Metal–Organic Frameworks and Metal–Organic Gels for Oxygen Electrocatalysis: Structural and Compositional Considerations
Increasing demand for sustainable and clean energy is calling for the next‐generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2/N2 reduction electrolyzers, metal–air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boo...
Uložené v:
| Vydané v: | Advanced materials (Weinheim) Ročník 33; číslo 25; s. e2008023 - n/a |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
01.06.2021
Wiley Blackwell (John Wiley & Sons) |
| Predmet: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Increasing demand for sustainable and clean energy is calling for the next‐generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2/N2 reduction electrolyzers, metal–air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active‐site density through rational design of metal–organic frameworks (MOFs) and metal–organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG‐derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined.
Boosting the intrinsic activity and the active‐site density through rational design of metal–organic frameworks (MOFs) and metal–organic gels (MOGs) as precursors represents a new approach of improving oxygen electrocatalysis efficiency. Several key compositional and structural considerations for the MOF/MOG design and new perspectives between synthesis, characterization, and performance are comprehensively discussed. |
|---|---|
| AbstractList | Increasing demand for sustainable and clean energy is calling for the next-generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2 /N2 reduction electrolyzers, metal-air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active-site density through rational design of metal-organic frameworks (MOFs) and metal-organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG-derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined.Increasing demand for sustainable and clean energy is calling for the next-generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2 /N2 reduction electrolyzers, metal-air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active-site density through rational design of metal-organic frameworks (MOFs) and metal-organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG-derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined. Increasing demand for sustainable and clean energy is calling for the next‐generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO 2 /N 2 reduction electrolyzers, metal–air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active‐site density through rational design of metal–organic frameworks (MOFs) and metal–organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG‐derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined. Increasing demand for sustainable and clean energy is calling for the next‐generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2/N2 reduction electrolyzers, metal–air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active‐site density through rational design of metal–organic frameworks (MOFs) and metal–organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG‐derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined. Increasing demand for sustainable and clean energy is calling for the next-generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO /N reduction electrolyzers, metal-air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active-site density through rational design of metal-organic frameworks (MOFs) and metal-organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG-derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined. Increasing demand for sustainable and clean energy is calling for the next‐generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2/N2 reduction electrolyzers, metal–air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active‐site density through rational design of metal–organic frameworks (MOFs) and metal–organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG‐derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined. Boosting the intrinsic activity and the active‐site density through rational design of metal–organic frameworks (MOFs) and metal–organic gels (MOGs) as precursors represents a new approach of improving oxygen electrocatalysis efficiency. Several key compositional and structural considerations for the MOF/MOG design and new perspectives between synthesis, characterization, and performance are comprehensively discussed. |
| Author | Liu, Di‐Jia Chen, Biao‐Hua Wang, Hao |
| Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0003-0674-0811 surname: Wang fullname: Wang, Hao organization: Argonne National Laboratory – sequence: 2 givenname: Biao‐Hua orcidid: 0000-0002-9871-9560 surname: Chen fullname: Chen, Biao‐Hua email: chenbh@bjut.edu.cn organization: Beijing University of Technology – sequence: 3 givenname: Di‐Jia orcidid: 0000-0003-1747-028X surname: Liu fullname: Liu, Di‐Jia email: djliu@anl.gov organization: The University of Chicago |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33984166$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1782935$$D View this record in Osti.gov |
| BookMark | eNqFkc1u1DAUhS1URKeFLUsU0U03Ga5_4rHZjYa2ILWaBbC2HNspLok92InKSF3wDrwhT0LSaUEaCbGybH_n6N5zjtBBiMEh9BLDHAOQN9p2ek6AAAgg9Ama4YrgkoGsDtAMJK1KyZk4REc53wCA5MCfoUNKpWCY8xm6u3K9bn_9-LlO1zp4U5wn3bnbmL7mQgdb7H9fuDYXTUzF-vv22oXirHWmT9HoEdtmn98WH_s0mH5Iur03WMVuE7PvfQzjyyqG7K1Lerrn5-hpo9vsXjycx-jz-dmn1fvycn3xYbW8LE0FnJaCAxjMNHOGLrDEpAbb1Mw5Bo0VXFqMJamaBSe1llZTS6GRRCzqRkhpjaTH6PXON-beq2x878wXE0MYZ1d4IciY0wid7qBNit8Gl3vV-Wxc2-rg4pAVqYjAglV08jvZQ2_ikMb9JopRTtkCT4avHqih7pxVm-Q7nbbqMfwRYDvApJhzco0aJ7tPpk_atwqDmjpWU8fqT8ejbL4ne3T-p0DuBLe-ddv_0Gr57mr5V_sbYra7iA |
| CitedBy_id | crossref_primary_10_1016_j_saa_2024_124696 crossref_primary_10_1002_sstr_202100126 crossref_primary_10_1039_D3NR02868B crossref_primary_10_1002_celc_202101476 crossref_primary_10_1002_anie_202316257 crossref_primary_10_1016_j_aca_2024_343274 crossref_primary_10_3390_nano13071178 crossref_primary_10_1007_s40242_023_3058_5 crossref_primary_10_1016_j_ccr_2022_214969 crossref_primary_10_1002_cctc_202301379 crossref_primary_10_1002_aenm_202301224 crossref_primary_10_1039_D5NR00471C crossref_primary_10_1002_ange_202200123 crossref_primary_10_1002_smll_202309302 crossref_primary_10_1016_j_jenvman_2024_121686 crossref_primary_10_3390_gels11070479 crossref_primary_10_3390_gels11010076 crossref_primary_10_1016_j_jssc_2025_125621 crossref_primary_10_1016_j_jcis_2023_06_134 crossref_primary_10_1002_adma_202204800 crossref_primary_10_1016_j_seppur_2024_128141 crossref_primary_10_1016_j_cej_2022_136362 crossref_primary_10_1007_s00604_024_06294_4 crossref_primary_10_1016_j_jallcom_2022_164092 crossref_primary_10_1039_D5TA03824C crossref_primary_10_1016_j_cej_2022_136128 crossref_primary_10_1007_s11244_022_01611_8 crossref_primary_10_1002_smll_202307407 crossref_primary_10_1007_s10876_023_02518_4 crossref_primary_10_1007_s12274_022_4677_8 crossref_primary_10_1016_j_seppur_2022_121253 crossref_primary_10_1039_D5DT00451A crossref_primary_10_1002_advs_202104561 crossref_primary_10_1016_j_cej_2025_159257 crossref_primary_10_1039_D4SC05799F crossref_primary_10_1039_D5CC04076K crossref_primary_10_1002_anie_202200123 crossref_primary_10_1016_j_enrev_2025_100153 crossref_primary_10_1039_D5MH00368G crossref_primary_10_1016_j_jpowsour_2024_235007 crossref_primary_10_1039_D4RA05547K crossref_primary_10_1016_j_ccr_2022_214505 crossref_primary_10_1016_j_cattod_2024_114662 crossref_primary_10_1016_j_jcis_2023_07_151 crossref_primary_10_1002_adfm_202213578 crossref_primary_10_1002_tcr_202100329 crossref_primary_10_1002_smll_202102477 crossref_primary_10_1002_ange_202316257 crossref_primary_10_1021_acs_jpcc_5c02561 crossref_primary_10_3389_fchem_2024_1468916 crossref_primary_10_1002_adfm_202514345 crossref_primary_10_1002_adom_202301767 crossref_primary_10_1039_D5CY00055F crossref_primary_10_6023_A22070304 crossref_primary_10_1016_j_ces_2023_119077 crossref_primary_10_1021_acs_inorgchem_5c03383 crossref_primary_10_1016_j_jmgm_2023_108505 crossref_primary_10_1016_j_molstruc_2025_142455 crossref_primary_10_1002_adhm_202300834 crossref_primary_10_1002_smll_202107913 crossref_primary_10_1016_j_jcat_2023_05_023 crossref_primary_10_1016_j_microc_2024_110096 crossref_primary_10_1016_j_jechem_2021_09_029 crossref_primary_10_1007_s00604_024_06515_w crossref_primary_10_3390_gels10010063 crossref_primary_10_3390_nano12152721 |
| Cites_doi | 10.1021/acsami.6b07986 10.1039/C3TA15335E 10.1039/C9TA00708C 10.1016/j.elecom.2012.02.025 10.1021/cr400573b 10.1021/acs.nanolett.6b03458 10.1021/ja8057953 10.1038/378703a0 10.1039/c2ee22989g 10.1016/j.isci.2018.12.029 10.1002/anie.201509382 10.1002/anie.201607271 10.1021/acsami.6b10082 10.1039/C8TA10574J 10.1039/B512169H 10.1002/adma.201604437 10.1039/C9TA00624A 10.1016/j.ccr.2013.01.005 10.1016/j.jelechem.2018.06.006 10.1016/j.nanoen.2019.05.074 10.1021/acsmaterialslett.0c00026 10.1039/C7NR00988G 10.1016/j.jpowsour.2018.02.078 10.20964/2019.09.12 10.1038/s41929-018-0164-8 10.1007/s10853-018-2426-x 10.1021/acsami.9b16224 10.1021/acs.chemmater.6b02879 10.1016/j.seppur.2019.116124 10.1016/j.chempr.2017.04.016 10.1126/science.1109157 10.1002/anie.201809144 10.1021/acsaem.8b02010 10.1149/2.F03152if 10.1016/j.mattod.2017.07.006 10.1002/adma.201304238 10.1002/smll.201704233 10.1002/adfm.201702324 10.1002/cssc.201801886 10.1016/j.apcatb.2019.117947 10.1002/adma.201705431 10.1002/smll.201704207 10.1002/smll.201803520 10.1002/slct.201701416 10.1007/s11814-013-0140-6 10.1039/C8TA03128B 10.1002/smtd.201800168 10.1002/adma.201606534 10.1002/anie.202009331 10.1039/C7TA01447C 10.1002/celc.202000038 10.1021/cm5038183 10.1016/j.nanoen.2021.105840 10.1021/ic800538r 10.1039/C8NJ03170C 10.1002/anie.201301066 10.1002/adma.201606134 10.1002/anie.201906289 10.1038/s41929-018-0146-x 10.1039/C4DT03726J 10.1021/acsami.6b05375 10.1039/C6EE00100A 10.1039/C5NR02983J 10.1016/j.ijhydene.2017.02.063 10.1002/chem.201003080 10.1039/C6TA05679B 10.1039/C9DT02943E 10.1016/j.electacta.2017.02.074 10.1149/1.3484554 10.1039/C5EE02903A 10.1002/batt.201800116 10.1021/acs.nanolett.8b00978 10.1002/ejic.201500822 10.1002/anie.201710809 10.1039/C6TA00945J 10.1002/adfm.201600636 10.1039/D0TA00306A 10.1002/anie.201907600 10.1039/C9EE00877B 10.1002/adfm.201704638 10.1002/adma.201703614 10.1016/j.carbon.2016.10.046 10.1021/acsami.7b18858 10.1039/B704325B 10.1002/cssc.201900194 10.1002/anie.201502396 10.1038/nmat4509 10.1002/adma.201506315 10.1016/j.nanoen.2020.105304 10.1016/S1872-2067(18)63017-7 10.1002/anie.201803262 10.1016/j.jcat.2018.09.012 10.1002/chem.201300145 10.1002/adma.201801351 10.1002/advs.201800949 10.1021/acsami.6b04189 10.1021/acsami.6b13166 10.1016/j.matlet.2018.03.125 10.1039/C5TA02244D 10.1021/jacs.7b12420 10.1039/C4TA02279C 10.1002/asia.201900727 10.1021/acs.inorgchem.7b00333 10.1039/D0TA04331A 10.1021/acsenergylett.9b01740 10.1002/admi.201600632 10.1016/j.nanoen.2014.11.043 10.1002/anie.201906870 10.1021/acs.chemmater.5b02877 10.1002/adfm.201706120 10.1021/acsami.7b06152 10.1016/j.ccr.2017.09.001 10.1016/j.nanoen.2017.05.016 10.1016/j.electacta.2016.10.070 10.1016/j.ijhydene.2019.07.144 10.1021/ja305181y 10.1002/anie.201903283 10.1039/C9TA01559K 10.1021/acs.chemmater.5b02708 10.1002/anie.201701280 10.1039/C7NR09081A 10.1021/acsenergylett.8b00809 10.1039/C7TA04662F 10.1039/C4EE02281E 10.1016/j.cherd.2018.03.037 10.1002/adfm.201603607 10.1021/ja203564w 10.1039/C6RA04771H 10.1002/anie.201804673 10.1039/C8CY00168E 10.1038/s41560-018-0108-1 10.1016/j.ijhydene.2015.06.027 10.1039/C5TA04330A 10.1021/ja510525s 10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z 10.1039/C6CP07294A 10.1002/smll.201800423 10.1039/C5TA01017A 10.1039/C6TA01995A 10.3934/energy.2018.1.121 10.1016/j.mssp.2014.02.018 10.1002/adfm.201802129 10.1021/ic3018858 10.1126/science.aad4998 10.1039/C6DT00009F 10.1016/j.jpowsour.2013.03.156 10.1021/ja045123o 10.1002/celc.201600452 10.1002/adma.201705442 10.1039/C8CC00025E 10.1038/s41560-020-00709-1 10.1021/ja408084j 10.1039/C4TA05342G 10.1016/j.apcatb.2014.08.022 10.1039/C8TA02926A 10.1016/j.nanoen.2017.12.029 10.1039/C9DT01730E 10.1039/C7TA00281E 10.1002/adma.202003313 10.1126/science.286.5437.49c 10.1021/acscatal.5b02325 10.1021/acsami.6b02630 10.1126/sciadv.aap9252 10.1039/c0ee00731e 10.1002/adfm.201705356 10.1002/adma.201801211 10.1039/C7CC03558F 10.1039/C8TA00410B 10.1016/j.nanoen.2018.07.033 10.1002/smtd.201800068 10.1002/adma.201604685 10.1016/j.jcis.2020.05.071 10.1038/s41929-020-00546-1 10.1016/j.cej.2020.125158 10.1002/adfm.201606190 10.1021/jacs.8b08744 10.1002/adma.201807615 10.1021/ja401727n 10.1016/j.ijhydene.2016.03.164 10.1002/adma.202003577 10.1021/acsami.6b13411 10.1038/ncomms10942 10.1016/S2095-4956(14)60178-9 10.1021/acs.jpclett.6b02924 10.1039/C3EE42799D 10.1039/C6MH00344C 10.1039/C7TA06272A 10.3390/nano9050775 10.1021/acs.chemmater.7b00867 10.1016/j.ijhydene.2012.10.056 10.1016/j.electacta.2013.11.193 10.1002/anie.201503637 10.1039/C8EE02694G 10.1002/advs.201801920 10.1021/jacs.7b06514 10.1002/cctc.201600298 10.1038/2011212a0 10.1016/j.jpowsour.2019.01.020 10.1016/j.nantod.2013.11.004 10.1039/C3TA15319C 10.1021/ja00146a033 10.1039/c2sc20657a 10.1002/anie.201909312 10.1016/j.nanoen.2019.01.050 10.1038/s41929-019-0237-3 10.1039/C6EE02171A 10.1016/j.energy.2005.09.011 10.1002/adfm.201702546 10.1039/C3CC47620K 10.1021/ja00324a007 10.1002/adma.201701410 10.1002/smll.201704169 10.1016/j.electacta.2019.01.005 10.1002/aenm.201803867 10.1038/46248 10.1016/j.jpowsour.2015.06.056 10.1038/s41929-019-0291-x 10.1002/adma.201700874 10.1016/j.coelec.2018.04.010 10.1016/j.electacta.2019.135210 10.1002/smll.201901940 10.1002/cplu.201300334 10.1021/acsami.8b06272 10.1126/science.aau0630 10.1039/C8NR02492H 10.1073/pnas.0602439103 10.1002/anie.201204475 10.1002/adfm.201700451 10.1021/acsami.6b10160 10.1002/smll.201907368 10.1039/C3EE43040E 10.1126/sciadv.abb6833 10.1021/acscatal.7b01649 10.1016/j.ensm.2018.11.014 10.1016/j.nanoen.2017.09.055 10.1016/j.ijhydene.2016.11.118 10.1039/C6RE00107F 10.1038/ncomms1427 10.1039/C8SC02444H 10.1073/pnas.1507159112 10.1021/acsami.9b11859 10.1021/acsenergylett.8b00584 10.1002/anie.201803136 10.1021/acsenergylett.6b00686 10.1002/adma.202002235 10.1021/acsami.7b09897 10.1002/smll.201803009 10.1002/anie.201301327 10.1021/cr300014x 10.1021/ja211433h 10.1039/C5NR07193C 10.1016/j.enchem.2019.100005 10.1016/j.elecom.2010.02.017 10.1021/acsami.7b01547 10.1016/j.ijhydene.2013.01.151 10.1039/D0NJ01373K 10.1002/adfm.201700795 10.3390/inorganics7100123 10.1002/aenm.201800085 10.1002/adfm.201903660 10.1039/C8EE01169A 10.1063/1.5119858 10.1021/acssuschemeng.8b02343 10.1016/j.ccr.2017.11.028 10.1002/aenm.201601052 10.1002/anie.201910309 10.1002/aenm.201400337 10.1038/s41929-019-0320-9 10.1002/adfm.201403657 10.1039/C6CS00328A 10.1038/srep05130 10.1002/smtd.201800214 10.1002/adfm.201908945 10.1016/j.ijhydene.2019.11.124 10.1016/j.ijhydene.2018.03.154 10.1039/C5SC04425A 10.1021/acsenergylett.8b02343 10.1016/j.jallcom.2020.154896 10.1021/acsenergylett.9b01134 10.1039/C6TA05877A 10.1021/acssuschemeng.0c01729 10.1016/j.jallcom.2019.153438 10.1039/C4NR02399D 10.1016/j.electacta.2016.10.002 10.1002/aenm.201900662 10.1002/adma.201703657 10.1002/anie.202008129 10.1021/acsami.5b10727 10.1016/j.rser.2016.07.046 10.1039/C4CC06867J 10.1039/C8TA06491A 10.1016/j.ijhydene.2013.12.120 10.1002/adma.201202424 10.1016/j.jcis.2019.02.084 10.1021/nn505582e 10.1016/j.ijhydene.2019.07.022 10.1016/j.eap.2015.10.002 10.1038/nenergy.2015.6 10.1002/anie.201612635 10.1016/j.rser.2013.02.042 10.1016/j.apcatb.2016.12.016 10.1002/chem.201304404 10.1016/j.apcatb.2019.118042 10.1039/C9SC04961D 10.1016/j.renene.2017.12.003 10.1039/C6EE00551A 10.1016/j.catcom.2014.05.006 10.1039/C4NR05865H 10.1038/ncomms15938 10.1039/c3cc43292k 10.1038/nprot.2016.001 10.1016/j.nanoen.2017.07.043 10.1021/ja5082553 10.1016/j.jallcom.2018.01.019 10.1002/anie.200454250 10.1021/acssuschemeng.7b03034 10.1021/acs.chemmater.8b04934 10.1016/j.electacta.2019.03.175 10.1039/C6RE00065G 10.1002/adma.201502315 10.1016/j.electacta.2018.11.142 10.1016/j.electacta.2017.02.144 10.1039/C4TA01656D 10.1039/C8NR04776F 10.1021/acs.langmuir.8b02166 10.1016/j.jelechem.2006.11.008 10.1039/C5NR02487K 10.1002/anie.201711376 10.1038/nenergy.2016.184 10.1021/jacs.6b11248 10.1016/j.carbon.2018.04.019 10.1002/anie.201103155 10.1002/cplu.201600174 10.1016/j.snb.2009.08.018 10.1126/science.283.5405.1148 10.1021/acsami.9b13945 10.1149/2.F04181if 10.1126/science.1116275 10.1002/adma.201901139 10.1002/adma.201305492 10.1002/aenm.201602643 10.1111/j.1751-1097.1970.tb06017.x 10.1021/jp047349j 10.1002/adfm.201901531 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
| DOI | 10.1002/adma.202008023 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 1782935 33984166 10_1002_adma_202008023 ADMA202008023 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: United States Government – fundername: U.S. Department of Energy funderid: DEAC02‐06CH11357 – fundername: U. S. Department of Energy, Hydrogen and Fuel Cell Technologies Office through Office of Energy Efficiency and Renewable Energy – fundername: U.S. Department of Energy grantid: DEAC02-06CH11357 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
| ID | FETCH-LOGICAL-c5063-8600c14a4ec371912b0dfb4ee40fd869d11925f762ba9da3d30f9287bf899dc93 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 101 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000649842100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu May 18 22:39:01 EDT 2023 Sun Nov 09 14:28:15 EST 2025 Sat Jul 26 01:11:02 EDT 2025 Wed Feb 19 02:28:05 EST 2025 Tue Nov 18 22:34:54 EST 2025 Sat Nov 29 07:24:50 EST 2025 Wed Jan 22 16:29:51 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | oxygen evolution reaction metal-organic gels oxygen reduction reaction electrocatalysis metal-organic frameworks |
| Language | English |
| License | 2021 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5063-8600c14a4ec371912b0dfb4ee40fd869d11925f762ba9da3d30f9287bf899dc93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 USDOE DEAC02‐06CH11357 |
| ORCID | 0000-0002-9871-9560 0000-0003-1747-028X 0000-0003-0674-0811 000000031747028X 0000000306740811 0000000298719560 |
| OpenAccessLink | https://www.osti.gov/biblio/1798272 |
| PMID | 33984166 |
| PQID | 2543634715 |
| PQPubID | 2045203 |
| PageCount | 41 |
| ParticipantIDs | osti_scitechconnect_1782935 proquest_miscellaneous_2528184539 proquest_journals_2543634715 pubmed_primary_33984166 crossref_citationtrail_10_1002_adma_202008023 crossref_primary_10_1002_adma_202008023 wiley_primary_10_1002_adma_202008023_ADMA202008023 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
| References | 2010; 12 2019; 2019 2006; 31 2015 2016 2016 2017 2017 2018 2018 2019 2020; 163 219 8 42 205 10 823 17 59 2019; 11 2019; 12 2019; 15 2019; 14 2018 2018; 30 10 1999; 286 2014; 26 1999; 283 2012; 19 2019 2019; 9 414 2016; 2016 2020; 12 2017 2017 2017 2018 2018 2019 2019; 4 3 29 39 373 59 2 2018; 45 2013; 8 2018; 42 2014; 23 2014; 136 2011 2010; 17 33 2018; 6 2018; 8 2018; 3 2018; 2 2012; 134 2018; 5 2018; 1 2013; 52 2017 2019; 29 11 2016; 41 2019; 29 2018; 30 2018; 34 2016 2020; 15 2 2016; 45 2017 2013 2015 2019 2018 2020; 41 52 54 7 8 8 2018 2019; 14 544 2019; 7 2012 2014 2016 2018 2019 2019 2020; 24 7 26 28 58 14 45 2019; 9 2018; 28 2019; 4 2011; 2 2019 2019; 2 2 2019; 31 2019; 2 2019; 1 2018; 223 1984; 106 2020 2020; 77 234 2016 2016 2018 2020 2020 2020; 220 4 740 578 395 16 2015; 54 2016 2017 2019 2019; 4 9 6 48 2020; 32 2011; 4 2007; 607 2018; 21 2016; 16 2011; 133 2017; 139 2019 2015 2021; 11 3 84 2016; 11 2016; 4 2016; 6 2018; 18 2017; 53 2012; 112 2016 2018 2019; 8 57 31 2020; 30 2019; 44 2016 2019 2019; 7 306 12 2015; 112 2018; 357 2005; 127 2019; 48 2017; 56 2020; 832 2014; 39 2019; 295 2018; 11 2016; 28 2018; 10 2016; 26 2016; 8 2008; 130 2013 2015 2013 2018 2018; 23 48 38 134 27 2015 2014; 8 20 2016; 9 2019; 299 2006; 103 2018; 14 2017 2018 2017; 2 6 37 2018; 362 2017; 5 2017; 7 2017; 42 2017; 8 2016 2019 2018 2019; 1 7 6 58 2017; 2 2013 2014; 52 7 2019 2018; 31 9 2017; 46 2018; 367 2019; 58 2020; 59 2005 2008; 309 47 1995 1995; 117 378 2017; 231 2017; 111 2017; 232 2017; 355 1999; 402 2017; 9 2012; 51 2013; 19 2020; 8 2020; 7 2015; 294 2020; 6 2020; 5 2016 2019 2020; 3 2014; 4 2014; 2 2001 2015; 40 2017; 39 2018; 135 2015; 44 2005; 308 2018 2018; 9 28 2016; 81 2014; 8 2018 2018; 6 3 2001; 13 2014; 50 2014; 6 2014; 54 2017 2018; 29 119 2018; 384 2015; 12 2015; 163 2017 2016; 19 4 2015; 5 2019 2017; 7 4 2018; 140 2013; 49 2015 2016 2016 2018 2020; 27 8 7 28 330 2017; 27 2008 2015 2016 2015; 25 1 3 2007 2014 2015; 2 3 2017; 29 2004; 108 2014 2016; 2 55 1964 1970; 201 11 2015; 7 2014; 114 2016 2009; 8 143 2013 2014; 240 119 2019 2020; 63 44 2016; 55 2015; 24 2012; 3 2015; 27 2013; 38 2020 2016 2016 2020; 6 8 820 2013; 30 2011; 50 2016; 65 2019; 258 2019; 259 2014; 79 2013; 135 2016; 139 2018; 52 2013 2016 2016; 1 1 2013 2020; 257 11 2006 2004; 43 2018; 54 2012; 5 2018; 53 2017 2018 2016 2018 2018 2019; 5 10 3 43 6 58 2018; 57 e_1_2_10_40_3 e_1_2_10_40_2 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_256_3 e_1_2_10_210_1 e_1_2_10_233_1 e_1_2_10_256_1 e_1_2_10_256_2 e_1_2_10_158_1 e_1_2_10_207_1 Bard A. J. (e_1_2_10_39_1) 2001 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_260_1 e_1_2_10_51_1 e_1_2_10_222_1 e_1_2_10_245_1 e_1_2_10_147_1 e_1_2_10_219_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_162_2 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_25_2 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_41_1 e_1_2_10_211_1 e_1_2_10_257_1 e_1_2_10_234_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_113_3 e_1_2_10_75_1 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_113_2 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_174_2 e_1_2_10_261_1 e_1_2_10_200_1 e_1_2_10_246_1 e_1_2_10_223_1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_163_3 e_1_2_10_26_1 e_1_2_10_163_2 e_1_2_10_65_5 e_1_2_10_65_6 e_1_2_10_65_7 e_1_2_10_250_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_258_1 e_1_2_10_212_1 e_1_2_10_235_1 e_1_2_10_91_1 e_1_2_10_209_1 e_1_2_10_247_5 e_1_2_10_247_6 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_53_2 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_2 e_1_2_10_175_1 e_1_2_10_262_1 e_1_2_10_30_1 e_1_2_10_138_5 e_1_2_10_138_4 e_1_2_10_247_3 e_1_2_10_247_4 e_1_2_10_247_1 e_1_2_10_247_2 e_1_2_10_201_1 e_1_2_10_224_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_149_2 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_27_2 e_1_2_10_65_2 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_65_3 e_1_2_10_65_4 e_1_2_10_164_1 e_1_2_10_43_1 e_1_2_10_251_1 Yang M. (e_1_2_10_160_1) 2019; 7 e_1_2_10_20_1 e_1_2_10_236_1 e_1_2_10_259_1 e_1_2_10_213_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_138_3 e_1_2_10_138_2 e_1_2_10_17_2 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_191_2 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_77_2 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_263_1 e_1_2_10_240_1 e_1_2_10_31_1 e_1_2_10_248_2 e_1_2_10_225_1 e_1_2_10_248_1 e_1_2_10_202_1 e_1_2_10_188_1 e_1_2_10_81_1 e_1_2_10_28_2 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_252_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_237_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_70_2 e_1_2_10_2_1 e_1_2_10_70_3 e_1_2_10_139_2 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_18_2 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_241_1 e_1_2_10_264_1 e_1_2_10_32_1 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_249_1 e_1_2_10_143_2 e_1_2_10_120_1 e_1_2_10_143_3 e_1_2_10_166_1 e_1_2_10_143_4 e_1_2_10_143_5 e_1_2_10_189_1 e_1_2_10_143_6 e_1_2_10_82_1 e_1_2_10_105_2 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_29_2 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_68_2 e_1_2_10_45_1 e_1_2_10_68_3 e_1_2_10_253_1 e_1_2_10_68_4 e_1_2_10_22_1 e_1_2_10_230_1 e_1_2_10_215_1 Yin F. (e_1_2_10_66_1) 2016 e_1_2_10_238_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_71_2 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_71_3 e_1_2_10_94_1 e_1_2_10_117_2 e_1_2_10_71_4 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 Fu S. (e_1_2_10_66_2) 2019 e_1_2_10_242_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_10_2 e_1_2_10_204_1 e_1_2_10_227_1 e_1_2_10_265_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_60_2 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_69_2 e_1_2_10_69_3 e_1_2_10_231_1 e_1_2_10_69_4 e_1_2_10_69_5 e_1_2_10_69_6 e_1_2_10_239_1 e_1_2_10_216_1 e_1_2_10_254_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 Meng D.‐L. (e_1_2_10_214_1) 2019; 2019 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_72_2 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_72_3 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_35_2 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_8_3 e_1_2_10_58_1 e_1_2_10_73_8 e_1_2_10_8_2 e_1_2_10_34_1 e_1_2_10_73_9 e_1_2_10_8_5 e_1_2_10_220_1 e_1_2_10_8_4 e_1_2_10_11_1 e_1_2_10_8_6 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_228_1 e_1_2_10_243_1 e_1_2_10_266_1 e_1_2_10_145_1 e_1_2_10_145_2 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_61_2 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_2 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_108_1 e_1_2_10_217_1 e_1_2_10_232_1 e_1_2_10_255_1 e_1_2_10_157_1 e_1_2_10_157_2 e_1_2_10_229_1 e_1_2_10_1_1 e_1_2_10_111_7 e_1_2_10_73_1 e_1_2_10_73_2 e_1_2_10_111_5 e_1_2_10_172_1 e_1_2_10_73_3 e_1_2_10_96_1 e_1_2_10_111_6 e_1_2_10_73_4 e_1_2_10_111_3 e_1_2_10_73_5 e_1_2_10_111_4 e_1_2_10_73_6 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_73_7 e_1_2_10_111_2 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_221_1 e_1_2_10_267_1 e_1_2_10_244_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_218_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_24_2 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
| References_xml | – volume: 27 start-page: 7610 year: 2015 publication-title: Chem. Mater. – volume: 3 start-page: 1434 year: 2018 publication-title: ACS Energy Lett. – volume: 52 7 start-page: 7224 317 year: 2013 2014 publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci. – volume: 1 7 6 58 year: 2016 2019 2018 2019 publication-title: Nat. Energy J. Mater. Chem. A J. Mater. Chem. A Angew. Chem., Int. Ed. – volume: 4 start-page: 5130 year: 2014 publication-title: Sci. Rep. – volume: 19 start-page: 29 year: 2012 publication-title: Electrochem. Commun. – volume: 17 33 start-page: 2063 579 year: 2011 2010 publication-title: Chem. ‐ Eur. J. ECS Trans. – volume: 3 start-page: 1044 year: 2020 publication-title: Nat. Catal. – volume: 56 start-page: 4858 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 26 start-page: 6886 year: 2014 publication-title: Chem. Mater. – volume: 114 start-page: 5611 year: 2014 publication-title: Chem. Rev. – volume: 24 7 26 28 58 14 45 start-page: 5593 442 8334 3642 1890 year: 2012 2014 2016 2018 2019 2019 2020 publication-title: Adv. Mater. Energy Environ. Sci. Adv. Funct. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. Chem. ‐ Asian J. Int. J. Hydrogen Energy – volume: 19 4 start-page: 2104 year: 2017 2016 publication-title: Phys. Chem. Chem. Phys. J. Mater. Chem. A – volume: 112 start-page: 673 year: 2012 publication-title: Chem. Rev. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 2 2 start-page: 562 558 year: 2019 2019 publication-title: Nat. Catal. Nat. Catal. – volume: 6 start-page: 9930 year: 2014 publication-title: Nanoscale – volume: 1 year: 2019 publication-title: EnergyChem – volume: 9 28 start-page: 7009 year: 2018 2018 publication-title: Chem. Sci. Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 8781 year: 2019 publication-title: Int. J. Electrochem. Sci. – volume: 12 start-page: 2548 year: 2019 publication-title: Energy Environ. Sci. – volume: 9 start-page: 1661 year: 2016 publication-title: Energy Environ. Sci. – volume: 2019 year: 2019 publication-title: Research – volume: 19 start-page: 9335 year: 2013 publication-title: Chem. ‐ Eur. J. – volume: 50 start-page: 8034 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 4601 year: 2016 publication-title: Adv. Mater. – year: 2008 – volume: 57 start-page: 8654 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 3092 year: 2016 publication-title: Energy Environ. Sci. – volume: 2 start-page: 259 year: 2019 publication-title: Nat. Catal. – volume: 355 year: 2017 publication-title: Science – volume: 163 start-page: 424 year: 2015 publication-title: Appl. Catal., B – volume: 7 start-page: 1590 year: 2020 publication-title: ChemElectroChem – volume: 294 start-page: 103 year: 2015 publication-title: J. Power Sources – volume: 14 544 start-page: 112 year: 2018 2019 publication-title: Small J. Colloid Interface Sci. – volume: 8 57 31 start-page: 1888 year: 2016 2018 2019 publication-title: ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Adv. Mater. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 13 start-page: 813 year: 2001 publication-title: Electroanalysis – volume: 402 start-page: 276 year: 1999 publication-title: Nature – volume: 2 3 year: 2014 2015 publication-title: J. Mater. Chem. A J. Mater. Chem. A – volume: 24 start-page: 45 year: 2015 publication-title: Electrochem. Soc. Interface – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 29 119 start-page: 950 54 year: 2017 2018 publication-title: Chem. Mater. Renewable Energy – volume: 108 year: 2004 publication-title: J. Phys. Chem. B – volume: 23 48 38 134 27 start-page: 543 204 1 90 47 year: 2013 2015 2013 2018 2018 publication-title: Renewable Sustainable Energy Rev. Econ. Anal. Policy Int. J. Hydrogen Energy Chem. Eng. Res. Des. Electrochem. Soc. Interface – volume: 127 start-page: 1504 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 1093 year: 2014 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 48 year: 2019 publication-title: Dalton Trans. – volume: 111 start-page: 641 year: 2017 publication-title: Carbon – volume: 5 start-page: 7068 year: 2015 publication-title: ACS Catal. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 8 143 start-page: 373 year: 2016 2009 publication-title: ACS Appl. Mater. Interfaces Sens. Actuators, B – volume: 8 start-page: 1945 year: 2018 publication-title: Catal. Sci. Technol. – volume: 309 47 start-page: 2040 7568 year: 2005 2008 publication-title: Science Inorg. Chem. – volume: 41 52 54 7 8 8 start-page: 417 777 123 year: 2017 2013 2015 2019 2018 2020 publication-title: Nano Energy Inorg. Chem. Angew. Chem., Int. Ed. Inorganics Adv. Energy Mater. J. Mater. Chem. A – volume: 2 start-page: 1854 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 4 start-page: 6350 year: 2016 publication-title: J. Mater. Chem. A – year: 2013 – volume: 283 start-page: 1148 year: 1999 publication-title: Science – volume: 44 year: 2019 publication-title: Int. J. Hydrogen Energy – volume: 45 start-page: 118 year: 2018 publication-title: Nano Energy – volume: 1 start-page: 935 year: 2018 publication-title: Nat. Catal. – volume: 18 start-page: 4163 year: 2018 publication-title: Nano Lett. – volume: 57 start-page: 8921 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 1281 year: 2019 publication-title: J. Mater. Chem. A – volume: 357 start-page: 105 year: 2018 publication-title: Coord. Chem. Rev. – volume: 2016 start-page: 2100 year: 2016 publication-title: Eur. J. Inorg. Chem. – volume: 45 start-page: 6901 year: 2016 publication-title: Dalton Trans. – volume: 31 9 start-page: 224 year: 2019 2018 publication-title: Adv. Mater. Curr. Opin. Electrochem. – volume: 5 start-page: 881 year: 2020 publication-title: Nat. Energy – volume: 57 start-page: 1241 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 58 start-page: 139 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 54 start-page: 6837 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 2263 year: 2018 publication-title: Energy Environ. Sci. – volume: 51 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 39 year: 2014 publication-title: Int. J. Hydrogen Energy – volume: 58 start-page: 8927 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 1246 year: 2016 publication-title: Energy Environ. Sci. – volume: 63 44 year: 2019 2020 publication-title: Nano Energy New J. Chem. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 220 4 740 578 395 16 start-page: 354 9204 743 89 year: 2016 2016 2018 2020 2020 2020 publication-title: Electrochim. Acta J. Mater. Chem. A J. Alloys Compd. J. Colloid Interface Sci. Chem. Eng. J. Small – volume: 31 start-page: 1646 year: 2019 publication-title: Chem. Mater. – volume: 49 start-page: 6885 year: 2013 publication-title: Chem. Commun. – volume: 23 start-page: 144 year: 2014 publication-title: Mater. Sci. Semicond. Process. – volume: 9 start-page: 8102 year: 2017 publication-title: Nanoscale – volume: 8 start-page: 9009 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 46 start-page: 337 year: 2017 publication-title: Chem. Soc. Rev. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 10 start-page: 7134 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 15 2 start-page: 304 485 year: 2016 2020 publication-title: Nat. Mater. ACS Mater. Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 8762 year: 2017 publication-title: ChemistrySelect – volume: 367 start-page: 206 year: 2018 publication-title: J. Catal. – volume: 231 start-page: 344 year: 2017 publication-title: Electrochim. Acta – volume: 2 6 37 start-page: 791 707 98 year: 2017 2018 2017 publication-title: Chem ACS Sustainable Chem. Eng. Nano Energy – volume: 139 start-page: 453 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 240 119 start-page: 101 92 year: 2013 2014 publication-title: J. Power Sources Electrochim. Acta – volume: 7 306 12 start-page: 627 200 year: 2016 2019 2019 publication-title: Nat. Commun. Electrochim. Acta ChemSusChem – volume: 5 10 3 43 6 58 start-page: 8815 680 year: 2017 2018 2016 2018 2018 2019 publication-title: J. Mater. Chem. A Nanoscale Adv. Mater. Interfaces Int. J. Hydrogen Energy ACS Sustainable Chem. Eng. Nano Energy – volume: 15 year: 2019 publication-title: Small – volume: 3 start-page: 3200 year: 2012 publication-title: Chem. Sci. – volume: 23 start-page: 507 year: 2014 publication-title: J. Energy Chem. – volume: 8 year: 2014 publication-title: ACS Nano – volume: 2 start-page: 416 year: 2011 publication-title: Nat. Commun. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 781 year: 2018 publication-title: Nat. Catal. – volume: 7 year: 2019 publication-title: APL Mater. – volume: 4 start-page: 1443 year: 2019 publication-title: ACS Energy Lett. – volume: 2 start-page: 504 year: 2017 publication-title: ACS Energy Lett. – volume: 7 start-page: 8284 year: 2019 publication-title: J. Mater. Chem. A – volume: 135 start-page: 35 year: 2018 publication-title: Carbon – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 232 start-page: 114 year: 2017 publication-title: Electrochim. Acta – volume: 1 1 start-page: 533 352 year: 2016 2016 publication-title: React. Chem. Eng. React. Chem. Eng. – year: 2020 – volume: 52 start-page: 5248 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 1655 year: 2018 publication-title: ACS Energy Lett. – volume: 832 year: 2020 publication-title: J. Alloys Compd. – volume: 286 start-page: 49c year: 1999 publication-title: Science – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 308 start-page: 1901 year: 2005 publication-title: Science – volume: 26 start-page: 3258 year: 2014 publication-title: Adv. Mater. – volume: 9 414 start-page: 775 333 year: 2019 2019 publication-title: Nanomaterials J. Power Sources – volume: 12 start-page: 632 year: 2010 publication-title: Electrochem. Commun. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 2064 year: 2006 publication-title: Energy – volume: 30 10 year: 2018 2018 publication-title: Adv. Mater. Nanoscale – volume: 223 start-page: 49 year: 2018 publication-title: Mater. Lett. – volume: 26 start-page: 4397 year: 2016 publication-title: Adv. Funct. Mater. – volume: 14 year: 2018 publication-title: Small – volume: 65 start-page: 961 year: 2016 publication-title: Renewable Sustainable Energy Rev. – volume: 12 start-page: 2480 year: 2019 publication-title: ChemSusChem – volume: 9 start-page: 107 year: 2016 publication-title: Energy Environ. Sci. – volume: 16 start-page: 7588 year: 2016 publication-title: Nano Lett. – volume: 295 start-page: 966 year: 2019 publication-title: Electrochim. Acta – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 106 start-page: 3423 year: 1984 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 54 start-page: 2739 year: 2018 publication-title: Chem. Commun. – volume: 79 start-page: 266 year: 2014 publication-title: ChemPlusChem – volume: 21 start-page: 108 year: 2018 publication-title: Mater. Today – volume: 55 start-page: 4087 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 4 9 6 48 year: 2016 2017 2019 2019 publication-title: J. Mater. Chem. A ACS Appl. Mater. Interfaces Adv. Sci. Dalton Trans. – volume: 12 start-page: 250 year: 2019 publication-title: Energy Environ. Sci. – volume: 42 year: 2018 publication-title: New J. Chem. – volume: 112 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 149 year: 2016 publication-title: Nat. Protoc. – volume: 53 start-page: 8372 year: 2017 publication-title: Chem. Commun. – volume: 5 start-page: 9269 year: 2012 publication-title: Energy Environ. Sci. – volume: 57 start-page: 8525 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 30 start-page: 1667 year: 2013 publication-title: Korean J. Chem. Eng. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 56 start-page: 3897 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 1 year: 2015 publication-title: Nano Energy – volume: 4 start-page: 328 year: 2019 publication-title: ACS Energy Lett. – volume: 77 234 year: 2020 2020 publication-title: Nano Energy Sep. Purif. Technol. – volume: 50 year: 2014 publication-title: Chem. Commun. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 2 55 year: 2014 2016 publication-title: J. Mater. Chem. A Angew. Chem., Int. Ed. – volume: 6 start-page: 7062 year: 2018 publication-title: J. Mater. Chem. A – volume: 6 8 820 year: 2016 2016 2020 publication-title: Adv. Energy Mater. ACS Appl. Mater. Interfaces J. Alloys Compd. – volume: 7 4 start-page: 188 year: 2019 2017 publication-title: ACS Sustainable Chem. Eng. ChemElectroChem – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 7 start-page: 720 year: 2015 publication-title: Nanoscale – volume: 25 1 3 start-page: 872 year: 2015 2016 2015 publication-title: Adv. Funct. Mater. Nat. Energy J. Mater. Chem. A – start-page: 2820 year: 2007 publication-title: Chem. Commun. – volume: 40 start-page: 9713 year: 2015 publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 577 year: 2013 publication-title: Nano Today – year: 2001 – volume: 50 start-page: 3363 year: 2014 publication-title: Chem. Commun. – volume: 27 start-page: 5010 year: 2015 publication-title: Adv. Mater. – volume: 44 start-page: 6748 year: 2015 publication-title: Dalton Trans. – volume: 2 year: 2018 publication-title: Small Methods – volume: 140 start-page: 2610 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 29 11 start-page: 5566 year: 2017 2019 publication-title: Chem. Mater. ACS Appl. Mater. Interfaces – volume: 134 start-page: 6707 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 258 year: 2019 publication-title: Appl. Catal., B – volume: 54 start-page: 17 year: 2014 publication-title: Catal. Commun. – volume: 7 start-page: 6082 year: 2017 publication-title: ACS Catal. – volume: 259 year: 2019 publication-title: Appl. Catal., B – volume: 38 start-page: 4901 year: 2013 publication-title: Int. J. Hydrogen Energy – volume: 81 start-page: 718 year: 2016 publication-title: ChemPlusChem – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 52 start-page: 29 year: 2018 publication-title: Nano Energy – volume: 299 start-page: 213 year: 2019 publication-title: Electrochim. Acta – volume: 42 start-page: 2127 year: 2017 publication-title: Int. J. Hydrogen Energy – volume: 27 8 7 28 330 start-page: 7636 2158 1690 year: 2015 2016 2016 2018 2020 publication-title: Chem. Mater. ACS Appl. Mater. Interfaces Chem. Sci. Adv. Funct. Mater. Electrochim. Acta – volume: 11 3 84 start-page: 388 year: 2019 2015 2021 publication-title: iScience J. Mater. Chem. A Nano Energy – volume: 362 start-page: 1276 year: 2018 publication-title: Science – volume: 8 start-page: 1157 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 2 start-page: 5323 year: 2014 publication-title: J. Mater. Chem. A – volume: 8 20 start-page: 568 4217 year: 2015 2014 publication-title: Energy Environ. Sci. Chem. ‐ Eur. J. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 384 start-page: 98 year: 2018 publication-title: J. Power Sources – volume: 4 start-page: 2500 year: 2019 publication-title: ACS Energy Lett. – volume: 41 year: 2016 publication-title: Int. J. Hydrogen Energy – volume: 163 219 8 42 205 10 823 17 59 start-page: 424 623 2356 55 9634 176 167 year: 2015 2016 2016 2017 2017 2018 2018 2019 2020 publication-title: Appl. Catal., B Electrochim. Acta ChemCatChem Int. J. Hydrogen Energy Appl. Catal., B Nanoscale J. Electroanal. Chem. Energy Storage Mater. Angew. Chem., Int. Ed. – volume: 43 start-page: 284 6285 year: 2006 2004 publication-title: Chem. Commun. Angew. Chem., Int. Ed. – volume: 2 start-page: 6316 year: 2014 publication-title: J. Mater. Chem. A – volume: 607 start-page: 83 year: 2007 publication-title: J. Electroanal. Chem. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 56 start-page: 5203 year: 2017 publication-title: Inorg. Chem. – volume: 9 start-page: 4587 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 117 378 start-page: 703 year: 1995 1995 publication-title: J. Am. Chem. Soc. Nature – volume: 39 start-page: 626 year: 2017 publication-title: Nano Energy – volume: 34 year: 2018 publication-title: Langmuir – year: 2016 2019 – volume: 201 11 start-page: 1212 457 year: 1964 1970 publication-title: Nature Photochem. Photobiol. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 257 11 start-page: 1373 310 year: 2013 2020 publication-title: Coord. Chem. Rev. Chem. Sci. – volume: 12 start-page: 2216 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 103 year: 2006 publication-title: Proc. Natl. Acad. Sci. USA – volume: 53 year: 2018 publication-title: J. Mater. Sci. – volume: 8 start-page: 2333 year: 2016 publication-title: Nanoscale – volume: 4 start-page: 2003 year: 2011 publication-title: Energy Environ. Sci. – volume: 6 3 start-page: 121 279 year: 2018 2018 publication-title: AIMS Energy Nat. Energy – volume: 8 start-page: 9256 year: 2020 publication-title: J. Mater. Chem. A – volume: 130 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 4 3 29 39 373 59 2 start-page: 20 207 22 4634 290 year: 2017 2017 2017 2018 2018 2019 2019 publication-title: Mater. Horiz. Sci. Adv. Adv. Mater. Chin. J. Catal. Coord. Chem. Rev. Angew. Chem., Int. Ed. Batteries Supercaps – ident: e_1_2_10_135_1 doi: 10.1021/acsami.6b07986 – ident: e_1_2_10_169_1 doi: 10.1039/C3TA15335E – ident: e_1_2_10_68_2 doi: 10.1039/C9TA00708C – ident: e_1_2_10_47_1 doi: 10.1016/j.elecom.2012.02.025 – ident: e_1_2_10_37_1 doi: 10.1021/cr400573b – ident: e_1_2_10_131_1 doi: 10.1021/acs.nanolett.6b03458 – ident: e_1_2_10_177_1 doi: 10.1021/ja8057953 – ident: e_1_2_10_18_2 doi: 10.1038/378703a0 – ident: e_1_2_10_63_1 doi: 10.1039/c2ee22989g – ident: e_1_2_10_40_1 doi: 10.1016/j.isci.2018.12.029 – ident: e_1_2_10_116_1 doi: 10.1002/anie.201509382 – ident: e_1_2_10_191_2 doi: 10.1002/anie.201607271 – ident: e_1_2_10_256_2 doi: 10.1021/acsami.6b10082 – ident: e_1_2_10_106_1 doi: 10.1039/C8TA10574J – ident: e_1_2_10_175_1 doi: 10.1039/B512169H – ident: e_1_2_10_226_1 doi: 10.1002/adma.201604437 – ident: e_1_2_10_156_1 doi: 10.1039/C9TA00624A – ident: e_1_2_10_29_1 doi: 10.1016/j.ccr.2013.01.005 – ident: e_1_2_10_73_7 doi: 10.1016/j.jelechem.2018.06.006 – ident: e_1_2_10_105_1 doi: 10.1016/j.nanoen.2019.05.074 – ident: e_1_2_10_27_2 doi: 10.1021/acsmaterialslett.0c00026 – ident: e_1_2_10_188_1 doi: 10.1039/C7NR00988G – ident: e_1_2_10_190_1 doi: 10.1016/j.jpowsour.2018.02.078 – ident: e_1_2_10_211_1 doi: 10.20964/2019.09.12 – ident: e_1_2_10_36_1 doi: 10.1038/s41929-018-0164-8 – ident: e_1_2_10_225_1 doi: 10.1007/s10853-018-2426-x – ident: e_1_2_10_236_1 doi: 10.1021/acsami.9b16224 – ident: e_1_2_10_17_1 doi: 10.1021/acs.chemmater.6b02879 – ident: e_1_2_10_24_2 doi: 10.1016/j.seppur.2019.116124 – ident: e_1_2_10_163_1 doi: 10.1016/j.chempr.2017.04.016 – ident: e_1_2_10_1_1 doi: 10.1126/science.1109157 – ident: e_1_2_10_154_1 doi: 10.1002/anie.201809144 – ident: e_1_2_10_221_1 doi: 10.1021/acsaem.8b02010 – ident: e_1_2_10_4_1 doi: 10.1149/2.F03152if – ident: e_1_2_10_21_1 doi: 10.1016/j.mattod.2017.07.006 – ident: e_1_2_10_80_1 doi: 10.1002/adma.201304238 – ident: e_1_2_10_264_1 doi: 10.1002/smll.201704233 – ident: e_1_2_10_150_1 doi: 10.1002/adfm.201702324 – ident: e_1_2_10_72_3 doi: 10.1002/cssc.201801886 – ident: e_1_2_10_122_1 doi: 10.1016/j.apcatb.2019.117947 – volume: 7 year: 2019 ident: e_1_2_10_160_1 publication-title: ACS Sustainable Chem. Eng. – ident: e_1_2_10_239_1 doi: 10.1002/adma.201705431 – ident: e_1_2_10_157_1 doi: 10.1002/smll.201704207 – ident: e_1_2_10_210_1 doi: 10.1002/smll.201803520 – ident: e_1_2_10_204_1 doi: 10.1002/slct.201701416 – ident: e_1_2_10_26_1 doi: 10.1007/s11814-013-0140-6 – ident: e_1_2_10_68_3 doi: 10.1039/C8TA03128B – ident: e_1_2_10_125_1 doi: 10.1002/smtd.201800168 – ident: e_1_2_10_103_1 doi: 10.1002/adma.201606534 – ident: e_1_2_10_109_1 doi: 10.1002/anie.202009331 – ident: e_1_2_10_133_1 doi: 10.1039/C7TA01447C – ident: e_1_2_10_118_1 doi: 10.1002/celc.202000038 – ident: e_1_2_10_46_1 doi: 10.1021/cm5038183 – ident: e_1_2_10_40_3 doi: 10.1016/j.nanoen.2021.105840 – ident: e_1_2_10_174_2 doi: 10.1021/ic800538r – ident: e_1_2_10_205_1 doi: 10.1039/C8NJ03170C – ident: e_1_2_10_124_1 doi: 10.1002/anie.201301066 – ident: e_1_2_10_22_1 doi: 10.1002/adma.201606134 – ident: e_1_2_10_95_1 doi: 10.1002/anie.201906289 – ident: e_1_2_10_108_1 doi: 10.1038/s41929-018-0146-x – ident: e_1_2_10_230_1 doi: 10.1039/C4DT03726J – ident: e_1_2_10_70_1 doi: 10.1021/acsami.6b05375 – ident: e_1_2_10_254_1 doi: 10.1039/C6EE00100A – ident: e_1_2_10_257_1 doi: 10.1039/C5NR02983J – ident: e_1_2_10_73_4 doi: 10.1016/j.ijhydene.2017.02.063 – ident: e_1_2_10_77_1 doi: 10.1002/chem.201003080 – ident: e_1_2_10_139_2 doi: 10.1039/C6TA05679B – ident: e_1_2_10_201_1 doi: 10.1039/C9DT02943E – ident: e_1_2_10_207_1 doi: 10.1016/j.electacta.2017.02.074 – ident: e_1_2_10_77_2 doi: 10.1149/1.3484554 – ident: e_1_2_10_119_1 doi: 10.1039/C5EE02903A – ident: e_1_2_10_65_7 doi: 10.1002/batt.201800116 – ident: e_1_2_10_120_1 doi: 10.1021/acs.nanolett.8b00978 – ident: e_1_2_10_209_1 doi: 10.1002/ejic.201500822 – ident: e_1_2_10_259_1 doi: 10.1002/anie.201710809 – ident: e_1_2_10_247_2 doi: 10.1039/C6TA00945J – ident: e_1_2_10_245_1 doi: 10.1002/adfm.201600636 – ident: e_1_2_10_252_1 doi: 10.1039/D0TA00306A – ident: e_1_2_10_68_4 doi: 10.1002/anie.201907600 – ident: e_1_2_10_96_1 doi: 10.1039/C9EE00877B – ident: e_1_2_10_159_1 doi: 10.1002/adfm.201704638 – ident: e_1_2_10_65_3 doi: 10.1002/adma.201703614 – ident: e_1_2_10_141_1 doi: 10.1016/j.carbon.2016.10.046 – ident: e_1_2_10_137_1 doi: 10.1021/acsami.7b18858 – ident: e_1_2_10_173_1 doi: 10.1039/B704325B – ident: e_1_2_10_206_1 doi: 10.1002/cssc.201900194 – ident: e_1_2_10_184_1 doi: 10.1002/anie.201502396 – ident: e_1_2_10_27_1 doi: 10.1038/nmat4509 – ident: e_1_2_10_261_1 doi: 10.1002/adma.201506315 – ident: e_1_2_10_24_1 doi: 10.1016/j.nanoen.2020.105304 – ident: e_1_2_10_65_4 doi: 10.1016/S1872-2067(18)63017-7 – ident: e_1_2_10_213_1 doi: 10.1002/anie.201803262 – ident: e_1_2_10_75_1 doi: 10.1016/j.jcat.2018.09.012 – ident: e_1_2_10_83_1 doi: 10.1002/chem.201300145 – ident: e_1_2_10_193_1 doi: 10.1002/adma.201801351 – ident: e_1_2_10_265_1 doi: 10.1002/advs.201800949 – ident: e_1_2_10_104_1 doi: 10.1021/acsami.6b04189 – ident: e_1_2_10_244_1 doi: 10.1021/acsami.6b13166 – ident: e_1_2_10_267_1 doi: 10.1016/j.matlet.2018.03.125 – ident: e_1_2_10_35_2 doi: 10.1039/C5TA02244D – ident: e_1_2_10_140_1 doi: 10.1021/jacs.7b12420 – ident: e_1_2_10_35_1 doi: 10.1039/C4TA02279C – ident: e_1_2_10_111_6 doi: 10.1002/asia.201900727 – ident: e_1_2_10_220_1 doi: 10.1021/acs.inorgchem.7b00333 – ident: e_1_2_10_69_6 doi: 10.1039/D0TA04331A – ident: e_1_2_10_81_1 doi: 10.1021/acsenergylett.9b01740 – ident: e_1_2_10_242_1 – ident: e_1_2_10_143_3 doi: 10.1002/admi.201600632 – ident: e_1_2_10_129_1 doi: 10.1016/j.nanoen.2014.11.043 – volume: 2019 year: 2019 ident: e_1_2_10_214_1 publication-title: Research – ident: e_1_2_10_111_5 doi: 10.1002/anie.201906870 – ident: e_1_2_10_138_1 doi: 10.1021/acs.chemmater.5b02877 – ident: e_1_2_10_138_4 doi: 10.1002/adfm.201706120 – ident: e_1_2_10_231_1 doi: 10.1021/acsami.7b06152 – ident: e_1_2_10_65_5 doi: 10.1016/j.ccr.2017.09.001 – ident: e_1_2_10_163_3 doi: 10.1016/j.nanoen.2017.05.016 – ident: e_1_2_10_247_1 doi: 10.1016/j.electacta.2016.10.070 – ident: e_1_2_10_192_1 doi: 10.1016/j.ijhydene.2019.07.144 – ident: e_1_2_10_183_1 doi: 10.1021/ja305181y – ident: e_1_2_10_168_1 doi: 10.1002/anie.201903283 – ident: e_1_2_10_167_1 doi: 10.1039/C9TA01559K – ident: e_1_2_10_186_1 doi: 10.1021/acs.chemmater.5b02708 – ident: e_1_2_10_263_1 doi: 10.1002/anie.201701280 – ident: e_1_2_10_73_6 doi: 10.1039/C7NR09081A – ident: e_1_2_10_235_1 doi: 10.1021/acsenergylett.8b00809 – ident: e_1_2_10_234_1 doi: 10.1039/C7TA04662F – ident: e_1_2_10_117_1 doi: 10.1039/C4EE02281E – ident: e_1_2_10_8_4 doi: 10.1016/j.cherd.2018.03.037 – ident: e_1_2_10_111_3 doi: 10.1002/adfm.201603607 – ident: e_1_2_10_42_1 doi: 10.1021/ja203564w – ident: e_1_2_10_91_1 doi: 10.1039/C6RA04771H – ident: e_1_2_10_155_1 doi: 10.1002/anie.201804673 – ident: e_1_2_10_212_1 doi: 10.1039/C8CY00168E – ident: e_1_2_10_10_2 doi: 10.1038/s41560-018-0108-1 – ident: e_1_2_10_55_1 doi: 10.1016/j.ijhydene.2015.06.027 – ident: e_1_2_10_113_3 doi: 10.1039/C5TA04330A – ident: e_1_2_10_179_1 doi: 10.1021/ja510525s – ident: e_1_2_10_62_1 doi: 10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z – volume-title: Metal‐Organic Frameworks year: 2016 ident: e_1_2_10_66_1 – ident: e_1_2_10_139_1 doi: 10.1039/C6CP07294A – ident: e_1_2_10_158_1 doi: 10.1002/smll.201800423 – ident: e_1_2_10_40_2 doi: 10.1039/C5TA01017A – ident: e_1_2_10_258_1 doi: 10.1039/C6TA01995A – ident: e_1_2_10_10_1 doi: 10.3934/energy.2018.1.121 – ident: e_1_2_10_44_1 doi: 10.1016/j.mssp.2014.02.018 – ident: e_1_2_10_248_2 doi: 10.1002/adfm.201802129 – ident: e_1_2_10_69_2 doi: 10.1021/ic3018858 – ident: e_1_2_10_7_1 doi: 10.1126/science.aad4998 – ident: e_1_2_10_52_1 doi: 10.1039/C6DT00009F – ident: e_1_2_10_60_1 doi: 10.1016/j.jpowsour.2013.03.156 – ident: e_1_2_10_181_1 doi: 10.1021/ja045123o – ident: e_1_2_10_160_2 doi: 10.1002/celc.201600452 – ident: e_1_2_10_233_1 doi: 10.1002/adma.201705442 – ident: e_1_2_10_151_1 doi: 10.1039/C8CC00025E – ident: e_1_2_10_228_1 doi: 10.1038/s41560-020-00709-1 – ident: e_1_2_10_180_1 doi: 10.1021/ja408084j – ident: e_1_2_10_191_1 doi: 10.1039/C4TA05342G – ident: e_1_2_10_73_1 doi: 10.1016/j.apcatb.2014.08.022 – ident: e_1_2_10_128_1 doi: 10.1039/C8TA02926A – ident: e_1_2_10_16_1 doi: 10.1016/j.nanoen.2017.12.029 – ident: e_1_2_10_71_4 doi: 10.1039/C9DT01730E – ident: e_1_2_10_238_1 doi: 10.1039/C7TA00281E – ident: e_1_2_10_237_1 doi: 10.1002/adma.202003313 – ident: e_1_2_10_14_1 doi: 10.1126/science.286.5437.49c – ident: e_1_2_10_90_1 doi: 10.1021/acscatal.5b02325 – ident: e_1_2_10_61_1 doi: 10.1021/acsami.6b02630 – ident: e_1_2_10_65_2 doi: 10.1126/sciadv.aap9252 – ident: e_1_2_10_6_1 doi: 10.1039/c0ee00731e – ident: e_1_2_10_111_4 doi: 10.1002/adfm.201705356 – ident: e_1_2_10_145_1 doi: 10.1002/adma.201801211 – ident: e_1_2_10_232_1 doi: 10.1039/C7CC03558F – ident: e_1_2_10_266_1 doi: 10.1039/C8TA00410B – ident: e_1_2_10_84_1 doi: 10.1016/j.nanoen.2018.07.033 – ident: e_1_2_10_215_1 doi: 10.1002/smtd.201800068 – ident: e_1_2_10_12_1 doi: 10.1002/adma.201604685 – ident: e_1_2_10_247_4 doi: 10.1016/j.jcis.2020.05.071 – ident: e_1_2_10_110_1 doi: 10.1038/s41929-020-00546-1 – ident: e_1_2_10_247_5 doi: 10.1016/j.cej.2020.125158 – ident: e_1_2_10_219_1 doi: 10.1002/adfm.201606190 – ident: e_1_2_10_224_1 doi: 10.1021/jacs.8b08744 – ident: e_1_2_10_38_1 doi: 10.1002/adma.201807615 – ident: e_1_2_10_241_1 doi: 10.1021/ja401727n – ident: e_1_2_10_5_1 doi: 10.1016/j.ijhydene.2016.03.164 – ident: e_1_2_10_97_1 doi: 10.1002/adma.202003577 – ident: e_1_2_10_147_1 doi: 10.1021/acsami.6b13411 – ident: e_1_2_10_72_1 doi: 10.1038/ncomms10942 – ident: e_1_2_10_56_1 doi: 10.1016/S2095-4956(14)60178-9 – ident: e_1_2_10_34_1 doi: 10.1021/acs.jpclett.6b02924 – ident: e_1_2_10_111_2 doi: 10.1039/C3EE42799D – ident: e_1_2_10_65_1 doi: 10.1039/C6MH00344C – ident: e_1_2_10_143_1 doi: 10.1039/C7TA06272A – ident: e_1_2_10_162_1 doi: 10.3390/nano9050775 – ident: e_1_2_10_149_1 doi: 10.1021/acs.chemmater.7b00867 – ident: e_1_2_10_8_3 doi: 10.1016/j.ijhydene.2012.10.056 – ident: e_1_2_10_60_2 doi: 10.1016/j.electacta.2013.11.193 – ident: e_1_2_10_69_3 doi: 10.1002/anie.201503637 – ident: e_1_2_10_101_1 doi: 10.1039/C8EE02694G – ident: e_1_2_10_71_3 doi: 10.1002/advs.201801920 – ident: e_1_2_10_86_1 doi: 10.1021/jacs.7b06514 – ident: e_1_2_10_73_3 doi: 10.1002/cctc.201600298 – ident: e_1_2_10_25_1 doi: 10.1038/2011212a0 – ident: e_1_2_10_162_2 doi: 10.1016/j.jpowsour.2019.01.020 – ident: e_1_2_10_64_1 doi: 10.1016/j.nantod.2013.11.004 – ident: e_1_2_10_50_1 doi: 10.1039/C3TA15319C – ident: e_1_2_10_18_1 doi: 10.1021/ja00146a033 – ident: e_1_2_10_89_1 doi: 10.1039/c2sc20657a – ident: e_1_2_10_87_1 doi: 10.1002/anie.201909312 – ident: e_1_2_10_143_6 doi: 10.1016/j.nanoen.2019.01.050 – ident: e_1_2_10_100_1 doi: 10.1038/s41929-019-0237-3 – ident: e_1_2_10_197_1 doi: 10.1039/C6EE02171A – ident: e_1_2_10_2_1 doi: 10.1016/j.energy.2005.09.011 – ident: e_1_2_10_164_1 doi: 10.1002/adfm.201702546 – ident: e_1_2_10_170_1 doi: 10.1039/C3CC47620K – ident: e_1_2_10_59_1 doi: 10.1021/ja00324a007 – ident: e_1_2_10_262_1 doi: 10.1002/adma.201701410 – ident: e_1_2_10_102_1 doi: 10.1002/smll.201704169 – ident: e_1_2_10_127_1 doi: 10.1016/j.electacta.2019.01.005 – ident: e_1_2_10_251_1 doi: 10.1002/aenm.201803867 – ident: e_1_2_10_172_1 doi: 10.1038/46248 – ident: e_1_2_10_126_1 doi: 10.1016/j.jpowsour.2015.06.056 – ident: e_1_2_10_15_2 doi: 10.1038/s41929-019-0291-x – ident: e_1_2_10_187_1 doi: 10.1016/j.apcatb.2014.08.022 – ident: e_1_2_10_98_1 doi: 10.1002/adma.201700874 – ident: e_1_2_10_38_2 doi: 10.1016/j.coelec.2018.04.010 – ident: e_1_2_10_138_5 doi: 10.1016/j.electacta.2019.135210 – ident: e_1_2_10_152_1 doi: 10.1002/smll.201901940 – ident: e_1_2_10_43_1 doi: 10.1002/cplu.201300334 – ident: e_1_2_10_161_1 doi: 10.1021/acsami.8b06272 – ident: e_1_2_10_121_1 doi: 10.1126/science.aau0630 – ident: e_1_2_10_145_2 doi: 10.1039/C8NR02492H – ident: e_1_2_10_76_1 doi: 10.1073/pnas.0602439103 – ident: e_1_2_10_178_1 doi: 10.1002/anie.201204475 – ident: e_1_2_10_222_1 doi: 10.1002/adfm.201700451 – ident: e_1_2_10_134_1 doi: 10.1021/acsami.6b10160 – ident: e_1_2_10_247_6 doi: 10.1002/smll.201907368 – ident: e_1_2_10_53_2 doi: 10.1039/C3EE43040E – ident: e_1_2_10_107_1 doi: 10.1126/sciadv.abb6833 – ident: e_1_2_10_112_1 doi: 10.1021/acscatal.7b01649 – ident: e_1_2_10_73_8 doi: 10.1016/j.ensm.2018.11.014 – ident: e_1_2_10_69_1 doi: 10.1016/j.nanoen.2017.09.055 – ident: e_1_2_10_249_1 doi: 10.1016/j.ijhydene.2016.11.118 – ident: e_1_2_10_28_2 doi: 10.1039/C6RE00107F – ident: e_1_2_10_78_1 doi: 10.1038/ncomms1427 – ident: e_1_2_10_248_1 doi: 10.1039/C8SC02444H – ident: e_1_2_10_99_1 doi: 10.1073/pnas.1507159112 – ident: e_1_2_10_149_2 doi: 10.1021/acsami.9b11859 – ident: e_1_2_10_153_1 doi: 10.1021/acsenergylett.8b00584 – ident: e_1_2_10_202_1 doi: 10.1002/anie.201803136 – ident: e_1_2_10_200_1 doi: 10.1021/acsenergylett.6b00686 – ident: e_1_2_10_148_1 doi: 10.1002/adma.202002235 – ident: e_1_2_10_136_1 doi: 10.1021/acsami.7b09897 – ident: e_1_2_10_194_1 doi: 10.1002/smll.201803009 – ident: e_1_2_10_53_1 doi: 10.1002/anie.201301327 – ident: e_1_2_10_19_1 doi: 10.1021/cr300014x – ident: e_1_2_10_48_1 doi: 10.1021/ja211433h – ident: e_1_2_10_260_1 doi: 10.1039/C5NR07193C – ident: e_1_2_10_20_1 doi: 10.1016/j.enchem.2019.100005 – ident: e_1_2_10_41_1 doi: 10.1016/j.elecom.2010.02.017 – ident: e_1_2_10_71_2 doi: 10.1021/acsami.7b01547 – ident: e_1_2_10_9_1 doi: 10.1016/j.ijhydene.2013.01.151 – ident: e_1_2_10_105_2 doi: 10.1039/D0NJ01373K – ident: e_1_2_10_114_1 doi: 10.1002/adfm.201700795 – volume-title: Nanocarbon Electrochemistry year: 2019 ident: e_1_2_10_66_2 – ident: e_1_2_10_69_4 doi: 10.3390/inorganics7100123 – ident: e_1_2_10_69_5 doi: 10.1002/aenm.201800085 – ident: e_1_2_10_208_1 doi: 10.1002/adfm.201903660 – ident: e_1_2_10_189_1 doi: 10.1039/C8EE01169A – ident: e_1_2_10_94_1 doi: 10.1038/s41929-018-0164-8 – ident: e_1_2_10_227_1 doi: 10.1063/1.5119858 – ident: e_1_2_10_143_5 doi: 10.1021/acssuschemeng.8b02343 – ident: e_1_2_10_3_1 – ident: e_1_2_10_11_1 – ident: e_1_2_10_23_1 doi: 10.1016/j.ccr.2017.11.028 – ident: e_1_2_10_256_1 doi: 10.1002/aenm.201601052 – ident: e_1_2_10_65_6 doi: 10.1002/anie.201910309 – ident: e_1_2_10_243_1 doi: 10.1002/aenm.201400337 – ident: e_1_2_10_15_1 doi: 10.1038/s41929-019-0320-9 – ident: e_1_2_10_113_1 doi: 10.1002/adfm.201403657 – ident: e_1_2_10_130_1 doi: 10.1039/C6CS00328A – ident: e_1_2_10_185_1 doi: 10.1038/srep05130 – ident: e_1_2_10_146_1 doi: 10.1002/smtd.201800214 – ident: e_1_2_10_246_1 doi: 10.1002/adfm.201908945 – ident: e_1_2_10_111_7 doi: 10.1016/j.ijhydene.2019.11.124 – ident: e_1_2_10_143_4 doi: 10.1016/j.ijhydene.2018.03.154 – ident: e_1_2_10_138_3 doi: 10.1039/C5SC04425A – ident: e_1_2_10_165_1 doi: 10.1021/acsenergylett.8b02343 – ident: e_1_2_10_250_1 doi: 10.1016/j.jallcom.2020.154896 – volume-title: Electrochemical Methods: Fundamentals and Applications year: 2001 ident: e_1_2_10_39_1 – ident: e_1_2_10_67_1 doi: 10.1021/acsenergylett.9b01134 – ident: e_1_2_10_71_1 doi: 10.1039/C6TA05877A – ident: e_1_2_10_253_1 doi: 10.1021/acssuschemeng.0c01729 – ident: e_1_2_10_256_3 doi: 10.1016/j.jallcom.2019.153438 – ident: e_1_2_10_45_1 doi: 10.1039/C4NR02399D – ident: e_1_2_10_73_2 doi: 10.1016/j.electacta.2016.10.002 – ident: e_1_2_10_123_1 doi: 10.1002/aenm.201900662 – ident: e_1_2_10_13_1 doi: 10.1002/adma.201703657 – ident: e_1_2_10_73_9 doi: 10.1002/anie.202008129 – ident: e_1_2_10_138_2 doi: 10.1021/acsami.5b10727 – ident: e_1_2_10_30_1 doi: 10.1016/j.rser.2016.07.046 – ident: e_1_2_10_229_1 doi: 10.1039/C4CC06867J – ident: e_1_2_10_223_1 doi: 10.1039/C8TA06491A – ident: e_1_2_10_51_1 doi: 10.1016/j.ijhydene.2013.12.120 – ident: e_1_2_10_111_1 doi: 10.1002/adma.201202424 – ident: e_1_2_10_157_2 doi: 10.1016/j.jcis.2019.02.084 – ident: e_1_2_10_195_1 doi: 10.1021/nn505582e – ident: e_1_2_10_93_1 doi: 10.1016/j.ijhydene.2019.07.022 – ident: e_1_2_10_8_2 doi: 10.1016/j.eap.2015.10.002 – ident: e_1_2_10_113_2 doi: 10.1038/nenergy.2015.6 – ident: e_1_2_10_144_1 doi: 10.1002/anie.201612635 – ident: e_1_2_10_8_1 doi: 10.1016/j.rser.2013.02.042 – ident: e_1_2_10_73_5 doi: 10.1016/j.apcatb.2016.12.016 – ident: e_1_2_10_117_2 doi: 10.1002/chem.201304404 – ident: e_1_2_10_199_1 doi: 10.1016/j.apcatb.2019.118042 – ident: e_1_2_10_29_2 doi: 10.1039/C9SC04961D – ident: e_1_2_10_17_2 doi: 10.1016/j.renene.2017.12.003 – ident: e_1_2_10_142_1 doi: 10.1039/C6EE00551A – ident: e_1_2_10_240_1 – ident: e_1_2_10_54_1 doi: 10.1016/j.catcom.2014.05.006 – ident: e_1_2_10_255_1 doi: 10.1039/C4NR05865H – ident: e_1_2_10_31_1 doi: 10.1038/ncomms15938 – ident: e_1_2_10_49_1 doi: 10.1039/c3cc43292k – ident: e_1_2_10_216_1 doi: 10.1038/nprot.2016.001 – ident: e_1_2_10_166_1 doi: 10.1016/j.nanoen.2017.07.043 – ident: e_1_2_10_171_1 doi: 10.1021/ja5082553 – ident: e_1_2_10_247_3 doi: 10.1016/j.jallcom.2018.01.019 – ident: e_1_2_10_175_2 doi: 10.1002/anie.200454250 – ident: e_1_2_10_163_2 doi: 10.1021/acssuschemeng.7b03034 – ident: e_1_2_10_74_1 doi: 10.1021/acs.chemmater.8b04934 – ident: e_1_2_10_72_2 doi: 10.1016/j.electacta.2019.03.175 – ident: e_1_2_10_28_1 doi: 10.1039/C6RE00065G – ident: e_1_2_10_92_1 doi: 10.1002/adma.201502315 – ident: e_1_2_10_79_1 – ident: e_1_2_10_115_1 doi: 10.1016/j.electacta.2018.11.142 – ident: e_1_2_10_203_1 doi: 10.1016/j.electacta.2017.02.144 – ident: e_1_2_10_85_1 doi: 10.1039/C4TA01656D – ident: e_1_2_10_143_2 doi: 10.1039/C8NR04776F – ident: e_1_2_10_217_1 doi: 10.1021/acs.langmuir.8b02166 – ident: e_1_2_10_33_1 doi: 10.1016/j.jelechem.2006.11.008 – ident: e_1_2_10_58_1 doi: 10.1039/C5NR02487K – ident: e_1_2_10_70_2 doi: 10.1002/anie.201711376 – ident: e_1_2_10_68_1 doi: 10.1038/nenergy.2016.184 – ident: e_1_2_10_82_1 doi: 10.1021/jacs.6b11248 – ident: e_1_2_10_218_1 doi: 10.1016/j.carbon.2018.04.019 – ident: e_1_2_10_182_1 doi: 10.1002/anie.201103155 – ident: e_1_2_10_196_1 doi: 10.1002/cplu.201600174 – ident: e_1_2_10_61_2 doi: 10.1016/j.snb.2009.08.018 – ident: e_1_2_10_176_1 doi: 10.1126/science.283.5405.1148 – ident: e_1_2_10_88_1 doi: 10.1021/acsami.9b13945 – ident: e_1_2_10_8_5 doi: 10.1149/2.F04181if – ident: e_1_2_10_174_1 doi: 10.1126/science.1116275 – ident: e_1_2_10_70_3 doi: 10.1002/adma.201901139 – ident: e_1_2_10_57_1 doi: 10.1002/adma.201305492 – ident: e_1_2_10_132_1 doi: 10.1002/aenm.201602643 – ident: e_1_2_10_8_6 – ident: e_1_2_10_25_2 doi: 10.1111/j.1751-1097.1970.tb06017.x – ident: e_1_2_10_32_1 doi: 10.1021/jp047349j – ident: e_1_2_10_198_1 doi: 10.1002/adfm.201901531 |
| SSID | ssj0009606 |
| Score | 2.6240354 |
| SecondaryResourceType | review_article |
| Snippet | Increasing demand for sustainable and clean energy is calling for the next‐generation energy conversion and storage technologies such as fuel cells, water... Increasing demand for sustainable and clean energy is calling for the next-generation energy conversion and storage technologies such as fuel cells, water... |
| SourceID | osti proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2008023 |
| SubjectTerms | Clean energy Electrocatalysis Electrocatalysts Electrolytic cells Energy conversion Energy storage Fuel cells Gels Metal-organic frameworks metal–organic gels Oxygen oxygen evolution reaction oxygen reduction reaction Pyrolysis |
| Title | Metal–Organic Frameworks and Metal–Organic Gels for Oxygen Electrocatalysis: Structural and Compositional Considerations |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202008023 https://www.ncbi.nlm.nih.gov/pubmed/33984166 https://www.proquest.com/docview/2543634715 https://www.proquest.com/docview/2528184539 https://www.osti.gov/biblio/1782935 |
| Volume | 33 |
| WOSCitedRecordID | wos000649842100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB6VhUM50Ja2sIUiV0LiFLGJnWzc26qw7QFo1UK1N8vxj1QJZRG7IJA48A68YZ-kM84PLCpCgmNiJxrZM55v7PE3AJui8CKVGJYYI3QkDGI4XUgR0bVN3ScfE9j5f-_1Dw7y0Uj-uHOLv-KHaDfcyDLCek0GrovJ9i1pqLaBNygJt0X5HMwnqLxpB-Z3fg6P9m6Jd7NQX5PO-yKZibwhbuwl27N_mHFMnTEa2P9A5yyGDU5o-Or54r-GpRqAskGlMW_ghSuXYfEOLeFbuNp3CMn_Xt9UFzUNGzYZXBOmS8vuN39F_8oQ_LLvF5eoj2y3Kq0TdoaI8OQz-xVYaonhI_yAFqE6WQzfNDVDq73Dd3A03D388i2qqzREJkV8E-UImUwstHCG9zH6S4qe9YVwTvS8zTNpYwSRqcdFt9DSam55z0uM0wqPoZ41kr-HTjku3Sow7m3m0GljzOpF4pyOY59lKTepR5yoZReiZoqUqSnMqZLGsarIlxNFo6raUe3CVtv_pCLveLDnGs24QthB3LmGkozMVMWIn1BxurDeKIKqTXyiiEUg4-jbsflT24zGSScuunTjM-pDZFsi5Sj6SqVArSCcSzryzbqQBD15REI12NkftE8fnvLRGrxMKCMn7CGtQwen3n2EBXM-_TM53YC5_ijfqM3nHx8GGv8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fTxQxEJ_gQSI8gCjCCUhJTHzacLvt7l19uwAnxruDKBjemm7_JCZkj3BAMPHB7-A39JM40_2DZzQkxsfddjdNO9P5zXT6G4BXIvcileiWGCN0JAxiOJ1LEdG1Td0lGxPY-T8Nu-Nx7_xcnlTZhHQXpuSHaAJupBlhvyYFp4D03j1rqLaBOCgJ10X5I5gXKEso5PMHHwZnw3vm3SwU2KQDv0hmolczN3aSvdk_zFim1gQ17E-ocxbEBis0WPkP438CyxUEZf1SZlZhzhVPYekXYsJn8HXkEJT_-Pa9vKpp2KDO4ZoyXVj2e_NbtLAM4S87vvuCEskOy-I6ITZElCdv2MfAU0scH-EHtA1V6WL4pq4aWkYP1-BscHi6fxRVdRoikyLCiXoImkwstHCGd9H_S_KO9blwTnS87WXSxggjU4_bbq6l1dzyjpfoqeUenT1rJH8OrWJSuA1g3NvModlGr9WLxDkdxz7LUm5Sj0hRyzZE9RopU5GYUy2NC1XSLyeKZlU1s9qG103_y5K-4689N2nJFQIPYs81lGZkrlWMCAolpw1btSSoSsmningEMo7WHZt3m2ZUTzpz0YWb3FAfotsSKcehr5cS1AyEc0mHvlkbkiAoD4xQ9Q9G_ebpxb98tAOPj05HQzV8N36_CYsJ5eeEiNIWtFAM3DYsmNvrz9Orl5UW_QRfQB4H |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fTxQxEJ_oQQw-qAjKCUpNTHzacLvt7l15u3isGo6TgBjemm7_JCZkj3hgIPHB78A35JMw0_2DZzQkxsfddjdNO9P5zXT6G4A3ovAileiWGCN0JAxiOF1IEdG1Td0nGxPY-b-M-5PJ4PhY7tfZhHQXpuKHaANupBlhvyYFd6fWb92yhmobiIOScF2U34cFQZVkOrAwOsiPxrfMu1kosEkHfpHMxKBhbuwlW_N_mLNMnSlq2J9Q5zyIDVYof_wfxv8EHtUQlA0rmVmGe658Cg9_ISZcgR97DkH59c-r6qqmYXmTwzVjurTs9-b3aGEZwl_26eISJZLtVMV1QmyIKE-22WHgqSWOj_AD2obqdDF801QNraKHq3CU73x-9yGq6zREJkWEEw0QNJlYaOEM76P_lxQ96wvhnOh5O8ikjRFGph633UJLq7nlPS_RUys8OnvWSP4MOuW0dGvAuLeZQ7ONXqsXiXM6jn2WpdykHpGill2ImjVSpiYxp1oaJ6qiX04UzapqZ7ULb9v-pxV9x197rtOSKwQexJ5rKM3InKkYERRKThc2GklQtZLPFPEIZBytOza_bptRPenMRZduek59iG5LpByH_rySoHYgnEs69M26kARBuWOEajjaG7ZPL_7lo014sD_K1fjjZHcdlhJKzwkBpQ3ooBS4l7Bovp99nX17VSvRDb4MHYI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic+Frameworks+and+Metal%E2%80%93Organic+Gels+for+Oxygen+Electrocatalysis%3A+Structural+and+Compositional+Considerations&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Hao&rft.au=Chen%2C+Biao%E2%80%90Hua&rft.au=Liu%2C+Di%E2%80%90Jia&rft.date=2021-06-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=25&rft_id=info:doi/10.1002%2Fadma.202008023&rft.externalDocID=1782935 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |