Metal–Organic Frameworks and Metal–Organic Gels for Oxygen Electrocatalysis: Structural and Compositional Considerations

Increasing demand for sustainable and clean energy is calling for the next‐generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2/N2 reduction electrolyzers, metal–air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced materials (Weinheim) Ročník 33; číslo 25; s. e2008023 - n/a
Hlavní autori: Wang, Hao, Chen, Biao‐Hua, Liu, Di‐Jia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 01.06.2021
Wiley Blackwell (John Wiley & Sons)
Predmet:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Increasing demand for sustainable and clean energy is calling for the next‐generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2/N2 reduction electrolyzers, metal–air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active‐site density through rational design of metal–organic frameworks (MOFs) and metal–organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG‐derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined. Boosting the intrinsic activity and the active‐site density through rational design of metal–organic frameworks (MOFs) and metal–organic gels (MOGs) as precursors represents a new approach of improving oxygen electrocatalysis efficiency. Several key compositional and structural considerations for the MOF/MOG design and new perspectives between synthesis, characterization, and performance are comprehensively discussed.
AbstractList Increasing demand for sustainable and clean energy is calling for the next-generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2 /N2 reduction electrolyzers, metal-air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active-site density through rational design of metal-organic frameworks (MOFs) and metal-organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG-derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined.Increasing demand for sustainable and clean energy is calling for the next-generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2 /N2 reduction electrolyzers, metal-air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active-site density through rational design of metal-organic frameworks (MOFs) and metal-organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG-derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined.
Increasing demand for sustainable and clean energy is calling for the next‐generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO 2 /N 2 reduction electrolyzers, metal–air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active‐site density through rational design of metal–organic frameworks (MOFs) and metal–organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG‐derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined.
Increasing demand for sustainable and clean energy is calling for the next‐generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2/N2 reduction electrolyzers, metal–air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active‐site density through rational design of metal–organic frameworks (MOFs) and metal–organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG‐derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined.
Increasing demand for sustainable and clean energy is calling for the next-generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO /N reduction electrolyzers, metal-air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active-site density through rational design of metal-organic frameworks (MOFs) and metal-organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG-derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined.
Increasing demand for sustainable and clean energy is calling for the next‐generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2/N2 reduction electrolyzers, metal–air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active‐site density through rational design of metal–organic frameworks (MOFs) and metal–organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG‐derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined. Boosting the intrinsic activity and the active‐site density through rational design of metal–organic frameworks (MOFs) and metal–organic gels (MOGs) as precursors represents a new approach of improving oxygen electrocatalysis efficiency. Several key compositional and structural considerations for the MOF/MOG design and new perspectives between synthesis, characterization, and performance are comprehensively discussed.
Author Liu, Di‐Jia
Chen, Biao‐Hua
Wang, Hao
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0003-0674-0811
  surname: Wang
  fullname: Wang, Hao
  organization: Argonne National Laboratory
– sequence: 2
  givenname: Biao‐Hua
  orcidid: 0000-0002-9871-9560
  surname: Chen
  fullname: Chen, Biao‐Hua
  email: chenbh@bjut.edu.cn
  organization: Beijing University of Technology
– sequence: 3
  givenname: Di‐Jia
  orcidid: 0000-0003-1747-028X
  surname: Liu
  fullname: Liu, Di‐Jia
  email: djliu@anl.gov
  organization: The University of Chicago
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33984166$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1782935$$D View this record in Osti.gov
BookMark eNqFkc1u1DAUhS1URKeFLUsU0U03Ga5_4rHZjYa2ILWaBbC2HNspLok92InKSF3wDrwhT0LSaUEaCbGybH_n6N5zjtBBiMEh9BLDHAOQN9p2ek6AAAgg9Ama4YrgkoGsDtAMJK1KyZk4REc53wCA5MCfoUNKpWCY8xm6u3K9bn_9-LlO1zp4U5wn3bnbmL7mQgdb7H9fuDYXTUzF-vv22oXirHWmT9HoEdtmn98WH_s0mH5Iur03WMVuE7PvfQzjyyqG7K1Lerrn5-hpo9vsXjycx-jz-dmn1fvycn3xYbW8LE0FnJaCAxjMNHOGLrDEpAbb1Mw5Bo0VXFqMJamaBSe1llZTS6GRRCzqRkhpjaTH6PXON-beq2x878wXE0MYZ1d4IciY0wid7qBNit8Gl3vV-Wxc2-rg4pAVqYjAglV08jvZQ2_ikMb9JopRTtkCT4avHqih7pxVm-Q7nbbqMfwRYDvApJhzco0aJ7tPpk_atwqDmjpWU8fqT8ejbL4ne3T-p0DuBLe-ddv_0Gr57mr5V_sbYra7iA
CitedBy_id crossref_primary_10_1016_j_saa_2024_124696
crossref_primary_10_1002_sstr_202100126
crossref_primary_10_1039_D3NR02868B
crossref_primary_10_1002_celc_202101476
crossref_primary_10_1002_anie_202316257
crossref_primary_10_1016_j_aca_2024_343274
crossref_primary_10_3390_nano13071178
crossref_primary_10_1007_s40242_023_3058_5
crossref_primary_10_1016_j_ccr_2022_214969
crossref_primary_10_1002_cctc_202301379
crossref_primary_10_1002_aenm_202301224
crossref_primary_10_1039_D5NR00471C
crossref_primary_10_1002_ange_202200123
crossref_primary_10_1002_smll_202309302
crossref_primary_10_1016_j_jenvman_2024_121686
crossref_primary_10_3390_gels11070479
crossref_primary_10_3390_gels11010076
crossref_primary_10_1016_j_jssc_2025_125621
crossref_primary_10_1016_j_jcis_2023_06_134
crossref_primary_10_1002_adma_202204800
crossref_primary_10_1016_j_seppur_2024_128141
crossref_primary_10_1016_j_cej_2022_136362
crossref_primary_10_1007_s00604_024_06294_4
crossref_primary_10_1016_j_jallcom_2022_164092
crossref_primary_10_1039_D5TA03824C
crossref_primary_10_1016_j_cej_2022_136128
crossref_primary_10_1007_s11244_022_01611_8
crossref_primary_10_1002_smll_202307407
crossref_primary_10_1007_s10876_023_02518_4
crossref_primary_10_1007_s12274_022_4677_8
crossref_primary_10_1016_j_seppur_2022_121253
crossref_primary_10_1039_D5DT00451A
crossref_primary_10_1002_advs_202104561
crossref_primary_10_1016_j_cej_2025_159257
crossref_primary_10_1039_D4SC05799F
crossref_primary_10_1039_D5CC04076K
crossref_primary_10_1002_anie_202200123
crossref_primary_10_1016_j_enrev_2025_100153
crossref_primary_10_1039_D5MH00368G
crossref_primary_10_1016_j_jpowsour_2024_235007
crossref_primary_10_1039_D4RA05547K
crossref_primary_10_1016_j_ccr_2022_214505
crossref_primary_10_1016_j_cattod_2024_114662
crossref_primary_10_1016_j_jcis_2023_07_151
crossref_primary_10_1002_adfm_202213578
crossref_primary_10_1002_tcr_202100329
crossref_primary_10_1002_smll_202102477
crossref_primary_10_1002_ange_202316257
crossref_primary_10_1021_acs_jpcc_5c02561
crossref_primary_10_3389_fchem_2024_1468916
crossref_primary_10_1002_adfm_202514345
crossref_primary_10_1002_adom_202301767
crossref_primary_10_1039_D5CY00055F
crossref_primary_10_6023_A22070304
crossref_primary_10_1016_j_ces_2023_119077
crossref_primary_10_1021_acs_inorgchem_5c03383
crossref_primary_10_1016_j_jmgm_2023_108505
crossref_primary_10_1016_j_molstruc_2025_142455
crossref_primary_10_1002_adhm_202300834
crossref_primary_10_1002_smll_202107913
crossref_primary_10_1016_j_jcat_2023_05_023
crossref_primary_10_1016_j_microc_2024_110096
crossref_primary_10_1016_j_jechem_2021_09_029
crossref_primary_10_1007_s00604_024_06515_w
crossref_primary_10_3390_gels10010063
crossref_primary_10_3390_nano12152721
Cites_doi 10.1021/acsami.6b07986
10.1039/C3TA15335E
10.1039/C9TA00708C
10.1016/j.elecom.2012.02.025
10.1021/cr400573b
10.1021/acs.nanolett.6b03458
10.1021/ja8057953
10.1038/378703a0
10.1039/c2ee22989g
10.1016/j.isci.2018.12.029
10.1002/anie.201509382
10.1002/anie.201607271
10.1021/acsami.6b10082
10.1039/C8TA10574J
10.1039/B512169H
10.1002/adma.201604437
10.1039/C9TA00624A
10.1016/j.ccr.2013.01.005
10.1016/j.jelechem.2018.06.006
10.1016/j.nanoen.2019.05.074
10.1021/acsmaterialslett.0c00026
10.1039/C7NR00988G
10.1016/j.jpowsour.2018.02.078
10.20964/2019.09.12
10.1038/s41929-018-0164-8
10.1007/s10853-018-2426-x
10.1021/acsami.9b16224
10.1021/acs.chemmater.6b02879
10.1016/j.seppur.2019.116124
10.1016/j.chempr.2017.04.016
10.1126/science.1109157
10.1002/anie.201809144
10.1021/acsaem.8b02010
10.1149/2.F03152if
10.1016/j.mattod.2017.07.006
10.1002/adma.201304238
10.1002/smll.201704233
10.1002/adfm.201702324
10.1002/cssc.201801886
10.1016/j.apcatb.2019.117947
10.1002/adma.201705431
10.1002/smll.201704207
10.1002/smll.201803520
10.1002/slct.201701416
10.1007/s11814-013-0140-6
10.1039/C8TA03128B
10.1002/smtd.201800168
10.1002/adma.201606534
10.1002/anie.202009331
10.1039/C7TA01447C
10.1002/celc.202000038
10.1021/cm5038183
10.1016/j.nanoen.2021.105840
10.1021/ic800538r
10.1039/C8NJ03170C
10.1002/anie.201301066
10.1002/adma.201606134
10.1002/anie.201906289
10.1038/s41929-018-0146-x
10.1039/C4DT03726J
10.1021/acsami.6b05375
10.1039/C6EE00100A
10.1039/C5NR02983J
10.1016/j.ijhydene.2017.02.063
10.1002/chem.201003080
10.1039/C6TA05679B
10.1039/C9DT02943E
10.1016/j.electacta.2017.02.074
10.1149/1.3484554
10.1039/C5EE02903A
10.1002/batt.201800116
10.1021/acs.nanolett.8b00978
10.1002/ejic.201500822
10.1002/anie.201710809
10.1039/C6TA00945J
10.1002/adfm.201600636
10.1039/D0TA00306A
10.1002/anie.201907600
10.1039/C9EE00877B
10.1002/adfm.201704638
10.1002/adma.201703614
10.1016/j.carbon.2016.10.046
10.1021/acsami.7b18858
10.1039/B704325B
10.1002/cssc.201900194
10.1002/anie.201502396
10.1038/nmat4509
10.1002/adma.201506315
10.1016/j.nanoen.2020.105304
10.1016/S1872-2067(18)63017-7
10.1002/anie.201803262
10.1016/j.jcat.2018.09.012
10.1002/chem.201300145
10.1002/adma.201801351
10.1002/advs.201800949
10.1021/acsami.6b04189
10.1021/acsami.6b13166
10.1016/j.matlet.2018.03.125
10.1039/C5TA02244D
10.1021/jacs.7b12420
10.1039/C4TA02279C
10.1002/asia.201900727
10.1021/acs.inorgchem.7b00333
10.1039/D0TA04331A
10.1021/acsenergylett.9b01740
10.1002/admi.201600632
10.1016/j.nanoen.2014.11.043
10.1002/anie.201906870
10.1021/acs.chemmater.5b02877
10.1002/adfm.201706120
10.1021/acsami.7b06152
10.1016/j.ccr.2017.09.001
10.1016/j.nanoen.2017.05.016
10.1016/j.electacta.2016.10.070
10.1016/j.ijhydene.2019.07.144
10.1021/ja305181y
10.1002/anie.201903283
10.1039/C9TA01559K
10.1021/acs.chemmater.5b02708
10.1002/anie.201701280
10.1039/C7NR09081A
10.1021/acsenergylett.8b00809
10.1039/C7TA04662F
10.1039/C4EE02281E
10.1016/j.cherd.2018.03.037
10.1002/adfm.201603607
10.1021/ja203564w
10.1039/C6RA04771H
10.1002/anie.201804673
10.1039/C8CY00168E
10.1038/s41560-018-0108-1
10.1016/j.ijhydene.2015.06.027
10.1039/C5TA04330A
10.1021/ja510525s
10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z
10.1039/C6CP07294A
10.1002/smll.201800423
10.1039/C5TA01017A
10.1039/C6TA01995A
10.3934/energy.2018.1.121
10.1016/j.mssp.2014.02.018
10.1002/adfm.201802129
10.1021/ic3018858
10.1126/science.aad4998
10.1039/C6DT00009F
10.1016/j.jpowsour.2013.03.156
10.1021/ja045123o
10.1002/celc.201600452
10.1002/adma.201705442
10.1039/C8CC00025E
10.1038/s41560-020-00709-1
10.1021/ja408084j
10.1039/C4TA05342G
10.1016/j.apcatb.2014.08.022
10.1039/C8TA02926A
10.1016/j.nanoen.2017.12.029
10.1039/C9DT01730E
10.1039/C7TA00281E
10.1002/adma.202003313
10.1126/science.286.5437.49c
10.1021/acscatal.5b02325
10.1021/acsami.6b02630
10.1126/sciadv.aap9252
10.1039/c0ee00731e
10.1002/adfm.201705356
10.1002/adma.201801211
10.1039/C7CC03558F
10.1039/C8TA00410B
10.1016/j.nanoen.2018.07.033
10.1002/smtd.201800068
10.1002/adma.201604685
10.1016/j.jcis.2020.05.071
10.1038/s41929-020-00546-1
10.1016/j.cej.2020.125158
10.1002/adfm.201606190
10.1021/jacs.8b08744
10.1002/adma.201807615
10.1021/ja401727n
10.1016/j.ijhydene.2016.03.164
10.1002/adma.202003577
10.1021/acsami.6b13411
10.1038/ncomms10942
10.1016/S2095-4956(14)60178-9
10.1021/acs.jpclett.6b02924
10.1039/C3EE42799D
10.1039/C6MH00344C
10.1039/C7TA06272A
10.3390/nano9050775
10.1021/acs.chemmater.7b00867
10.1016/j.ijhydene.2012.10.056
10.1016/j.electacta.2013.11.193
10.1002/anie.201503637
10.1039/C8EE02694G
10.1002/advs.201801920
10.1021/jacs.7b06514
10.1002/cctc.201600298
10.1038/2011212a0
10.1016/j.jpowsour.2019.01.020
10.1016/j.nantod.2013.11.004
10.1039/C3TA15319C
10.1021/ja00146a033
10.1039/c2sc20657a
10.1002/anie.201909312
10.1016/j.nanoen.2019.01.050
10.1038/s41929-019-0237-3
10.1039/C6EE02171A
10.1016/j.energy.2005.09.011
10.1002/adfm.201702546
10.1039/C3CC47620K
10.1021/ja00324a007
10.1002/adma.201701410
10.1002/smll.201704169
10.1016/j.electacta.2019.01.005
10.1002/aenm.201803867
10.1038/46248
10.1016/j.jpowsour.2015.06.056
10.1038/s41929-019-0291-x
10.1002/adma.201700874
10.1016/j.coelec.2018.04.010
10.1016/j.electacta.2019.135210
10.1002/smll.201901940
10.1002/cplu.201300334
10.1021/acsami.8b06272
10.1126/science.aau0630
10.1039/C8NR02492H
10.1073/pnas.0602439103
10.1002/anie.201204475
10.1002/adfm.201700451
10.1021/acsami.6b10160
10.1002/smll.201907368
10.1039/C3EE43040E
10.1126/sciadv.abb6833
10.1021/acscatal.7b01649
10.1016/j.ensm.2018.11.014
10.1016/j.nanoen.2017.09.055
10.1016/j.ijhydene.2016.11.118
10.1039/C6RE00107F
10.1038/ncomms1427
10.1039/C8SC02444H
10.1073/pnas.1507159112
10.1021/acsami.9b11859
10.1021/acsenergylett.8b00584
10.1002/anie.201803136
10.1021/acsenergylett.6b00686
10.1002/adma.202002235
10.1021/acsami.7b09897
10.1002/smll.201803009
10.1002/anie.201301327
10.1021/cr300014x
10.1021/ja211433h
10.1039/C5NR07193C
10.1016/j.enchem.2019.100005
10.1016/j.elecom.2010.02.017
10.1021/acsami.7b01547
10.1016/j.ijhydene.2013.01.151
10.1039/D0NJ01373K
10.1002/adfm.201700795
10.3390/inorganics7100123
10.1002/aenm.201800085
10.1002/adfm.201903660
10.1039/C8EE01169A
10.1063/1.5119858
10.1021/acssuschemeng.8b02343
10.1016/j.ccr.2017.11.028
10.1002/aenm.201601052
10.1002/anie.201910309
10.1002/aenm.201400337
10.1038/s41929-019-0320-9
10.1002/adfm.201403657
10.1039/C6CS00328A
10.1038/srep05130
10.1002/smtd.201800214
10.1002/adfm.201908945
10.1016/j.ijhydene.2019.11.124
10.1016/j.ijhydene.2018.03.154
10.1039/C5SC04425A
10.1021/acsenergylett.8b02343
10.1016/j.jallcom.2020.154896
10.1021/acsenergylett.9b01134
10.1039/C6TA05877A
10.1021/acssuschemeng.0c01729
10.1016/j.jallcom.2019.153438
10.1039/C4NR02399D
10.1016/j.electacta.2016.10.002
10.1002/aenm.201900662
10.1002/adma.201703657
10.1002/anie.202008129
10.1021/acsami.5b10727
10.1016/j.rser.2016.07.046
10.1039/C4CC06867J
10.1039/C8TA06491A
10.1016/j.ijhydene.2013.12.120
10.1002/adma.201202424
10.1016/j.jcis.2019.02.084
10.1021/nn505582e
10.1016/j.ijhydene.2019.07.022
10.1016/j.eap.2015.10.002
10.1038/nenergy.2015.6
10.1002/anie.201612635
10.1016/j.rser.2013.02.042
10.1016/j.apcatb.2016.12.016
10.1002/chem.201304404
10.1016/j.apcatb.2019.118042
10.1039/C9SC04961D
10.1016/j.renene.2017.12.003
10.1039/C6EE00551A
10.1016/j.catcom.2014.05.006
10.1039/C4NR05865H
10.1038/ncomms15938
10.1039/c3cc43292k
10.1038/nprot.2016.001
10.1016/j.nanoen.2017.07.043
10.1021/ja5082553
10.1016/j.jallcom.2018.01.019
10.1002/anie.200454250
10.1021/acssuschemeng.7b03034
10.1021/acs.chemmater.8b04934
10.1016/j.electacta.2019.03.175
10.1039/C6RE00065G
10.1002/adma.201502315
10.1016/j.electacta.2018.11.142
10.1016/j.electacta.2017.02.144
10.1039/C4TA01656D
10.1039/C8NR04776F
10.1021/acs.langmuir.8b02166
10.1016/j.jelechem.2006.11.008
10.1039/C5NR02487K
10.1002/anie.201711376
10.1038/nenergy.2016.184
10.1021/jacs.6b11248
10.1016/j.carbon.2018.04.019
10.1002/anie.201103155
10.1002/cplu.201600174
10.1016/j.snb.2009.08.018
10.1126/science.283.5405.1148
10.1021/acsami.9b13945
10.1149/2.F04181if
10.1126/science.1116275
10.1002/adma.201901139
10.1002/adma.201305492
10.1002/aenm.201602643
10.1111/j.1751-1097.1970.tb06017.x
10.1021/jp047349j
10.1002/adfm.201901531
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.202008023
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1782935
33984166
10_1002_adma_202008023
ADMA202008023
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: United States Government
– fundername: U.S. Department of Energy
  funderid: DEAC02‐06CH11357
– fundername: U. S. Department of Energy, Hydrogen and Fuel Cell Technologies Office through Office of Energy Efficiency and Renewable Energy
– fundername: U.S. Department of Energy
  grantid: DEAC02-06CH11357
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c5063-8600c14a4ec371912b0dfb4ee40fd869d11925f762ba9da3d30f9287bf899dc93
IEDL.DBID DRFUL
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000649842100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu May 18 22:39:01 EDT 2023
Sun Nov 09 14:28:15 EST 2025
Sat Jul 26 01:11:02 EDT 2025
Wed Feb 19 02:28:05 EST 2025
Tue Nov 18 22:34:54 EST 2025
Sat Nov 29 07:24:50 EST 2025
Wed Jan 22 16:29:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords oxygen evolution reaction
metal-organic gels
oxygen reduction reaction
electrocatalysis
metal-organic frameworks
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5063-8600c14a4ec371912b0dfb4ee40fd869d11925f762ba9da3d30f9287bf899dc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
USDOE
DEAC02‐06CH11357
ORCID 0000-0002-9871-9560
0000-0003-1747-028X
0000-0003-0674-0811
000000031747028X
0000000306740811
0000000298719560
OpenAccessLink https://www.osti.gov/biblio/1798272
PMID 33984166
PQID 2543634715
PQPubID 2045203
PageCount 41
ParticipantIDs osti_scitechconnect_1782935
proquest_miscellaneous_2528184539
proquest_journals_2543634715
pubmed_primary_33984166
crossref_citationtrail_10_1002_adma_202008023
crossref_primary_10_1002_adma_202008023
wiley_primary_10_1002_adma_202008023_ADMA202008023
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2010; 12
2019; 2019
2006; 31
2015 2016 2016 2017 2017 2018 2018 2019 2020; 163 219 8 42 205 10 823 17 59
2019; 11
2019; 12
2019; 15
2019; 14
2018 2018; 30 10
1999; 286
2014; 26
1999; 283
2012; 19
2019 2019; 9 414
2016; 2016
2020; 12
2017 2017 2017 2018 2018 2019 2019; 4 3 29 39 373 59 2
2018; 45
2013; 8
2018; 42
2014; 23
2014; 136
2011 2010; 17 33
2018; 6
2018; 8
2018; 3
2018; 2
2012; 134
2018; 5
2018; 1
2013; 52
2017 2019; 29 11
2016; 41
2019; 29
2018; 30
2018; 34
2016 2020; 15 2
2016; 45
2017 2013 2015 2019 2018 2020; 41 52 54 7 8 8
2018 2019; 14 544
2019; 7
2012 2014 2016 2018 2019 2019 2020; 24 7 26 28 58 14 45
2019; 9
2018; 28
2019; 4
2011; 2
2019 2019; 2 2
2019; 31
2019; 2
2019; 1
2018; 223
1984; 106
2020 2020; 77 234
2016 2016 2018 2020 2020 2020; 220 4 740 578 395 16
2015; 54
2016 2017 2019 2019; 4 9 6 48
2020; 32
2011; 4
2007; 607
2018; 21
2016; 16
2011; 133
2017; 139
2019 2015 2021; 11 3 84
2016; 11
2016; 4
2016; 6
2018; 18
2017; 53
2012; 112
2016 2018 2019; 8 57 31
2020; 30
2019; 44
2016 2019 2019; 7 306 12
2015; 112
2018; 357
2005; 127
2019; 48
2017; 56
2020; 832
2014; 39
2019; 295
2018; 11
2016; 28
2018; 10
2016; 26
2016; 8
2008; 130
2013 2015 2013 2018 2018; 23 48 38 134 27
2015 2014; 8 20
2016; 9
2019; 299
2006; 103
2018; 14
2017 2018 2017; 2 6 37
2018; 362
2017; 5
2017; 7
2017; 42
2017; 8
2016 2019 2018 2019; 1 7 6 58
2017; 2
2013 2014; 52 7
2019 2018; 31 9
2017; 46
2018; 367
2019; 58
2020; 59
2005 2008; 309 47
1995 1995; 117 378
2017; 231
2017; 111
2017; 232
2017; 355
1999; 402
2017; 9
2012; 51
2013; 19
2020; 8
2020; 7
2015; 294
2020; 6
2020; 5
2016 2019
2020; 3
2014; 4
2014; 2
2001
2015; 40
2017; 39
2018; 135
2015; 44
2005; 308
2018 2018; 9 28
2016; 81
2014; 8
2018 2018; 6 3
2001; 13
2014; 50
2014; 6
2014; 54
2017 2018; 29 119
2018; 384
2015; 12
2015; 163
2017 2016; 19 4
2015; 5
2019 2017; 7 4
2018; 140
2013; 49
2015 2016 2016 2018 2020; 27 8 7 28 330
2017; 27
2008
2015 2016 2015; 25 1 3
2007
2014 2015; 2 3
2017; 29
2004; 108
2014 2016; 2 55
1964 1970; 201 11
2015; 7
2014; 114
2016 2009; 8 143
2013 2014; 240 119
2019 2020; 63 44
2016; 55
2015; 24
2012; 3
2015; 27
2013; 38
2020
2016 2016 2020; 6 8 820
2013; 30
2011; 50
2016; 65
2019; 258
2019; 259
2014; 79
2013; 135
2016; 139
2018; 52
2013
2016 2016; 1 1
2013 2020; 257 11
2006 2004; 43
2018; 54
2012; 5
2018; 53
2017 2018 2016 2018 2018 2019; 5 10 3 43 6 58
2018; 57
e_1_2_10_40_3
e_1_2_10_40_2
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_256_3
e_1_2_10_210_1
e_1_2_10_233_1
e_1_2_10_256_1
e_1_2_10_256_2
e_1_2_10_158_1
e_1_2_10_207_1
Bard A. J. (e_1_2_10_39_1) 2001
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_260_1
e_1_2_10_51_1
e_1_2_10_222_1
e_1_2_10_245_1
e_1_2_10_147_1
e_1_2_10_219_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_162_2
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_25_2
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_41_1
e_1_2_10_211_1
e_1_2_10_257_1
e_1_2_10_234_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_113_3
e_1_2_10_75_1
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_113_2
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_174_2
e_1_2_10_261_1
e_1_2_10_200_1
e_1_2_10_246_1
e_1_2_10_223_1
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_163_3
e_1_2_10_26_1
e_1_2_10_163_2
e_1_2_10_65_5
e_1_2_10_65_6
e_1_2_10_65_7
e_1_2_10_250_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_258_1
e_1_2_10_212_1
e_1_2_10_235_1
e_1_2_10_91_1
e_1_2_10_209_1
e_1_2_10_247_5
e_1_2_10_247_6
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_53_2
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_2
e_1_2_10_175_1
e_1_2_10_262_1
e_1_2_10_30_1
e_1_2_10_138_5
e_1_2_10_138_4
e_1_2_10_247_3
e_1_2_10_247_4
e_1_2_10_247_1
e_1_2_10_247_2
e_1_2_10_201_1
e_1_2_10_224_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_149_2
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_27_2
e_1_2_10_65_2
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_65_3
e_1_2_10_65_4
e_1_2_10_164_1
e_1_2_10_43_1
e_1_2_10_251_1
Yang M. (e_1_2_10_160_1) 2019; 7
e_1_2_10_20_1
e_1_2_10_236_1
e_1_2_10_259_1
e_1_2_10_213_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_138_3
e_1_2_10_138_2
e_1_2_10_17_2
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_191_2
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_77_2
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_263_1
e_1_2_10_240_1
e_1_2_10_31_1
e_1_2_10_248_2
e_1_2_10_225_1
e_1_2_10_248_1
e_1_2_10_202_1
e_1_2_10_188_1
e_1_2_10_81_1
e_1_2_10_28_2
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_252_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_237_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_70_2
e_1_2_10_2_1
e_1_2_10_70_3
e_1_2_10_139_2
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_18_2
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_241_1
e_1_2_10_264_1
e_1_2_10_32_1
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_249_1
e_1_2_10_143_2
e_1_2_10_120_1
e_1_2_10_143_3
e_1_2_10_166_1
e_1_2_10_143_4
e_1_2_10_143_5
e_1_2_10_189_1
e_1_2_10_143_6
e_1_2_10_82_1
e_1_2_10_105_2
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_29_2
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_68_2
e_1_2_10_45_1
e_1_2_10_68_3
e_1_2_10_253_1
e_1_2_10_68_4
e_1_2_10_22_1
e_1_2_10_230_1
e_1_2_10_215_1
Yin F. (e_1_2_10_66_1) 2016
e_1_2_10_238_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_71_2
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_71_3
e_1_2_10_94_1
e_1_2_10_117_2
e_1_2_10_71_4
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
Fu S. (e_1_2_10_66_2) 2019
e_1_2_10_242_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_10_2
e_1_2_10_204_1
e_1_2_10_227_1
e_1_2_10_265_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_60_2
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_69_2
e_1_2_10_69_3
e_1_2_10_231_1
e_1_2_10_69_4
e_1_2_10_69_5
e_1_2_10_69_6
e_1_2_10_239_1
e_1_2_10_216_1
e_1_2_10_254_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
Meng D.‐L. (e_1_2_10_214_1) 2019; 2019
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_72_2
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_72_3
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_35_2
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_8_3
e_1_2_10_58_1
e_1_2_10_73_8
e_1_2_10_8_2
e_1_2_10_34_1
e_1_2_10_73_9
e_1_2_10_8_5
e_1_2_10_220_1
e_1_2_10_8_4
e_1_2_10_11_1
e_1_2_10_8_6
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_243_1
e_1_2_10_266_1
e_1_2_10_145_1
e_1_2_10_145_2
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_61_2
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_2
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_108_1
e_1_2_10_217_1
e_1_2_10_232_1
e_1_2_10_255_1
e_1_2_10_157_1
e_1_2_10_157_2
e_1_2_10_229_1
e_1_2_10_1_1
e_1_2_10_111_7
e_1_2_10_73_1
e_1_2_10_73_2
e_1_2_10_111_5
e_1_2_10_172_1
e_1_2_10_73_3
e_1_2_10_96_1
e_1_2_10_111_6
e_1_2_10_73_4
e_1_2_10_111_3
e_1_2_10_73_5
e_1_2_10_111_4
e_1_2_10_73_6
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_73_7
e_1_2_10_111_2
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_221_1
e_1_2_10_267_1
e_1_2_10_244_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_218_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_24_2
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 27
  start-page: 7610
  year: 2015
  publication-title: Chem. Mater.
– volume: 3
  start-page: 1434
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 52 7
  start-page: 7224 317
  year: 2013 2014
  publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci.
– volume: 1 7 6 58
  year: 2016 2019 2018 2019
  publication-title: Nat. Energy J. Mater. Chem. A J. Mater. Chem. A Angew. Chem., Int. Ed.
– volume: 4
  start-page: 5130
  year: 2014
  publication-title: Sci. Rep.
– volume: 19
  start-page: 29
  year: 2012
  publication-title: Electrochem. Commun.
– volume: 17 33
  start-page: 2063 579
  year: 2011 2010
  publication-title: Chem. ‐ Eur. J. ECS Trans.
– volume: 3
  start-page: 1044
  year: 2020
  publication-title: Nat. Catal.
– volume: 56
  start-page: 4858
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 26
  start-page: 6886
  year: 2014
  publication-title: Chem. Mater.
– volume: 114
  start-page: 5611
  year: 2014
  publication-title: Chem. Rev.
– volume: 24 7 26 28 58 14 45
  start-page: 5593 442 8334 3642 1890
  year: 2012 2014 2016 2018 2019 2019 2020
  publication-title: Adv. Mater. Energy Environ. Sci. Adv. Funct. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. Chem. ‐ Asian J. Int. J. Hydrogen Energy
– volume: 19 4
  start-page: 2104
  year: 2017 2016
  publication-title: Phys. Chem. Chem. Phys. J. Mater. Chem. A
– volume: 112
  start-page: 673
  year: 2012
  publication-title: Chem. Rev.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 2 2
  start-page: 562 558
  year: 2019 2019
  publication-title: Nat. Catal. Nat. Catal.
– volume: 6
  start-page: 9930
  year: 2014
  publication-title: Nanoscale
– volume: 1
  year: 2019
  publication-title: EnergyChem
– volume: 9 28
  start-page: 7009
  year: 2018 2018
  publication-title: Chem. Sci. Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 8781
  year: 2019
  publication-title: Int. J. Electrochem. Sci.
– volume: 12
  start-page: 2548
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 1661
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 2019
  year: 2019
  publication-title: Research
– volume: 19
  start-page: 9335
  year: 2013
  publication-title: Chem. ‐ Eur. J.
– volume: 50
  start-page: 8034
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 4601
  year: 2016
  publication-title: Adv. Mater.
– year: 2008
– volume: 57
  start-page: 8654
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 3092
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 259
  year: 2019
  publication-title: Nat. Catal.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 163
  start-page: 424
  year: 2015
  publication-title: Appl. Catal., B
– volume: 7
  start-page: 1590
  year: 2020
  publication-title: ChemElectroChem
– volume: 294
  start-page: 103
  year: 2015
  publication-title: J. Power Sources
– volume: 14 544
  start-page: 112
  year: 2018 2019
  publication-title: Small J. Colloid Interface Sci.
– volume: 8 57 31
  start-page: 1888
  year: 2016 2018 2019
  publication-title: ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Adv. Mater.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 13
  start-page: 813
  year: 2001
  publication-title: Electroanalysis
– volume: 402
  start-page: 276
  year: 1999
  publication-title: Nature
– volume: 2 3
  year: 2014 2015
  publication-title: J. Mater. Chem. A J. Mater. Chem. A
– volume: 24
  start-page: 45
  year: 2015
  publication-title: Electrochem. Soc. Interface
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 29 119
  start-page: 950 54
  year: 2017 2018
  publication-title: Chem. Mater. Renewable Energy
– volume: 108
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 23 48 38 134 27
  start-page: 543 204 1 90 47
  year: 2013 2015 2013 2018 2018
  publication-title: Renewable Sustainable Energy Rev. Econ. Anal. Policy Int. J. Hydrogen Energy Chem. Eng. Res. Des. Electrochem. Soc. Interface
– volume: 127
  start-page: 1504
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 1093
  year: 2014
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 48
  year: 2019
  publication-title: Dalton Trans.
– volume: 111
  start-page: 641
  year: 2017
  publication-title: Carbon
– volume: 5
  start-page: 7068
  year: 2015
  publication-title: ACS Catal.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 8 143
  start-page: 373
  year: 2016 2009
  publication-title: ACS Appl. Mater. Interfaces Sens. Actuators, B
– volume: 8
  start-page: 1945
  year: 2018
  publication-title: Catal. Sci. Technol.
– volume: 309 47
  start-page: 2040 7568
  year: 2005 2008
  publication-title: Science Inorg. Chem.
– volume: 41 52 54 7 8 8
  start-page: 417 777 123
  year: 2017 2013 2015 2019 2018 2020
  publication-title: Nano Energy Inorg. Chem. Angew. Chem., Int. Ed. Inorganics Adv. Energy Mater. J. Mater. Chem. A
– volume: 2
  start-page: 1854
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 4
  start-page: 6350
  year: 2016
  publication-title: J. Mater. Chem. A
– year: 2013
– volume: 283
  start-page: 1148
  year: 1999
  publication-title: Science
– volume: 44
  year: 2019
  publication-title: Int. J. Hydrogen Energy
– volume: 45
  start-page: 118
  year: 2018
  publication-title: Nano Energy
– volume: 1
  start-page: 935
  year: 2018
  publication-title: Nat. Catal.
– volume: 18
  start-page: 4163
  year: 2018
  publication-title: Nano Lett.
– volume: 57
  start-page: 8921
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 1281
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 357
  start-page: 105
  year: 2018
  publication-title: Coord. Chem. Rev.
– volume: 2016
  start-page: 2100
  year: 2016
  publication-title: Eur. J. Inorg. Chem.
– volume: 45
  start-page: 6901
  year: 2016
  publication-title: Dalton Trans.
– volume: 31 9
  start-page: 224
  year: 2019 2018
  publication-title: Adv. Mater. Curr. Opin. Electrochem.
– volume: 5
  start-page: 881
  year: 2020
  publication-title: Nat. Energy
– volume: 57
  start-page: 1241
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  start-page: 139
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 54
  start-page: 6837
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 2263
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 51
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 39
  year: 2014
  publication-title: Int. J. Hydrogen Energy
– volume: 58
  start-page: 8927
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 1246
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 63 44
  year: 2019 2020
  publication-title: Nano Energy New J. Chem.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 220 4 740 578 395 16
  start-page: 354 9204 743 89
  year: 2016 2016 2018 2020 2020 2020
  publication-title: Electrochim. Acta J. Mater. Chem. A J. Alloys Compd. J. Colloid Interface Sci. Chem. Eng. J. Small
– volume: 31
  start-page: 1646
  year: 2019
  publication-title: Chem. Mater.
– volume: 49
  start-page: 6885
  year: 2013
  publication-title: Chem. Commun.
– volume: 23
  start-page: 144
  year: 2014
  publication-title: Mater. Sci. Semicond. Process.
– volume: 9
  start-page: 8102
  year: 2017
  publication-title: Nanoscale
– volume: 8
  start-page: 9009
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 46
  start-page: 337
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 7134
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15 2
  start-page: 304 485
  year: 2016 2020
  publication-title: Nat. Mater. ACS Mater. Lett.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 8762
  year: 2017
  publication-title: ChemistrySelect
– volume: 367
  start-page: 206
  year: 2018
  publication-title: J. Catal.
– volume: 231
  start-page: 344
  year: 2017
  publication-title: Electrochim. Acta
– volume: 2 6 37
  start-page: 791 707 98
  year: 2017 2018 2017
  publication-title: Chem ACS Sustainable Chem. Eng. Nano Energy
– volume: 139
  start-page: 453
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 240 119
  start-page: 101 92
  year: 2013 2014
  publication-title: J. Power Sources Electrochim. Acta
– volume: 7 306 12
  start-page: 627 200
  year: 2016 2019 2019
  publication-title: Nat. Commun. Electrochim. Acta ChemSusChem
– volume: 5 10 3 43 6 58
  start-page: 8815 680
  year: 2017 2018 2016 2018 2018 2019
  publication-title: J. Mater. Chem. A Nanoscale Adv. Mater. Interfaces Int. J. Hydrogen Energy ACS Sustainable Chem. Eng. Nano Energy
– volume: 15
  year: 2019
  publication-title: Small
– volume: 3
  start-page: 3200
  year: 2012
  publication-title: Chem. Sci.
– volume: 23
  start-page: 507
  year: 2014
  publication-title: J. Energy Chem.
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 2
  start-page: 416
  year: 2011
  publication-title: Nat. Commun.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 781
  year: 2018
  publication-title: Nat. Catal.
– volume: 7
  year: 2019
  publication-title: APL Mater.
– volume: 4
  start-page: 1443
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 504
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 8284
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 135
  start-page: 35
  year: 2018
  publication-title: Carbon
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 232
  start-page: 114
  year: 2017
  publication-title: Electrochim. Acta
– volume: 1 1
  start-page: 533 352
  year: 2016 2016
  publication-title: React. Chem. Eng. React. Chem. Eng.
– year: 2020
– volume: 52
  start-page: 5248
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 1655
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 832
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 286
  start-page: 49c
  year: 1999
  publication-title: Science
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 308
  start-page: 1901
  year: 2005
  publication-title: Science
– volume: 26
  start-page: 3258
  year: 2014
  publication-title: Adv. Mater.
– volume: 9 414
  start-page: 775 333
  year: 2019 2019
  publication-title: Nanomaterials J. Power Sources
– volume: 12
  start-page: 632
  year: 2010
  publication-title: Electrochem. Commun.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 2064
  year: 2006
  publication-title: Energy
– volume: 30 10
  year: 2018 2018
  publication-title: Adv. Mater. Nanoscale
– volume: 223
  start-page: 49
  year: 2018
  publication-title: Mater. Lett.
– volume: 26
  start-page: 4397
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 65
  start-page: 961
  year: 2016
  publication-title: Renewable Sustainable Energy Rev.
– volume: 12
  start-page: 2480
  year: 2019
  publication-title: ChemSusChem
– volume: 9
  start-page: 107
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 7588
  year: 2016
  publication-title: Nano Lett.
– volume: 295
  start-page: 966
  year: 2019
  publication-title: Electrochim. Acta
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 106
  start-page: 3423
  year: 1984
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 54
  start-page: 2739
  year: 2018
  publication-title: Chem. Commun.
– volume: 79
  start-page: 266
  year: 2014
  publication-title: ChemPlusChem
– volume: 21
  start-page: 108
  year: 2018
  publication-title: Mater. Today
– volume: 55
  start-page: 4087
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 4 9 6 48
  year: 2016 2017 2019 2019
  publication-title: J. Mater. Chem. A ACS Appl. Mater. Interfaces Adv. Sci. Dalton Trans.
– volume: 12
  start-page: 250
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 42
  year: 2018
  publication-title: New J. Chem.
– volume: 112
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 149
  year: 2016
  publication-title: Nat. Protoc.
– volume: 53
  start-page: 8372
  year: 2017
  publication-title: Chem. Commun.
– volume: 5
  start-page: 9269
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 8525
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  start-page: 1667
  year: 2013
  publication-title: Korean J. Chem. Eng.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 56
  start-page: 3897
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 1
  year: 2015
  publication-title: Nano Energy
– volume: 4
  start-page: 328
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 77 234
  year: 2020 2020
  publication-title: Nano Energy Sep. Purif. Technol.
– volume: 50
  year: 2014
  publication-title: Chem. Commun.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2 55
  year: 2014 2016
  publication-title: J. Mater. Chem. A Angew. Chem., Int. Ed.
– volume: 6
  start-page: 7062
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 6 8 820
  year: 2016 2016 2020
  publication-title: Adv. Energy Mater. ACS Appl. Mater. Interfaces J. Alloys Compd.
– volume: 7 4
  start-page: 188
  year: 2019 2017
  publication-title: ACS Sustainable Chem. Eng. ChemElectroChem
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 7
  start-page: 720
  year: 2015
  publication-title: Nanoscale
– volume: 25 1 3
  start-page: 872
  year: 2015 2016 2015
  publication-title: Adv. Funct. Mater. Nat. Energy J. Mater. Chem. A
– start-page: 2820
  year: 2007
  publication-title: Chem. Commun.
– volume: 40
  start-page: 9713
  year: 2015
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 577
  year: 2013
  publication-title: Nano Today
– year: 2001
– volume: 50
  start-page: 3363
  year: 2014
  publication-title: Chem. Commun.
– volume: 27
  start-page: 5010
  year: 2015
  publication-title: Adv. Mater.
– volume: 44
  start-page: 6748
  year: 2015
  publication-title: Dalton Trans.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 140
  start-page: 2610
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 29 11
  start-page: 5566
  year: 2017 2019
  publication-title: Chem. Mater. ACS Appl. Mater. Interfaces
– volume: 134
  start-page: 6707
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 258
  year: 2019
  publication-title: Appl. Catal., B
– volume: 54
  start-page: 17
  year: 2014
  publication-title: Catal. Commun.
– volume: 7
  start-page: 6082
  year: 2017
  publication-title: ACS Catal.
– volume: 259
  year: 2019
  publication-title: Appl. Catal., B
– volume: 38
  start-page: 4901
  year: 2013
  publication-title: Int. J. Hydrogen Energy
– volume: 81
  start-page: 718
  year: 2016
  publication-title: ChemPlusChem
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 52
  start-page: 29
  year: 2018
  publication-title: Nano Energy
– volume: 299
  start-page: 213
  year: 2019
  publication-title: Electrochim. Acta
– volume: 42
  start-page: 2127
  year: 2017
  publication-title: Int. J. Hydrogen Energy
– volume: 27 8 7 28 330
  start-page: 7636 2158 1690
  year: 2015 2016 2016 2018 2020
  publication-title: Chem. Mater. ACS Appl. Mater. Interfaces Chem. Sci. Adv. Funct. Mater. Electrochim. Acta
– volume: 11 3 84
  start-page: 388
  year: 2019 2015 2021
  publication-title: iScience J. Mater. Chem. A Nano Energy
– volume: 362
  start-page: 1276
  year: 2018
  publication-title: Science
– volume: 8
  start-page: 1157
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 5323
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 8 20
  start-page: 568 4217
  year: 2015 2014
  publication-title: Energy Environ. Sci. Chem. ‐ Eur. J.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 384
  start-page: 98
  year: 2018
  publication-title: J. Power Sources
– volume: 4
  start-page: 2500
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 41
  year: 2016
  publication-title: Int. J. Hydrogen Energy
– volume: 163 219 8 42 205 10 823 17 59
  start-page: 424 623 2356 55 9634 176 167
  year: 2015 2016 2016 2017 2017 2018 2018 2019 2020
  publication-title: Appl. Catal., B Electrochim. Acta ChemCatChem Int. J. Hydrogen Energy Appl. Catal., B Nanoscale J. Electroanal. Chem. Energy Storage Mater. Angew. Chem., Int. Ed.
– volume: 43
  start-page: 284 6285
  year: 2006 2004
  publication-title: Chem. Commun. Angew. Chem., Int. Ed.
– volume: 2
  start-page: 6316
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 607
  start-page: 83
  year: 2007
  publication-title: J. Electroanal. Chem.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 56
  start-page: 5203
  year: 2017
  publication-title: Inorg. Chem.
– volume: 9
  start-page: 4587
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 117 378
  start-page: 703
  year: 1995 1995
  publication-title: J. Am. Chem. Soc. Nature
– volume: 39
  start-page: 626
  year: 2017
  publication-title: Nano Energy
– volume: 34
  year: 2018
  publication-title: Langmuir
– year: 2016 2019
– volume: 201 11
  start-page: 1212 457
  year: 1964 1970
  publication-title: Nature Photochem. Photobiol.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 257 11
  start-page: 1373 310
  year: 2013 2020
  publication-title: Coord. Chem. Rev. Chem. Sci.
– volume: 12
  start-page: 2216
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 103
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 53
  year: 2018
  publication-title: J. Mater. Sci.
– volume: 8
  start-page: 2333
  year: 2016
  publication-title: Nanoscale
– volume: 4
  start-page: 2003
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 6 3
  start-page: 121 279
  year: 2018 2018
  publication-title: AIMS Energy Nat. Energy
– volume: 8
  start-page: 9256
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 130
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4 3 29 39 373 59 2
  start-page: 20 207 22 4634 290
  year: 2017 2017 2017 2018 2018 2019 2019
  publication-title: Mater. Horiz. Sci. Adv. Adv. Mater. Chin. J. Catal. Coord. Chem. Rev. Angew. Chem., Int. Ed. Batteries Supercaps
– ident: e_1_2_10_135_1
  doi: 10.1021/acsami.6b07986
– ident: e_1_2_10_169_1
  doi: 10.1039/C3TA15335E
– ident: e_1_2_10_68_2
  doi: 10.1039/C9TA00708C
– ident: e_1_2_10_47_1
  doi: 10.1016/j.elecom.2012.02.025
– ident: e_1_2_10_37_1
  doi: 10.1021/cr400573b
– ident: e_1_2_10_131_1
  doi: 10.1021/acs.nanolett.6b03458
– ident: e_1_2_10_177_1
  doi: 10.1021/ja8057953
– ident: e_1_2_10_18_2
  doi: 10.1038/378703a0
– ident: e_1_2_10_63_1
  doi: 10.1039/c2ee22989g
– ident: e_1_2_10_40_1
  doi: 10.1016/j.isci.2018.12.029
– ident: e_1_2_10_116_1
  doi: 10.1002/anie.201509382
– ident: e_1_2_10_191_2
  doi: 10.1002/anie.201607271
– ident: e_1_2_10_256_2
  doi: 10.1021/acsami.6b10082
– ident: e_1_2_10_106_1
  doi: 10.1039/C8TA10574J
– ident: e_1_2_10_175_1
  doi: 10.1039/B512169H
– ident: e_1_2_10_226_1
  doi: 10.1002/adma.201604437
– ident: e_1_2_10_156_1
  doi: 10.1039/C9TA00624A
– ident: e_1_2_10_29_1
  doi: 10.1016/j.ccr.2013.01.005
– ident: e_1_2_10_73_7
  doi: 10.1016/j.jelechem.2018.06.006
– ident: e_1_2_10_105_1
  doi: 10.1016/j.nanoen.2019.05.074
– ident: e_1_2_10_27_2
  doi: 10.1021/acsmaterialslett.0c00026
– ident: e_1_2_10_188_1
  doi: 10.1039/C7NR00988G
– ident: e_1_2_10_190_1
  doi: 10.1016/j.jpowsour.2018.02.078
– ident: e_1_2_10_211_1
  doi: 10.20964/2019.09.12
– ident: e_1_2_10_36_1
  doi: 10.1038/s41929-018-0164-8
– ident: e_1_2_10_225_1
  doi: 10.1007/s10853-018-2426-x
– ident: e_1_2_10_236_1
  doi: 10.1021/acsami.9b16224
– ident: e_1_2_10_17_1
  doi: 10.1021/acs.chemmater.6b02879
– ident: e_1_2_10_24_2
  doi: 10.1016/j.seppur.2019.116124
– ident: e_1_2_10_163_1
  doi: 10.1016/j.chempr.2017.04.016
– ident: e_1_2_10_1_1
  doi: 10.1126/science.1109157
– ident: e_1_2_10_154_1
  doi: 10.1002/anie.201809144
– ident: e_1_2_10_221_1
  doi: 10.1021/acsaem.8b02010
– ident: e_1_2_10_4_1
  doi: 10.1149/2.F03152if
– ident: e_1_2_10_21_1
  doi: 10.1016/j.mattod.2017.07.006
– ident: e_1_2_10_80_1
  doi: 10.1002/adma.201304238
– ident: e_1_2_10_264_1
  doi: 10.1002/smll.201704233
– ident: e_1_2_10_150_1
  doi: 10.1002/adfm.201702324
– ident: e_1_2_10_72_3
  doi: 10.1002/cssc.201801886
– ident: e_1_2_10_122_1
  doi: 10.1016/j.apcatb.2019.117947
– volume: 7
  year: 2019
  ident: e_1_2_10_160_1
  publication-title: ACS Sustainable Chem. Eng.
– ident: e_1_2_10_239_1
  doi: 10.1002/adma.201705431
– ident: e_1_2_10_157_1
  doi: 10.1002/smll.201704207
– ident: e_1_2_10_210_1
  doi: 10.1002/smll.201803520
– ident: e_1_2_10_204_1
  doi: 10.1002/slct.201701416
– ident: e_1_2_10_26_1
  doi: 10.1007/s11814-013-0140-6
– ident: e_1_2_10_68_3
  doi: 10.1039/C8TA03128B
– ident: e_1_2_10_125_1
  doi: 10.1002/smtd.201800168
– ident: e_1_2_10_103_1
  doi: 10.1002/adma.201606534
– ident: e_1_2_10_109_1
  doi: 10.1002/anie.202009331
– ident: e_1_2_10_133_1
  doi: 10.1039/C7TA01447C
– ident: e_1_2_10_118_1
  doi: 10.1002/celc.202000038
– ident: e_1_2_10_46_1
  doi: 10.1021/cm5038183
– ident: e_1_2_10_40_3
  doi: 10.1016/j.nanoen.2021.105840
– ident: e_1_2_10_174_2
  doi: 10.1021/ic800538r
– ident: e_1_2_10_205_1
  doi: 10.1039/C8NJ03170C
– ident: e_1_2_10_124_1
  doi: 10.1002/anie.201301066
– ident: e_1_2_10_22_1
  doi: 10.1002/adma.201606134
– ident: e_1_2_10_95_1
  doi: 10.1002/anie.201906289
– ident: e_1_2_10_108_1
  doi: 10.1038/s41929-018-0146-x
– ident: e_1_2_10_230_1
  doi: 10.1039/C4DT03726J
– ident: e_1_2_10_70_1
  doi: 10.1021/acsami.6b05375
– ident: e_1_2_10_254_1
  doi: 10.1039/C6EE00100A
– ident: e_1_2_10_257_1
  doi: 10.1039/C5NR02983J
– ident: e_1_2_10_73_4
  doi: 10.1016/j.ijhydene.2017.02.063
– ident: e_1_2_10_77_1
  doi: 10.1002/chem.201003080
– ident: e_1_2_10_139_2
  doi: 10.1039/C6TA05679B
– ident: e_1_2_10_201_1
  doi: 10.1039/C9DT02943E
– ident: e_1_2_10_207_1
  doi: 10.1016/j.electacta.2017.02.074
– ident: e_1_2_10_77_2
  doi: 10.1149/1.3484554
– ident: e_1_2_10_119_1
  doi: 10.1039/C5EE02903A
– ident: e_1_2_10_65_7
  doi: 10.1002/batt.201800116
– ident: e_1_2_10_120_1
  doi: 10.1021/acs.nanolett.8b00978
– ident: e_1_2_10_209_1
  doi: 10.1002/ejic.201500822
– ident: e_1_2_10_259_1
  doi: 10.1002/anie.201710809
– ident: e_1_2_10_247_2
  doi: 10.1039/C6TA00945J
– ident: e_1_2_10_245_1
  doi: 10.1002/adfm.201600636
– ident: e_1_2_10_252_1
  doi: 10.1039/D0TA00306A
– ident: e_1_2_10_68_4
  doi: 10.1002/anie.201907600
– ident: e_1_2_10_96_1
  doi: 10.1039/C9EE00877B
– ident: e_1_2_10_159_1
  doi: 10.1002/adfm.201704638
– ident: e_1_2_10_65_3
  doi: 10.1002/adma.201703614
– ident: e_1_2_10_141_1
  doi: 10.1016/j.carbon.2016.10.046
– ident: e_1_2_10_137_1
  doi: 10.1021/acsami.7b18858
– ident: e_1_2_10_173_1
  doi: 10.1039/B704325B
– ident: e_1_2_10_206_1
  doi: 10.1002/cssc.201900194
– ident: e_1_2_10_184_1
  doi: 10.1002/anie.201502396
– ident: e_1_2_10_27_1
  doi: 10.1038/nmat4509
– ident: e_1_2_10_261_1
  doi: 10.1002/adma.201506315
– ident: e_1_2_10_24_1
  doi: 10.1016/j.nanoen.2020.105304
– ident: e_1_2_10_65_4
  doi: 10.1016/S1872-2067(18)63017-7
– ident: e_1_2_10_213_1
  doi: 10.1002/anie.201803262
– ident: e_1_2_10_75_1
  doi: 10.1016/j.jcat.2018.09.012
– ident: e_1_2_10_83_1
  doi: 10.1002/chem.201300145
– ident: e_1_2_10_193_1
  doi: 10.1002/adma.201801351
– ident: e_1_2_10_265_1
  doi: 10.1002/advs.201800949
– ident: e_1_2_10_104_1
  doi: 10.1021/acsami.6b04189
– ident: e_1_2_10_244_1
  doi: 10.1021/acsami.6b13166
– ident: e_1_2_10_267_1
  doi: 10.1016/j.matlet.2018.03.125
– ident: e_1_2_10_35_2
  doi: 10.1039/C5TA02244D
– ident: e_1_2_10_140_1
  doi: 10.1021/jacs.7b12420
– ident: e_1_2_10_35_1
  doi: 10.1039/C4TA02279C
– ident: e_1_2_10_111_6
  doi: 10.1002/asia.201900727
– ident: e_1_2_10_220_1
  doi: 10.1021/acs.inorgchem.7b00333
– ident: e_1_2_10_69_6
  doi: 10.1039/D0TA04331A
– ident: e_1_2_10_81_1
  doi: 10.1021/acsenergylett.9b01740
– ident: e_1_2_10_242_1
– ident: e_1_2_10_143_3
  doi: 10.1002/admi.201600632
– ident: e_1_2_10_129_1
  doi: 10.1016/j.nanoen.2014.11.043
– volume: 2019
  year: 2019
  ident: e_1_2_10_214_1
  publication-title: Research
– ident: e_1_2_10_111_5
  doi: 10.1002/anie.201906870
– ident: e_1_2_10_138_1
  doi: 10.1021/acs.chemmater.5b02877
– ident: e_1_2_10_138_4
  doi: 10.1002/adfm.201706120
– ident: e_1_2_10_231_1
  doi: 10.1021/acsami.7b06152
– ident: e_1_2_10_65_5
  doi: 10.1016/j.ccr.2017.09.001
– ident: e_1_2_10_163_3
  doi: 10.1016/j.nanoen.2017.05.016
– ident: e_1_2_10_247_1
  doi: 10.1016/j.electacta.2016.10.070
– ident: e_1_2_10_192_1
  doi: 10.1016/j.ijhydene.2019.07.144
– ident: e_1_2_10_183_1
  doi: 10.1021/ja305181y
– ident: e_1_2_10_168_1
  doi: 10.1002/anie.201903283
– ident: e_1_2_10_167_1
  doi: 10.1039/C9TA01559K
– ident: e_1_2_10_186_1
  doi: 10.1021/acs.chemmater.5b02708
– ident: e_1_2_10_263_1
  doi: 10.1002/anie.201701280
– ident: e_1_2_10_73_6
  doi: 10.1039/C7NR09081A
– ident: e_1_2_10_235_1
  doi: 10.1021/acsenergylett.8b00809
– ident: e_1_2_10_234_1
  doi: 10.1039/C7TA04662F
– ident: e_1_2_10_117_1
  doi: 10.1039/C4EE02281E
– ident: e_1_2_10_8_4
  doi: 10.1016/j.cherd.2018.03.037
– ident: e_1_2_10_111_3
  doi: 10.1002/adfm.201603607
– ident: e_1_2_10_42_1
  doi: 10.1021/ja203564w
– ident: e_1_2_10_91_1
  doi: 10.1039/C6RA04771H
– ident: e_1_2_10_155_1
  doi: 10.1002/anie.201804673
– ident: e_1_2_10_212_1
  doi: 10.1039/C8CY00168E
– ident: e_1_2_10_10_2
  doi: 10.1038/s41560-018-0108-1
– ident: e_1_2_10_55_1
  doi: 10.1016/j.ijhydene.2015.06.027
– ident: e_1_2_10_113_3
  doi: 10.1039/C5TA04330A
– ident: e_1_2_10_179_1
  doi: 10.1021/ja510525s
– ident: e_1_2_10_62_1
  doi: 10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z
– volume-title: Metal‐Organic Frameworks
  year: 2016
  ident: e_1_2_10_66_1
– ident: e_1_2_10_139_1
  doi: 10.1039/C6CP07294A
– ident: e_1_2_10_158_1
  doi: 10.1002/smll.201800423
– ident: e_1_2_10_40_2
  doi: 10.1039/C5TA01017A
– ident: e_1_2_10_258_1
  doi: 10.1039/C6TA01995A
– ident: e_1_2_10_10_1
  doi: 10.3934/energy.2018.1.121
– ident: e_1_2_10_44_1
  doi: 10.1016/j.mssp.2014.02.018
– ident: e_1_2_10_248_2
  doi: 10.1002/adfm.201802129
– ident: e_1_2_10_69_2
  doi: 10.1021/ic3018858
– ident: e_1_2_10_7_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_10_52_1
  doi: 10.1039/C6DT00009F
– ident: e_1_2_10_60_1
  doi: 10.1016/j.jpowsour.2013.03.156
– ident: e_1_2_10_181_1
  doi: 10.1021/ja045123o
– ident: e_1_2_10_160_2
  doi: 10.1002/celc.201600452
– ident: e_1_2_10_233_1
  doi: 10.1002/adma.201705442
– ident: e_1_2_10_151_1
  doi: 10.1039/C8CC00025E
– ident: e_1_2_10_228_1
  doi: 10.1038/s41560-020-00709-1
– ident: e_1_2_10_180_1
  doi: 10.1021/ja408084j
– ident: e_1_2_10_191_1
  doi: 10.1039/C4TA05342G
– ident: e_1_2_10_73_1
  doi: 10.1016/j.apcatb.2014.08.022
– ident: e_1_2_10_128_1
  doi: 10.1039/C8TA02926A
– ident: e_1_2_10_16_1
  doi: 10.1016/j.nanoen.2017.12.029
– ident: e_1_2_10_71_4
  doi: 10.1039/C9DT01730E
– ident: e_1_2_10_238_1
  doi: 10.1039/C7TA00281E
– ident: e_1_2_10_237_1
  doi: 10.1002/adma.202003313
– ident: e_1_2_10_14_1
  doi: 10.1126/science.286.5437.49c
– ident: e_1_2_10_90_1
  doi: 10.1021/acscatal.5b02325
– ident: e_1_2_10_61_1
  doi: 10.1021/acsami.6b02630
– ident: e_1_2_10_65_2
  doi: 10.1126/sciadv.aap9252
– ident: e_1_2_10_6_1
  doi: 10.1039/c0ee00731e
– ident: e_1_2_10_111_4
  doi: 10.1002/adfm.201705356
– ident: e_1_2_10_145_1
  doi: 10.1002/adma.201801211
– ident: e_1_2_10_232_1
  doi: 10.1039/C7CC03558F
– ident: e_1_2_10_266_1
  doi: 10.1039/C8TA00410B
– ident: e_1_2_10_84_1
  doi: 10.1016/j.nanoen.2018.07.033
– ident: e_1_2_10_215_1
  doi: 10.1002/smtd.201800068
– ident: e_1_2_10_12_1
  doi: 10.1002/adma.201604685
– ident: e_1_2_10_247_4
  doi: 10.1016/j.jcis.2020.05.071
– ident: e_1_2_10_110_1
  doi: 10.1038/s41929-020-00546-1
– ident: e_1_2_10_247_5
  doi: 10.1016/j.cej.2020.125158
– ident: e_1_2_10_219_1
  doi: 10.1002/adfm.201606190
– ident: e_1_2_10_224_1
  doi: 10.1021/jacs.8b08744
– ident: e_1_2_10_38_1
  doi: 10.1002/adma.201807615
– ident: e_1_2_10_241_1
  doi: 10.1021/ja401727n
– ident: e_1_2_10_5_1
  doi: 10.1016/j.ijhydene.2016.03.164
– ident: e_1_2_10_97_1
  doi: 10.1002/adma.202003577
– ident: e_1_2_10_147_1
  doi: 10.1021/acsami.6b13411
– ident: e_1_2_10_72_1
  doi: 10.1038/ncomms10942
– ident: e_1_2_10_56_1
  doi: 10.1016/S2095-4956(14)60178-9
– ident: e_1_2_10_34_1
  doi: 10.1021/acs.jpclett.6b02924
– ident: e_1_2_10_111_2
  doi: 10.1039/C3EE42799D
– ident: e_1_2_10_65_1
  doi: 10.1039/C6MH00344C
– ident: e_1_2_10_143_1
  doi: 10.1039/C7TA06272A
– ident: e_1_2_10_162_1
  doi: 10.3390/nano9050775
– ident: e_1_2_10_149_1
  doi: 10.1021/acs.chemmater.7b00867
– ident: e_1_2_10_8_3
  doi: 10.1016/j.ijhydene.2012.10.056
– ident: e_1_2_10_60_2
  doi: 10.1016/j.electacta.2013.11.193
– ident: e_1_2_10_69_3
  doi: 10.1002/anie.201503637
– ident: e_1_2_10_101_1
  doi: 10.1039/C8EE02694G
– ident: e_1_2_10_71_3
  doi: 10.1002/advs.201801920
– ident: e_1_2_10_86_1
  doi: 10.1021/jacs.7b06514
– ident: e_1_2_10_73_3
  doi: 10.1002/cctc.201600298
– ident: e_1_2_10_25_1
  doi: 10.1038/2011212a0
– ident: e_1_2_10_162_2
  doi: 10.1016/j.jpowsour.2019.01.020
– ident: e_1_2_10_64_1
  doi: 10.1016/j.nantod.2013.11.004
– ident: e_1_2_10_50_1
  doi: 10.1039/C3TA15319C
– ident: e_1_2_10_18_1
  doi: 10.1021/ja00146a033
– ident: e_1_2_10_89_1
  doi: 10.1039/c2sc20657a
– ident: e_1_2_10_87_1
  doi: 10.1002/anie.201909312
– ident: e_1_2_10_143_6
  doi: 10.1016/j.nanoen.2019.01.050
– ident: e_1_2_10_100_1
  doi: 10.1038/s41929-019-0237-3
– ident: e_1_2_10_197_1
  doi: 10.1039/C6EE02171A
– ident: e_1_2_10_2_1
  doi: 10.1016/j.energy.2005.09.011
– ident: e_1_2_10_164_1
  doi: 10.1002/adfm.201702546
– ident: e_1_2_10_170_1
  doi: 10.1039/C3CC47620K
– ident: e_1_2_10_59_1
  doi: 10.1021/ja00324a007
– ident: e_1_2_10_262_1
  doi: 10.1002/adma.201701410
– ident: e_1_2_10_102_1
  doi: 10.1002/smll.201704169
– ident: e_1_2_10_127_1
  doi: 10.1016/j.electacta.2019.01.005
– ident: e_1_2_10_251_1
  doi: 10.1002/aenm.201803867
– ident: e_1_2_10_172_1
  doi: 10.1038/46248
– ident: e_1_2_10_126_1
  doi: 10.1016/j.jpowsour.2015.06.056
– ident: e_1_2_10_15_2
  doi: 10.1038/s41929-019-0291-x
– ident: e_1_2_10_187_1
  doi: 10.1016/j.apcatb.2014.08.022
– ident: e_1_2_10_98_1
  doi: 10.1002/adma.201700874
– ident: e_1_2_10_38_2
  doi: 10.1016/j.coelec.2018.04.010
– ident: e_1_2_10_138_5
  doi: 10.1016/j.electacta.2019.135210
– ident: e_1_2_10_152_1
  doi: 10.1002/smll.201901940
– ident: e_1_2_10_43_1
  doi: 10.1002/cplu.201300334
– ident: e_1_2_10_161_1
  doi: 10.1021/acsami.8b06272
– ident: e_1_2_10_121_1
  doi: 10.1126/science.aau0630
– ident: e_1_2_10_145_2
  doi: 10.1039/C8NR02492H
– ident: e_1_2_10_76_1
  doi: 10.1073/pnas.0602439103
– ident: e_1_2_10_178_1
  doi: 10.1002/anie.201204475
– ident: e_1_2_10_222_1
  doi: 10.1002/adfm.201700451
– ident: e_1_2_10_134_1
  doi: 10.1021/acsami.6b10160
– ident: e_1_2_10_247_6
  doi: 10.1002/smll.201907368
– ident: e_1_2_10_53_2
  doi: 10.1039/C3EE43040E
– ident: e_1_2_10_107_1
  doi: 10.1126/sciadv.abb6833
– ident: e_1_2_10_112_1
  doi: 10.1021/acscatal.7b01649
– ident: e_1_2_10_73_8
  doi: 10.1016/j.ensm.2018.11.014
– ident: e_1_2_10_69_1
  doi: 10.1016/j.nanoen.2017.09.055
– ident: e_1_2_10_249_1
  doi: 10.1016/j.ijhydene.2016.11.118
– ident: e_1_2_10_28_2
  doi: 10.1039/C6RE00107F
– ident: e_1_2_10_78_1
  doi: 10.1038/ncomms1427
– ident: e_1_2_10_248_1
  doi: 10.1039/C8SC02444H
– ident: e_1_2_10_99_1
  doi: 10.1073/pnas.1507159112
– ident: e_1_2_10_149_2
  doi: 10.1021/acsami.9b11859
– ident: e_1_2_10_153_1
  doi: 10.1021/acsenergylett.8b00584
– ident: e_1_2_10_202_1
  doi: 10.1002/anie.201803136
– ident: e_1_2_10_200_1
  doi: 10.1021/acsenergylett.6b00686
– ident: e_1_2_10_148_1
  doi: 10.1002/adma.202002235
– ident: e_1_2_10_136_1
  doi: 10.1021/acsami.7b09897
– ident: e_1_2_10_194_1
  doi: 10.1002/smll.201803009
– ident: e_1_2_10_53_1
  doi: 10.1002/anie.201301327
– ident: e_1_2_10_19_1
  doi: 10.1021/cr300014x
– ident: e_1_2_10_48_1
  doi: 10.1021/ja211433h
– ident: e_1_2_10_260_1
  doi: 10.1039/C5NR07193C
– ident: e_1_2_10_20_1
  doi: 10.1016/j.enchem.2019.100005
– ident: e_1_2_10_41_1
  doi: 10.1016/j.elecom.2010.02.017
– ident: e_1_2_10_71_2
  doi: 10.1021/acsami.7b01547
– ident: e_1_2_10_9_1
  doi: 10.1016/j.ijhydene.2013.01.151
– ident: e_1_2_10_105_2
  doi: 10.1039/D0NJ01373K
– ident: e_1_2_10_114_1
  doi: 10.1002/adfm.201700795
– volume-title: Nanocarbon Electrochemistry
  year: 2019
  ident: e_1_2_10_66_2
– ident: e_1_2_10_69_4
  doi: 10.3390/inorganics7100123
– ident: e_1_2_10_69_5
  doi: 10.1002/aenm.201800085
– ident: e_1_2_10_208_1
  doi: 10.1002/adfm.201903660
– ident: e_1_2_10_189_1
  doi: 10.1039/C8EE01169A
– ident: e_1_2_10_94_1
  doi: 10.1038/s41929-018-0164-8
– ident: e_1_2_10_227_1
  doi: 10.1063/1.5119858
– ident: e_1_2_10_143_5
  doi: 10.1021/acssuschemeng.8b02343
– ident: e_1_2_10_3_1
– ident: e_1_2_10_11_1
– ident: e_1_2_10_23_1
  doi: 10.1016/j.ccr.2017.11.028
– ident: e_1_2_10_256_1
  doi: 10.1002/aenm.201601052
– ident: e_1_2_10_65_6
  doi: 10.1002/anie.201910309
– ident: e_1_2_10_243_1
  doi: 10.1002/aenm.201400337
– ident: e_1_2_10_15_1
  doi: 10.1038/s41929-019-0320-9
– ident: e_1_2_10_113_1
  doi: 10.1002/adfm.201403657
– ident: e_1_2_10_130_1
  doi: 10.1039/C6CS00328A
– ident: e_1_2_10_185_1
  doi: 10.1038/srep05130
– ident: e_1_2_10_146_1
  doi: 10.1002/smtd.201800214
– ident: e_1_2_10_246_1
  doi: 10.1002/adfm.201908945
– ident: e_1_2_10_111_7
  doi: 10.1016/j.ijhydene.2019.11.124
– ident: e_1_2_10_143_4
  doi: 10.1016/j.ijhydene.2018.03.154
– ident: e_1_2_10_138_3
  doi: 10.1039/C5SC04425A
– ident: e_1_2_10_165_1
  doi: 10.1021/acsenergylett.8b02343
– ident: e_1_2_10_250_1
  doi: 10.1016/j.jallcom.2020.154896
– volume-title: Electrochemical Methods: Fundamentals and Applications
  year: 2001
  ident: e_1_2_10_39_1
– ident: e_1_2_10_67_1
  doi: 10.1021/acsenergylett.9b01134
– ident: e_1_2_10_71_1
  doi: 10.1039/C6TA05877A
– ident: e_1_2_10_253_1
  doi: 10.1021/acssuschemeng.0c01729
– ident: e_1_2_10_256_3
  doi: 10.1016/j.jallcom.2019.153438
– ident: e_1_2_10_45_1
  doi: 10.1039/C4NR02399D
– ident: e_1_2_10_73_2
  doi: 10.1016/j.electacta.2016.10.002
– ident: e_1_2_10_123_1
  doi: 10.1002/aenm.201900662
– ident: e_1_2_10_13_1
  doi: 10.1002/adma.201703657
– ident: e_1_2_10_73_9
  doi: 10.1002/anie.202008129
– ident: e_1_2_10_138_2
  doi: 10.1021/acsami.5b10727
– ident: e_1_2_10_30_1
  doi: 10.1016/j.rser.2016.07.046
– ident: e_1_2_10_229_1
  doi: 10.1039/C4CC06867J
– ident: e_1_2_10_223_1
  doi: 10.1039/C8TA06491A
– ident: e_1_2_10_51_1
  doi: 10.1016/j.ijhydene.2013.12.120
– ident: e_1_2_10_111_1
  doi: 10.1002/adma.201202424
– ident: e_1_2_10_157_2
  doi: 10.1016/j.jcis.2019.02.084
– ident: e_1_2_10_195_1
  doi: 10.1021/nn505582e
– ident: e_1_2_10_93_1
  doi: 10.1016/j.ijhydene.2019.07.022
– ident: e_1_2_10_8_2
  doi: 10.1016/j.eap.2015.10.002
– ident: e_1_2_10_113_2
  doi: 10.1038/nenergy.2015.6
– ident: e_1_2_10_144_1
  doi: 10.1002/anie.201612635
– ident: e_1_2_10_8_1
  doi: 10.1016/j.rser.2013.02.042
– ident: e_1_2_10_73_5
  doi: 10.1016/j.apcatb.2016.12.016
– ident: e_1_2_10_117_2
  doi: 10.1002/chem.201304404
– ident: e_1_2_10_199_1
  doi: 10.1016/j.apcatb.2019.118042
– ident: e_1_2_10_29_2
  doi: 10.1039/C9SC04961D
– ident: e_1_2_10_17_2
  doi: 10.1016/j.renene.2017.12.003
– ident: e_1_2_10_142_1
  doi: 10.1039/C6EE00551A
– ident: e_1_2_10_240_1
– ident: e_1_2_10_54_1
  doi: 10.1016/j.catcom.2014.05.006
– ident: e_1_2_10_255_1
  doi: 10.1039/C4NR05865H
– ident: e_1_2_10_31_1
  doi: 10.1038/ncomms15938
– ident: e_1_2_10_49_1
  doi: 10.1039/c3cc43292k
– ident: e_1_2_10_216_1
  doi: 10.1038/nprot.2016.001
– ident: e_1_2_10_166_1
  doi: 10.1016/j.nanoen.2017.07.043
– ident: e_1_2_10_171_1
  doi: 10.1021/ja5082553
– ident: e_1_2_10_247_3
  doi: 10.1016/j.jallcom.2018.01.019
– ident: e_1_2_10_175_2
  doi: 10.1002/anie.200454250
– ident: e_1_2_10_163_2
  doi: 10.1021/acssuschemeng.7b03034
– ident: e_1_2_10_74_1
  doi: 10.1021/acs.chemmater.8b04934
– ident: e_1_2_10_72_2
  doi: 10.1016/j.electacta.2019.03.175
– ident: e_1_2_10_28_1
  doi: 10.1039/C6RE00065G
– ident: e_1_2_10_92_1
  doi: 10.1002/adma.201502315
– ident: e_1_2_10_79_1
– ident: e_1_2_10_115_1
  doi: 10.1016/j.electacta.2018.11.142
– ident: e_1_2_10_203_1
  doi: 10.1016/j.electacta.2017.02.144
– ident: e_1_2_10_85_1
  doi: 10.1039/C4TA01656D
– ident: e_1_2_10_143_2
  doi: 10.1039/C8NR04776F
– ident: e_1_2_10_217_1
  doi: 10.1021/acs.langmuir.8b02166
– ident: e_1_2_10_33_1
  doi: 10.1016/j.jelechem.2006.11.008
– ident: e_1_2_10_58_1
  doi: 10.1039/C5NR02487K
– ident: e_1_2_10_70_2
  doi: 10.1002/anie.201711376
– ident: e_1_2_10_68_1
  doi: 10.1038/nenergy.2016.184
– ident: e_1_2_10_82_1
  doi: 10.1021/jacs.6b11248
– ident: e_1_2_10_218_1
  doi: 10.1016/j.carbon.2018.04.019
– ident: e_1_2_10_182_1
  doi: 10.1002/anie.201103155
– ident: e_1_2_10_196_1
  doi: 10.1002/cplu.201600174
– ident: e_1_2_10_61_2
  doi: 10.1016/j.snb.2009.08.018
– ident: e_1_2_10_176_1
  doi: 10.1126/science.283.5405.1148
– ident: e_1_2_10_88_1
  doi: 10.1021/acsami.9b13945
– ident: e_1_2_10_8_5
  doi: 10.1149/2.F04181if
– ident: e_1_2_10_174_1
  doi: 10.1126/science.1116275
– ident: e_1_2_10_70_3
  doi: 10.1002/adma.201901139
– ident: e_1_2_10_57_1
  doi: 10.1002/adma.201305492
– ident: e_1_2_10_132_1
  doi: 10.1002/aenm.201602643
– ident: e_1_2_10_8_6
– ident: e_1_2_10_25_2
  doi: 10.1111/j.1751-1097.1970.tb06017.x
– ident: e_1_2_10_32_1
  doi: 10.1021/jp047349j
– ident: e_1_2_10_198_1
  doi: 10.1002/adfm.201901531
SSID ssj0009606
Score 2.6240354
SecondaryResourceType review_article
Snippet Increasing demand for sustainable and clean energy is calling for the next‐generation energy conversion and storage technologies such as fuel cells, water...
Increasing demand for sustainable and clean energy is calling for the next-generation energy conversion and storage technologies such as fuel cells, water...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2008023
SubjectTerms Clean energy
Electrocatalysis
Electrocatalysts
Electrolytic cells
Energy conversion
Energy storage
Fuel cells
Gels
Metal-organic frameworks
metal–organic gels
Oxygen
oxygen evolution reaction
oxygen reduction reaction
Pyrolysis
Title Metal–Organic Frameworks and Metal–Organic Gels for Oxygen Electrocatalysis: Structural and Compositional Considerations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202008023
https://www.ncbi.nlm.nih.gov/pubmed/33984166
https://www.proquest.com/docview/2543634715
https://www.proquest.com/docview/2528184539
https://www.osti.gov/biblio/1782935
Volume 33
WOSCitedRecordID wos000649842100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB6VhUM50Ja2sIUiV0LiFLGJnWzc26qw7QFo1UK1N8vxj1QJZRG7IJA48A68YZ-kM84PLCpCgmNiJxrZM55v7PE3AJui8CKVGJYYI3QkDGI4XUgR0bVN3ScfE9j5f-_1Dw7y0Uj-uHOLv-KHaDfcyDLCek0GrovJ9i1pqLaBNygJt0X5HMwnqLxpB-Z3fg6P9m6Jd7NQX5PO-yKZibwhbuwl27N_mHFMnTEa2P9A5yyGDU5o-Or54r-GpRqAskGlMW_ghSuXYfEOLeFbuNp3CMn_Xt9UFzUNGzYZXBOmS8vuN39F_8oQ_LLvF5eoj2y3Kq0TdoaI8OQz-xVYaonhI_yAFqE6WQzfNDVDq73Dd3A03D388i2qqzREJkV8E-UImUwstHCG9zH6S4qe9YVwTvS8zTNpYwSRqcdFt9DSam55z0uM0wqPoZ41kr-HTjku3Sow7m3m0GljzOpF4pyOY59lKTepR5yoZReiZoqUqSnMqZLGsarIlxNFo6raUe3CVtv_pCLveLDnGs24QthB3LmGkozMVMWIn1BxurDeKIKqTXyiiEUg4-jbsflT24zGSScuunTjM-pDZFsi5Sj6SqVArSCcSzryzbqQBD15REI12NkftE8fnvLRGrxMKCMn7CGtQwen3n2EBXM-_TM53YC5_ijfqM3nHx8GGv8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fTxQxEJ_gQSI8gCjCCUhJTHzacLvt7l19uwAnxruDKBjemm7_JCZkj3BAMPHB7-A39JM40_2DZzQkxsfddjdNO9P5zXT6G4BXIvcileiWGCN0JAxiOJ1LEdG1Td0lGxPY-T8Nu-Nx7_xcnlTZhHQXpuSHaAJupBlhvyYFp4D03j1rqLaBOCgJ10X5I5gXKEso5PMHHwZnw3vm3SwU2KQDv0hmolczN3aSvdk_zFim1gQ17E-ocxbEBis0WPkP438CyxUEZf1SZlZhzhVPYekXYsJn8HXkEJT_-Pa9vKpp2KDO4ZoyXVj2e_NbtLAM4S87vvuCEskOy-I6ITZElCdv2MfAU0scH-EHtA1V6WL4pq4aWkYP1-BscHi6fxRVdRoikyLCiXoImkwstHCGd9H_S_KO9blwTnS87WXSxggjU4_bbq6l1dzyjpfoqeUenT1rJH8OrWJSuA1g3NvModlGr9WLxDkdxz7LUm5Sj0hRyzZE9RopU5GYUy2NC1XSLyeKZlU1s9qG103_y5K-4689N2nJFQIPYs81lGZkrlWMCAolpw1btSSoSsmningEMo7WHZt3m2ZUTzpz0YWb3FAfotsSKcehr5cS1AyEc0mHvlkbkiAoD4xQ9Q9G_ebpxb98tAOPj05HQzV8N36_CYsJ5eeEiNIWtFAM3DYsmNvrz9Orl5UW_QRfQB4H
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fTxQxEJ_oQQw-qAjKCUpNTHzacLvt7l15u3isGo6TgBjemm7_JCZkj3hgIPHB78A35JMw0_2DZzQkxsfddjdNO9P5zXT6G4A3ovAileiWGCN0JAxiOF1IEdG1Td0nGxPY-b-M-5PJ4PhY7tfZhHQXpuKHaANupBlhvyYFd6fWb92yhmobiIOScF2U34cFQZVkOrAwOsiPxrfMu1kosEkHfpHMxKBhbuwlW_N_mLNMnSlq2J9Q5zyIDVYof_wfxv8EHtUQlA0rmVmGe658Cg9_ISZcgR97DkH59c-r6qqmYXmTwzVjurTs9-b3aGEZwl_26eISJZLtVMV1QmyIKE-22WHgqSWOj_AD2obqdDF801QNraKHq3CU73x-9yGq6zREJkWEEw0QNJlYaOEM76P_lxQ96wvhnOh5O8ikjRFGph633UJLq7nlPS_RUys8OnvWSP4MOuW0dGvAuLeZQ7ONXqsXiXM6jn2WpdykHpGill2ImjVSpiYxp1oaJ6qiX04UzapqZ7ULb9v-pxV9x197rtOSKwQexJ5rKM3InKkYERRKThc2GklQtZLPFPEIZBytOza_bptRPenMRZduek59iG5LpByH_rySoHYgnEs69M26kARBuWOEajjaG7ZPL_7lo014sD_K1fjjZHcdlhJKzwkBpQ3ooBS4l7Bovp99nX17VSvRDb4MHYI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic+Frameworks+and+Metal%E2%80%93Organic+Gels+for+Oxygen+Electrocatalysis%3A+Structural+and+Compositional+Considerations&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Hao&rft.au=Chen%2C+Biao%E2%80%90Hua&rft.au=Liu%2C+Di%E2%80%90Jia&rft.date=2021-06-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=25&rft_id=info:doi/10.1002%2Fadma.202008023&rft.externalDocID=1782935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon