_j_jhazmat_2025_138881
crossref_primary_10_1016_j_foreco_2019_117587
crossref_primary_10_1111_nph_15027
crossref_primary_10_1111_pce_14097
crossref_primary_10_1111_nph_13889
crossref_primary_10_1007_s40626_014_0002_6
crossref_primary_10_1088_1748_9326_aae934
crossref_primary_10_1016_j_foreco_2025_122584
crossref_primary_10_1111_gcb_14659
crossref_primary_10_1016_j_ecolecon_2016_09_019
crossref_primary_10_1111_nph_15013
crossref_primary_10_1371_journal_pbio_1001569
crossref_primary_10_1111_gcb_12916
crossref_primary_10_1016_j_foreco_2020_118361
crossref_primary_10_1186_s42408_022_00128_5
crossref_primary_10_1016_j_rse_2018_03_019
crossref_primary_10_1186_s42408_021_00093_5
crossref_primary_10_1111_j_1461_0248_2012_01771_x
crossref_primary_10_1016_j_scitotenv_2022_158705
crossref_primary_10_1016_j_foreco_2014_12_020
crossref_primary_10_1016_j_foreco_2022_120070
crossref_primary_10_1016_j_ppees_2018_07_006
crossref_primary_10_1016_j_foreco_2016_08_047
crossref_primary_10_1016_j_tree_2012_10_004
crossref_primary_10_3389_ffgc_2021_731020
crossref_primary_10_1111_aec_12318
crossref_primary_10_1186_s42408_024_00250_6
crossref_primary_10_1029_2021RG000766
crossref_primary_10_1111_jvs_12823
crossref_primary_10_3390_fire8090342
crossref_primary_10_1016_j_biocon_2018_02_008
crossref_primary_10_1007_s00468_022_02364_3
crossref_primary_10_5194_bg_13_5799_2016
crossref_primary_10_1007_s10452_021_09904_y
crossref_primary_10_1016_j_foreco_2024_122265
crossref_primary_10_1017_S0266467420000176
crossref_primary_10_1111_nph_15871
crossref_primary_10_3390_f11010105
crossref_primary_10_1111_nph_12001
crossref_primary_10_1111_btp_70000
crossref_primary_10_1111_1365_2745_12160
crossref_primary_10_3390_atmos10100588
crossref_primary_10_3390_fire7060171
crossref_primary_10_1038_s41477_021_00879_0
crossref_primary_10_1016_j_foreco_2020_118292
crossref_primary_10_1016_j_foreco_2014_04_009
crossref_primary_10_1111_ele_13251
crossref_primary_10_1007_s00468_013_0971_0
crossref_primary_10_1007_s40626_021_00201_5
crossref_primary_10_1111_j_1654_1103_2012_01448_x
crossref_primary_10_1016_j_ppees_2021_125632
crossref_primary_10_3390_f11020164
crossref_primary_10_1016_j_foreco_2016_03_008
crossref_primary_10_1016_j_ppees_2021_125630
crossref_primary_10_1029_2021GL093789
crossref_primary_10_1111_1365_2745_12991
crossref_primary_10_1111_ele_12725
crossref_primary_10_1038_s41559_019_0882_6
crossref_primary_10_1177_0734904114568858
crossref_primary_10_1017_S0266467412000636
crossref_primary_10_1073_pnas_2019377118
crossref_primary_10_1111_j_1461_0248_2012_01789_x
crossref_primary_10_1111_gcb_15028
crossref_primary_10_1111_1365_2664_12737
crossref_primary_10_1002_jqs_3521
crossref_primary_10_1071_WF12215
crossref_primary_10_1111_jvs_12171
crossref_primary_10_3390_rs12233864
crossref_primary_10_1016_j_foreco_2013_08_036
crossref_primary_10_1038_s41597_023_02468_6
crossref_primary_10_1111_gcb_13087
crossref_primary_10_1007_s12080_018_0366_3
crossref_primary_10_3389_ffgc_2023_1024101
crossref_primary_10_1111_1365_2435_12158
crossref_primary_10_1002_2014GB005008
crossref_primary_10_1002_pan3_10510
crossref_primary_10_1371_journal_pone_0191027
crossref_primary_10_3389_ffgc_2022_793385
crossref_primary_10_1016_j_foreco_2021_119202
crossref_primary_10_1890_12_1629_1
crossref_primary_10_1186_s42408_024_00294_8
crossref_primary_10_1111_nph_14916
crossref_primary_10_1016_j_pecon_2024_03_002
crossref_primary_10_1080_17550874_2013_816800
crossref_primary_10_1186_s42408_025_00360_9
crossref_primary_10_3390_rs14071545
crossref_primary_10_3390_f12030365
crossref_primary_10_1111_aec_12084
crossref_primary_10_3389_fenvs_2021_649835
crossref_primary_10_1007_s11258_017_0751_9
crossref_primary_10_1016_j_ppees_2025_125867
crossref_primary_10_1073_pnas_1305499111
crossref_primary_10_1002_ece3_1532
crossref_primary_10_1007_s11258_015_0531_3
crossref_primary_10_1007_s40725_018_0082_7
crossref_primary_10_1111_1365_2745_13851
crossref_primary_10_1007_s11676_019_00990_1
crossref_primary_10_1016_j_foreco_2013_11_015
crossref_primary_10_1016_j_foreco_2016_01_027
crossref_primary_10_1080_17550874_2021_2008040
crossref_primary_10_1002_eap_1371
crossref_primary_10_3390_fire5020045
crossref_primary_10_1016_j_flora_2020_151609
crossref_primary_10_1016_j_foreco_2020_118095
crossref_primary_10_1111_geoj_12276
crossref_primary_10_1515_hf_2025_0069
crossref_primary_10_1016_j_ppees_2018_10_002
crossref_primary_10_1186_s40529_018_0223_0
crossref_primary_10_1111_gcb_13172
crossref_primary_10_1111_gcb_13173
crossref_primary_10_1016_j_biocon_2017_08_020
crossref_primary_10_1007_s00442_015_3259_9
crossref_primary_10_3389_ffgc_2020_00010
crossref_primary_10_1111_btp_12380
crossref_primary_10_1071_WF18118
crossref_primary_10_3390_f15122264
crossref_primary_10_1890_ES15_00065_1
crossref_primary_10_3390_rs15030696
crossref_primary_10_1071_WF18232
crossref_primary_10_1002_ece3_1317
crossref_primary_10_1111_1365_2745_13076
crossref_primary_10_1002_ajb2_70066
crossref_primary_10_1111_j_1365_2745_2012_02026_x
crossref_primary_10_1016_j_foreco_2022_120354
crossref_primary_10_1111_1365_2745_13549
crossref_primary_10_3389_fpls_2024_1501584
crossref_primary_10_1088_1748_9326_aa69ce
crossref_primary_10_1016_j_scitotenv_2023_164832
crossref_primary_10_1002_ecs2_2493
crossref_primary_10_1111_jbi_13386
crossref_primary_10_1007_s11258_022_01241_w
crossref_primary_10_1111_gcb_13110
crossref_primary_10_1029_2018MS001368
crossref_primary_10_1007_s11295_022_01572_9
crossref_primary_10_1002_ecs2_3347
crossref_primary_10_3390_rs8100839
crossref_primary_10_1007_s40626_014_0007_1
crossref_primary_10_1111_jbi_12292
crossref_primary_10_1017_S0266467413000904
crossref_primary_10_1186_s42408_023_00205_3
crossref_primary_10_1016_j_flora_2021_151865
crossref_primary_10_1016_j_pecon_2023_04_003
crossref_primary_10_1088_1748_9326_aac331
crossref_primary_10_3390_f15020290
crossref_primary_10_1016_j_foreco_2021_119255
crossref_primary_10_1371_journal_pone_0084378
crossref_primary_10_1002_ecs2_4780
crossref_primary_10_1093_biosci_biv106
crossref_primary_10_1002_ecs2_3458
crossref_primary_10_1080_17550874_2013_798368
crossref_primary_10_3390_f16050817
crossref_primary_10_3390_f16101504
crossref_primary_10_1111_1365_2435_12372
crossref_primary_10_1111_gcb_13259
crossref_primary_10_1111_1365_2745_12118
crossref_primary_10_1017_S0266467416000559
crossref_primary_10_3389_ffgc_2022_815438
crossref_primary_10_1007_s00442_016_3638_x
crossref_primary_10_1016_j_foreco_2022_120326
crossref_primary_10_1111_1365_2664_12687
crossref_primary_10_1016_j_foreco_2022_120443
crossref_primary_10_1071_WF24136
crossref_primary_10_1111_nph_17995
crossref_primary_10_1890_14_1740_1
crossref_primary_10_1146_annurev_earth_082517_010235
crossref_primary_10_3390_fire6110430
crossref_primary_10_1016_j_foreco_2023_120977
crossref_primary_10_1111_nph_12502
crossref_primary_10_3390_fire6060234
crossref_primary_10_1002_ecm_1285
crossref_primary_10_3390_rs16213943
crossref_primary_10_1073_pnas_2203200119
crossref_primary_10_1371_journal_pone_0228539
Cites_doi 10.1046/j.1365-2486.2001.00383.x
10.1016/j.tree.2008.10.008
10.1007/978-0-387-21706-2
10.1098/rstb.2007.0013
10.1111/j.1365-2486.2008.01655.x
10.1139/x26-020
10.1890/04-0385
10.1080/02827580701803544
10.1046/j.1461-0248.2003.00394.x
10.1016/S0378-1127(02)00554-6
10.1126/science.1164033
10.1016/S0378-1127(98)00447-2
10.1016/B978-012386660-8/50016-7
10.1029/2007GB003166
10.1071/WF07147
10.1017/S0266467403003328
10.1126/science.284.5421.1832
10.1126/science.1146961
10.2307/1940299
10.1038/35041539
10.1098/rstb.2007.0036
10.1890/05-0404
10.1073/pnas.0804619106
10.1016/j.foreco.2011.01.044
10.1016/S0006-3207(01)00177-X
10.1017/S0266467400010890
10.1111/j.1469-8137.2010.03350.x
10.1016/S0378-1127(01)00511-4
10.1139/X07-205
10.1890/08-0741.1
10.1126/science.1086112
10.1890/01-6029
10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2
10.1126/science.1186925
10.1111/j.1365-2486.2008.01626.x
10.1175/EI150.1
10.1016/j.foreco.2010.09.029
ContentType Journal Article
Copyright 2011 Blackwell Publishing Ltd
2015 INIST-CNRS
Copyright © 2012 Blackwell Publishing Ltd
Copyright_xml – notice: 2011 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 Blackwell Publishing Ltd
DBID BSCLL
AAYXX
CITATION
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7ST
SOI
DOI 10.1111/j.1365-2486.2011.02533.x
DatabaseName Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Ecology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 641
ExternalDocumentID 2558828321
25407414
10_1111_j_1365_2486_2011_02533_x
GCB2533
ark_67375_WNG_K5QP5HCZ_W
Genre article
Feature
GeographicLocations South America
America
Amazon Basin
South America, Amazonia
GeographicLocations_xml – name: Amazon Basin
– name: South America, Amazonia
GrantInformation_xml – fundername: NSF
  funderid: DEB‐ 0743703
– fundername: Gordon and Betty Moore Foundation
  funderid: #1963
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
ESX
WRC
WUP
AAYXX
CITATION
O8X
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7ST
SOI
ID FETCH-LOGICAL-c5063-a32fd0a388265b78a103060287ba1740d990e10f1f8808cdb8b9a759392e6f4c3
IEDL.DBID DRFUL
ISICitedReferencesCount 240
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299042500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
IngestDate Mon Oct 06 17:47:27 EDT 2025
Mon Nov 10 02:58:47 EST 2025
Mon Jul 21 09:16:21 EDT 2025
Sat Nov 29 06:02:16 EST 2025
Tue Nov 18 21:49:39 EST 2025
Wed Jan 22 16:56:08 EST 2025
Tue Nov 11 03:32:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords generalized linear models
Forests
Generalized linear model
tree mortality
Wood
Mortality
Tropical zone
Bark
forest dieback
Density
Dynamical climatology
Thickness
Climate change
bark thickness
Dieback
Fires
wood density
Newton's law of cooling
Tree
fire
Behavior
Neotropical Region
Amazon
plant traits
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5063-a32fd0a388265b78a103060287ba1740d990e10f1f8808cdb8b9a759392e6f4c3
Notes NSF - No. DEB- 0743703
Gordon and Betty Moore Foundation - No. #1963
istex:6CA4707D266A5C284B2AC1E7D6F52181BF976BD9
ArticleID:GCB2533
Appendix S1. Equations for heat transfer rates.Appendix S2. Parameter estimates for Model I.Appendix S3. Weather conditions and flame heights.Appendix S4. Probability of fire-induced tree mortality as a function of tree size and wood density.
ark:/67375/WNG-K5QP5HCZ-W
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 915498767
PQPubID 30327
PageCount 12
ParticipantIDs proquest_miscellaneous_920804977
proquest_journals_915498767
pascalfrancis_primary_25407414
crossref_citationtrail_10_1111_j_1365_2486_2011_02533_x
crossref_primary_10_1111_j_1365_2486_2011_02533_x
wiley_primary_10_1111_j_1365_2486_2011_02533_x_GCB2533
istex_primary_ark_67375_WNG_K5QP5HCZ_W
PublicationCentury 2000
PublicationDate February 2012
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: February 2012
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob. Change Biol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Heckenberger MJ, Kuikuro A, Kuikuro UT, Russell JC, Schmidt M, Fausto C, Franchetto B (2003) Amazonia 1492: pristine forest or cultural parkland? Science, 301, 1710-1714.
Barlow J, Peres CA, Lagan BO, Haugaasen T (2003b) Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters, 6, 6-8.
Pinard MA, Huffman J (1997) Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia. Journal of Tropical Ecology, 13, 727-740.
Mantgem P van, Schwartz M (2003) Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions. Forest Ecology and Management, 178, 341-352.
Balch JK, Nepstad DC, Brando PM et al. (2008) Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14, 2276-2287.
Cochrane MA, Alencar A, Schulze MD, Souza CM Jr, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832.
Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science, 319, 169.
Nepstad D, Carvalho G, Barros A, Alencar A, Capobianco J, Bishop J (2001) Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management, 154, 395-407.
Baker PJ, Bunyavejchewin S, Robinson AR (2008) The impacts of large-scale, low-intensity fires on the forests of continental South-east Asia. International Journal of Wildland Fire, 17, 782-792.
Barlow J, Haugaasen T, Peres CA (2002) Effects of ground fires on understorey bird assemblages in Amazonian forests. Biological Conservation, 105, 157-169.
Gutsell S, Johnson E (1996) How fire scars are formed: coupling a disturbance process to its ecological effect. Canadian Journal of Forest Research, 26, 166-174.
Martin RE (1963) Thermal properties of bark. Forest Products Journal, 13, 419-426.
Golding N, Betts R (2008) Fire risk in Amazonia due to climate change in the HadCM3 climate model: potential interactions with deforestation. Global Biogeochemical Cycles, 22, GB4007, doi: 10.1029/2007GB003166.
Hoffmann WA, Adasme R, Haridasan M et al. (2009) Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna-forest boundaries under frequent fire in central Brazil. Ecology, 90, 1326-1337.
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
Malhi Y, Aragão LEOC, Galbraith D et al. (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences, 106, 20610-20615.
Sitch S, Huntingford C, Gedney N et al. (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015-2039.
Phillips OL, Aragão L, Lewis S et al. (2009) Drought sensitivity of the Amazon rainforest. Science, 323, 1344-1347.
VanderWeide BL, Hartnett DC (2011) Fire resistance of tree species explains historical gallery forest community composition. Forest Ecology and Management, 261, 1530-1538.
Barlow J, Peres CA (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 1787.
Galbraith D, Levy PE, Sitch S, Huntingford C, Cox P, Williams M, Meir P (2010) Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist, 187, 647-665.
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24, 127-135.
Gelman A, Hill J (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge.
Barlow J, Lagan BO, Peres CA (2003a) Morphological correlates of fire-induced tree mortality in a central Amazonian forest. Journal of Tropical Ecology, 19, 291-299.
Cramer W, Bondeau A, Woodward FI et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357-373.
Balch JK, Nepstad DC, Curran LM et al. (2011) Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management, 261, 68-77.
Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications, 16, 2356-2367.
Alencar A, Solórzano L, Nepstad D (2004) Modeling forest understory fires in an eastern Amazonian landscape. Ecological Applications, 14, 139-149.
Blate GM (2005) Modest trade-offs between timber management and fire susceptibility of a Bolivian semi-deciduous forest. Ecological Applications, 15, 1649-1663.
Michaletz ST, Johnson EA (2007) How forest fires kill trees: a review of the fundamental biophysical processes. Scandinavian Journal of Forest Research, 22, 500-515.
Romero C, Bolker BM (2008) Effects of stem anatomical and structural traits on responses to stem damage: an experimental study in the Bolivian Amazon. Canadian Journal of Forest Research, 38, 611-618.
Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. (2nd edn), 488 pp. Springer Verlag, New York, NY, USA. ISBN 0-387-95364-7.
Alencar A, Nepstad D, Diaz MCV (2006) Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions, 10, 1-17.
Bates D, Maechler M (2009) Lme4: Linear Mixed-Effects Models Using S4 Classes. R package version 0. 999375-32.
Agee JK (1993) Fire Ecology of Pacific Northwest forests. Island Press, Washington, DC, 493 pp.
Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology, 71, 437-449.
Pinard MA, Putz FE, Licona JC (1999) Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management, 116, 247-252.
Ray D, Nepstad D, Moutinhos P (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecological Applications, 15, 1664-1678.
Aragão LEOC, Shimabukuro YE (2010) The incidence of fire in Amazonian forests with implications for REDD. Science, 328, 1275.
Nepstad DC, Stickler CM, Filho BS, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 1737.
Venables WN, Ripley BD (2002) Modern Applied Statistics with S. (4th edn), 495 pp. Springer Verlag, New York, NY, USA. ISBN 0-387-95457-0.
2009; 24
2010; 328
2006; 10
2006; 16
2008; 38
2008; 17
2008; 14
2009
2010; 187
2007
1999; 284
1993
2003a; 19
2002
2008; 363
2003; 178
1963; 13
2000; 408
2001; 154
2001; 7
2001
2004; 14
2009; 90
1997; 13
2008; 319
2002; 105
2008; 22
2005; 15
2011; 261
2003; 301
2003b; 6
2007; 22
1996; 26
1999; 116
2009; 323
1990; 71
2009; 106
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Gelman A (e_1_2_7_23_1) 2007
Bates D (e_1_2_7_13_1) 2009
Burnham KP (e_1_2_7_16_1) 2002
Martin RE (e_1_2_7_31_1) 1963; 13
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – reference: Barlow J, Haugaasen T, Peres CA (2002) Effects of ground fires on understorey bird assemblages in Amazonian forests. Biological Conservation, 105, 157-169.
– reference: Ray D, Nepstad D, Moutinhos P (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecological Applications, 15, 1664-1678.
– reference: Alencar A, Solórzano L, Nepstad D (2004) Modeling forest understory fires in an eastern Amazonian landscape. Ecological Applications, 14, 139-149.
– reference: Gelman A, Hill J (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge.
– reference: Heckenberger MJ, Kuikuro A, Kuikuro UT, Russell JC, Schmidt M, Fausto C, Franchetto B (2003) Amazonia 1492: pristine forest or cultural parkland? Science, 301, 1710-1714.
– reference: Venables WN, Ripley BD (2002) Modern Applied Statistics with S. (4th edn), 495 pp. Springer Verlag, New York, NY, USA. ISBN 0-387-95457-0.
– reference: Barlow J, Peres CA, Lagan BO, Haugaasen T (2003b) Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters, 6, 6-8.
– reference: Malhi Y, Aragão LEOC, Galbraith D et al. (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences, 106, 20610-20615.
– reference: Barlow J, Lagan BO, Peres CA (2003a) Morphological correlates of fire-induced tree mortality in a central Amazonian forest. Journal of Tropical Ecology, 19, 291-299.
– reference: Sitch S, Huntingford C, Gedney N et al. (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015-2039.
– reference: Michaletz ST, Johnson EA (2007) How forest fires kill trees: a review of the fundamental biophysical processes. Scandinavian Journal of Forest Research, 22, 500-515.
– reference: Aragão LEOC, Shimabukuro YE (2010) The incidence of fire in Amazonian forests with implications for REDD. Science, 328, 1275.
– reference: Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24, 127-135.
– reference: Blate GM (2005) Modest trade-offs between timber management and fire susceptibility of a Bolivian semi-deciduous forest. Ecological Applications, 15, 1649-1663.
– reference: Cochrane MA, Alencar A, Schulze MD, Souza CM Jr, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832.
– reference: Balch JK, Nepstad DC, Curran LM et al. (2011) Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management, 261, 68-77.
– reference: Bates D, Maechler M (2009) Lme4: Linear Mixed-Effects Models Using S4 Classes. R package version 0. 999375-32.
– reference: Golding N, Betts R (2008) Fire risk in Amazonia due to climate change in the HadCM3 climate model: potential interactions with deforestation. Global Biogeochemical Cycles, 22, GB4007, doi: 10.1029/2007GB003166.
– reference: Romero C, Bolker BM (2008) Effects of stem anatomical and structural traits on responses to stem damage: an experimental study in the Bolivian Amazon. Canadian Journal of Forest Research, 38, 611-618.
– reference: Baker PJ, Bunyavejchewin S, Robinson AR (2008) The impacts of large-scale, low-intensity fires on the forests of continental South-east Asia. International Journal of Wildland Fire, 17, 782-792.
– reference: Barlow J, Peres CA (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 1787.
– reference: Phillips OL, Aragão L, Lewis S et al. (2009) Drought sensitivity of the Amazon rainforest. Science, 323, 1344-1347.
– reference: Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
– reference: Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science, 319, 169.
– reference: Galbraith D, Levy PE, Sitch S, Huntingford C, Cox P, Williams M, Meir P (2010) Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist, 187, 647-665.
– reference: Mantgem P van, Schwartz M (2003) Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions. Forest Ecology and Management, 178, 341-352.
– reference: Martin RE (1963) Thermal properties of bark. Forest Products Journal, 13, 419-426.
– reference: Balch JK, Nepstad DC, Brando PM et al. (2008) Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14, 2276-2287.
– reference: Pinard MA, Putz FE, Licona JC (1999) Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management, 116, 247-252.
– reference: Nepstad DC, Stickler CM, Filho BS, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 1737.
– reference: Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications, 16, 2356-2367.
– reference: Cramer W, Bondeau A, Woodward FI et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357-373.
– reference: Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. (2nd edn), 488 pp. Springer Verlag, New York, NY, USA. ISBN 0-387-95364-7.
– reference: Pinard MA, Huffman J (1997) Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia. Journal of Tropical Ecology, 13, 727-740.
– reference: Agee JK (1993) Fire Ecology of Pacific Northwest forests. Island Press, Washington, DC, 493 pp.
– reference: Alencar A, Nepstad D, Diaz MCV (2006) Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions, 10, 1-17.
– reference: Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology, 71, 437-449.
– reference: Gutsell S, Johnson E (1996) How fire scars are formed: coupling a disturbance process to its ecological effect. Canadian Journal of Forest Research, 26, 166-174.
– reference: Hoffmann WA, Adasme R, Haridasan M et al. (2009) Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna-forest boundaries under frequent fire in central Brazil. Ecology, 90, 1326-1337.
– reference: Nepstad D, Carvalho G, Barros A, Alencar A, Capobianco J, Bishop J (2001) Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management, 154, 395-407.
– reference: VanderWeide BL, Hartnett DC (2011) Fire resistance of tree species explains historical gallery forest community composition. Forest Ecology and Management, 261, 1530-1538.
– year: 2009
– volume: 323
  start-page: 1344
  year: 2009
  end-page: 1347
  article-title: Drought sensitivity of the Amazon rainforest
  publication-title: Science
– volume: 13
  start-page: 727
  year: 1997
  end-page: 740
  article-title: Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia
  publication-title: Journal of Tropical Ecology
– volume: 284
  start-page: 1832
  year: 1999
  article-title: Positive feedbacks in the fire dynamic of closed canopy tropical forests
  publication-title: Science
– volume: 178
  start-page: 341
  year: 2003
  end-page: 352
  article-title: Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions
  publication-title: Forest Ecology and Management
– volume: 15
  start-page: 1649
  year: 2005
  end-page: 1663
  article-title: Modest trade‐offs between timber management and fire susceptibility of a Bolivian semi‐deciduous forest
  publication-title: Ecological Applications
– volume: 319
  start-page: 169
  year: 2008
  article-title: Climate change, deforestation, and the fate of the Amazon
  publication-title: Science
– volume: 22
  start-page: 500
  year: 2007
  end-page: 515
  article-title: How forest fires kill trees: a review of the fundamental biophysical processes
  publication-title: Scandinavian Journal of Forest Research
– year: 2007
– volume: 71
  start-page: 437
  year: 1990
  end-page: 449
  article-title: Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon
  publication-title: Ecology
– volume: 24
  start-page: 127
  year: 2009
  end-page: 135
  article-title: Generalized linear mixed models: a practical guide for ecology and evolution
  publication-title: Trends in Ecology & Evolution
– volume: 408
  start-page: 184
  year: 2000
  end-page: 187
  article-title: Acceleration of global warming due to carbon‐cycle feedbacks in a coupled climate model
  publication-title: Nature
– volume: 17
  start-page: 782
  year: 2008
  end-page: 792
  article-title: The impacts of large‐scale, low‐intensity fires on the forests of continental South‐east Asia
  publication-title: International Journal of Wildland Fire
– volume: 363
  start-page: 1787
  year: 2008
  article-title: Fire‐mediated dieback and compositional cascade in an Amazonian forest
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 154
  start-page: 395
  year: 2001
  end-page: 407
  article-title: Road paving, fire regime feedbacks, and the future of Amazon forests
  publication-title: Forest Ecology and Management
– volume: 363
  start-page: 1737
  year: 2008
  article-title: Interactions among Amazon land use, forests and climate: prospects for a near‐term forest tipping point
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 105
  start-page: 157
  year: 2002
  end-page: 169
  article-title: Effects of ground fires on understorey bird assemblages in Amazonian forests
  publication-title: Biological Conservation
– volume: 14
  start-page: 139
  year: 2004
  end-page: 149
  article-title: Modeling forest understory fires in an eastern Amazonian landscape
  publication-title: Ecological Applications
– volume: 328
  start-page: 1275
  year: 2010
  article-title: The incidence of fire in Amazonian forests with implications for REDD
  publication-title: Science
– volume: 15
  start-page: 1664
  year: 2005
  end-page: 1678
  article-title: Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape
  publication-title: Ecological Applications
– start-page: 477
  year: 2001
  end-page: 526
– volume: 38
  start-page: 611
  year: 2008
  end-page: 618
  article-title: Effects of stem anatomical and structural traits on responses to stem damage: an experimental study in the Bolivian Amazon
  publication-title: Canadian Journal of Forest Research
– volume: 116
  start-page: 247
  year: 1999
  end-page: 252
  article-title: Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia
  publication-title: Forest Ecology and Management
– volume: 261
  start-page: 68
  year: 2011
  end-page: 77
  article-title: Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon
  publication-title: Forest Ecology and Management
– volume: 90
  start-page: 1326
  year: 2009
  end-page: 1337
  article-title: Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna‐forest boundaries under frequent fire in central Brazil
  publication-title: Ecology
– volume: 26
  start-page: 166
  year: 1996
  end-page: 174
  article-title: How fire scars are formed: coupling a disturbance process to its ecological effect
  publication-title: Canadian Journal of Forest Research
– volume: 301
  start-page: 1710
  year: 2003
  end-page: 1714
  article-title: Amazonia 1492: pristine forest or cultural parkland?
  publication-title: Science
– volume: 7
  start-page: 357
  year: 2001
  end-page: 373
  article-title: Global response of terrestrial ecosystem structure and function to CO and climate change: results from six dynamic global vegetation models
  publication-title: Global Change Biology
– year: 2002
– volume: 22
  start-page: GB4007
  year: 2008
  article-title: Fire risk in Amazonia due to climate change in the HadCM3 climate model: potential interactions with deforestation
  publication-title: Global Biogeochemical Cycles
– volume: 14
  start-page: 2276
  year: 2008
  end-page: 2287
  article-title: Negative fire feedback in a transitional forest of southeastern Amazonia
  publication-title: Global Change Biology
– volume: 261
  start-page: 1530
  year: 2011
  end-page: 1538
  article-title: Fire resistance of tree species explains historical gallery forest community composition
  publication-title: Forest Ecology and Management
– volume: 13
  start-page: 419
  year: 1963
  end-page: 426
  article-title: Thermal properties of bark
  publication-title: Forest Products Journal
– volume: 6
  start-page: 6
  year: 2003b
  end-page: 8
  article-title: Large tree mortality and the decline of forest biomass following Amazonian wildfires
  publication-title: Ecology Letters
– volume: 10
  start-page: 1
  year: 2006
  end-page: 17
  article-title: Forest understory fire in the Brazilian Amazon in ENSO and non‐ENSO years: area burned and committed carbon emissions
  publication-title: Earth Interactions
– volume: 16
  start-page: 2356
  year: 2006
  end-page: 2367
  article-title: Regional and phylogenetic variation of wood density across 2456 neotropical tree species
  publication-title: Ecological Applications
– volume: 14
  start-page: 2015
  year: 2008
  end-page: 2039
  article-title: Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs)
  publication-title: Global Change Biology
– year: 1993
– volume: 19
  start-page: 291
  year: 2003a
  end-page: 299
  article-title: Morphological correlates of fire‐induced tree mortality in a central Amazonian forest
  publication-title: Journal of Tropical Ecology
– volume: 187
  start-page: 647
  year: 2010
  end-page: 665
  article-title: Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change
  publication-title: New Phytologist
– volume: 106
  start-page: 20610
  year: 2009
  end-page: 20615
  article-title: Exploring the likelihood and mechanism of a climate‐change‐induced dieback of the Amazon rainforest
  publication-title: Proceedings of the National Academy of Sciences
– ident: e_1_2_7_20_1
  doi: 10.1046/j.1365-2486.2001.00383.x
– ident: e_1_2_7_15_1
  doi: 10.1016/j.tree.2008.10.008
– ident: e_1_2_7_43_1
  doi: 10.1007/978-0-387-21706-2
– ident: e_1_2_7_9_1
  doi: 10.1098/rstb.2007.0013
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1365-2486.2008.01655.x
– volume-title: Lme4: Linear Mixed‐Effects Models Using S4 Classes
  year: 2009
  ident: e_1_2_7_13_1
– volume-title: Data Analysis Using Regression and Multilevel/Hierarchical Models
  year: 2007
  ident: e_1_2_7_23_1
– ident: e_1_2_7_25_1
  doi: 10.1139/x26-020
– ident: e_1_2_7_14_1
  doi: 10.1890/04-0385
– volume: 13
  start-page: 419
  year: 1963
  ident: e_1_2_7_31_1
  article-title: Thermal properties of bark
  publication-title: Forest Products Journal
– ident: e_1_2_7_32_1
  doi: 10.1080/02827580701803544
– ident: e_1_2_7_12_1
  doi: 10.1046/j.1461-0248.2003.00394.x
– ident: e_1_2_7_30_1
  doi: 10.1016/S0378-1127(02)00554-6
– ident: e_1_2_7_35_1
  doi: 10.1126/science.1164033
– ident: e_1_2_7_37_1
  doi: 10.1016/S0378-1127(98)00447-2
– ident: e_1_2_7_21_1
  doi: 10.1016/B978-012386660-8/50016-7
– ident: e_1_2_7_24_1
  doi: 10.1029/2007GB003166
– ident: e_1_2_7_6_1
  doi: 10.1071/WF07147
– ident: e_1_2_7_11_1
  doi: 10.1017/S0266467403003328
– ident: e_1_2_7_18_1
  doi: 10.1126/science.284.5421.1832
– ident: e_1_2_7_28_1
  doi: 10.1126/science.1146961
– ident: e_1_2_7_41_1
  doi: 10.2307/1940299
– ident: e_1_2_7_2_1
– ident: e_1_2_7_19_1
  doi: 10.1038/35041539
– ident: e_1_2_7_34_1
  doi: 10.1098/rstb.2007.0036
– ident: e_1_2_7_38_1
  doi: 10.1890/05-0404
– ident: e_1_2_7_29_1
  doi: 10.1073/pnas.0804619106
– ident: e_1_2_7_42_1
  doi: 10.1016/j.foreco.2011.01.044
– ident: e_1_2_7_10_1
  doi: 10.1016/S0006-3207(01)00177-X
– ident: e_1_2_7_36_1
  doi: 10.1017/S0266467400010890
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1469-8137.2010.03350.x
– ident: e_1_2_7_33_1
  doi: 10.1016/S0378-1127(01)00511-4
– ident: e_1_2_7_39_1
  doi: 10.1139/X07-205
– ident: e_1_2_7_27_1
  doi: 10.1890/08-0741.1
– ident: e_1_2_7_26_1
  doi: 10.1126/science.1086112
– ident: e_1_2_7_3_1
  doi: 10.1890/01-6029
– ident: e_1_2_7_17_1
  doi: 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2
– volume-title: Model Selection and Multimodel Inference: A Practical Information‐Theoretic Approach
  year: 2002
  ident: e_1_2_7_16_1
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1186925
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1365-2486.2008.01626.x
– ident: e_1_2_7_4_1
  doi: 10.1175/EI150.1
– ident: e_1_2_7_8_1
  doi: 10.1016/j.foreco.2010.09.029
SSID ssj0003206
Score 2.5004816
Snippet Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the...
Abstract Large-scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due...
Large-scale wildfires are expected to accelerate forest dieback in Amazonia, but the fire vulnerability of tree species remains uncertain, in part due to the...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 630
SubjectTerms Amazon
Animal and plant ecology
Animal, plant and microbial ecology
Bark
bark thickness
Biological and medical sciences
climate change
Density
Dieback
Drought
fire
Forest & brush fires
Forest and land fires
forest dieback
Fundamental and applied biological sciences. Psychology
General aspects
generalized linear models
Heat transfer
Insulation
Latent heat
Mortality
Newton's law of cooling
Phytopathology. Animal pests. Plant and forest protection
Plant species
plant traits
Rainforests
tree mortality
Trees
Tropical forests
Vaporization
Weather damages. Fires
Wildfires
Wood
wood density
Title Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior
URI https://api.istex.fr/ark:/67375/WNG-K5QP5HCZ-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2011.02533.x
https://www.proquest.com/docview/915498767
https://www.proquest.com/docview/920804977
Volume 18
WOSCitedRecordID wos000299042500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hXZC48LNQkRYqH1BPDdrEdn64wdJtJcqqIKpWXCw7TqSIklTJtio98Qg8I0_CjJMNXYlDhbhtNh5n7RnPfN58ngF4KUzCiygSfhra3Kfatn4SJXRiOTCcx8YWXdWSw3ixSE5P06Oe_0RnYbr8EMMfbrQynL-mBa5Nu77IHUNLJFGfiTNE6PIK8eQ4RDOWIxi_-zQ_Phz8Mg9dpc2AS4HOJ-DrvJ6_9rUWrMY071dEntQtzl_RFb5YQ6Y38a0LUPOH_3Noj-BBD1PZm86uHsOdvJrAva5w5fcJbOz9OR-HzXoH0U7A-4AgvG5cM7bDZmclImJ39QSu5-hef_34WVYW7ckyeh_Ovjn4j1sBVlZMsyqvl019TpbDEE7jcF8zhKiMSJAtqwtmdPOVUV2LZbvb9dCW1_kuI-oQs8TGx650ZVmBD2OrJARP4Xi-93l24PelH_xMImjyNQ8LO9Uc8X8kTZxoqoYWIRaKjcY91NRiEM2DaREU6H-SzJrEpDqWKaK9PCpExjdgVNVV_gyYRExoM6kNAj0RpcIInmVCTjOLUTvR0oN4pWOV9XnRaRhn6sb-CNWhSB2K1KGcOtSVB8Eged7lBrmFzI4zo0EAZ424dbFUJ4t99V5-PJIHsy_qxIPtNTsbBEJKmSgC4cHWyvBU73dalVLGPQxwsQdsuIsOg94CaVThBTYJcZMgEPZ7EDkjvPVvV_uzt_Rp818Ft-A-fh12pPfnMFo2F_kLuJtdLsu22e7X62-Y7Twk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hLgguBRYq0kLxAfXUoE1s54cbLN0u6nZVUKtWXCw7TqSIklTJFpWeeASekSdhJsmGrsShQtwSxePEnvHMN854BuCVMBHPgkC4sW9Tl2rbulEQ0Yllz3AeGpu1VUtm4XwenZ3FR105IDoL0-aH6DfcaGU0-poWOG1Ir67yJkRLREGXitNH7PIaAeVAoFShuA_ef5qczHrFzP2m1KbHpUDt4_HVwJ6_9rVirQY08VcUPalrnMCsrXyxAk1vAtzGQk0e_texPYL1Dqiyt61kPYY7aTGEe23pyu9D2Nj7c0IOm3Uqoh6Cc4gwvKyaZmyHjc9zxMTN3RO4nqCC_fXjZ15YlCjL6I84-9o4AOgMsLxgmhVpuajKC5IdhoAax_uGIUhlFAZZszJjRldfGFW2WNS7bQ91fp3uMgoeYpbi8bErXViW4cvYMg3BUziZ7B2Pp25X_MFNJMImV3M_syPN0QMIpAkjTfXQAkRDodHoRY0smtHUG2VehhooSqyJTKxDGSPeS4NMJHwD1oqySJ8Bk4gKbSK1QagnglgYwZNEyFFi0W5HWjoQLpmski4zOg3jXN3wkJAditihiB2qYYe6csDrKS_a7CC3oNlp5KgnwFmj6LpQqtP5vjqQH4_kdPxZnTqwvSJoPYFPSROFJxzYWkqe6jRPrWLKuYcmLnSA9U9RZdB_II0svMQmProJAoG_A0Ejhbf-drU_fkdXm_9K-BLuT48PZ2r2YX6wBQ-wid-GwD-HtUV1mb6Au8m3RV5X293i_Q2K6EAU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB6hBBAXfgIVbqHsAfVUo9i76x9ukDYtaogComrFZbX22pLV1o7sFJWeeASekSdhxnZMLXGoELdE2dlkd2Znvoln5wN4LaKAp54n7NA1iU3ctnbgBXRj2Yk49yOTNqwlM38-D05Pw0VLB0R3YZr-EN0fbnQyan9NBzxZmrR_yusSLRF4bStOF7HLGwSUQ0GcMgMY7n2eHs86x8zdmmrT4VKg93F4v7Dnr3P1otWQNv6Kqid1hRuYNswXPWh6E-DWEWr66L-u7TE8bIEqe9dY1hO4k-QjuNdQV34fwcb-nxtyOKx1EdUIrI8Iw4uyHsZ22OQ8Q0xcv3sK11N0sL9-_MxygxZlGD0RZxd1AoDJAMtyplmeFKuyWJLtMATUuN63DEEqozLIihUpi3R5xojZYlXtNjNU2XWyy6h4iBmqx8epdG5Yil_G1m0InsHxdP_L5NBuyR_sWCJssjV3UzPWHDMAT0Z-oIkPzUM05Ecas6ixwTCaOOPUSdEDBbGJgijUvgwR7yVeKmK-AYO8yJPnwCSiQhNLHSHUE14oIsHjWMhxbDBuB1pa4K-VrOK2Mzot41zdyJBQHYrUoUgdqlaHurLA6SSXTXeQW8js1HbUCeCuUXWdL9XJ_EAdyU8LeTj5qk4s2O4ZWifgUtNE4QgLttaWp1rPU6mQeu5hiPMtYN2n6DLoOZBGFV7iEBfTBIHA3wKvtsJb_3Z1MHlPrzb_VfAV3F_sTdXsw_xoCx7gCLepgH8Bg1V5mbyEu_G3VVaV2-3Z_Q21ND-P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fire-induced+tree+mortality+in+a+neotropical+forest%3A+the+roles+of+bark+traits%2C+tree+size%2C+wood+density+and+fire+behavior&rft.jtitle=Global+change+biology&rft.au=BRANDO%2C+Paulo+M&rft.au=NEPSTAD%2C+Daniel+C&rft.au=BALCH%2C+Jennifer+K&rft.au=BOLKER%2C+Benjamin&rft.date=2012-02-01&rft.pub=Wiley-Blackwell&rft.issn=1354-1013&rft.volume=18&rft.issue=2&rft.spage=630&rft.epage=641&rft_id=info:doi/10.1111%2Fj.1365-2486.2011.02533.x&rft.externalDBID=n%2Fa&rft.externalDocID=25407414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon