One-dimensional shock-capturing for high-order discontinuous Galerkin methods
SUMMARY Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted...
Saved in:
| Published in: | International journal for numerical methods in fluids Vol. 71; no. 6; pp. 737 - 755 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article Publication |
| Language: | English |
| Published: |
Bognor Regis
Blackwell Publishing Ltd
28.02.2013
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0271-2091, 1097-0363 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | SUMMARY
Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high‐order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high‐order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Copyright © 2012 John Wiley & Sons, Ltd.
Figure 1 compares the artificial diffusion technique proposed here with high‐order limiters (described as moments’ in the figures), with the same number of degrees of freedom. The artificial diffusion technique outperforms the high‐order limiting scheme, demonstrating that it seems more beneficial to increase the degree of approximation than to refine the mesh in order to obtain accurate solutions. |
|---|---|
| AbstractList | Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high‐order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high‐order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Copyright © 2012 John Wiley & Sons, Ltd. SUMMARY Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high-order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Copyright [copy 2012 John Wiley & Sons, Ltd. Figure 1 compares the artificial diffusion technique proposed here with high-order limiters (described as moments' in the figures), with the same number of degrees of freedom. The artificial diffusion technique outperforms the high-order limiting scheme, demonstrating that it seems more beneficial to increase the degree of approximation than to refine the mesh in order to obtain accurate solutions. Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high-order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Peer Reviewed SUMMARY Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high-order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Copyright 2012 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] SUMMARY Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high‐order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high‐order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Copyright © 2012 John Wiley & Sons, Ltd. Figure 1 compares the artificial diffusion technique proposed here with high‐order limiters (described as moments’ in the figures), with the same number of degrees of freedom. The artificial diffusion technique outperforms the high‐order limiting scheme, demonstrating that it seems more beneficial to increase the degree of approximation than to refine the mesh in order to obtain accurate solutions. |
| Author | Casoni, E. Huerta, A. Peraire, J. |
| Author_xml | – sequence: 1 givenname: E. surname: Casoni fullname: Casoni, E. organization: Laboratori de Calcul Numeric (LaCaN). Departament de Matematica Aplicada III E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universitat Politecnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain – sequence: 2 givenname: J. surname: Peraire fullname: Peraire, J. organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, MA 02139, Cambridge, USA – sequence: 3 givenname: A. surname: Huerta fullname: Huerta, A. email: A. Huerta, Laboratori de Càlcul Numèric (LaCàN), E.T.S. Ingenieros de Caminos, Universitat Politècnica de Catalunya, Jordi Girona 1, E-08034 Barcelona, Spain., antonio.huerta@upc.edu organization: Laboratori de Calcul Numeric (LaCaN). Departament de Matematica Aplicada III E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universitat Politecnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain |
| BookMark | eNp1kU9rGzEQxUVJoU5a6EdY6KWXdUfSSrKOJW2cULeB_r-JWa02VryWXGmXJt--Mi4NCc1hGAZ-78G8d0yOQgyOkJcU5hSAvemHbs7lgj0hMwpa1cAlPyIzYIrWDDR9Ro5zvgYAzRZ8Rj5eBld3futC9jHgUOV1tJva4m6ckg9XVR9TtfZX6zqmzqWq89nGMPowxSlXSxxc2vhQbd24jl1-Tp72OGT34u8-Id_O3n89Pa9Xl8uL07er2gqQrGYMhcZG6pY1ndKONrbvWmwo9D2gQtYy7nqNICW0TEtwnHedQEuFQIYtPyH04GvzZE1y1iWLo4no7479MFDMMCkWUhTN64Nml-KvyeXRbMsvbhgwuPKLoQ3Xii2EgoK-eoBexymVdApVctQl3gbuDG2KOSfXm13yW0y3hoLZd2FKF2bfRUHnD1DrRxxL4mNCP_xPUB8Ev_3gbh81Nmerd_d5n0d384_HtDFScSXMj09Lwz78PP-8-vLdaP4HGSSrAw |
| CODEN | IJNFDW |
| CitedBy_id | crossref_primary_10_1016_j_jcp_2018_10_050 crossref_primary_10_1007_s11831_020_09508_z crossref_primary_10_1007_s11831_018_09308_6 crossref_primary_10_1016_j_jcp_2014_08_009 crossref_primary_10_1016_j_jcp_2016_05_002 crossref_primary_10_1016_j_cpc_2017_08_001 crossref_primary_10_1007_s42967_021_00128_3 crossref_primary_10_1061__ASCE_EE_1943_7870_0000665 crossref_primary_10_1007_s10915_015_0027_2 crossref_primary_10_2514_1_J059763 crossref_primary_10_1002_fld_3943 crossref_primary_10_1016_j_jcp_2017_03_030 crossref_primary_10_1016_j_jcp_2017_06_022 crossref_primary_10_1007_s10915_024_02482_9 crossref_primary_10_1016_j_jcp_2021_110902 crossref_primary_10_1016_j_jcp_2015_04_013 crossref_primary_10_1002_nme_6674 crossref_primary_10_1093_mnras_stv1510 crossref_primary_10_1016_j_cpc_2017_09_026 |
| Cites_doi | 10.1063/1.1699639 10.1016/0168-9274(94)90029-9 10.1006/jcph.1996.5572 10.1137/S1064827503425298 10.1137/0719052 10.1006/jcph.2001.6718 10.1016/0021-9991(89)90183-6 10.1007/978-0-387-72067-8 10.1023/A:1012873910884 10.2307/2008474 10.1016/0021-9991(88)90177-5 10.1016/j.jcp.2009.11.010 10.1017/CBO9780511791253 10.1007/978-1-4020-9231-2_21 10.2514/6.2006-112 10.1016/j.jcp.2007.05.011 10.1137/S0036142997316712 10.1137/0721016 10.1007/978-3-0348-8629-1 10.1016/S0377-0427(00)00512-4 10.1137/S003614450036757X 10.1002/0470013826 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental – sequence: 2 fullname: Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria |
| Copyright | Copyright © 2012 John Wiley & Sons, Ltd. Copyright 2013 John Wiley & Sons, Ltd. info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es |
| Copyright_xml | – notice: Copyright © 2012 John Wiley & Sons, Ltd. – notice: Copyright 2013 John Wiley & Sons, Ltd. – notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
| DBID | BSCLL AAYXX CITATION 7QH 7SC 7TB 7U5 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D XX2 |
| DOI | 10.1002/fld.3682 |
| DatabaseName | Istex CrossRef Aqualine Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Recercat |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | CrossRef Aerospace Database Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1097-0363 |
| EndPage | 755 |
| ExternalDocumentID | oai_recercat_cat_2072_265865 2871678581 10_1002_fld_3682 FLD3682 ark_67375_WNG_2KXHRLSV_9 |
| Genre | article |
| GrantInformation_xml | – fundername: Generalitat de Catalunya AGAUR funderid: 2009SGR875 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GBZZK GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI RWS WRC AAYXX CITATION O8X 7QH 7SC 7TB 7U5 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KR7 L.G L7M L~C L~D 31~ 6TJ ABEML ACSCC AGHNM AI. AIQQE FEDTE HF~ HVGLF M6O PALCI RIWAO RJQFR SAMSI VH1 VOH XX2 ZY4 ~A~ |
| ID | FETCH-LOGICAL-c5062-22a59a469b24d79e14cfdba410ff0a7a2b23ef9a0660b2960e33dd5ac155a2ab3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000313879700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0271-2091 |
| IngestDate | Fri Nov 07 13:53:33 EST 2025 Thu Jul 10 23:38:21 EDT 2025 Fri Jul 25 10:36:17 EDT 2025 Sat Nov 29 03:27:48 EST 2025 Tue Nov 18 20:54:48 EST 2025 Wed Jan 22 07:39:49 EST 2025 Tue Nov 11 03:32:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5062-22a59a469b24d79e14cfdba410ff0a7a2b23ef9a0660b2960e33dd5ac155a2ab3 |
| Notes | Generalitat de Catalunya AGAUR - No. 2009SGR875 ark:/67375/WNG-2KXHRLSV-9 istex:144E5772A03EF09FB90C6A677EBB44FB84551A09 ArticleID:FLD3682 ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://recercat.cat/handle/2072/265865 |
| PQID | 1271968240 |
| PQPubID | 996375 |
| PageCount | 19 |
| ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_265865 proquest_miscellaneous_1439728570 proquest_journals_1271968240 crossref_primary_10_1002_fld_3682 crossref_citationtrail_10_1002_fld_3682 wiley_primary_10_1002_fld_3682_FLD3682 istex_primary_ark_67375_WNG_2KXHRLSV_9 |
| PublicationCentury | 2000 |
| PublicationDate | 28 February 2013 |
| PublicationDateYYYYMMDD | 2013-02-28 |
| PublicationDate_xml | – month: 02 year: 2013 text: 28 February 2013 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal for numerical methods in fluids |
| PublicationTitleAlternate | Int. J. Numer. Meth. Fluids |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Cockburn B, Shu C-W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing 2001; 16(3):173-261. Hesthaven JS, Warburton T. Nodal Discontinuous Galerkin Methods, Texts in Applied Mathematics, Vol. 54, Springer: New York, 2008. Algorithms, analysis, and applications. Donea J, Huerta A. Finite Element Methods for Flow Problems. John Wiley & Sons: Chichester, 2003. von Neumann J, Richtmyer RD. A method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics 1950; 21:232-237. LeVeque RJ. Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press: Cambridge, 2002. Krivodonova L. Limiters for high-order discontinuous Galerkin methods. Journal of Computational Physics 2007; 226(1):879-896. Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. Journal of Computational Physics 1997; 131(2):267-279. Biswas R, Devine KD, Flaherty JE. Parallel, adaptive finite element methods for conservation laws. Applied Numerical Mathematics 1994; 14(1-3):255-283. Cockburn B, Lin SY, Shu CW. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. Journal of Computational Physics 1989; 84(1):90-113. Shu CW. Total-variation-diminishing time discretizations. Society for Industrial and Applied Mathematics. Journal on Scientific and Statistical Computing 1988; 9(6):1073-1084. Bassi F, Rebay S. Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations. International Journal for Numerical Methods in Engineering 2001; 40(10):197-207. Cockburn B, Shu C-W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Numerical Analysis 1998; 35(6):2440-2463. Cockburn B, Shu CW. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Mathematics of Computation 1989; 52(186):411-435. Qiu J, Shu CW. Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM Journal on Scientific Computing 2005; 26(3):907-929. Barter GE, Darmofal DL. Shock capturing with PDE-based artificial viscosity for DGFEM: part I. formulation. Journal of Computational Physics 2010; 229(5):1810-1827. Cockburn B. Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws. Journal of Computational and Applied Mathematics 2001; 128(1-2):187-204. Shu CW, Osher S. Efficient implementation of essentially nonoscillatory shock-capturing schemes. Journal of Computational Physics 1988; 77(2):439-471. Folland GB. Fourier Analysis and its Applications, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software: Pacific Grove, CA, 1992. Huerta A, Casoni E, Peraire J. A simple shock-capturing technique for high-order discontinuous Galerkin methods. International Journal for Numerical Methods in Fluids 2011. Available from: http:/dx.doi.org/10.1002/fld.2654. Gottlieb S, Shu CW, Tadmor E. Strong stability-preserving high-order time discretization methods. SIAM Review 2001; 43(1):89-112. Arnold DN. An interior penalty finite element method with discontinuous elements. SIAM Journal on Numerical Analysis 1982; 19(4):742-760. Peraire J, Persson P-O. The compact discontinuous Galerkin (CDG) method for elliptic problems. Society for Industrial and Applied Mathematics. Journal on Scientific Computing 1988; 30(4):1806-1824. LeVeque RJ. Numerical Methods for Conservation Laws (2nd edn), Lectures in Mathematics ETH Zürich, Birkhäuser Verlag: Basel, 1992. Burbeau A, Sagaut P, Bruneau CH. A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods. Journal of Computational Physics 2001; 169(1):111-150. Osher S. Riemann solvers, the entropy condition, and difference approximations. SIAM Journal on Numerical Analysis 1984; 21(2):217-235. Casoni E, Peraire J, Huerta A. Un método de captura de choques basado en las funciones de forma para galerkin discontinuo en alto orden. Revista Internacional de Métodos Numéricos en Ingeniería 2011. To appear. 1989; 84 2007; 226 1982; 19 2011 2010; 229 1950; 21 1997; 131 1984; 21 1988; 77 2008; 54 1992 1988; 30 2003 2006; 2 2002 2005; 26 2001; 40 2001; 169 2001; 128 2001; 43 1989; 52 2009; 14 1988; 9 1994; 14 2001; 16 1998; 35 e_1_2_8_28_1 e_1_2_8_29_1 Huerta A (e_1_2_8_12_1) 2011 e_1_2_8_24_1 e_1_2_8_25_1 Peraire J (e_1_2_8_22_1) 1988; 30 Casoni E (e_1_2_8_26_1) 2011 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 Folland GB (e_1_2_8_27_1) 1992 Bassi F (e_1_2_8_20_1) 2001; 40 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Shu CW (e_1_2_8_4_1) 1988; 9 e_1_2_8_10_1 e_1_2_8_11_1 |
| References_xml | – reference: Casoni E, Peraire J, Huerta A. Un método de captura de choques basado en las funciones de forma para galerkin discontinuo en alto orden. Revista Internacional de Métodos Numéricos en Ingeniería 2011. To appear. – reference: LeVeque RJ. Numerical Methods for Conservation Laws (2nd edn), Lectures in Mathematics ETH Zürich, Birkhäuser Verlag: Basel, 1992. – reference: Qiu J, Shu CW. Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM Journal on Scientific Computing 2005; 26(3):907-929. – reference: Donea J, Huerta A. Finite Element Methods for Flow Problems. John Wiley & Sons: Chichester, 2003. – reference: Cockburn B, Shu CW. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Mathematics of Computation 1989; 52(186):411-435. – reference: Shu CW, Osher S. Efficient implementation of essentially nonoscillatory shock-capturing schemes. Journal of Computational Physics 1988; 77(2):439-471. – reference: Cockburn B, Shu C-W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing 2001; 16(3):173-261. – reference: Cockburn B. Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws. Journal of Computational and Applied Mathematics 2001; 128(1-2):187-204. – reference: Bassi F, Rebay S. Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations. International Journal for Numerical Methods in Engineering 2001; 40(10):197-207. – reference: Burbeau A, Sagaut P, Bruneau CH. A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods. Journal of Computational Physics 2001; 169(1):111-150. – reference: Biswas R, Devine KD, Flaherty JE. Parallel, adaptive finite element methods for conservation laws. Applied Numerical Mathematics 1994; 14(1-3):255-283. – reference: Osher S. Riemann solvers, the entropy condition, and difference approximations. SIAM Journal on Numerical Analysis 1984; 21(2):217-235. – reference: Cockburn B, Shu C-W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Numerical Analysis 1998; 35(6):2440-2463. – reference: Cockburn B, Lin SY, Shu CW. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. Journal of Computational Physics 1989; 84(1):90-113. – reference: Krivodonova L. Limiters for high-order discontinuous Galerkin methods. Journal of Computational Physics 2007; 226(1):879-896. – reference: Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. Journal of Computational Physics 1997; 131(2):267-279. – reference: Gottlieb S, Shu CW, Tadmor E. Strong stability-preserving high-order time discretization methods. SIAM Review 2001; 43(1):89-112. – reference: Hesthaven JS, Warburton T. Nodal Discontinuous Galerkin Methods, Texts in Applied Mathematics, Vol. 54, Springer: New York, 2008. Algorithms, analysis, and applications. – reference: LeVeque RJ. Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press: Cambridge, 2002. – reference: von Neumann J, Richtmyer RD. A method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics 1950; 21:232-237. – reference: Huerta A, Casoni E, Peraire J. A simple shock-capturing technique for high-order discontinuous Galerkin methods. International Journal for Numerical Methods in Fluids 2011. Available from: http:/dx.doi.org/10.1002/fld.2654. – reference: Arnold DN. An interior penalty finite element method with discontinuous elements. SIAM Journal on Numerical Analysis 1982; 19(4):742-760. – reference: Peraire J, Persson P-O. The compact discontinuous Galerkin (CDG) method for elliptic problems. Society for Industrial and Applied Mathematics. Journal on Scientific Computing 1988; 30(4):1806-1824. – reference: Barter GE, Darmofal DL. Shock capturing with PDE-based artificial viscosity for DGFEM: part I. formulation. Journal of Computational Physics 2010; 229(5):1810-1827. – reference: Folland GB. Fourier Analysis and its Applications, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software: Pacific Grove, CA, 1992. – reference: Shu CW. Total-variation-diminishing time discretizations. Society for Industrial and Applied Mathematics. Journal on Scientific and Statistical Computing 1988; 9(6):1073-1084. – volume: 9 start-page: 1073 issue: 6 year: 1988 end-page: 1084 article-title: Total‐variation‐diminishing time discretizations publication-title: Society for Industrial and Applied Mathematics. Journal on Scientific and Statistical Computing – volume: 16 start-page: 173 issue: 3 year: 2001 end-page: 261 article-title: Runge–Kutta discontinuous Galerkin methods for convection‐dominated problems publication-title: Journal of Scientific Computing – year: 2011 article-title: A simple shock‐capturing technique for high‐order discontinuous Galerkin methods publication-title: International Journal for Numerical Methods in Fluids – volume: 21 start-page: 217 issue: 2 year: 1984 end-page: 235 article-title: Riemann solvers, the entropy condition, and difference approximations publication-title: SIAM Journal on Numerical Analysis – volume: 21 start-page: 232 year: 1950 end-page: 237 article-title: A method for the numerical calculation of hydrodynamic shocks publication-title: Journal of Applied Physics – volume: 14 start-page: 255 issue: 1–3 year: 1994 end-page: 283 article-title: Parallel, adaptive finite element methods for conservation laws publication-title: Applied Numerical Mathematics – volume: 128 start-page: 187 issue: 1–2 year: 2001 end-page: 204 article-title: Devising discontinuous Galerkin methods for non‐linear hyperbolic conservation laws publication-title: Journal of Computational and Applied Mathematics – year: 2003 – volume: 84 start-page: 90 issue: 1 year: 1989 end-page: 113 article-title: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One‐dimensional systems publication-title: Journal of Computational Physics – volume: 43 start-page: 89 issue: 1 year: 2001 end-page: 112 article-title: Strong stability‐preserving high‐order time discretization methods publication-title: SIAM Review – volume: 40 start-page: 197 issue: 10 year: 2001 end-page: 207 article-title: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations publication-title: International Journal for Numerical Methods in Engineering – year: 1992 – volume: 2 start-page: 1408 year: 2006 end-page: 1420 – volume: 26 start-page: 907 issue: 3 year: 2005 end-page: 929 article-title: Runge–Kutta discontinuous Galerkin method using WENO limiters publication-title: SIAM Journal on Scientific Computing – volume: 169 start-page: 111 issue: 1 year: 2001 end-page: 150 article-title: A problem‐independent limiter for high‐order Runge–Kutta discontinuous Galerkin methods publication-title: Journal of Computational Physics – year: 2002 – volume: 14 start-page: 307 year: 2009 end-page: 325 – volume: 131 start-page: 267 issue: 2 year: 1997 end-page: 279 article-title: A high‐order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations publication-title: Journal of Computational Physics – volume: 30 start-page: 1806 issue: 4 year: 1988 end-page: 1824 article-title: The compact discontinuous Galerkin (CDG) method for elliptic problems publication-title: Society for Industrial and Applied Mathematics. Journal on Scientific Computing – volume: 77 start-page: 439 issue: 2 year: 1988 end-page: 471 article-title: Efficient implementation of essentially nonoscillatory shock‐capturing schemes publication-title: Journal of Computational Physics – volume: 229 start-page: 1810 issue: 5 year: 2010 end-page: 1827 article-title: Shock capturing with PDE‐based artificial viscosity for DGFEM: part I. formulation publication-title: Journal of Computational Physics – volume: 52 start-page: 411 issue: 186 year: 1989 end-page: 435 article-title: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework publication-title: Mathematics of Computation – volume: 226 start-page: 879 issue: 1 year: 2007 end-page: 896 article-title: Limiters for high‐order discontinuous Galerkin methods publication-title: Journal of Computational Physics – volume: 35 start-page: 2440 issue: 6 year: 1998 end-page: 2463 article-title: The local discontinuous Galerkin method for time‐dependent convection‐diffusion systems publication-title: SIAM Journal on Numerical Analysis – volume: 54 year: 2008 – year: 2011 article-title: Un método de captura de choques basado en las funciones de forma para galerkin discontinuo en alto orden publication-title: Revista Internacional de Métodos Numéricos en Ingeniería – volume: 19 start-page: 742 issue: 4 year: 1982 end-page: 760 article-title: An interior penalty finite element method with discontinuous elements publication-title: SIAM Journal on Numerical Analysis – ident: e_1_2_8_13_1 doi: 10.1063/1.1699639 – ident: e_1_2_8_9_1 doi: 10.1016/0168-9274(94)90029-9 – volume: 30 start-page: 1806 issue: 4 year: 1988 ident: e_1_2_8_22_1 article-title: The compact discontinuous Galerkin (CDG) method for elliptic problems publication-title: Society for Industrial and Applied Mathematics. Journal on Scientific Computing – ident: e_1_2_8_19_1 doi: 10.1006/jcph.1996.5572 – ident: e_1_2_8_11_1 doi: 10.1137/S1064827503425298 – ident: e_1_2_8_18_1 doi: 10.1137/0719052 – ident: e_1_2_8_8_1 doi: 10.1006/jcph.2001.6718 – ident: e_1_2_8_3_1 doi: 10.1016/0021-9991(89)90183-6 – volume: 9 start-page: 1073 issue: 6 year: 1988 ident: e_1_2_8_4_1 article-title: Total‐variation‐diminishing time discretizations publication-title: Society for Industrial and Applied Mathematics. Journal on Scientific and Statistical Computing – ident: e_1_2_8_25_1 doi: 10.1007/978-0-387-72067-8 – ident: e_1_2_8_21_1 doi: 10.1023/A:1012873910884 – ident: e_1_2_8_2_1 doi: 10.2307/2008474 – ident: e_1_2_8_5_1 doi: 10.1016/0021-9991(88)90177-5 – ident: e_1_2_8_16_1 doi: 10.1016/j.jcp.2009.11.010 – year: 2011 ident: e_1_2_8_12_1 article-title: A simple shock‐capturing technique for high‐order discontinuous Galerkin methods publication-title: International Journal for Numerical Methods in Fluids – ident: e_1_2_8_28_1 doi: 10.1017/CBO9780511791253 – ident: e_1_2_8_17_1 doi: 10.1007/978-1-4020-9231-2_21 – year: 2011 ident: e_1_2_8_26_1 article-title: Un método de captura de choques basado en las funciones de forma para galerkin discontinuo en alto orden publication-title: Revista Internacional de Métodos Numéricos en Ingeniería – volume-title: Fourier Analysis and its Applications year: 1992 ident: e_1_2_8_27_1 – ident: e_1_2_8_15_1 doi: 10.2514/6.2006-112 – ident: e_1_2_8_10_1 doi: 10.1016/j.jcp.2007.05.011 – ident: e_1_2_8_23_1 doi: 10.1137/S0036142997316712 – ident: e_1_2_8_24_1 doi: 10.1137/0721016 – volume: 40 start-page: 197 issue: 10 year: 2001 ident: e_1_2_8_20_1 article-title: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations publication-title: International Journal for Numerical Methods in Engineering – ident: e_1_2_8_7_1 doi: 10.1007/978-3-0348-8629-1 – ident: e_1_2_8_14_1 doi: 10.1016/S0377-0427(00)00512-4 – ident: e_1_2_8_6_1 doi: 10.1137/S003614450036757X – ident: e_1_2_8_29_1 doi: 10.1002/0470013826 |
| SSID | ssj0009283 |
| Score | 2.1719944 |
| Snippet | SUMMARY
Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent... Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a... SUMMARY Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent... |
| SourceID | csuc proquest crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 737 |
| SubjectTerms | 65 Numerical analysis 65E05 Numerical methods in complex analysis (potential theory, etc.) Algorithms Anàlisi numèrica Approximation artificial viscosity Classificació AMS Constraining Diffusion discontinuous Galerkin Elements finits, Mètode dels Finite volume method Galerkin methods high-order approximation Matemàtiques i estadística Mathematical analysis Mathematical models Mètodes numèrics Nonlinearity Numerical methods and algorithms Reproduction shock capturing Studies Àrees temàtiques de la UPC |
| Title | One-dimensional shock-capturing for high-order discontinuous Galerkin methods |
| URI | https://api.istex.fr/ark:/67375/WNG-2KXHRLSV-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.3682 https://www.proquest.com/docview/1271968240 https://www.proquest.com/docview/1439728570 https://recercat.cat/handle/2072/265865 |
| Volume | 71 |
| WOSCitedRecordID | wos000313879700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0363 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009283 issn: 0271-2091 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ri9QwEA6y54M-eHoqrp4SQRSEeukkbZpH8dw7cFnlzjv3LaRJiuLRPba74qM_wd_oL3Gm7fbuQEHwoZSmaRIyM5kvafINY88KEwulZEwqLXGCooVKyhwFkqNvEC4XPrSbaE6nejYr5nPzod9VSWdhOn6IYcGNLKMdr8nAXdnsXZCGVmfhlcwLHH63ANVWjdjW_tHkZHpBuQsdCSfoFHXBpBvqWQF7m2-vOKORb9YeMSp17_crgPMybG39zmT7f1p8m93q0SZ_3anHHXYt1jtsu0eevLfrZofdvERLeJcdv6_jrx8_AxH_d6QdvPmM4yameXe-ag82cgS7nLiOMbGl7-R0vndBcSfWi3XDD9Dx0DI870JUN_fYyeTtxzeHSR98IfGZyCEBcJlxOHkuQQVtYqp8FUqnUlFVwmkHJchYGYeQRZSA86AoZQiZ8whQHLhS3mejelHHB4xnAZ2gzBEN5KUqUCwasKDMuWhkkE6P2YuNFKzvmckpQMaZ7TiVwWLPWeq5MXs65Dzv2Dj-kOclCdKiw4hL71aWCLSHB7pAaLCA0CvPxux5K-6hNLf8SlvddGY_zQ4svJsfHk2PT60Zs92NPtjeyhubomoZrFIJbNjwGu2Tfrq4OmJ349QKER9QGAGsq9WOv7bcTqb7dH_4rxkfsRvQRuegE_a7bLRaruNjdt1_W31plk96e_gNSGoQFQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fi9QwEB-OPUF98PRUXD21gigI66WTtmnxSTz3Vq6ucv_ct5CmKR53dI_trvjoR_Az-kmc6b-7AwXBh1KapknIzGR-SZPfADyPExcHgXSjQkmaoCgRjLKIBBKRbxAmEjavN9Ecp2o6jWez5PMavOnOwjT8EP2CG1tGPV6zgfOC9PYFa2hxlr-WUUzj73pAWhQOYH1nf3yUXnDuYsPCiconZUj8jntW4Hb37RVvNLDVyhJI5f79fgVxXsatteMZb_xXk2_DrRZvem8bBbkDa67chI0We3qtZVebcPMSMeFdOPhUul8_fuZM_d_QdnjVVxo5Kc2a82V9tNEjuOsx2zEl1gSeHp_wnXPkidV8VXm75Hp4Id5rglRX9-Bo_P7w3WTUhl8Y2VBEOEI0YWJo-pxhkKvE-YEt8swEvigKYZTBDKUrEkOgRWRIMyEnZZ6HxhJEMWgyeR8G5bx0D8ALc3KDMiI8EGVBTHJRSAWFxrhE5tKoIbzsxKBty03OITLOdMOqjJp6TnPPDeFZn_O84eP4Q55XLElNLsMtrFlqptDuH_hCoVAjga8oHMKLWt59aWZxypvdVKi_THc17s0m--nBsU6GsNUphG7tvNI-6VZCVQaCGta_Jgvl3y6mdNTdNLkizIccSIDqqtXjry3X43SH7w__NeNTuD45_Jjq9MN07xHcwDpWB5-334LBcrFyj-Ga_bY8qRZPWuP4DX-LFAU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9UwFA_jTkQfnE7Fq1MriILQLT1JmwafxGs3WbmOzc37FtIkRXH0Xm7vFR_9CH5GP4kn_bcNFAQfSmmaJiHnnJxf0uR3CHmeSpdyzlxYCoYTFEF5WCQokAR9A9UJNbbZRHOWi-k0nc3k0QZ53Z-FafkhhgU3bxnNeO0N3C1suXfBGlqe212WpDj-bvJYJmiVm5Pj7DS_4NyFloUTRITKIKOee5bCXv_tFW80MvXaIEj1_fv9CuK8jFsbx5Nt_VeTb5NbHd4M3rQKcodsuGqbbHXYM-gsu94mNy8RE94lJx8q9-vHT-up_1vajqD-jCMnphm9WDVHGwOEu4FnO8bEhsAz8Cd85z7yxHq-roN9dD1-IT5og1TX98hp9u7j24OwC78QmpgmEALoWGqcPhfArZAu4qa0heYRLUuqhYYCmCulRtBCC8CZkGPM2lgbhCgadMHuk1E1r9wDEsQW3SBLEA8kBU9RLgKwoFhrJ5llWozJy14MynTc5D5ExrlqWZVBYc8p33Nj8mzIuWj5OP6Q55WXpEKX4ZZGr5Sn0B4e_AVUgAIEX0k8Ji8aeQ-l6eVXv9lNxOrTdF_B4ezgOD85U3JMdnqFUJ2d1ypC3ZJYJafYsOE1Wqj_7aIrh92NkyvEfOADCWBdjXr8teUqyyf-_vBfMz4l148mmcrfTw8fkRvQhOrwx-13yGi1XLvH5Jr5tvpSL590tvEb7twTgA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-dimensional+shock-capturing+for+high-order+discontinuous+Galerkin+methods&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Casoni%2C+E.&rft.au=Peraire%2C+J.&rft.au=Huerta%2C+A.&rft.date=2013-02-28&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=71&rft.issue=6&rft.spage=737&rft.epage=755&rft_id=info:doi/10.1002%2Ffld.3682&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_2KXHRLSV_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |