Postfire energy exchange in arctic tundra: the importance and climatic implications of burn severity

Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a burn severity gradient (i.e. Severely, Moderately, and Unburned tundra) to determine the effect of fire and burn severity on arctic tundra surface energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology Jg. 17; H. 9; S. 2831 - 2841
Hauptverfasser: ROCHA, ADRIAN V., SHAVER, GAIUS R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.09.2011
Wiley-Blackwell
Schlagworte:
ISSN:1354-1013, 1365-2486
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a burn severity gradient (i.e. Severely, Moderately, and Unburned tundra) to determine the effect of fire and burn severity on arctic tundra surface energy exchange and temperature for three growing seasons (2008–2010) following the 2007 Anaktuvuk River fire. The three sites were well matched before the fire, experienced similar weather, and had similar energy budget closure, indicating that the measured energy exchange differences between sites were largely attributable to burn severity. Increased burn severity resulted in decreased vegetation and moss cover, organic layer depth, and the rate of postfire vegetation recovery. Albedo and surface greenness steadily recovered with Moderately matching Unburned tundra by the third growing season. Decreased albedo increased net radiation and partly fueled increased latent and ground heat fluxes, soil temperatures, and thaw depth. Decreases in moss cover and the organic layer also influenced the ground thermal regime and increased latent heat fluxes. These changes either offset or decreased the surface warming effect from decreased albedo, resulting in a small surface warming in Severely and a small surface cooling in Moderately relative to Unburned tundra. These results indicate that fires have a significant impact on surface energy balance and highlight the importance of moss and permafrost thaw in regulating arctic surface energy exchange and temperature.
AbstractList Abstract Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a burn severity gradient (i.e. Severely, Moderately, and Unburned tundra) to determine the effect of fire and burn severity on arctic tundra surface energy exchange and temperature for three growing seasons (2008-2010) following the 2007 Anaktuvuk River fire. The three sites were well matched before the fire, experienced similar weather, and had similar energy budget closure, indicating that the measured energy exchange differences between sites were largely attributable to burn severity. Increased burn severity resulted in decreased vegetation and moss cover, organic layer depth, and the rate of postfire vegetation recovery. Albedo and surface greenness steadily recovered with Moderately matching Unburned tundra by the third growing season. Decreased albedo increased net radiation and partly fueled increased latent and ground heat fluxes, soil temperatures, and thaw depth. Decreases in moss cover and the organic layer also influenced the ground thermal regime and increased latent heat fluxes. These changes either offset or decreased the surface warming effect from decreased albedo, resulting in a small surface warming in Severely and a small surface cooling in Moderately relative to Unburned tundra. These results indicate that fires have a significant impact on surface energy balance and highlight the importance of moss and permafrost thaw in regulating arctic surface energy exchange and temperature.
Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a burn severity gradient (i.e. Severely, Moderately, and Unburned tundra) to determine the effect of fire and burn severity on arctic tundra surface energy exchange and temperature for three growing seasons (2008–2010) following the 2007 Anaktuvuk River fire. The three sites were well matched before the fire, experienced similar weather, and had similar energy budget closure, indicating that the measured energy exchange differences between sites were largely attributable to burn severity. Increased burn severity resulted in decreased vegetation and moss cover, organic layer depth, and the rate of postfire vegetation recovery. Albedo and surface greenness steadily recovered with Moderately matching Unburned tundra by the third growing season. Decreased albedo increased net radiation and partly fueled increased latent and ground heat fluxes, soil temperatures, and thaw depth. Decreases in moss cover and the organic layer also influenced the ground thermal regime and increased latent heat fluxes. These changes either offset or decreased the surface warming effect from decreased albedo, resulting in a small surface warming in Severely and a small surface cooling in Moderately relative to Unburned tundra. These results indicate that fires have a significant impact on surface energy balance and highlight the importance of moss and permafrost thaw in regulating arctic surface energy exchange and temperature.
Author SHAVER, GAIUS R.
ROCHA, ADRIAN V.
Author_xml – sequence: 1
  givenname: ADRIAN V.
  surname: ROCHA
  fullname: ROCHA, ADRIAN V.
  organization: Marine Biological Laboratory, The Ecosystems Center, Woods Hole, MA 02543, USA
– sequence: 2
  givenname: GAIUS R.
  surname: SHAVER
  fullname: SHAVER, GAIUS R.
  organization: Marine Biological Laboratory, The Ecosystems Center, Woods Hole, MA 02543, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24437302$$DView record in Pascal Francis
BookMark eNqNkU1v1DAQhiNUJNrCf7CQEKcEf8YxEkiwoguoAoSKOFqOM269ZJ2t7YXdf4_TrfbQU33xaPy845l5z6qTMAWoKkRwQ8p5s2oIa0VNedc2FBPSYMo5aXZPqtPjw8kcC14TTNiz6iylFcaYUdyeVsOPKWXnIyAIEK_3CHb2xoRrQD4gE232FuVtGKJ5i_JNya43U8wmWEAmDMiOfm1mpuRHb0s4hYQmh_ptDCjBX4g-759XT50ZE7y4v8-rXxefrhaf68vvyy-LD5e1Fbgl9aB6K1yvmLJEuBaAWtMz0gOWlhNnWkGpEv3gOmXAYSJswTFVXBroQFp2Xr0-1N3E6XYLKeu1TxbG0QSYtkl3ShHWEckL-fIBuZpKx6W5ArWcd1KoAr26h0yyZnSxjO2T3sQyc9zrsmcmGaaF6w6cjVNKEdwRIVjPJumVnr3Qsxd6NknfmaR3Rfr-gdT6fLfFHI0fH1Pg3aHAPz_C_tEf6-Xi4xwVfX3Q-5Rhd9Sb-Ee3kkmhf39b6gsq-U9CrvRX9h_cIr1G
CitedBy_id crossref_primary_10_1109_TGRS_2021_3125715
crossref_primary_10_1093_biosci_biac034
crossref_primary_10_1002_jgrg_20095
crossref_primary_10_1111_1365_2745_70022
crossref_primary_10_3390_rs71114899
crossref_primary_10_1007_s10021_011_9463_5
crossref_primary_10_1088_1748_9326_11_9_095008
crossref_primary_10_1088_1748_9326_aaeb50
crossref_primary_10_1016_j_agrformet_2013_12_003
crossref_primary_10_1002_2014GL060533
crossref_primary_10_1016_j_revpalbo_2020_104364
crossref_primary_10_1007_s10021_016_0088_6
crossref_primary_10_1002_2014JG002717
crossref_primary_10_1002_ecy_3689
crossref_primary_10_1016_j_agrformet_2024_110362
crossref_primary_10_5194_bg_15_5287_2018
crossref_primary_10_1002_eco_2132
crossref_primary_10_1007_s10021_019_00456_9
crossref_primary_10_1029_2019EF001149
crossref_primary_10_1038_s41598_024_58998_5
crossref_primary_10_1016_j_scitotenv_2023_166132
crossref_primary_10_1016_j_oneear_2021_11_011
crossref_primary_10_1002_eap_1413
crossref_primary_10_1016_j_scitotenv_2021_151482
crossref_primary_10_1371_journal_pclm_0000570
crossref_primary_10_1111_gcb_15646
crossref_primary_10_3390_plants11223111
crossref_primary_10_1016_j_polar_2023_100984
crossref_primary_10_3389_fenvs_2022_889428
crossref_primary_10_1016_j_soilbio_2016_04_020
crossref_primary_10_3390_rs8030218
crossref_primary_10_1029_2020JG006094
crossref_primary_10_1016_j_rse_2020_111815
crossref_primary_10_1029_2020EA001538
crossref_primary_10_1890_150063
crossref_primary_10_1111_gcb_12451
crossref_primary_10_1016_j_catena_2025_109323
crossref_primary_10_1016_j_geoderma_2023_116629
crossref_primary_10_1088_1748_9326_acf50b
crossref_primary_10_1890_14_1921_1
crossref_primary_10_3390_rs12050890
crossref_primary_10_1002_2014JG002730
crossref_primary_10_1111_ecog_02205
crossref_primary_10_1088_1748_9326_aa9a76
crossref_primary_10_1088_1748_9326_ab0d44
crossref_primary_10_5194_essd_17_2887_2025
crossref_primary_10_1016_j_rse_2011_10_002
crossref_primary_10_1071_WF14167
crossref_primary_10_5194_bg_12_4017_2015
crossref_primary_10_5194_bg_20_1537_2023
crossref_primary_10_1029_2021GL096814
crossref_primary_10_1029_2018JF004611
crossref_primary_10_1016_j_ecolmodel_2018_05_017
crossref_primary_10_1088_1748_9326_ac97f7
crossref_primary_10_1038_s41598_019_49296_6
crossref_primary_10_1088_1748_9326_7_4_044039
crossref_primary_10_1016_j_foreco_2018_03_008
crossref_primary_10_1016_j_foreco_2013_12_003
crossref_primary_10_1088_1748_9326_abfa4c
crossref_primary_10_3390_rs15133401
crossref_primary_10_1111_geb_12440
crossref_primary_10_1002_2017GL074186
crossref_primary_10_1088_1748_9326_ac1192
crossref_primary_10_1016_j_rse_2016_02_059
crossref_primary_10_1016_j_gloplacha_2025_105030
crossref_primary_10_1111_gcb_15507
crossref_primary_10_5194_bg_18_207_2021
crossref_primary_10_1007_s00300_017_2236_7
crossref_primary_10_1002_ppp_2048
crossref_primary_10_1002_2014JF003180
crossref_primary_10_1093_biosci_biab134
crossref_primary_10_1002_ppp_2001
crossref_primary_10_1016_j_polar_2021_100685
crossref_primary_10_1002_2015JG003177
crossref_primary_10_1007_s00704_012_0806_8
crossref_primary_10_1016_j_geoderma_2021_115670
crossref_primary_10_1007_s11368_019_02297_4
crossref_primary_10_1088_2515_7620_acdfad
crossref_primary_10_1016_j_scitotenv_2020_143425
crossref_primary_10_3390_rs16020361
crossref_primary_10_1016_j_accre_2021_01_001
crossref_primary_10_1088_1748_9326_ab4f8d
crossref_primary_10_3390_rs10050789
crossref_primary_10_3390_rs12162549
Cites_doi 10.1657/1938-4246-41.3.309
10.2307/1550045
10.1029/2007JG000483
10.1139/X10-098
10.1038/35079180
10.1046/j.1365-2486.2000.06015.x
10.1046/j.1365-2486.2000.06013.x
10.1029/2004JD005299
10.1029/2008JG000841
10.1029/2009JG001095
10.1016/S0034-4257(02)00094-9
10.1890/10-0255.1
10.1029/2007GB003038
10.1016/j.agrformet.2005.05.006
10.1111/j.1365-3040.2007.01697.x
10.1016/S0168-1923(02)00109-0
10.1034/j.1600-0889.2003.00012.x
10.1029/2005JG000102
10.2307/2402027
10.1029/2007GL031296
10.1007/978-1-4612-6307-4_11
10.1080/01431161.2011.611187
10.1029/2009JG001215
10.1029/2001JD000438
10.1002/eco.118
10.1029/2004JD005158
10.1126/science.1132075
10.1111/j.0031-9317.2004.00260.x
10.1071/WF07049
10.2307/1942997
10.2307/1941631
10.1029/2005GL022822
10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
10.1073/pnas.0913846107
10.1029/2001JD000530
10.1016/j.agrformet.2006.02.014
10.1029/2009JG001270
10.1175/1520-0442(1999)012<2585:SEBOTA>2.0.CO;2
10.1029/2006JF000554
10.1080/0143116031000116417
10.1016/S0022-1694(96)03194-0
10.1641/B580807
10.14430/arctic2806
10.1016/j.agrformet.2009.03.016
10.1890/01-0444
ContentType Journal Article
Copyright 2011 Blackwell Publishing Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7ST
7TG
7U6
KL.
DOI 10.1111/j.1365-2486.2011.02441.x
DatabaseName Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Sustainability Science Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Meteorological & Geoastrophysical Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 2841
ExternalDocumentID 2477184361
24437302
10_1111_j_1365_2486_2011_02441_x
GCB2441
ark_67375_WNG_F274R11T_J
Genre article
Feature
GeographicLocations Arctic Region
PN, Arctic
GeographicLocations_xml – name: PN, Arctic
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
ALUQN
AAYXX
CITATION
O8X
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7ST
7TG
7U6
KL.
ID FETCH-LOGICAL-c5061-d9bc5fb939c15f6ee2cab31be07c41fa652295bdf89aef015cc5f02947ae8e7c3
IEDL.DBID DRFUL
ISICitedReferencesCount 96
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000293399000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
IngestDate Mon Oct 06 18:12:33 EDT 2025
Mon Nov 10 02:58:31 EST 2025
Mon Jul 21 09:14:15 EDT 2025
Sat Nov 29 06:02:16 EST 2025
Tue Nov 18 22:23:31 EST 2025
Sun Sep 21 06:26:49 EDT 2025
Tue Nov 11 03:32:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Climatic condition
Exchange
Energy balance
Climate
burn severity
Fires
Surface temperature
Stream
Rivers
Anaktuvuk River fire
Tundra
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5061-d9bc5fb939c15f6ee2cab31be07c41fa652295bdf89aef015cc5f02947ae8e7c3
Notes ArticleID:GCB2441
istex:6E18E1815C69FD72515C895E8B38ABCF3D73914D
ark:/67375/WNG-F274R11T-J
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 896448759
PQPubID 30327
PageCount 11
ParticipantIDs proquest_miscellaneous_899138174
proquest_journals_896448759
pascalfrancis_primary_24437302
crossref_primary_10_1111_j_1365_2486_2011_02441_x
crossref_citationtrail_10_1111_j_1365_2486_2011_02441_x
wiley_primary_10_1111_j_1365_2486_2011_02441_x_GCB2441
istex_primary_ark_67375_WNG_F274R11T_J
PublicationCentury 2000
PublicationDate September 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global change biology
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Wein RK (1976) Frequency and characteristics of arctic tundra fires. Arctic, 29, 213-222.
Rocha AV, Shaver GR (2009) Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, 149, 1560-1563, doi: DOI: 10.1016/j.agrformet.2009.03.016.
Liu H, Randerson JT, Lindfors J, Chapin FS (2005) Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: an annual perspective. Journal of Geophysical Research - Atmospheres, 110, D13101, doi: DOI: 10.1029/2004JD005158.
Haag RW, Bliss LC (1974) Energy budget changes following surface disturbance to upland tundra. Journal of Applied Ecology, 11, 355-374.
Racine CH (2004) Tundra fire effects on soils and three plant communities along a hillslope gradient in the Seward Peninsula, Alaska. Arctic, 34, 71-84.
Euskirchen ES, McGuire AD, Rupp TS, Chapin FS, Walsh JE (2009) Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western arctic, 2003-2010. Journal of Geophysical Research, 114, G04022, doi: DOI: 10.1029/2009JG001095.
Hu FS, Higuera PE, Walsh JE, Chapman WL, Duffy PA, Brubaker LB, Chipman ML (2010) Tundra burning in Alaska: linkages to climatic change and sea ice retreat. Journal of Geophysical Research, 115, G004002, doi: DOI: 10.1029/2009JG001270.
Lynch AH, Chapin FS III, Hinzman LD, Lilly WWE, Vourlitis GL, Kim E (1999) Surface energy balance on he arctic tundra: measurements and models. Journal of Climate, 12, 2585-2606.
Liljedahl A, Hinzman L, Busey R, Yoshikawa K (2007) Physical short-term changes after a tussock tundra fire, Seward Peninsula, Alaska. Journal of Geophysical Research-Earth Surface, 112, F02S07, doi: DOI: 10.1029/2006JF000554.
Moncrieff JB, Massheder JM, de Bruin H et al. (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, 188-189, 598-611.
Yoshikawa K, Bolton WR, Romanovsky VE, Fukuda M, Hinzman LD (2003) Impacts of wildfire on the permafrost in the boreal forest of Interior Alaska. Journal of Geophysical Research, 108, D18148, doi: DOI: 10.1029/2001JD000438.
Rocha AV, Shaver GR (2011) Burn severity influences post-fire CO2 exchange in arctic tundra. Ecological Applications, 21, 477-489.
Jones BM, Kolden CA, Jandt R, Abatzoglou JT, Urban F, Arp CD (2009) Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska. Arctic, Antarctic, and Alpine Research, 3, 309-316.
Chambers SD, Beringer J, Randerson JT, Chapin FS III (2005) Fire effects on net radiation and energy partitioning: contrasting responses of tundra and boreal forest ecosystems. Journal of Geophysical Research, 110, D09106, doi: DOI: 10.1029/2004JD005299.
Bond-Lamberty B, Gower ST, Amiro B, Ewers BE (2010) Measurement and modeling of bryophyte evaporation in a boreal forest chronosequence. Ecohydrology, 4, 26-35.
Boelman NT, Rocha AV, Shaver GR (2011) Understanding burn severity sensing in arctic tundra: exploring vegetation indices, sub-optimal assessment timing and the impact of increasing pixel size. International Journal of Remote Sensing, in press.
Chambers SD, Chapin FS III (2002) Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems: implications for feedbacks to regional climate. Journal of Geophysical Research, 108, D18145, doi: DOI: 10.1029/2001JD000530.
Harazono Y, Mano M, Miyata A, Zulueta RC, Oechel WC (2003) Inter-annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic. Tellus B, 55, 215-231.
Jin Y, Roy DP (2005) Fire-induced albedo change and its radiative forcing at the surface in northern Australia. Geophysical Research Letters, 32, L13401, doi: DOI: 10.1029/2005GL022822.
Liu H, Randerson JT (2008) Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence. Journal of Geophysical Research, 113, G01006, doi: DOI: 10.1029/2007JG000483.
Yi S, McGuire AD, Harden J et al. (2009) Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance. Journal of Geophysical Research, 114, G02015, doi: DOI: 10.1029/2008JG000841.
Douma JC, Van Wijk MT, Lang SI, Shaver GR (2007) The contribution of mosses to the carbon and water exchange of arctic ecosystems: quantification and relationships with system properties. Plant, Cell and Environment, 30, 1205-1215.
Kasischke ES, Verbyla DL, Rupp TS et al. (2010) Alaska's changing fire regime-implications for the vulnerability of its boreal forests. Canadian Journal of Forest Research, 40, 1313-1324.
Starr G, Neuman DS, Oberbauer SF (2004) Ecophysiological analysis of two arctic sedges under reduced root temperatures. Physiologia Plantarum, 120, 458-464.
Juang JY, Katul G, Siqueira M, Stoy P, Novick K (2007) Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophysical Research Letters, 34, L211408, doi: DOI: 10.1029/2007GL031296.
McMillan AMS, Goulden ML (2008) Age-dependent variation in the biophysical properties of boreal forests. Global Biogeochemical Cycles, 22, GB2019, doi: DOI: 10.1029/2007GB003038.
Engstrom R, Hope A, Kwon H, Harazono Y, Mano M, Oechel W (2006) Modeling evapotranspiration in arctic coastal plain ecosystems using a modified BIOME-BGC model. Journal of Geophysical Research, 111, G02021, doi: DOI: 10.1029/2005JG000102.
Eugster W, Rouse WR, Pielke RA Sr et al. (2000) Land-atmosphere energy exchange in arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biology, 6, 84-115.
Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon. Weather Rev, 10, 81-92.
Amiro BD, Orchansky AL, Barr AG et al. (2006) The effect of post-fire stand age on the boreal forest energy balance. Agricultural and Forest Meteorology, 140, 41-50.
Shaver GR, Chapin FS III (1991) Production/biomass relationships and element cycling in contrasting arctic vegetation types. Ecological Monographs, 61, 1-31.
Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18, 116-126.
Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69, 1331-1340.
Rocha AV, Goulden ML (2010) Drought legacies influence the long-term carbon balance of a freshwater marsh. JGR-Biogeosciences, 115, G00H02, doi: DOI: 10.1029/2009JG001215.
Swann AL, Fung IY, Levis S, Bonan GB, Doney SC (2010) Changes in arctic vegetation amplify high-latitude warming through the greenhouse effect. PNAS, 107, 1295-1300.
Randerson JT, Liu H, Flanner MG et al. (2006) The impact of boreal forest fire on climate warming. Science, 314, 1130-1132.
Wan Z, Zhang Y, Zhang Q, Li ZL (2004) Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 25, 261-274.
Beringer J, Chapin FS III, Thompson CC, McGuire AD (2005) Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agricultural and Forest Meteorology, 131, 143-161.
Oechel WC, Sveinbjornsson B (1978) Photoynthesis of Arctic Bryophytes in Vegetation and Production Ecology of an Alaskan Arctic Tundra (eds Tieszen LL), pp. 269-289. Springer, New York.
Wilson K, Goldstein A, Falge E et al. (2002) Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223-243.
Schuur EAG, Bockheim J, Canadell J et al. (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience, 58, 701-714.
McFadden JP, Eugster W, Chapin FS III (2003) A regional study of the controls on water vapor and CO2 exchange in arctic tundra. Ecology, 84, 2762-2776.
Petitcolin F, Vermote E (2002) Land surface reflectance, emissivity, and temperature from MODIS middle and thermal infrared data. Remote Sensing of Environment, 83, 112-134.
Rouse WR, Kershaw KA (1971) The effects of burning on the heat and water regimes of lichen-dominated subarctic surfaces. Arctic and Alpine Research, 3, 291-304.
Rouse WR, Lafleur PM, Griffis TJ (2000) Controls on energy and carbon fluxes from select high-latitude wetlands: controls and extrapolation. Global Change Biology, 6, 59-68.
Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the arctic. Nature, 411, 546-547.
2004; 120
1974; 11
2005; 131
2005; 110
2000; 6
2010; 107
2011
2004; 25
2002; 113
1997; 188–189
2008; 58
2007; 30
2006; 314
1976; 29
2007; 34
2009; 114
2006; 111
2010; 40
2003; 55
1978
2007; 112
2003; 108
2002; 83
1988; 69
2010; 115
2004; 34
1991; 61
2006; 140
1999; 12
2005; 32
2011; 21
1983
1972; 10
2008; 22
2002; 108
2008; 113
2009; 3
2003; 84
2010; 4
2001; 411
2009; 18
2009; 149
1971; 3
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
Bond‐Lamberty B (e_1_2_7_6_1) 2010; 4
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
Priestley CHB (e_1_2_7_31_1) 1972; 10
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Racine CH (e_1_2_7_32_1) 2004; 34
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Brown RJE (e_1_2_7_7_1) 1983
References_xml – reference: Boelman NT, Rocha AV, Shaver GR (2011) Understanding burn severity sensing in arctic tundra: exploring vegetation indices, sub-optimal assessment timing and the impact of increasing pixel size. International Journal of Remote Sensing, in press.
– reference: Rouse WR, Kershaw KA (1971) The effects of burning on the heat and water regimes of lichen-dominated subarctic surfaces. Arctic and Alpine Research, 3, 291-304.
– reference: Liu H, Randerson JT, Lindfors J, Chapin FS (2005) Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: an annual perspective. Journal of Geophysical Research - Atmospheres, 110, D13101, doi: DOI: 10.1029/2004JD005158.
– reference: Rocha AV, Shaver GR (2011) Burn severity influences post-fire CO2 exchange in arctic tundra. Ecological Applications, 21, 477-489.
– reference: Wilson K, Goldstein A, Falge E et al. (2002) Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223-243.
– reference: McMillan AMS, Goulden ML (2008) Age-dependent variation in the biophysical properties of boreal forests. Global Biogeochemical Cycles, 22, GB2019, doi: DOI: 10.1029/2007GB003038.
– reference: Schuur EAG, Bockheim J, Canadell J et al. (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience, 58, 701-714.
– reference: Wan Z, Zhang Y, Zhang Q, Li ZL (2004) Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 25, 261-274.
– reference: Petitcolin F, Vermote E (2002) Land surface reflectance, emissivity, and temperature from MODIS middle and thermal infrared data. Remote Sensing of Environment, 83, 112-134.
– reference: Jones BM, Kolden CA, Jandt R, Abatzoglou JT, Urban F, Arp CD (2009) Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska. Arctic, Antarctic, and Alpine Research, 3, 309-316.
– reference: Randerson JT, Liu H, Flanner MG et al. (2006) The impact of boreal forest fire on climate warming. Science, 314, 1130-1132.
– reference: Starr G, Neuman DS, Oberbauer SF (2004) Ecophysiological analysis of two arctic sedges under reduced root temperatures. Physiologia Plantarum, 120, 458-464.
– reference: Swann AL, Fung IY, Levis S, Bonan GB, Doney SC (2010) Changes in arctic vegetation amplify high-latitude warming through the greenhouse effect. PNAS, 107, 1295-1300.
– reference: Beringer J, Chapin FS III, Thompson CC, McGuire AD (2005) Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agricultural and Forest Meteorology, 131, 143-161.
– reference: Liu H, Randerson JT (2008) Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence. Journal of Geophysical Research, 113, G01006, doi: DOI: 10.1029/2007JG000483.
– reference: Rocha AV, Goulden ML (2010) Drought legacies influence the long-term carbon balance of a freshwater marsh. JGR-Biogeosciences, 115, G00H02, doi: DOI: 10.1029/2009JG001215.
– reference: Bond-Lamberty B, Gower ST, Amiro B, Ewers BE (2010) Measurement and modeling of bryophyte evaporation in a boreal forest chronosequence. Ecohydrology, 4, 26-35.
– reference: Hu FS, Higuera PE, Walsh JE, Chapman WL, Duffy PA, Brubaker LB, Chipman ML (2010) Tundra burning in Alaska: linkages to climatic change and sea ice retreat. Journal of Geophysical Research, 115, G004002, doi: DOI: 10.1029/2009JG001270.
– reference: Wein RK (1976) Frequency and characteristics of arctic tundra fires. Arctic, 29, 213-222.
– reference: Chambers SD, Chapin FS III (2002) Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems: implications for feedbacks to regional climate. Journal of Geophysical Research, 108, D18145, doi: DOI: 10.1029/2001JD000530.
– reference: Chambers SD, Beringer J, Randerson JT, Chapin FS III (2005) Fire effects on net radiation and energy partitioning: contrasting responses of tundra and boreal forest ecosystems. Journal of Geophysical Research, 110, D09106, doi: DOI: 10.1029/2004JD005299.
– reference: Juang JY, Katul G, Siqueira M, Stoy P, Novick K (2007) Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophysical Research Letters, 34, L211408, doi: DOI: 10.1029/2007GL031296.
– reference: Lynch AH, Chapin FS III, Hinzman LD, Lilly WWE, Vourlitis GL, Kim E (1999) Surface energy balance on he arctic tundra: measurements and models. Journal of Climate, 12, 2585-2606.
– reference: Oechel WC, Sveinbjornsson B (1978) Photoynthesis of Arctic Bryophytes in Vegetation and Production Ecology of an Alaskan Arctic Tundra (eds Tieszen LL), pp. 269-289. Springer, New York.
– reference: Amiro BD, Orchansky AL, Barr AG et al. (2006) The effect of post-fire stand age on the boreal forest energy balance. Agricultural and Forest Meteorology, 140, 41-50.
– reference: Yi S, McGuire AD, Harden J et al. (2009) Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance. Journal of Geophysical Research, 114, G02015, doi: DOI: 10.1029/2008JG000841.
– reference: Moncrieff JB, Massheder JM, de Bruin H et al. (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, 188-189, 598-611.
– reference: Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon. Weather Rev, 10, 81-92.
– reference: Shaver GR, Chapin FS III (1991) Production/biomass relationships and element cycling in contrasting arctic vegetation types. Ecological Monographs, 61, 1-31.
– reference: Jin Y, Roy DP (2005) Fire-induced albedo change and its radiative forcing at the surface in northern Australia. Geophysical Research Letters, 32, L13401, doi: DOI: 10.1029/2005GL022822.
– reference: Racine CH (2004) Tundra fire effects on soils and three plant communities along a hillslope gradient in the Seward Peninsula, Alaska. Arctic, 34, 71-84.
– reference: Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18, 116-126.
– reference: McFadden JP, Eugster W, Chapin FS III (2003) A regional study of the controls on water vapor and CO2 exchange in arctic tundra. Ecology, 84, 2762-2776.
– reference: Rouse WR, Lafleur PM, Griffis TJ (2000) Controls on energy and carbon fluxes from select high-latitude wetlands: controls and extrapolation. Global Change Biology, 6, 59-68.
– reference: Euskirchen ES, McGuire AD, Rupp TS, Chapin FS, Walsh JE (2009) Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western arctic, 2003-2010. Journal of Geophysical Research, 114, G04022, doi: DOI: 10.1029/2009JG001095.
– reference: Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69, 1331-1340.
– reference: Kasischke ES, Verbyla DL, Rupp TS et al. (2010) Alaska's changing fire regime-implications for the vulnerability of its boreal forests. Canadian Journal of Forest Research, 40, 1313-1324.
– reference: Yoshikawa K, Bolton WR, Romanovsky VE, Fukuda M, Hinzman LD (2003) Impacts of wildfire on the permafrost in the boreal forest of Interior Alaska. Journal of Geophysical Research, 108, D18148, doi: DOI: 10.1029/2001JD000438.
– reference: Rocha AV, Shaver GR (2009) Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, 149, 1560-1563, doi: DOI: 10.1016/j.agrformet.2009.03.016.
– reference: Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the arctic. Nature, 411, 546-547.
– reference: Eugster W, Rouse WR, Pielke RA Sr et al. (2000) Land-atmosphere energy exchange in arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biology, 6, 84-115.
– reference: Haag RW, Bliss LC (1974) Energy budget changes following surface disturbance to upland tundra. Journal of Applied Ecology, 11, 355-374.
– reference: Harazono Y, Mano M, Miyata A, Zulueta RC, Oechel WC (2003) Inter-annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic. Tellus B, 55, 215-231.
– reference: Douma JC, Van Wijk MT, Lang SI, Shaver GR (2007) The contribution of mosses to the carbon and water exchange of arctic ecosystems: quantification and relationships with system properties. Plant, Cell and Environment, 30, 1205-1215.
– reference: Liljedahl A, Hinzman L, Busey R, Yoshikawa K (2007) Physical short-term changes after a tussock tundra fire, Seward Peninsula, Alaska. Journal of Geophysical Research-Earth Surface, 112, F02S07, doi: DOI: 10.1029/2006JF000554.
– reference: Engstrom R, Hope A, Kwon H, Harazono Y, Mano M, Oechel W (2006) Modeling evapotranspiration in arctic coastal plain ecosystems using a modified BIOME-BGC model. Journal of Geophysical Research, 111, G02021, doi: DOI: 10.1029/2005JG000102.
– volume: 58
  start-page: 701
  year: 2008
  end-page: 714
  article-title: Vulnerability of permafrost carbon to climate change
  publication-title: BioScience
– volume: 108
  year: 2003
  article-title: Impacts of wildfire on the permafrost in the boreal forest of Interior Alaska
  publication-title: Journal of Geophysical Research
– volume: 30
  start-page: 1205
  year: 2007
  end-page: 1215
  article-title: The contribution of mosses to the carbon and water exchange of arctic ecosystems
  publication-title: Plant, Cell and Environment
– volume: 6
  start-page: 84
  year: 2000
  end-page: 115
  article-title: Land–atmosphere energy exchange in arctic tundra and boreal forest
  publication-title: Global Change Biology
– year: 2011
  article-title: Understanding burn severity sensing in arctic tundra
  publication-title: International Journal of Remote Sensing
– volume: 3
  start-page: 309
  year: 2009
  end-page: 316
  article-title: Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 34
  year: 2007
  article-title: Separating the effects of albedo from eco‐physiological changes on surface temperature along a successional chronosequence in the southeastern United States
  publication-title: Geophysical Research Letters
– volume: 411
  start-page: 546
  year: 2001
  end-page: 547
  article-title: Climate change
  publication-title: Nature
– volume: 25
  start-page: 261
  year: 2004
  end-page: 274
  article-title: Quality assessment and validation of the MODIS global land surface temperature
  publication-title: International Journal of Remote Sensing
– volume: 112
  year: 2007
  article-title: Physical short‐term changes after a tussock tundra fire, Seward Peninsula, Alaska
  publication-title: Journal of Geophysical Research-Earth Surface
– volume: 12
  start-page: 2585
  year: 1999
  end-page: 2606
  article-title: Surface energy balance on he arctic tundra
  publication-title: Journal of Climate
– volume: 149
  start-page: 1560
  year: 2009
  end-page: 1563
  article-title: Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes
  publication-title: Agricultural and Forest Meteorology
– volume: 32
  year: 2005
  article-title: Fire‐induced albedo change and its radiative forcing at the surface in northern Australia
  publication-title: Geophysical Research Letters
– volume: 4
  start-page: 26
  year: 2010
  end-page: 35
  article-title: Measurement and modeling of bryophyte evaporation in a boreal forest chronosequence
  publication-title: Ecohydrology
– volume: 107
  start-page: 1295
  year: 2010
  end-page: 1300
  article-title: Changes in arctic vegetation amplify high‐latitude warming through the greenhouse effect
  publication-title: PNAS
– volume: 114
  year: 2009
  article-title: Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance
  publication-title: Journal of Geophysical Research
– volume: 69
  start-page: 1331
  year: 1988
  end-page: 1340
  article-title: Measuring biosphere–atmosphere exchanges of biologically related gases with micrometeorological methods
  publication-title: Ecology
– volume: 110
  year: 2005
  article-title: Fire effects on net radiation and energy partitioning
  publication-title: Journal of Geophysical Research
– volume: 111
  year: 2006
  article-title: Modeling evapotranspiration in arctic coastal plain ecosystems using a modified BIOME–BGC model
  publication-title: Journal of Geophysical Research
– start-page: 269
  year: 1978
  end-page: 289
– volume: 114
  year: 2009
  article-title: Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western arctic, 2003–2010
  publication-title: Journal of Geophysical Research
– volume: 22
  year: 2008
  article-title: Age‐dependent variation in the biophysical properties of boreal forests
  publication-title: Global Biogeochemical Cycles
– volume: 29
  start-page: 213
  year: 1976
  end-page: 222
  article-title: Frequency and characteristics of arctic tundra fires
  publication-title: Arctic
– volume: 61
  start-page: 1
  year: 1991
  end-page: 31
  article-title: Production/biomass relationships and element cycling in contrasting arctic vegetation types
  publication-title: Ecological Monographs
– start-page: 97
  year: 1983
  end-page: 110
– volume: 83
  start-page: 112
  year: 2002
  end-page: 134
  article-title: Land surface reflectance, emissivity, and temperature from MODIS middle and thermal infrared data
  publication-title: Remote Sensing of Environment
– volume: 120
  start-page: 458
  year: 2004
  end-page: 464
  article-title: Ecophysiological analysis of two arctic sedges under reduced root temperatures
  publication-title: Physiologia Plantarum
– volume: 10
  start-page: 81
  year: 1972
  end-page: 92
  article-title: On the assessment of surface heat flux and evaporation using large scale parameters
  publication-title: Mon. Weather Rev
– volume: 113
  start-page: 223
  year: 2002
  end-page: 243
  article-title: Energy balance closure at FLUXNET sites
  publication-title: Agricultural and Forest Meteorology
– volume: 140
  start-page: 41
  year: 2006
  end-page: 50
  article-title: The effect of post‐fire stand age on the boreal forest energy balance
  publication-title: Agricultural and Forest Meteorology
– volume: 188–189
  start-page: 598
  year: 1997
  end-page: 611
  article-title: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide
  publication-title: Journal of Hydrology
– volume: 113
  year: 2008
  article-title: Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence
  publication-title: Journal of Geophysical Research
– volume: 131
  start-page: 143
  year: 2005
  end-page: 161
  article-title: Surface energy exchanges along a tundra‐forest transition and feedbacks to climate
  publication-title: Agricultural and Forest Meteorology
– volume: 21
  start-page: 477
  year: 2011
  end-page: 489
  article-title: Burn severity influences post‐fire CO exchange in arctic tundra
  publication-title: Ecological Applications
– volume: 84
  start-page: 2762
  year: 2003
  end-page: 2776
  article-title: A regional study of the controls on water vapor and CO exchange in arctic tundra
  publication-title: Ecology
– volume: 108
  year: 2002
  article-title: Fire effects on surface‐atmosphere energy exchange in Alaskan black spruce ecosystems
  publication-title: Journal of Geophysical Research
– volume: 115
  year: 2010
  article-title: Drought legacies influence the long‐term carbon balance of a freshwater marsh
  publication-title: JGR-Biogeosciences
– volume: 18
  start-page: 116
  year: 2009
  end-page: 126
  article-title: Fire intensity, fire severity and burn severity
  publication-title: International Journal of Wildland Fire
– volume: 115
  year: 2010
  article-title: Tundra burning in Alaska
  publication-title: Journal of Geophysical Research
– volume: 55
  start-page: 215
  year: 2003
  end-page: 231
  article-title: Inter‐annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic
  publication-title: Tellus B
– volume: 34
  start-page: 71
  year: 2004
  end-page: 84
  article-title: Tundra fire effects on soils and three plant communities along a hillslope gradient in the Seward Peninsula, Alaska
  publication-title: Arctic
– volume: 6
  start-page: 59
  year: 2000
  end-page: 68
  article-title: Controls on energy and carbon fluxes from select high‐latitude wetlands
  publication-title: Global Change Biology
– volume: 110
  year: 2005
  article-title: Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska
  publication-title: Journal of Geophysical Research – Atmospheres
– volume: 314
  start-page: 1130
  year: 2006
  end-page: 1132
  article-title: The impact of boreal forest fire on climate warming
  publication-title: Science
– volume: 3
  start-page: 291
  year: 1971
  end-page: 304
  article-title: The effects of burning on the heat and water regimes of lichen‐dominated subarctic surfaces
  publication-title: Arctic and Alpine Research
– volume: 11
  start-page: 355
  year: 1974
  end-page: 374
  article-title: Energy budget changes following surface disturbance to upland tundra
  publication-title: Journal of Applied Ecology
– volume: 40
  start-page: 1313
  year: 2010
  end-page: 1324
  article-title: Alaska's changing fire regime‐implications for the vulnerability of its boreal forests
  publication-title: Canadian Journal of Forest Research
– ident: e_1_2_7_18_1
  doi: 10.1657/1938-4246-41.3.309
– ident: e_1_2_7_37_1
  doi: 10.2307/1550045
– ident: e_1_2_7_23_1
  doi: 10.1029/2007JG000483
– ident: e_1_2_7_20_1
  doi: 10.1139/X10-098
– ident: e_1_2_7_42_1
  doi: 10.1038/35079180
– ident: e_1_2_7_12_1
  doi: 10.1046/j.1365-2486.2000.06015.x
– ident: e_1_2_7_38_1
  doi: 10.1046/j.1365-2486.2000.06013.x
– ident: e_1_2_7_8_1
  doi: 10.1029/2004JD005299
– ident: e_1_2_7_47_1
  doi: 10.1029/2008JG000841
– ident: e_1_2_7_13_1
  doi: 10.1029/2009JG001095
– ident: e_1_2_7_30_1
  doi: 10.1016/S0034-4257(02)00094-9
– ident: e_1_2_7_36_1
  doi: 10.1890/10-0255.1
– ident: e_1_2_7_27_1
  doi: 10.1029/2007GB003038
– ident: e_1_2_7_4_1
  doi: 10.1016/j.agrformet.2005.05.006
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1365-3040.2007.01697.x
– ident: e_1_2_7_46_1
  doi: 10.1016/S0168-1923(02)00109-0
– ident: e_1_2_7_15_1
  doi: 10.1034/j.1600-0889.2003.00012.x
– ident: e_1_2_7_11_1
  doi: 10.1029/2005JG000102
– start-page: 97
  volume-title: The Role of Fire in Northern Circumpolar Ecosystems
  year: 1983
  ident: e_1_2_7_7_1
– ident: e_1_2_7_14_1
  doi: 10.2307/2402027
– ident: e_1_2_7_19_1
  doi: 10.1029/2007GL031296
– ident: e_1_2_7_29_1
  doi: 10.1007/978-1-4612-6307-4_11
– ident: e_1_2_7_5_1
  doi: 10.1080/01431161.2011.611187
– ident: e_1_2_7_34_1
  doi: 10.1029/2009JG001215
– ident: e_1_2_7_48_1
  doi: 10.1029/2001JD000438
– volume: 4
  start-page: 26
  year: 2010
  ident: e_1_2_7_6_1
  article-title: Measurement and modeling of bryophyte evaporation in a boreal forest chronosequence
  publication-title: Ecohydrology
  doi: 10.1002/eco.118
– ident: e_1_2_7_24_1
  doi: 10.1029/2004JD005158
– ident: e_1_2_7_33_1
  doi: 10.1126/science.1132075
– ident: e_1_2_7_41_1
  doi: 10.1111/j.0031-9317.2004.00260.x
– ident: e_1_2_7_21_1
  doi: 10.1071/WF07049
– ident: e_1_2_7_40_1
  doi: 10.2307/1942997
– ident: e_1_2_7_3_1
  doi: 10.2307/1941631
– ident: e_1_2_7_17_1
  doi: 10.1029/2005GL022822
– volume: 10
  start-page: 81
  year: 1972
  ident: e_1_2_7_31_1
  article-title: On the assessment of surface heat flux and evaporation using large scale parameters
  publication-title: Mon. Weather Rev
  doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
– volume: 34
  start-page: 71
  year: 2004
  ident: e_1_2_7_32_1
  article-title: Tundra fire effects on soils and three plant communities along a hillslope gradient in the Seward Peninsula, Alaska
  publication-title: Arctic
– ident: e_1_2_7_43_1
  doi: 10.1073/pnas.0913846107
– ident: e_1_2_7_9_1
  doi: 10.1029/2001JD000530
– ident: e_1_2_7_2_1
  doi: 10.1016/j.agrformet.2006.02.014
– ident: e_1_2_7_16_1
  doi: 10.1029/2009JG001270
– ident: e_1_2_7_25_1
  doi: 10.1175/1520-0442(1999)012<2585:SEBOTA>2.0.CO;2
– ident: e_1_2_7_22_1
  doi: 10.1029/2006JF000554
– ident: e_1_2_7_44_1
  doi: 10.1080/0143116031000116417
– ident: e_1_2_7_28_1
  doi: 10.1016/S0022-1694(96)03194-0
– ident: e_1_2_7_39_1
  doi: 10.1641/B580807
– ident: e_1_2_7_45_1
  doi: 10.14430/arctic2806
– ident: e_1_2_7_35_1
  doi: 10.1016/j.agrformet.2009.03.016
– ident: e_1_2_7_26_1
  doi: 10.1890/01-0444
SSID ssj0003206
Score 2.3597615
Snippet Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a burn...
Abstract Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2831
SubjectTerms Albedo
Anaktuvuk River fire
Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
burn severity
Burns
Climate science
Energy balance
Fires
Fundamental and applied biological sciences. Psychology
General aspects
Growing season
Latent heat
Mosses
Net radiation
Permafrost
Soil temperature
Surface temperature
Synecology
Taiga & tundra
Terrestrial ecosystems
Tundra
Vegetation
Title Postfire energy exchange in arctic tundra: the importance and climatic implications of burn severity
URI https://api.istex.fr/ark:/67375/WNG-F274R11T-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2011.02441.x
https://www.proquest.com/docview/896448759
https://www.proquest.com/docview/899138174
Volume 17
WOSCitedRecordID wos000293399000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQCxIvfBQmssHkB7S3oNqOk5g3KOsQggpNm9ib5U8pYqQoaVH333N2stBIPEyIt1a9c5Pr3fl36fl-CL0OAz-EnZuUWw8FivZZqiljqSOGcWbBjYiOZBPFalVeXYmvff9TOAvTzYcYHriFyIj5OgS40u04yGOHVlbm_SRO2KnIG8CTUwpuzCdo-uF8efl5yMuMRqZNwngGyYewcV_PX9cabVbTYPddaJ5ULdjPd8QXI2S6j2_jBrV8_D9v7Ql61MNU_K7zq6fonqtn6EFHXHkzQwenf87HgVifINoZSr4ACF83UQyf4MV1BYg4vnuGbCAG9pBisYsHDrHbdceOcVVjiDf4KrzZ1rZRbzHAUlz9iLUBLIxVbbGJa4FMtdcEj9ceg1vUGDZ4F3j4nqPL5enF4mPakzykhgOWSK3QhnstmDCE-9w5apRmRLt5YTLiVc4D4bi2vhTKeQAvBsTnVGSFcqUrDDtAk3pduxcIz03pqbVZSe08U4WG4hfgYKmJcLmgWiSouP01peknoAcijmu5VwmB4WUwvAyGl9HwcpcgMmj-7KaA3EHnJDrMoKCa76GLruDy2-pMLmmRnRNyIT8l6HjkUYMCrMMgAdMEHd26mOwzTCtLESrrgsNd4eFTSA3h_x5Vu_U2iAgSBjBmCcqju9352uXZ4n14dfivikfoYffwPTTjvUSTTbN1r9B982tTtc1xH5m_Ab80Nfw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQCoIXPgoTYTD8gPYWFMfOh3mDsm5AV6GpE3uz_ClFGylKW1T-e85OFhqJhwnx1qh3TnI9n3_nnu-H0Bvf8IObRMeZcZCgKMdilVIaW6JpRg24EVGBbKKYz8vLS_61owPyZ2Ha_hD9hpufGSFe-wnuN6SHszyUaLEy71pxwlJF3gKgHDHwKnD30cfz6cWsD8w0DVSbhGYMog-hw8Kev441WK1G3vBbXz0pV2BA1zJfDKDpLsANK9T00X99t8foYQdU8fvWs56gO7Yeo3stdeWvMdo__nNCDsS6ELEao-gMYPiyCWL4CE-uK8DE4eopMp4a2EGQxTYcOcR22x48xlWNYcbBrfB6U5tGvsMATHH1PWQHMDCWtcE6jAUy1U4ZPF46DI5RY1jirWfie4YupseLyWnc0TzEOgM0ERuudOYUp1yTzOXWploqSpRNCs2Ik3nmKceVcSWX1gF80SCepJwV0pa20HQf7dXL2j5HONGlS41hZWoSJgsF6S8AwlIRbnOeKh6h4ubnFLrrge6pOK7FTi4Ehhfe8MIbXgTDi22ESK_5o-0Dcgudo-AxvYJsrnwdXZGJb_MTMU0Ldk7IQnyO0OHApXoFGIdCCE4jdHDjY6KLMStRcp9bFxm8Fe6_heDg__GRtV1uvAgnvgUji1Ae_O3Wzy5OJh_8pxf_qvga3T9dnM3E7NP8ywF60G7F-9K8l2hv3WzsK3RX_1xXq-awm6a_AVFdOew
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hBBCXAoEKUyh7QL0ZZb1-LTdI6_IoUVW1oreV9yVZFKdyEpT-e2bXroklDhXiligzG3syM_uNMzsfwFs38IPrqQoTbbFAkTYOZcRYaKhiCdPoRlR6solsPs8vL_lpRwfkzsK08yH6B24uMny-dgFurrUdRrlv0YrztBvFiVsVfYeAchw7TpkRjA_PiouTPjGzyFNtUpbEmH0oGzb2_HWtwW41dobfuO7JcokGtC3zxQCabgNcv0MVj__rvT2BnQ6okg-tZz2Fe6aewIOWuvJmArtHf07IoViXIpYTCL4hDF80XowckNlVhZjYv3sG2lEDW0yyxPgjh8Rs2oPHpKoJRhx-FVmta92U7wkCU1L99NUBLkzKWhPl10KZaqsNniwsQceoCW7xxjHxPYeL4uh89insaB5ClSCaCDWXKrGSM65oYlNjIlVKRqWZZiqmtkwTRzkutc15aSzCF4Xi04jHWWlykym2C6N6UZsXQKYqt5HWcR7paVxmEstfBIS5pNykPJI8gOz25xSqm4HuqDiuxFYthIYXzvDCGV54w4tNALTXvG7ngNxB58B7TK9QNj9cH12WiO_zY1FEWXxG6bn4EsD-wKV6BVyHYQqOAti79THR5ZilyLmrrbME74r0n2JycP_4lLVZrJ0Ip24EYxxA6v3tztcujmcf3auX_6r4Bh6eHhbi5PP86x48ap_Eu868VzBaNWvzGu6rX6tq2ex3UfobhV05Zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Postfire+energy+exchange+in+arctic+tundra%3A+the+importance+and+climatic+implications+of+burn+severity&rft.jtitle=Global+change+biology&rft.au=ROCHA%2C+ADRIAN+V.&rft.au=SHAVER%2C+GAIUS+R.&rft.date=2011-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=17&rft.issue=9&rft.spage=2831&rft.epage=2841&rft_id=info:doi/10.1111%2Fj.1365-2486.2011.02441.x&rft.externalDBID=10.1111%252Fj.1365-2486.2011.02441.x&rft.externalDocID=GCB2441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon