Postfire energy exchange in arctic tundra: the importance and climatic implications of burn severity
Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a burn severity gradient (i.e. Severely, Moderately, and Unburned tundra) to determine the effect of fire and burn severity on arctic tundra surface energ...
Gespeichert in:
| Veröffentlicht in: | Global change biology Jg. 17; H. 9; S. 2831 - 2841 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford, UK
Blackwell Publishing Ltd
01.09.2011
Wiley-Blackwell |
| Schlagworte: | |
| ISSN: | 1354-1013, 1365-2486 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a burn severity gradient (i.e. Severely, Moderately, and Unburned tundra) to determine the effect of fire and burn severity on arctic tundra surface energy exchange and temperature for three growing seasons (2008–2010) following the 2007 Anaktuvuk River fire. The three sites were well matched before the fire, experienced similar weather, and had similar energy budget closure, indicating that the measured energy exchange differences between sites were largely attributable to burn severity. Increased burn severity resulted in decreased vegetation and moss cover, organic layer depth, and the rate of postfire vegetation recovery. Albedo and surface greenness steadily recovered with Moderately matching Unburned tundra by the third growing season. Decreased albedo increased net radiation and partly fueled increased latent and ground heat fluxes, soil temperatures, and thaw depth. Decreases in moss cover and the organic layer also influenced the ground thermal regime and increased latent heat fluxes. These changes either offset or decreased the surface warming effect from decreased albedo, resulting in a small surface warming in Severely and a small surface cooling in Moderately relative to Unburned tundra. These results indicate that fires have a significant impact on surface energy balance and highlight the importance of moss and permafrost thaw in regulating arctic surface energy exchange and temperature. |
|---|---|
| AbstractList | Abstract Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a burn severity gradient (i.e. Severely, Moderately, and Unburned tundra) to determine the effect of fire and burn severity on arctic tundra surface energy exchange and temperature for three growing seasons (2008-2010) following the 2007 Anaktuvuk River fire. The three sites were well matched before the fire, experienced similar weather, and had similar energy budget closure, indicating that the measured energy exchange differences between sites were largely attributable to burn severity. Increased burn severity resulted in decreased vegetation and moss cover, organic layer depth, and the rate of postfire vegetation recovery. Albedo and surface greenness steadily recovered with Moderately matching Unburned tundra by the third growing season. Decreased albedo increased net radiation and partly fueled increased latent and ground heat fluxes, soil temperatures, and thaw depth. Decreases in moss cover and the organic layer also influenced the ground thermal regime and increased latent heat fluxes. These changes either offset or decreased the surface warming effect from decreased albedo, resulting in a small surface warming in Severely and a small surface cooling in Moderately relative to Unburned tundra. These results indicate that fires have a significant impact on surface energy balance and highlight the importance of moss and permafrost thaw in regulating arctic surface energy exchange and temperature. Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a burn severity gradient (i.e. Severely, Moderately, and Unburned tundra) to determine the effect of fire and burn severity on arctic tundra surface energy exchange and temperature for three growing seasons (2008–2010) following the 2007 Anaktuvuk River fire. The three sites were well matched before the fire, experienced similar weather, and had similar energy budget closure, indicating that the measured energy exchange differences between sites were largely attributable to burn severity. Increased burn severity resulted in decreased vegetation and moss cover, organic layer depth, and the rate of postfire vegetation recovery. Albedo and surface greenness steadily recovered with Moderately matching Unburned tundra by the third growing season. Decreased albedo increased net radiation and partly fueled increased latent and ground heat fluxes, soil temperatures, and thaw depth. Decreases in moss cover and the organic layer also influenced the ground thermal regime and increased latent heat fluxes. These changes either offset or decreased the surface warming effect from decreased albedo, resulting in a small surface warming in Severely and a small surface cooling in Moderately relative to Unburned tundra. These results indicate that fires have a significant impact on surface energy balance and highlight the importance of moss and permafrost thaw in regulating arctic surface energy exchange and temperature. |
| Author | SHAVER, GAIUS R. ROCHA, ADRIAN V. |
| Author_xml | – sequence: 1 givenname: ADRIAN V. surname: ROCHA fullname: ROCHA, ADRIAN V. organization: Marine Biological Laboratory, The Ecosystems Center, Woods Hole, MA 02543, USA – sequence: 2 givenname: GAIUS R. surname: SHAVER fullname: SHAVER, GAIUS R. organization: Marine Biological Laboratory, The Ecosystems Center, Woods Hole, MA 02543, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24437302$$DView record in Pascal Francis |
| BookMark | eNqNkU1v1DAQhiNUJNrCf7CQEKcEf8YxEkiwoguoAoSKOFqOM269ZJ2t7YXdf4_TrfbQU33xaPy845l5z6qTMAWoKkRwQ8p5s2oIa0VNedc2FBPSYMo5aXZPqtPjw8kcC14TTNiz6iylFcaYUdyeVsOPKWXnIyAIEK_3CHb2xoRrQD4gE232FuVtGKJ5i_JNya43U8wmWEAmDMiOfm1mpuRHb0s4hYQmh_ptDCjBX4g-759XT50ZE7y4v8-rXxefrhaf68vvyy-LD5e1Fbgl9aB6K1yvmLJEuBaAWtMz0gOWlhNnWkGpEv3gOmXAYSJswTFVXBroQFp2Xr0-1N3E6XYLKeu1TxbG0QSYtkl3ShHWEckL-fIBuZpKx6W5ArWcd1KoAr26h0yyZnSxjO2T3sQyc9zrsmcmGaaF6w6cjVNKEdwRIVjPJumVnr3Qsxd6NknfmaR3Rfr-gdT6fLfFHI0fH1Pg3aHAPz_C_tEf6-Xi4xwVfX3Q-5Rhd9Sb-Ee3kkmhf39b6gsq-U9CrvRX9h_cIr1G |
| CitedBy_id | crossref_primary_10_1109_TGRS_2021_3125715 crossref_primary_10_1093_biosci_biac034 crossref_primary_10_1002_jgrg_20095 crossref_primary_10_1111_1365_2745_70022 crossref_primary_10_3390_rs71114899 crossref_primary_10_1007_s10021_011_9463_5 crossref_primary_10_1088_1748_9326_11_9_095008 crossref_primary_10_1088_1748_9326_aaeb50 crossref_primary_10_1016_j_agrformet_2013_12_003 crossref_primary_10_1002_2014GL060533 crossref_primary_10_1016_j_revpalbo_2020_104364 crossref_primary_10_1007_s10021_016_0088_6 crossref_primary_10_1002_2014JG002717 crossref_primary_10_1002_ecy_3689 crossref_primary_10_1016_j_agrformet_2024_110362 crossref_primary_10_5194_bg_15_5287_2018 crossref_primary_10_1002_eco_2132 crossref_primary_10_1007_s10021_019_00456_9 crossref_primary_10_1029_2019EF001149 crossref_primary_10_1038_s41598_024_58998_5 crossref_primary_10_1016_j_scitotenv_2023_166132 crossref_primary_10_1016_j_oneear_2021_11_011 crossref_primary_10_1002_eap_1413 crossref_primary_10_1016_j_scitotenv_2021_151482 crossref_primary_10_1371_journal_pclm_0000570 crossref_primary_10_1111_gcb_15646 crossref_primary_10_3390_plants11223111 crossref_primary_10_1016_j_polar_2023_100984 crossref_primary_10_3389_fenvs_2022_889428 crossref_primary_10_1016_j_soilbio_2016_04_020 crossref_primary_10_3390_rs8030218 crossref_primary_10_1029_2020JG006094 crossref_primary_10_1016_j_rse_2020_111815 crossref_primary_10_1029_2020EA001538 crossref_primary_10_1890_150063 crossref_primary_10_1111_gcb_12451 crossref_primary_10_1016_j_catena_2025_109323 crossref_primary_10_1016_j_geoderma_2023_116629 crossref_primary_10_1088_1748_9326_acf50b crossref_primary_10_1890_14_1921_1 crossref_primary_10_3390_rs12050890 crossref_primary_10_1002_2014JG002730 crossref_primary_10_1111_ecog_02205 crossref_primary_10_1088_1748_9326_aa9a76 crossref_primary_10_1088_1748_9326_ab0d44 crossref_primary_10_5194_essd_17_2887_2025 crossref_primary_10_1016_j_rse_2011_10_002 crossref_primary_10_1071_WF14167 crossref_primary_10_5194_bg_12_4017_2015 crossref_primary_10_5194_bg_20_1537_2023 crossref_primary_10_1029_2021GL096814 crossref_primary_10_1029_2018JF004611 crossref_primary_10_1016_j_ecolmodel_2018_05_017 crossref_primary_10_1088_1748_9326_ac97f7 crossref_primary_10_1038_s41598_019_49296_6 crossref_primary_10_1088_1748_9326_7_4_044039 crossref_primary_10_1016_j_foreco_2018_03_008 crossref_primary_10_1016_j_foreco_2013_12_003 crossref_primary_10_1088_1748_9326_abfa4c crossref_primary_10_3390_rs15133401 crossref_primary_10_1111_geb_12440 crossref_primary_10_1002_2017GL074186 crossref_primary_10_1088_1748_9326_ac1192 crossref_primary_10_1016_j_rse_2016_02_059 crossref_primary_10_1016_j_gloplacha_2025_105030 crossref_primary_10_1111_gcb_15507 crossref_primary_10_5194_bg_18_207_2021 crossref_primary_10_1007_s00300_017_2236_7 crossref_primary_10_1002_ppp_2048 crossref_primary_10_1002_2014JF003180 crossref_primary_10_1093_biosci_biab134 crossref_primary_10_1002_ppp_2001 crossref_primary_10_1016_j_polar_2021_100685 crossref_primary_10_1002_2015JG003177 crossref_primary_10_1007_s00704_012_0806_8 crossref_primary_10_1016_j_geoderma_2021_115670 crossref_primary_10_1007_s11368_019_02297_4 crossref_primary_10_1088_2515_7620_acdfad crossref_primary_10_1016_j_scitotenv_2020_143425 crossref_primary_10_3390_rs16020361 crossref_primary_10_1016_j_accre_2021_01_001 crossref_primary_10_1088_1748_9326_ab4f8d crossref_primary_10_3390_rs10050789 crossref_primary_10_3390_rs12162549 |
| Cites_doi | 10.1657/1938-4246-41.3.309 10.2307/1550045 10.1029/2007JG000483 10.1139/X10-098 10.1038/35079180 10.1046/j.1365-2486.2000.06015.x 10.1046/j.1365-2486.2000.06013.x 10.1029/2004JD005299 10.1029/2008JG000841 10.1029/2009JG001095 10.1016/S0034-4257(02)00094-9 10.1890/10-0255.1 10.1029/2007GB003038 10.1016/j.agrformet.2005.05.006 10.1111/j.1365-3040.2007.01697.x 10.1016/S0168-1923(02)00109-0 10.1034/j.1600-0889.2003.00012.x 10.1029/2005JG000102 10.2307/2402027 10.1029/2007GL031296 10.1007/978-1-4612-6307-4_11 10.1080/01431161.2011.611187 10.1029/2009JG001215 10.1029/2001JD000438 10.1002/eco.118 10.1029/2004JD005158 10.1126/science.1132075 10.1111/j.0031-9317.2004.00260.x 10.1071/WF07049 10.2307/1942997 10.2307/1941631 10.1029/2005GL022822 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 10.1073/pnas.0913846107 10.1029/2001JD000530 10.1016/j.agrformet.2006.02.014 10.1029/2009JG001270 10.1175/1520-0442(1999)012<2585:SEBOTA>2.0.CO;2 10.1029/2006JF000554 10.1080/0143116031000116417 10.1016/S0022-1694(96)03194-0 10.1641/B580807 10.14430/arctic2806 10.1016/j.agrformet.2009.03.016 10.1890/01-0444 |
| ContentType | Journal Article |
| Copyright | 2011 Blackwell Publishing Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2011 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7SN 7UA C1K F1W H97 L.G 7ST 7TG 7U6 KL. |
| DOI | 10.1111/j.1365-2486.2011.02441.x |
| DatabaseName | Istex CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Sustainability Science Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Meteorological & Geoastrophysical Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Environmental Sciences |
| EISSN | 1365-2486 |
| EndPage | 2841 |
| ExternalDocumentID | 2477184361 24437302 10_1111_j_1365_2486_2011_02441_x GCB2441 ark_67375_WNG_F274R11T_J |
| Genre | article Feature |
| GeographicLocations | Arctic Region PN, Arctic |
| GeographicLocations_xml | – name: PN, Arctic |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT ALUQN AAYXX CITATION O8X IQODW 7SN 7UA C1K F1W H97 L.G 7ST 7TG 7U6 KL. |
| ID | FETCH-LOGICAL-c5061-d9bc5fb939c15f6ee2cab31be07c41fa652295bdf89aef015cc5f02947ae8e7c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 96 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000293399000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1354-1013 |
| IngestDate | Mon Oct 06 18:12:33 EDT 2025 Mon Nov 10 02:58:31 EST 2025 Mon Jul 21 09:14:15 EDT 2025 Sat Nov 29 06:02:16 EST 2025 Tue Nov 18 22:23:31 EST 2025 Sun Sep 21 06:26:49 EDT 2025 Tue Nov 11 03:32:55 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Climatic condition Exchange Energy balance Climate burn severity Fires Surface temperature Stream Rivers Anaktuvuk River fire Tundra |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5061-d9bc5fb939c15f6ee2cab31be07c41fa652295bdf89aef015cc5f02947ae8e7c3 |
| Notes | ArticleID:GCB2441 istex:6E18E1815C69FD72515C895E8B38ABCF3D73914D ark:/67375/WNG-F274R11T-J SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 896448759 |
| PQPubID | 30327 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_899138174 proquest_journals_896448759 pascalfrancis_primary_24437302 crossref_primary_10_1111_j_1365_2486_2011_02441_x crossref_citationtrail_10_1111_j_1365_2486_2011_02441_x wiley_primary_10_1111_j_1365_2486_2011_02441_x_GCB2441 istex_primary_ark_67375_WNG_F274R11T_J |
| PublicationCentury | 2000 |
| PublicationDate | September 2011 |
| PublicationDateYYYYMMDD | 2011-09-01 |
| PublicationDate_xml | – month: 09 year: 2011 text: September 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
| PublicationTitle | Global change biology |
| PublicationYear | 2011 |
| Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
| References | Wein RK (1976) Frequency and characteristics of arctic tundra fires. Arctic, 29, 213-222. Rocha AV, Shaver GR (2009) Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, 149, 1560-1563, doi: DOI: 10.1016/j.agrformet.2009.03.016. Liu H, Randerson JT, Lindfors J, Chapin FS (2005) Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: an annual perspective. Journal of Geophysical Research - Atmospheres, 110, D13101, doi: DOI: 10.1029/2004JD005158. Haag RW, Bliss LC (1974) Energy budget changes following surface disturbance to upland tundra. Journal of Applied Ecology, 11, 355-374. Racine CH (2004) Tundra fire effects on soils and three plant communities along a hillslope gradient in the Seward Peninsula, Alaska. Arctic, 34, 71-84. Euskirchen ES, McGuire AD, Rupp TS, Chapin FS, Walsh JE (2009) Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western arctic, 2003-2010. Journal of Geophysical Research, 114, G04022, doi: DOI: 10.1029/2009JG001095. Hu FS, Higuera PE, Walsh JE, Chapman WL, Duffy PA, Brubaker LB, Chipman ML (2010) Tundra burning in Alaska: linkages to climatic change and sea ice retreat. Journal of Geophysical Research, 115, G004002, doi: DOI: 10.1029/2009JG001270. Lynch AH, Chapin FS III, Hinzman LD, Lilly WWE, Vourlitis GL, Kim E (1999) Surface energy balance on he arctic tundra: measurements and models. Journal of Climate, 12, 2585-2606. Liljedahl A, Hinzman L, Busey R, Yoshikawa K (2007) Physical short-term changes after a tussock tundra fire, Seward Peninsula, Alaska. Journal of Geophysical Research-Earth Surface, 112, F02S07, doi: DOI: 10.1029/2006JF000554. Moncrieff JB, Massheder JM, de Bruin H et al. (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, 188-189, 598-611. Yoshikawa K, Bolton WR, Romanovsky VE, Fukuda M, Hinzman LD (2003) Impacts of wildfire on the permafrost in the boreal forest of Interior Alaska. Journal of Geophysical Research, 108, D18148, doi: DOI: 10.1029/2001JD000438. Rocha AV, Shaver GR (2011) Burn severity influences post-fire CO2 exchange in arctic tundra. Ecological Applications, 21, 477-489. Jones BM, Kolden CA, Jandt R, Abatzoglou JT, Urban F, Arp CD (2009) Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska. Arctic, Antarctic, and Alpine Research, 3, 309-316. Chambers SD, Beringer J, Randerson JT, Chapin FS III (2005) Fire effects on net radiation and energy partitioning: contrasting responses of tundra and boreal forest ecosystems. Journal of Geophysical Research, 110, D09106, doi: DOI: 10.1029/2004JD005299. Bond-Lamberty B, Gower ST, Amiro B, Ewers BE (2010) Measurement and modeling of bryophyte evaporation in a boreal forest chronosequence. Ecohydrology, 4, 26-35. Boelman NT, Rocha AV, Shaver GR (2011) Understanding burn severity sensing in arctic tundra: exploring vegetation indices, sub-optimal assessment timing and the impact of increasing pixel size. International Journal of Remote Sensing, in press. Chambers SD, Chapin FS III (2002) Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems: implications for feedbacks to regional climate. Journal of Geophysical Research, 108, D18145, doi: DOI: 10.1029/2001JD000530. Harazono Y, Mano M, Miyata A, Zulueta RC, Oechel WC (2003) Inter-annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic. Tellus B, 55, 215-231. Jin Y, Roy DP (2005) Fire-induced albedo change and its radiative forcing at the surface in northern Australia. Geophysical Research Letters, 32, L13401, doi: DOI: 10.1029/2005GL022822. Liu H, Randerson JT (2008) Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence. Journal of Geophysical Research, 113, G01006, doi: DOI: 10.1029/2007JG000483. Yi S, McGuire AD, Harden J et al. (2009) Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance. Journal of Geophysical Research, 114, G02015, doi: DOI: 10.1029/2008JG000841. Douma JC, Van Wijk MT, Lang SI, Shaver GR (2007) The contribution of mosses to the carbon and water exchange of arctic ecosystems: quantification and relationships with system properties. Plant, Cell and Environment, 30, 1205-1215. Kasischke ES, Verbyla DL, Rupp TS et al. (2010) Alaska's changing fire regime-implications for the vulnerability of its boreal forests. Canadian Journal of Forest Research, 40, 1313-1324. Starr G, Neuman DS, Oberbauer SF (2004) Ecophysiological analysis of two arctic sedges under reduced root temperatures. Physiologia Plantarum, 120, 458-464. Juang JY, Katul G, Siqueira M, Stoy P, Novick K (2007) Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophysical Research Letters, 34, L211408, doi: DOI: 10.1029/2007GL031296. McMillan AMS, Goulden ML (2008) Age-dependent variation in the biophysical properties of boreal forests. Global Biogeochemical Cycles, 22, GB2019, doi: DOI: 10.1029/2007GB003038. Engstrom R, Hope A, Kwon H, Harazono Y, Mano M, Oechel W (2006) Modeling evapotranspiration in arctic coastal plain ecosystems using a modified BIOME-BGC model. Journal of Geophysical Research, 111, G02021, doi: DOI: 10.1029/2005JG000102. Eugster W, Rouse WR, Pielke RA Sr et al. (2000) Land-atmosphere energy exchange in arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biology, 6, 84-115. Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon. Weather Rev, 10, 81-92. Amiro BD, Orchansky AL, Barr AG et al. (2006) The effect of post-fire stand age on the boreal forest energy balance. Agricultural and Forest Meteorology, 140, 41-50. Shaver GR, Chapin FS III (1991) Production/biomass relationships and element cycling in contrasting arctic vegetation types. Ecological Monographs, 61, 1-31. Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18, 116-126. Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69, 1331-1340. Rocha AV, Goulden ML (2010) Drought legacies influence the long-term carbon balance of a freshwater marsh. JGR-Biogeosciences, 115, G00H02, doi: DOI: 10.1029/2009JG001215. Swann AL, Fung IY, Levis S, Bonan GB, Doney SC (2010) Changes in arctic vegetation amplify high-latitude warming through the greenhouse effect. PNAS, 107, 1295-1300. Randerson JT, Liu H, Flanner MG et al. (2006) The impact of boreal forest fire on climate warming. Science, 314, 1130-1132. Wan Z, Zhang Y, Zhang Q, Li ZL (2004) Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 25, 261-274. Beringer J, Chapin FS III, Thompson CC, McGuire AD (2005) Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agricultural and Forest Meteorology, 131, 143-161. Oechel WC, Sveinbjornsson B (1978) Photoynthesis of Arctic Bryophytes in Vegetation and Production Ecology of an Alaskan Arctic Tundra (eds Tieszen LL), pp. 269-289. Springer, New York. Wilson K, Goldstein A, Falge E et al. (2002) Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223-243. Schuur EAG, Bockheim J, Canadell J et al. (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience, 58, 701-714. McFadden JP, Eugster W, Chapin FS III (2003) A regional study of the controls on water vapor and CO2 exchange in arctic tundra. Ecology, 84, 2762-2776. Petitcolin F, Vermote E (2002) Land surface reflectance, emissivity, and temperature from MODIS middle and thermal infrared data. Remote Sensing of Environment, 83, 112-134. Rouse WR, Kershaw KA (1971) The effects of burning on the heat and water regimes of lichen-dominated subarctic surfaces. Arctic and Alpine Research, 3, 291-304. Rouse WR, Lafleur PM, Griffis TJ (2000) Controls on energy and carbon fluxes from select high-latitude wetlands: controls and extrapolation. Global Change Biology, 6, 59-68. Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the arctic. Nature, 411, 546-547. 2004; 120 1974; 11 2005; 131 2005; 110 2000; 6 2010; 107 2011 2004; 25 2002; 113 1997; 188–189 2008; 58 2007; 30 2006; 314 1976; 29 2007; 34 2009; 114 2006; 111 2010; 40 2003; 55 1978 2007; 112 2003; 108 2002; 83 1988; 69 2010; 115 2004; 34 1991; 61 2006; 140 1999; 12 2005; 32 2011; 21 1983 1972; 10 2008; 22 2002; 108 2008; 113 2009; 3 2003; 84 2010; 4 2001; 411 2009; 18 2009; 149 1971; 3 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 Bond‐Lamberty B (e_1_2_7_6_1) 2010; 4 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 Priestley CHB (e_1_2_7_31_1) 1972; 10 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Racine CH (e_1_2_7_32_1) 2004; 34 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Brown RJE (e_1_2_7_7_1) 1983 |
| References_xml | – reference: Boelman NT, Rocha AV, Shaver GR (2011) Understanding burn severity sensing in arctic tundra: exploring vegetation indices, sub-optimal assessment timing and the impact of increasing pixel size. International Journal of Remote Sensing, in press. – reference: Rouse WR, Kershaw KA (1971) The effects of burning on the heat and water regimes of lichen-dominated subarctic surfaces. Arctic and Alpine Research, 3, 291-304. – reference: Liu H, Randerson JT, Lindfors J, Chapin FS (2005) Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: an annual perspective. Journal of Geophysical Research - Atmospheres, 110, D13101, doi: DOI: 10.1029/2004JD005158. – reference: Rocha AV, Shaver GR (2011) Burn severity influences post-fire CO2 exchange in arctic tundra. Ecological Applications, 21, 477-489. – reference: Wilson K, Goldstein A, Falge E et al. (2002) Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223-243. – reference: McMillan AMS, Goulden ML (2008) Age-dependent variation in the biophysical properties of boreal forests. Global Biogeochemical Cycles, 22, GB2019, doi: DOI: 10.1029/2007GB003038. – reference: Schuur EAG, Bockheim J, Canadell J et al. (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience, 58, 701-714. – reference: Wan Z, Zhang Y, Zhang Q, Li ZL (2004) Quality assessment and validation of the MODIS global land surface temperature. International Journal of Remote Sensing, 25, 261-274. – reference: Petitcolin F, Vermote E (2002) Land surface reflectance, emissivity, and temperature from MODIS middle and thermal infrared data. Remote Sensing of Environment, 83, 112-134. – reference: Jones BM, Kolden CA, Jandt R, Abatzoglou JT, Urban F, Arp CD (2009) Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska. Arctic, Antarctic, and Alpine Research, 3, 309-316. – reference: Randerson JT, Liu H, Flanner MG et al. (2006) The impact of boreal forest fire on climate warming. Science, 314, 1130-1132. – reference: Starr G, Neuman DS, Oberbauer SF (2004) Ecophysiological analysis of two arctic sedges under reduced root temperatures. Physiologia Plantarum, 120, 458-464. – reference: Swann AL, Fung IY, Levis S, Bonan GB, Doney SC (2010) Changes in arctic vegetation amplify high-latitude warming through the greenhouse effect. PNAS, 107, 1295-1300. – reference: Beringer J, Chapin FS III, Thompson CC, McGuire AD (2005) Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agricultural and Forest Meteorology, 131, 143-161. – reference: Liu H, Randerson JT (2008) Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence. Journal of Geophysical Research, 113, G01006, doi: DOI: 10.1029/2007JG000483. – reference: Rocha AV, Goulden ML (2010) Drought legacies influence the long-term carbon balance of a freshwater marsh. JGR-Biogeosciences, 115, G00H02, doi: DOI: 10.1029/2009JG001215. – reference: Bond-Lamberty B, Gower ST, Amiro B, Ewers BE (2010) Measurement and modeling of bryophyte evaporation in a boreal forest chronosequence. Ecohydrology, 4, 26-35. – reference: Hu FS, Higuera PE, Walsh JE, Chapman WL, Duffy PA, Brubaker LB, Chipman ML (2010) Tundra burning in Alaska: linkages to climatic change and sea ice retreat. Journal of Geophysical Research, 115, G004002, doi: DOI: 10.1029/2009JG001270. – reference: Wein RK (1976) Frequency and characteristics of arctic tundra fires. Arctic, 29, 213-222. – reference: Chambers SD, Chapin FS III (2002) Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems: implications for feedbacks to regional climate. Journal of Geophysical Research, 108, D18145, doi: DOI: 10.1029/2001JD000530. – reference: Chambers SD, Beringer J, Randerson JT, Chapin FS III (2005) Fire effects on net radiation and energy partitioning: contrasting responses of tundra and boreal forest ecosystems. Journal of Geophysical Research, 110, D09106, doi: DOI: 10.1029/2004JD005299. – reference: Juang JY, Katul G, Siqueira M, Stoy P, Novick K (2007) Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophysical Research Letters, 34, L211408, doi: DOI: 10.1029/2007GL031296. – reference: Lynch AH, Chapin FS III, Hinzman LD, Lilly WWE, Vourlitis GL, Kim E (1999) Surface energy balance on he arctic tundra: measurements and models. Journal of Climate, 12, 2585-2606. – reference: Oechel WC, Sveinbjornsson B (1978) Photoynthesis of Arctic Bryophytes in Vegetation and Production Ecology of an Alaskan Arctic Tundra (eds Tieszen LL), pp. 269-289. Springer, New York. – reference: Amiro BD, Orchansky AL, Barr AG et al. (2006) The effect of post-fire stand age on the boreal forest energy balance. Agricultural and Forest Meteorology, 140, 41-50. – reference: Yi S, McGuire AD, Harden J et al. (2009) Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance. Journal of Geophysical Research, 114, G02015, doi: DOI: 10.1029/2008JG000841. – reference: Moncrieff JB, Massheder JM, de Bruin H et al. (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, 188-189, 598-611. – reference: Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon. Weather Rev, 10, 81-92. – reference: Shaver GR, Chapin FS III (1991) Production/biomass relationships and element cycling in contrasting arctic vegetation types. Ecological Monographs, 61, 1-31. – reference: Jin Y, Roy DP (2005) Fire-induced albedo change and its radiative forcing at the surface in northern Australia. Geophysical Research Letters, 32, L13401, doi: DOI: 10.1029/2005GL022822. – reference: Racine CH (2004) Tundra fire effects on soils and three plant communities along a hillslope gradient in the Seward Peninsula, Alaska. Arctic, 34, 71-84. – reference: Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18, 116-126. – reference: McFadden JP, Eugster W, Chapin FS III (2003) A regional study of the controls on water vapor and CO2 exchange in arctic tundra. Ecology, 84, 2762-2776. – reference: Rouse WR, Lafleur PM, Griffis TJ (2000) Controls on energy and carbon fluxes from select high-latitude wetlands: controls and extrapolation. Global Change Biology, 6, 59-68. – reference: Euskirchen ES, McGuire AD, Rupp TS, Chapin FS, Walsh JE (2009) Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western arctic, 2003-2010. Journal of Geophysical Research, 114, G04022, doi: DOI: 10.1029/2009JG001095. – reference: Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69, 1331-1340. – reference: Kasischke ES, Verbyla DL, Rupp TS et al. (2010) Alaska's changing fire regime-implications for the vulnerability of its boreal forests. Canadian Journal of Forest Research, 40, 1313-1324. – reference: Yoshikawa K, Bolton WR, Romanovsky VE, Fukuda M, Hinzman LD (2003) Impacts of wildfire on the permafrost in the boreal forest of Interior Alaska. Journal of Geophysical Research, 108, D18148, doi: DOI: 10.1029/2001JD000438. – reference: Rocha AV, Shaver GR (2009) Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, 149, 1560-1563, doi: DOI: 10.1016/j.agrformet.2009.03.016. – reference: Sturm M, Racine C, Tape K (2001) Climate change: increasing shrub abundance in the arctic. Nature, 411, 546-547. – reference: Eugster W, Rouse WR, Pielke RA Sr et al. (2000) Land-atmosphere energy exchange in arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biology, 6, 84-115. – reference: Haag RW, Bliss LC (1974) Energy budget changes following surface disturbance to upland tundra. Journal of Applied Ecology, 11, 355-374. – reference: Harazono Y, Mano M, Miyata A, Zulueta RC, Oechel WC (2003) Inter-annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic. Tellus B, 55, 215-231. – reference: Douma JC, Van Wijk MT, Lang SI, Shaver GR (2007) The contribution of mosses to the carbon and water exchange of arctic ecosystems: quantification and relationships with system properties. Plant, Cell and Environment, 30, 1205-1215. – reference: Liljedahl A, Hinzman L, Busey R, Yoshikawa K (2007) Physical short-term changes after a tussock tundra fire, Seward Peninsula, Alaska. Journal of Geophysical Research-Earth Surface, 112, F02S07, doi: DOI: 10.1029/2006JF000554. – reference: Engstrom R, Hope A, Kwon H, Harazono Y, Mano M, Oechel W (2006) Modeling evapotranspiration in arctic coastal plain ecosystems using a modified BIOME-BGC model. Journal of Geophysical Research, 111, G02021, doi: DOI: 10.1029/2005JG000102. – volume: 58 start-page: 701 year: 2008 end-page: 714 article-title: Vulnerability of permafrost carbon to climate change publication-title: BioScience – volume: 108 year: 2003 article-title: Impacts of wildfire on the permafrost in the boreal forest of Interior Alaska publication-title: Journal of Geophysical Research – volume: 30 start-page: 1205 year: 2007 end-page: 1215 article-title: The contribution of mosses to the carbon and water exchange of arctic ecosystems publication-title: Plant, Cell and Environment – volume: 6 start-page: 84 year: 2000 end-page: 115 article-title: Land–atmosphere energy exchange in arctic tundra and boreal forest publication-title: Global Change Biology – year: 2011 article-title: Understanding burn severity sensing in arctic tundra publication-title: International Journal of Remote Sensing – volume: 3 start-page: 309 year: 2009 end-page: 316 article-title: Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska publication-title: Arctic, Antarctic, and Alpine Research – volume: 34 year: 2007 article-title: Separating the effects of albedo from eco‐physiological changes on surface temperature along a successional chronosequence in the southeastern United States publication-title: Geophysical Research Letters – volume: 411 start-page: 546 year: 2001 end-page: 547 article-title: Climate change publication-title: Nature – volume: 25 start-page: 261 year: 2004 end-page: 274 article-title: Quality assessment and validation of the MODIS global land surface temperature publication-title: International Journal of Remote Sensing – volume: 112 year: 2007 article-title: Physical short‐term changes after a tussock tundra fire, Seward Peninsula, Alaska publication-title: Journal of Geophysical Research-Earth Surface – volume: 12 start-page: 2585 year: 1999 end-page: 2606 article-title: Surface energy balance on he arctic tundra publication-title: Journal of Climate – volume: 149 start-page: 1560 year: 2009 end-page: 1563 article-title: Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes publication-title: Agricultural and Forest Meteorology – volume: 32 year: 2005 article-title: Fire‐induced albedo change and its radiative forcing at the surface in northern Australia publication-title: Geophysical Research Letters – volume: 4 start-page: 26 year: 2010 end-page: 35 article-title: Measurement and modeling of bryophyte evaporation in a boreal forest chronosequence publication-title: Ecohydrology – volume: 107 start-page: 1295 year: 2010 end-page: 1300 article-title: Changes in arctic vegetation amplify high‐latitude warming through the greenhouse effect publication-title: PNAS – volume: 114 year: 2009 article-title: Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance publication-title: Journal of Geophysical Research – volume: 69 start-page: 1331 year: 1988 end-page: 1340 article-title: Measuring biosphere–atmosphere exchanges of biologically related gases with micrometeorological methods publication-title: Ecology – volume: 110 year: 2005 article-title: Fire effects on net radiation and energy partitioning publication-title: Journal of Geophysical Research – volume: 111 year: 2006 article-title: Modeling evapotranspiration in arctic coastal plain ecosystems using a modified BIOME–BGC model publication-title: Journal of Geophysical Research – start-page: 269 year: 1978 end-page: 289 – volume: 114 year: 2009 article-title: Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western arctic, 2003–2010 publication-title: Journal of Geophysical Research – volume: 22 year: 2008 article-title: Age‐dependent variation in the biophysical properties of boreal forests publication-title: Global Biogeochemical Cycles – volume: 29 start-page: 213 year: 1976 end-page: 222 article-title: Frequency and characteristics of arctic tundra fires publication-title: Arctic – volume: 61 start-page: 1 year: 1991 end-page: 31 article-title: Production/biomass relationships and element cycling in contrasting arctic vegetation types publication-title: Ecological Monographs – start-page: 97 year: 1983 end-page: 110 – volume: 83 start-page: 112 year: 2002 end-page: 134 article-title: Land surface reflectance, emissivity, and temperature from MODIS middle and thermal infrared data publication-title: Remote Sensing of Environment – volume: 120 start-page: 458 year: 2004 end-page: 464 article-title: Ecophysiological analysis of two arctic sedges under reduced root temperatures publication-title: Physiologia Plantarum – volume: 10 start-page: 81 year: 1972 end-page: 92 article-title: On the assessment of surface heat flux and evaporation using large scale parameters publication-title: Mon. Weather Rev – volume: 113 start-page: 223 year: 2002 end-page: 243 article-title: Energy balance closure at FLUXNET sites publication-title: Agricultural and Forest Meteorology – volume: 140 start-page: 41 year: 2006 end-page: 50 article-title: The effect of post‐fire stand age on the boreal forest energy balance publication-title: Agricultural and Forest Meteorology – volume: 188–189 start-page: 598 year: 1997 end-page: 611 article-title: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide publication-title: Journal of Hydrology – volume: 113 year: 2008 article-title: Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence publication-title: Journal of Geophysical Research – volume: 131 start-page: 143 year: 2005 end-page: 161 article-title: Surface energy exchanges along a tundra‐forest transition and feedbacks to climate publication-title: Agricultural and Forest Meteorology – volume: 21 start-page: 477 year: 2011 end-page: 489 article-title: Burn severity influences post‐fire CO exchange in arctic tundra publication-title: Ecological Applications – volume: 84 start-page: 2762 year: 2003 end-page: 2776 article-title: A regional study of the controls on water vapor and CO exchange in arctic tundra publication-title: Ecology – volume: 108 year: 2002 article-title: Fire effects on surface‐atmosphere energy exchange in Alaskan black spruce ecosystems publication-title: Journal of Geophysical Research – volume: 115 year: 2010 article-title: Drought legacies influence the long‐term carbon balance of a freshwater marsh publication-title: JGR-Biogeosciences – volume: 18 start-page: 116 year: 2009 end-page: 126 article-title: Fire intensity, fire severity and burn severity publication-title: International Journal of Wildland Fire – volume: 115 year: 2010 article-title: Tundra burning in Alaska publication-title: Journal of Geophysical Research – volume: 55 start-page: 215 year: 2003 end-page: 231 article-title: Inter‐annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic publication-title: Tellus B – volume: 34 start-page: 71 year: 2004 end-page: 84 article-title: Tundra fire effects on soils and three plant communities along a hillslope gradient in the Seward Peninsula, Alaska publication-title: Arctic – volume: 6 start-page: 59 year: 2000 end-page: 68 article-title: Controls on energy and carbon fluxes from select high‐latitude wetlands publication-title: Global Change Biology – volume: 110 year: 2005 article-title: Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska publication-title: Journal of Geophysical Research – Atmospheres – volume: 314 start-page: 1130 year: 2006 end-page: 1132 article-title: The impact of boreal forest fire on climate warming publication-title: Science – volume: 3 start-page: 291 year: 1971 end-page: 304 article-title: The effects of burning on the heat and water regimes of lichen‐dominated subarctic surfaces publication-title: Arctic and Alpine Research – volume: 11 start-page: 355 year: 1974 end-page: 374 article-title: Energy budget changes following surface disturbance to upland tundra publication-title: Journal of Applied Ecology – volume: 40 start-page: 1313 year: 2010 end-page: 1324 article-title: Alaska's changing fire regime‐implications for the vulnerability of its boreal forests publication-title: Canadian Journal of Forest Research – ident: e_1_2_7_18_1 doi: 10.1657/1938-4246-41.3.309 – ident: e_1_2_7_37_1 doi: 10.2307/1550045 – ident: e_1_2_7_23_1 doi: 10.1029/2007JG000483 – ident: e_1_2_7_20_1 doi: 10.1139/X10-098 – ident: e_1_2_7_42_1 doi: 10.1038/35079180 – ident: e_1_2_7_12_1 doi: 10.1046/j.1365-2486.2000.06015.x – ident: e_1_2_7_38_1 doi: 10.1046/j.1365-2486.2000.06013.x – ident: e_1_2_7_8_1 doi: 10.1029/2004JD005299 – ident: e_1_2_7_47_1 doi: 10.1029/2008JG000841 – ident: e_1_2_7_13_1 doi: 10.1029/2009JG001095 – ident: e_1_2_7_30_1 doi: 10.1016/S0034-4257(02)00094-9 – ident: e_1_2_7_36_1 doi: 10.1890/10-0255.1 – ident: e_1_2_7_27_1 doi: 10.1029/2007GB003038 – ident: e_1_2_7_4_1 doi: 10.1016/j.agrformet.2005.05.006 – ident: e_1_2_7_10_1 doi: 10.1111/j.1365-3040.2007.01697.x – ident: e_1_2_7_46_1 doi: 10.1016/S0168-1923(02)00109-0 – ident: e_1_2_7_15_1 doi: 10.1034/j.1600-0889.2003.00012.x – ident: e_1_2_7_11_1 doi: 10.1029/2005JG000102 – start-page: 97 volume-title: The Role of Fire in Northern Circumpolar Ecosystems year: 1983 ident: e_1_2_7_7_1 – ident: e_1_2_7_14_1 doi: 10.2307/2402027 – ident: e_1_2_7_19_1 doi: 10.1029/2007GL031296 – ident: e_1_2_7_29_1 doi: 10.1007/978-1-4612-6307-4_11 – ident: e_1_2_7_5_1 doi: 10.1080/01431161.2011.611187 – ident: e_1_2_7_34_1 doi: 10.1029/2009JG001215 – ident: e_1_2_7_48_1 doi: 10.1029/2001JD000438 – volume: 4 start-page: 26 year: 2010 ident: e_1_2_7_6_1 article-title: Measurement and modeling of bryophyte evaporation in a boreal forest chronosequence publication-title: Ecohydrology doi: 10.1002/eco.118 – ident: e_1_2_7_24_1 doi: 10.1029/2004JD005158 – ident: e_1_2_7_33_1 doi: 10.1126/science.1132075 – ident: e_1_2_7_41_1 doi: 10.1111/j.0031-9317.2004.00260.x – ident: e_1_2_7_21_1 doi: 10.1071/WF07049 – ident: e_1_2_7_40_1 doi: 10.2307/1942997 – ident: e_1_2_7_3_1 doi: 10.2307/1941631 – ident: e_1_2_7_17_1 doi: 10.1029/2005GL022822 – volume: 10 start-page: 81 year: 1972 ident: e_1_2_7_31_1 article-title: On the assessment of surface heat flux and evaporation using large scale parameters publication-title: Mon. Weather Rev doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 – volume: 34 start-page: 71 year: 2004 ident: e_1_2_7_32_1 article-title: Tundra fire effects on soils and three plant communities along a hillslope gradient in the Seward Peninsula, Alaska publication-title: Arctic – ident: e_1_2_7_43_1 doi: 10.1073/pnas.0913846107 – ident: e_1_2_7_9_1 doi: 10.1029/2001JD000530 – ident: e_1_2_7_2_1 doi: 10.1016/j.agrformet.2006.02.014 – ident: e_1_2_7_16_1 doi: 10.1029/2009JG001270 – ident: e_1_2_7_25_1 doi: 10.1175/1520-0442(1999)012<2585:SEBOTA>2.0.CO;2 – ident: e_1_2_7_22_1 doi: 10.1029/2006JF000554 – ident: e_1_2_7_44_1 doi: 10.1080/0143116031000116417 – ident: e_1_2_7_28_1 doi: 10.1016/S0022-1694(96)03194-0 – ident: e_1_2_7_39_1 doi: 10.1641/B580807 – ident: e_1_2_7_45_1 doi: 10.14430/arctic2806 – ident: e_1_2_7_35_1 doi: 10.1016/j.agrformet.2009.03.016 – ident: e_1_2_7_26_1 doi: 10.1890/01-0444 |
| SSID | ssj0003206 |
| Score | 2.3597615 |
| Snippet | Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a burn... Abstract Fires produce land cover changes that have consequences for surface energy balance and temperature. Three eddy covariance towers were setup along a... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2831 |
| SubjectTerms | Albedo Anaktuvuk River fire Animal and plant ecology Animal, plant and microbial ecology Biological and medical sciences burn severity Burns Climate science Energy balance Fires Fundamental and applied biological sciences. Psychology General aspects Growing season Latent heat Mosses Net radiation Permafrost Soil temperature Surface temperature Synecology Taiga & tundra Terrestrial ecosystems Tundra Vegetation |
| Title | Postfire energy exchange in arctic tundra: the importance and climatic implications of burn severity |
| URI | https://api.istex.fr/ark:/67375/WNG-F274R11T-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2011.02441.x https://www.proquest.com/docview/896448759 https://www.proquest.com/docview/899138174 |
| Volume | 17 |
| WOSCitedRecordID | wos000293399000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 issn: 1354-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQCxIvfBQmssHkB7S3oNqOk5g3KOsQggpNm9ib5U8pYqQoaVH333N2stBIPEyIt1a9c5Pr3fl36fl-CL0OAz-EnZuUWw8FivZZqiljqSOGcWbBjYiOZBPFalVeXYmvff9TOAvTzYcYHriFyIj5OgS40u04yGOHVlbm_SRO2KnIG8CTUwpuzCdo-uF8efl5yMuMRqZNwngGyYewcV_PX9cabVbTYPddaJ5ULdjPd8QXI2S6j2_jBrV8_D9v7Ql61MNU_K7zq6fonqtn6EFHXHkzQwenf87HgVifINoZSr4ACF83UQyf4MV1BYg4vnuGbCAG9pBisYsHDrHbdceOcVVjiDf4KrzZ1rZRbzHAUlz9iLUBLIxVbbGJa4FMtdcEj9ceg1vUGDZ4F3j4nqPL5enF4mPakzykhgOWSK3QhnstmDCE-9w5apRmRLt5YTLiVc4D4bi2vhTKeQAvBsTnVGSFcqUrDDtAk3pduxcIz03pqbVZSe08U4WG4hfgYKmJcLmgWiSouP01peknoAcijmu5VwmB4WUwvAyGl9HwcpcgMmj-7KaA3EHnJDrMoKCa76GLruDy2-pMLmmRnRNyIT8l6HjkUYMCrMMgAdMEHd26mOwzTCtLESrrgsNd4eFTSA3h_x5Vu_U2iAgSBjBmCcqju9352uXZ4n14dfivikfoYffwPTTjvUSTTbN1r9B982tTtc1xH5m_Ab80Nfw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQCoIXPgoTYTD8gPYWFMfOh3mDsm5AV6GpE3uz_ClFGylKW1T-e85OFhqJhwnx1qh3TnI9n3_nnu-H0Bvf8IObRMeZcZCgKMdilVIaW6JpRg24EVGBbKKYz8vLS_61owPyZ2Ha_hD9hpufGSFe-wnuN6SHszyUaLEy71pxwlJF3gKgHDHwKnD30cfz6cWsD8w0DVSbhGYMog-hw8Kev441WK1G3vBbXz0pV2BA1zJfDKDpLsANK9T00X99t8foYQdU8fvWs56gO7Yeo3stdeWvMdo__nNCDsS6ELEao-gMYPiyCWL4CE-uK8DE4eopMp4a2EGQxTYcOcR22x48xlWNYcbBrfB6U5tGvsMATHH1PWQHMDCWtcE6jAUy1U4ZPF46DI5RY1jirWfie4YupseLyWnc0TzEOgM0ERuudOYUp1yTzOXWploqSpRNCs2Ik3nmKceVcSWX1gF80SCepJwV0pa20HQf7dXL2j5HONGlS41hZWoSJgsF6S8AwlIRbnOeKh6h4ubnFLrrge6pOK7FTi4Ehhfe8MIbXgTDi22ESK_5o-0Dcgudo-AxvYJsrnwdXZGJb_MTMU0Ldk7IQnyO0OHApXoFGIdCCE4jdHDjY6KLMStRcp9bFxm8Fe6_heDg__GRtV1uvAgnvgUji1Ae_O3Wzy5OJh_8pxf_qvga3T9dnM3E7NP8ywF60G7F-9K8l2hv3WzsK3RX_1xXq-awm6a_AVFdOew |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hBBCXAoEKUyh7QL0ZZb1-LTdI6_IoUVW1oreV9yVZFKdyEpT-e2bXroklDhXiligzG3syM_uNMzsfwFs38IPrqQoTbbFAkTYOZcRYaKhiCdPoRlR6solsPs8vL_lpRwfkzsK08yH6B24uMny-dgFurrUdRrlv0YrztBvFiVsVfYeAchw7TpkRjA_PiouTPjGzyFNtUpbEmH0oGzb2_HWtwW41dobfuO7JcokGtC3zxQCabgNcv0MVj__rvT2BnQ6okg-tZz2Fe6aewIOWuvJmArtHf07IoViXIpYTCL4hDF80XowckNlVhZjYv3sG2lEDW0yyxPgjh8Rs2oPHpKoJRhx-FVmta92U7wkCU1L99NUBLkzKWhPl10KZaqsNniwsQceoCW7xxjHxPYeL4uh89insaB5ClSCaCDWXKrGSM65oYlNjIlVKRqWZZiqmtkwTRzkutc15aSzCF4Xi04jHWWlykym2C6N6UZsXQKYqt5HWcR7paVxmEstfBIS5pNykPJI8gOz25xSqm4HuqDiuxFYthIYXzvDCGV54w4tNALTXvG7ngNxB58B7TK9QNj9cH12WiO_zY1FEWXxG6bn4EsD-wKV6BVyHYQqOAti79THR5ZilyLmrrbME74r0n2JycP_4lLVZrJ0Ip24EYxxA6v3tztcujmcf3auX_6r4Bh6eHhbi5PP86x48ap_Eu868VzBaNWvzGu6rX6tq2ex3UfobhV05Zw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Postfire+energy+exchange+in+arctic+tundra%3A+the+importance+and+climatic+implications+of+burn+severity&rft.jtitle=Global+change+biology&rft.au=ROCHA%2C+ADRIAN+V.&rft.au=SHAVER%2C+GAIUS+R.&rft.date=2011-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=17&rft.issue=9&rft.spage=2831&rft.epage=2841&rft_id=info:doi/10.1111%2Fj.1365-2486.2011.02441.x&rft.externalDBID=10.1111%252Fj.1365-2486.2011.02441.x&rft.externalDocID=GCB2441 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |