One-dimensional shock-capturing for high-order discontinuous Galerkin methods

SUMMARY Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in fluids Vol. 71; no. 6; pp. 737 - 755
Main Authors: Casoni, E., Peraire, J., Huerta, A.
Format: Journal Article Publication
Language:English
Published: Bognor Regis Blackwell Publishing Ltd 28.02.2013
Wiley Subscription Services, Inc
Subjects:
ISSN:0271-2091, 1097-0363
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract SUMMARY Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high‐order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high‐order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Copyright © 2012 John Wiley & Sons, Ltd. Figure 1 compares the artificial diffusion technique proposed here with high‐order limiters (described as moments’ in the figures), with the same number of degrees of freedom. The artificial diffusion technique outperforms the high‐order limiting scheme, demonstrating that it seems more beneficial to increase the degree of approximation than to refine the mesh in order to obtain accurate solutions.
AbstractList Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high‐order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high‐order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Copyright © 2012 John Wiley & Sons, Ltd.
SUMMARY Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high-order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Copyright [copy 2012 John Wiley & Sons, Ltd. Figure 1 compares the artificial diffusion technique proposed here with high-order limiters (described as moments' in the figures), with the same number of degrees of freedom. The artificial diffusion technique outperforms the high-order limiting scheme, demonstrating that it seems more beneficial to increase the degree of approximation than to refine the mesh in order to obtain accurate solutions.
Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high-order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Peer Reviewed
SUMMARY Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high-order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Copyright 2012 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
SUMMARY Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high‐order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high‐order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Copyright © 2012 John Wiley & Sons, Ltd. Figure 1 compares the artificial diffusion technique proposed here with high‐order limiters (described as moments’ in the figures), with the same number of degrees of freedom. The artificial diffusion technique outperforms the high‐order limiting scheme, demonstrating that it seems more beneficial to increase the degree of approximation than to refine the mesh in order to obtain accurate solutions.
Author Casoni, E.
Huerta, A.
Peraire, J.
Author_xml – sequence: 1
  givenname: E.
  surname: Casoni
  fullname: Casoni, E.
  organization: Laboratori de Calcul Numeric (LaCaN). Departament de Matematica Aplicada III E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universitat Politecnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
– sequence: 2
  givenname: J.
  surname: Peraire
  fullname: Peraire, J.
  organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, MA 02139, Cambridge, USA
– sequence: 3
  givenname: A.
  surname: Huerta
  fullname: Huerta, A.
  email: A. Huerta, Laboratori de Càlcul Numèric (LaCàN), E.T.S. Ingenieros de Caminos, Universitat Politècnica de Catalunya, Jordi Girona 1, E-08034 Barcelona, Spain., antonio.huerta@upc.edu
  organization: Laboratori de Calcul Numeric (LaCaN). Departament de Matematica Aplicada III E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universitat Politecnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
BookMark eNp1kU9rGzEQxUVJoU5a6EdY6KWXdUfSSrKOJW2cULeB_r-JWa02VryWXGmXJt--Mi4NCc1hGAZ-78G8d0yOQgyOkJcU5hSAvemHbs7lgj0hMwpa1cAlPyIzYIrWDDR9Ro5zvgYAzRZ8Rj5eBld3futC9jHgUOV1tJva4m6ckg9XVR9TtfZX6zqmzqWq89nGMPowxSlXSxxc2vhQbd24jl1-Tp72OGT34u8-Id_O3n89Pa9Xl8uL07er2gqQrGYMhcZG6pY1ndKONrbvWmwo9D2gQtYy7nqNICW0TEtwnHedQEuFQIYtPyH04GvzZE1y1iWLo4no7479MFDMMCkWUhTN64Nml-KvyeXRbMsvbhgwuPKLoQ3Xii2EgoK-eoBexymVdApVctQl3gbuDG2KOSfXm13yW0y3hoLZd2FKF2bfRUHnD1DrRxxL4mNCP_xPUB8Ev_3gbh81Nmerd_d5n0d384_HtDFScSXMj09Lwz78PP-8-vLdaP4HGSSrAw
CODEN IJNFDW
CitedBy_id crossref_primary_10_1016_j_jcp_2018_10_050
crossref_primary_10_1007_s11831_020_09508_z
crossref_primary_10_1007_s11831_018_09308_6
crossref_primary_10_1016_j_jcp_2014_08_009
crossref_primary_10_1016_j_jcp_2016_05_002
crossref_primary_10_1016_j_cpc_2017_08_001
crossref_primary_10_1007_s42967_021_00128_3
crossref_primary_10_1061__ASCE_EE_1943_7870_0000665
crossref_primary_10_1007_s10915_015_0027_2
crossref_primary_10_2514_1_J059763
crossref_primary_10_1002_fld_3943
crossref_primary_10_1016_j_jcp_2017_03_030
crossref_primary_10_1016_j_jcp_2017_06_022
crossref_primary_10_1007_s10915_024_02482_9
crossref_primary_10_1016_j_jcp_2021_110902
crossref_primary_10_1016_j_jcp_2015_04_013
crossref_primary_10_1002_nme_6674
crossref_primary_10_1093_mnras_stv1510
crossref_primary_10_1016_j_cpc_2017_09_026
Cites_doi 10.1063/1.1699639
10.1016/0168-9274(94)90029-9
10.1006/jcph.1996.5572
10.1137/S1064827503425298
10.1137/0719052
10.1006/jcph.2001.6718
10.1016/0021-9991(89)90183-6
10.1007/978-0-387-72067-8
10.1023/A:1012873910884
10.2307/2008474
10.1016/0021-9991(88)90177-5
10.1016/j.jcp.2009.11.010
10.1017/CBO9780511791253
10.1007/978-1-4020-9231-2_21
10.2514/6.2006-112
10.1016/j.jcp.2007.05.011
10.1137/S0036142997316712
10.1137/0721016
10.1007/978-3-0348-8629-1
10.1016/S0377-0427(00)00512-4
10.1137/S003614450036757X
10.1002/0470013826
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
Copyright 2013 John Wiley & Sons, Ltd.
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: Copyright 2013 John Wiley & Sons, Ltd.
– notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID BSCLL
AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
XX2
DOI 10.1002/fld.3682
DatabaseName Istex
CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Recercat
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Aerospace Database

Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 755
ExternalDocumentID oai_recercat_cat_2072_265865
2871678581
10_1002_fld_3682
FLD3682
ark_67375_WNG_2KXHRLSV_9
Genre article
GrantInformation_xml – fundername: Generalitat de Catalunya AGAUR
  funderid: 2009SGR875
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
RWS
WRC
AAYXX
CITATION
O8X
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
31~
6TJ
ABEML
ACSCC
AGHNM
AI.
AIQQE
FEDTE
HF~
HVGLF
M6O
PALCI
RIWAO
RJQFR
SAMSI
VH1
VOH
XX2
ZY4
~A~
ID FETCH-LOGICAL-c5062-22a59a469b24d79e14cfdba410ff0a7a2b23ef9a0660b2960e33dd5ac155a2ab3
IEDL.DBID DRFUL
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000313879700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0271-2091
IngestDate Fri Nov 07 13:53:33 EST 2025
Thu Jul 10 23:38:21 EDT 2025
Fri Jul 25 10:36:17 EDT 2025
Sat Nov 29 03:27:48 EST 2025
Tue Nov 18 20:54:48 EST 2025
Wed Jan 22 07:39:49 EST 2025
Tue Nov 11 03:32:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5062-22a59a469b24d79e14cfdba410ff0a7a2b23ef9a0660b2960e33dd5ac155a2ab3
Notes Generalitat de Catalunya AGAUR - No. 2009SGR875
ark:/67375/WNG-2KXHRLSV-9
istex:144E5772A03EF09FB90C6A677EBB44FB84551A09
ArticleID:FLD3682
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/265865
PQID 1271968240
PQPubID 996375
PageCount 19
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_265865
proquest_miscellaneous_1439728570
proquest_journals_1271968240
crossref_primary_10_1002_fld_3682
crossref_citationtrail_10_1002_fld_3682
wiley_primary_10_1002_fld_3682_FLD3682
istex_primary_ark_67375_WNG_2KXHRLSV_9
PublicationCentury 2000
PublicationDate 28 February 2013
PublicationDateYYYYMMDD 2013-02-28
PublicationDate_xml – month: 02
  year: 2013
  text: 28 February 2013
  day: 28
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Cockburn B, Shu C-W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing 2001; 16(3):173-261.
Hesthaven JS, Warburton T. Nodal Discontinuous Galerkin Methods, Texts in Applied Mathematics, Vol. 54, Springer: New York, 2008. Algorithms, analysis, and applications.
Donea J, Huerta A. Finite Element Methods for Flow Problems. John Wiley & Sons: Chichester, 2003.
von Neumann J, Richtmyer RD. A method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics 1950; 21:232-237.
LeVeque RJ. Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press: Cambridge, 2002.
Krivodonova L. Limiters for high-order discontinuous Galerkin methods. Journal of Computational Physics 2007; 226(1):879-896.
Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. Journal of Computational Physics 1997; 131(2):267-279.
Biswas R, Devine KD, Flaherty JE. Parallel, adaptive finite element methods for conservation laws. Applied Numerical Mathematics 1994; 14(1-3):255-283.
Cockburn B, Lin SY, Shu CW. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. Journal of Computational Physics 1989; 84(1):90-113.
Shu CW. Total-variation-diminishing time discretizations. Society for Industrial and Applied Mathematics. Journal on Scientific and Statistical Computing 1988; 9(6):1073-1084.
Bassi F, Rebay S. Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations. International Journal for Numerical Methods in Engineering 2001; 40(10):197-207.
Cockburn B, Shu C-W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Numerical Analysis 1998; 35(6):2440-2463.
Cockburn B, Shu CW. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Mathematics of Computation 1989; 52(186):411-435.
Qiu J, Shu CW. Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM Journal on Scientific Computing 2005; 26(3):907-929.
Barter GE, Darmofal DL. Shock capturing with PDE-based artificial viscosity for DGFEM: part I. formulation. Journal of Computational Physics 2010; 229(5):1810-1827.
Cockburn B. Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws. Journal of Computational and Applied Mathematics 2001; 128(1-2):187-204.
Shu CW, Osher S. Efficient implementation of essentially nonoscillatory shock-capturing schemes. Journal of Computational Physics 1988; 77(2):439-471.
Folland GB. Fourier Analysis and its Applications, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software: Pacific Grove, CA, 1992.
Huerta A, Casoni E, Peraire J. A simple shock-capturing technique for high-order discontinuous Galerkin methods. International Journal for Numerical Methods in Fluids 2011. Available from: http:/dx.doi.org/10.1002/fld.2654.
Gottlieb S, Shu CW, Tadmor E. Strong stability-preserving high-order time discretization methods. SIAM Review 2001; 43(1):89-112.
Arnold DN. An interior penalty finite element method with discontinuous elements. SIAM Journal on Numerical Analysis 1982; 19(4):742-760.
Peraire J, Persson P-O. The compact discontinuous Galerkin (CDG) method for elliptic problems. Society for Industrial and Applied Mathematics. Journal on Scientific Computing 1988; 30(4):1806-1824.
LeVeque RJ. Numerical Methods for Conservation Laws (2nd edn), Lectures in Mathematics ETH Zürich, Birkhäuser Verlag: Basel, 1992.
Burbeau A, Sagaut P, Bruneau CH. A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods. Journal of Computational Physics 2001; 169(1):111-150.
Osher S. Riemann solvers, the entropy condition, and difference approximations. SIAM Journal on Numerical Analysis 1984; 21(2):217-235.
Casoni E, Peraire J, Huerta A. Un método de captura de choques basado en las funciones de forma para galerkin discontinuo en alto orden. Revista Internacional de Métodos Numéricos en Ingeniería 2011. To appear.
1989; 84
2007; 226
1982; 19
2011
2010; 229
1950; 21
1997; 131
1984; 21
1988; 77
2008; 54
1992
1988; 30
2003
2006; 2
2002
2005; 26
2001; 40
2001; 169
2001; 128
2001; 43
1989; 52
2009; 14
1988; 9
1994; 14
2001; 16
1998; 35
e_1_2_8_28_1
e_1_2_8_29_1
Huerta A (e_1_2_8_12_1) 2011
e_1_2_8_24_1
e_1_2_8_25_1
Peraire J (e_1_2_8_22_1) 1988; 30
Casoni E (e_1_2_8_26_1) 2011
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
Folland GB (e_1_2_8_27_1) 1992
Bassi F (e_1_2_8_20_1) 2001; 40
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Shu CW (e_1_2_8_4_1) 1988; 9
e_1_2_8_10_1
e_1_2_8_11_1
References_xml – reference: Casoni E, Peraire J, Huerta A. Un método de captura de choques basado en las funciones de forma para galerkin discontinuo en alto orden. Revista Internacional de Métodos Numéricos en Ingeniería 2011. To appear.
– reference: LeVeque RJ. Numerical Methods for Conservation Laws (2nd edn), Lectures in Mathematics ETH Zürich, Birkhäuser Verlag: Basel, 1992.
– reference: Qiu J, Shu CW. Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM Journal on Scientific Computing 2005; 26(3):907-929.
– reference: Donea J, Huerta A. Finite Element Methods for Flow Problems. John Wiley & Sons: Chichester, 2003.
– reference: Cockburn B, Shu CW. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Mathematics of Computation 1989; 52(186):411-435.
– reference: Shu CW, Osher S. Efficient implementation of essentially nonoscillatory shock-capturing schemes. Journal of Computational Physics 1988; 77(2):439-471.
– reference: Cockburn B, Shu C-W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing 2001; 16(3):173-261.
– reference: Cockburn B. Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws. Journal of Computational and Applied Mathematics 2001; 128(1-2):187-204.
– reference: Bassi F, Rebay S. Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations. International Journal for Numerical Methods in Engineering 2001; 40(10):197-207.
– reference: Burbeau A, Sagaut P, Bruneau CH. A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods. Journal of Computational Physics 2001; 169(1):111-150.
– reference: Biswas R, Devine KD, Flaherty JE. Parallel, adaptive finite element methods for conservation laws. Applied Numerical Mathematics 1994; 14(1-3):255-283.
– reference: Osher S. Riemann solvers, the entropy condition, and difference approximations. SIAM Journal on Numerical Analysis 1984; 21(2):217-235.
– reference: Cockburn B, Shu C-W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Numerical Analysis 1998; 35(6):2440-2463.
– reference: Cockburn B, Lin SY, Shu CW. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. Journal of Computational Physics 1989; 84(1):90-113.
– reference: Krivodonova L. Limiters for high-order discontinuous Galerkin methods. Journal of Computational Physics 2007; 226(1):879-896.
– reference: Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. Journal of Computational Physics 1997; 131(2):267-279.
– reference: Gottlieb S, Shu CW, Tadmor E. Strong stability-preserving high-order time discretization methods. SIAM Review 2001; 43(1):89-112.
– reference: Hesthaven JS, Warburton T. Nodal Discontinuous Galerkin Methods, Texts in Applied Mathematics, Vol. 54, Springer: New York, 2008. Algorithms, analysis, and applications.
– reference: LeVeque RJ. Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press: Cambridge, 2002.
– reference: von Neumann J, Richtmyer RD. A method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics 1950; 21:232-237.
– reference: Huerta A, Casoni E, Peraire J. A simple shock-capturing technique for high-order discontinuous Galerkin methods. International Journal for Numerical Methods in Fluids 2011. Available from: http:/dx.doi.org/10.1002/fld.2654.
– reference: Arnold DN. An interior penalty finite element method with discontinuous elements. SIAM Journal on Numerical Analysis 1982; 19(4):742-760.
– reference: Peraire J, Persson P-O. The compact discontinuous Galerkin (CDG) method for elliptic problems. Society for Industrial and Applied Mathematics. Journal on Scientific Computing 1988; 30(4):1806-1824.
– reference: Barter GE, Darmofal DL. Shock capturing with PDE-based artificial viscosity for DGFEM: part I. formulation. Journal of Computational Physics 2010; 229(5):1810-1827.
– reference: Folland GB. Fourier Analysis and its Applications, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software: Pacific Grove, CA, 1992.
– reference: Shu CW. Total-variation-diminishing time discretizations. Society for Industrial and Applied Mathematics. Journal on Scientific and Statistical Computing 1988; 9(6):1073-1084.
– volume: 9
  start-page: 1073
  issue: 6
  year: 1988
  end-page: 1084
  article-title: Total‐variation‐diminishing time discretizations
  publication-title: Society for Industrial and Applied Mathematics. Journal on Scientific and Statistical Computing
– volume: 16
  start-page: 173
  issue: 3
  year: 2001
  end-page: 261
  article-title: Runge–Kutta discontinuous Galerkin methods for convection‐dominated problems
  publication-title: Journal of Scientific Computing
– year: 2011
  article-title: A simple shock‐capturing technique for high‐order discontinuous Galerkin methods
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 21
  start-page: 217
  issue: 2
  year: 1984
  end-page: 235
  article-title: Riemann solvers, the entropy condition, and difference approximations
  publication-title: SIAM Journal on Numerical Analysis
– volume: 21
  start-page: 232
  year: 1950
  end-page: 237
  article-title: A method for the numerical calculation of hydrodynamic shocks
  publication-title: Journal of Applied Physics
– volume: 14
  start-page: 255
  issue: 1–3
  year: 1994
  end-page: 283
  article-title: Parallel, adaptive finite element methods for conservation laws
  publication-title: Applied Numerical Mathematics
– volume: 128
  start-page: 187
  issue: 1–2
  year: 2001
  end-page: 204
  article-title: Devising discontinuous Galerkin methods for non‐linear hyperbolic conservation laws
  publication-title: Journal of Computational and Applied Mathematics
– year: 2003
– volume: 84
  start-page: 90
  issue: 1
  year: 1989
  end-page: 113
  article-title: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One‐dimensional systems
  publication-title: Journal of Computational Physics
– volume: 43
  start-page: 89
  issue: 1
  year: 2001
  end-page: 112
  article-title: Strong stability‐preserving high‐order time discretization methods
  publication-title: SIAM Review
– volume: 40
  start-page: 197
  issue: 10
  year: 2001
  end-page: 207
  article-title: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1992
– volume: 2
  start-page: 1408
  year: 2006
  end-page: 1420
– volume: 26
  start-page: 907
  issue: 3
  year: 2005
  end-page: 929
  article-title: Runge–Kutta discontinuous Galerkin method using WENO limiters
  publication-title: SIAM Journal on Scientific Computing
– volume: 169
  start-page: 111
  issue: 1
  year: 2001
  end-page: 150
  article-title: A problem‐independent limiter for high‐order Runge–Kutta discontinuous Galerkin methods
  publication-title: Journal of Computational Physics
– year: 2002
– volume: 14
  start-page: 307
  year: 2009
  end-page: 325
– volume: 131
  start-page: 267
  issue: 2
  year: 1997
  end-page: 279
  article-title: A high‐order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations
  publication-title: Journal of Computational Physics
– volume: 30
  start-page: 1806
  issue: 4
  year: 1988
  end-page: 1824
  article-title: The compact discontinuous Galerkin (CDG) method for elliptic problems
  publication-title: Society for Industrial and Applied Mathematics. Journal on Scientific Computing
– volume: 77
  start-page: 439
  issue: 2
  year: 1988
  end-page: 471
  article-title: Efficient implementation of essentially nonoscillatory shock‐capturing schemes
  publication-title: Journal of Computational Physics
– volume: 229
  start-page: 1810
  issue: 5
  year: 2010
  end-page: 1827
  article-title: Shock capturing with PDE‐based artificial viscosity for DGFEM: part I. formulation
  publication-title: Journal of Computational Physics
– volume: 52
  start-page: 411
  issue: 186
  year: 1989
  end-page: 435
  article-title: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework
  publication-title: Mathematics of Computation
– volume: 226
  start-page: 879
  issue: 1
  year: 2007
  end-page: 896
  article-title: Limiters for high‐order discontinuous Galerkin methods
  publication-title: Journal of Computational Physics
– volume: 35
  start-page: 2440
  issue: 6
  year: 1998
  end-page: 2463
  article-title: The local discontinuous Galerkin method for time‐dependent convection‐diffusion systems
  publication-title: SIAM Journal on Numerical Analysis
– volume: 54
  year: 2008
– year: 2011
  article-title: Un método de captura de choques basado en las funciones de forma para galerkin discontinuo en alto orden
  publication-title: Revista Internacional de Métodos Numéricos en Ingeniería
– volume: 19
  start-page: 742
  issue: 4
  year: 1982
  end-page: 760
  article-title: An interior penalty finite element method with discontinuous elements
  publication-title: SIAM Journal on Numerical Analysis
– ident: e_1_2_8_13_1
  doi: 10.1063/1.1699639
– ident: e_1_2_8_9_1
  doi: 10.1016/0168-9274(94)90029-9
– volume: 30
  start-page: 1806
  issue: 4
  year: 1988
  ident: e_1_2_8_22_1
  article-title: The compact discontinuous Galerkin (CDG) method for elliptic problems
  publication-title: Society for Industrial and Applied Mathematics. Journal on Scientific Computing
– ident: e_1_2_8_19_1
  doi: 10.1006/jcph.1996.5572
– ident: e_1_2_8_11_1
  doi: 10.1137/S1064827503425298
– ident: e_1_2_8_18_1
  doi: 10.1137/0719052
– ident: e_1_2_8_8_1
  doi: 10.1006/jcph.2001.6718
– ident: e_1_2_8_3_1
  doi: 10.1016/0021-9991(89)90183-6
– volume: 9
  start-page: 1073
  issue: 6
  year: 1988
  ident: e_1_2_8_4_1
  article-title: Total‐variation‐diminishing time discretizations
  publication-title: Society for Industrial and Applied Mathematics. Journal on Scientific and Statistical Computing
– ident: e_1_2_8_25_1
  doi: 10.1007/978-0-387-72067-8
– ident: e_1_2_8_21_1
  doi: 10.1023/A:1012873910884
– ident: e_1_2_8_2_1
  doi: 10.2307/2008474
– ident: e_1_2_8_5_1
  doi: 10.1016/0021-9991(88)90177-5
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jcp.2009.11.010
– year: 2011
  ident: e_1_2_8_12_1
  article-title: A simple shock‐capturing technique for high‐order discontinuous Galerkin methods
  publication-title: International Journal for Numerical Methods in Fluids
– ident: e_1_2_8_28_1
  doi: 10.1017/CBO9780511791253
– ident: e_1_2_8_17_1
  doi: 10.1007/978-1-4020-9231-2_21
– year: 2011
  ident: e_1_2_8_26_1
  article-title: Un método de captura de choques basado en las funciones de forma para galerkin discontinuo en alto orden
  publication-title: Revista Internacional de Métodos Numéricos en Ingeniería
– volume-title: Fourier Analysis and its Applications
  year: 1992
  ident: e_1_2_8_27_1
– ident: e_1_2_8_15_1
  doi: 10.2514/6.2006-112
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jcp.2007.05.011
– ident: e_1_2_8_23_1
  doi: 10.1137/S0036142997316712
– ident: e_1_2_8_24_1
  doi: 10.1137/0721016
– volume: 40
  start-page: 197
  issue: 10
  year: 2001
  ident: e_1_2_8_20_1
  article-title: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_8_7_1
  doi: 10.1007/978-3-0348-8629-1
– ident: e_1_2_8_14_1
  doi: 10.1016/S0377-0427(00)00512-4
– ident: e_1_2_8_6_1
  doi: 10.1137/S003614450036757X
– ident: e_1_2_8_29_1
  doi: 10.1002/0470013826
SSID ssj0009283
Score 2.1719944
Snippet SUMMARY Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent...
Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a...
SUMMARY Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent...
SourceID csuc
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 737
SubjectTerms 65 Numerical analysis
65E05 Numerical methods in complex analysis (potential theory, etc.)
Algorithms
Anàlisi numèrica
Approximation
artificial viscosity
Classificació AMS
Constraining
Diffusion
discontinuous Galerkin
Elements finits, Mètode dels
Finite volume method
Galerkin methods
high-order approximation
Matemàtiques i estadística
Mathematical analysis
Mathematical models
Mètodes numèrics
Nonlinearity
Numerical methods and algorithms
Reproduction
shock capturing
Studies
Àrees temàtiques de la UPC
Title One-dimensional shock-capturing for high-order discontinuous Galerkin methods
URI https://api.istex.fr/ark:/67375/WNG-2KXHRLSV-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.3682
https://www.proquest.com/docview/1271968240
https://www.proquest.com/docview/1439728570
https://recercat.cat/handle/2072/265865
Volume 71
WOSCitedRecordID wos000313879700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ri9QwEA6y54M-eHoqrp4SQRSEeukkbZpH8dw7cFnlzjv3LaRJiuLRPba74qM_wd_oL3Gm7fbuQEHwoZSmaRIyM5kvafINY88KEwulZEwqLXGCooVKyhwFkqNvEC4XPrSbaE6nejYr5nPzod9VSWdhOn6IYcGNLKMdr8nAXdnsXZCGVmfhlcwLHH63ANVWjdjW_tHkZHpBuQsdCSfoFHXBpBvqWQF7m2-vOKORb9YeMSp17_crgPMybG39zmT7f1p8m93q0SZ_3anHHXYt1jtsu0eevLfrZofdvERLeJcdv6_jrx8_AxH_d6QdvPmM4yameXe-ag82cgS7nLiOMbGl7-R0vndBcSfWi3XDD9Dx0DI870JUN_fYyeTtxzeHSR98IfGZyCEBcJlxOHkuQQVtYqp8FUqnUlFVwmkHJchYGYeQRZSA86AoZQiZ8whQHLhS3mejelHHB4xnAZ2gzBEN5KUqUCwasKDMuWhkkE6P2YuNFKzvmckpQMaZ7TiVwWLPWeq5MXs65Dzv2Dj-kOclCdKiw4hL71aWCLSHB7pAaLCA0CvPxux5K-6hNLf8SlvddGY_zQ4svJsfHk2PT60Zs92NPtjeyhubomoZrFIJbNjwGu2Tfrq4OmJ349QKER9QGAGsq9WOv7bcTqb7dH_4rxkfsRvQRuegE_a7bLRaruNjdt1_W31plk96e_gNSGoQFQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fi9QwEB-OPUF98PRUXD21gigI66WTtmnxSTz3Vq6ucv_ct5CmKR53dI_trvjoR_Az-kmc6b-7AwXBh1KapknIzGR-SZPfADyPExcHgXSjQkmaoCgRjLKIBBKRbxAmEjavN9Ecp2o6jWez5PMavOnOwjT8EP2CG1tGPV6zgfOC9PYFa2hxlr-WUUzj73pAWhQOYH1nf3yUXnDuYsPCiconZUj8jntW4Hb37RVvNLDVyhJI5f79fgVxXsatteMZb_xXk2_DrRZvem8bBbkDa67chI0We3qtZVebcPMSMeFdOPhUul8_fuZM_d_QdnjVVxo5Kc2a82V9tNEjuOsx2zEl1gSeHp_wnXPkidV8VXm75Hp4Id5rglRX9-Bo_P7w3WTUhl8Y2VBEOEI0YWJo-pxhkKvE-YEt8swEvigKYZTBDKUrEkOgRWRIMyEnZZ6HxhJEMWgyeR8G5bx0D8ALc3KDMiI8EGVBTHJRSAWFxrhE5tKoIbzsxKBty03OITLOdMOqjJp6TnPPDeFZn_O84eP4Q55XLElNLsMtrFlqptDuH_hCoVAjga8oHMKLWt59aWZxypvdVKi_THc17s0m--nBsU6GsNUphG7tvNI-6VZCVQaCGta_Jgvl3y6mdNTdNLkizIccSIDqqtXjry3X43SH7w__NeNTuD45_Jjq9MN07xHcwDpWB5-334LBcrFyj-Ga_bY8qRZPWuP4DX-LFAU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9UwFA_jTkQfnE7Fq1MriILQLT1JmwafxGs3WbmOzc37FtIkRXH0Xm7vFR_9CH5GP4kn_bcNFAQfSmmaJiHnnJxf0uR3CHmeSpdyzlxYCoYTFEF5WCQokAR9A9UJNbbZRHOWi-k0nc3k0QZ53Z-FafkhhgU3bxnNeO0N3C1suXfBGlqe212WpDj-bvJYJmiVm5Pj7DS_4NyFloUTRITKIKOee5bCXv_tFW80MvXaIEj1_fv9CuK8jFsbx5Nt_VeTb5NbHd4M3rQKcodsuGqbbHXYM-gsu94mNy8RE94lJx8q9-vHT-up_1vajqD-jCMnphm9WDVHGwOEu4FnO8bEhsAz8Cd85z7yxHq-roN9dD1-IT5og1TX98hp9u7j24OwC78QmpgmEALoWGqcPhfArZAu4qa0heYRLUuqhYYCmCulRtBCC8CZkGPM2lgbhCgadMHuk1E1r9wDEsQW3SBLEA8kBU9RLgKwoFhrJ5llWozJy14MynTc5D5ExrlqWZVBYc8p33Nj8mzIuWj5OP6Q55WXpEKX4ZZGr5Sn0B4e_AVUgAIEX0k8Ji8aeQ-l6eVXv9lNxOrTdF_B4ezgOD85U3JMdnqFUJ2d1ypC3ZJYJafYsOE1Wqj_7aIrh92NkyvEfOADCWBdjXr8teUqyyf-_vBfMz4l148mmcrfTw8fkRvQhOrwx-13yGi1XLvH5Jr5tvpSL590tvEb7twTgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-dimensional+shock-capturing+for+high-order+discontinuous+Galerkin+methods&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Casoni%2C+E.&rft.au=Peraire%2C+J.&rft.au=Huerta%2C+A.&rft.date=2013-02-28&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=71&rft.issue=6&rft.spage=737&rft.epage=755&rft_id=info:doi/10.1002%2Ffld.3682&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_2KXHRLSV_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon