Molecular dynamics simulation of proteins under high pressure: Structure, function and thermodynamics

Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be address...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta. General subjects Vol. 1864; no. 2; p. 129395
Main Authors: Hata, Hiroaki, Nishiyama, Masayoshi, Kitao, Akio
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.02.2020
Subjects:
ISSN:0304-4165, 1872-8006, 1872-8006
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations. First, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure. Recent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening. MD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules. [Display omitted] •MD simulations demonstrate property differences of proteins and water between ambient and high-pressure conditions.•The TIP4P/2005 water model better reproduces pressure- dependent quantities of protein in solution.•Microsecond-long MD observes conformational transitions of proteins by pressure.•Enhanced samplings simulate large pressure-induced changes of protein conformation.•MD reveals that two amino acid differences allows pressure adaptation of deep-sea fish actins.
AbstractList Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations. First, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure. Recent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening. MD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules. [Display omitted] •MD simulations demonstrate property differences of proteins and water between ambient and high-pressure conditions.•The TIP4P/2005 water model better reproduces pressure- dependent quantities of protein in solution.•Microsecond-long MD observes conformational transitions of proteins by pressure.•Enhanced samplings simulate large pressure-induced changes of protein conformation.•MD reveals that two amino acid differences allows pressure adaptation of deep-sea fish actins.
Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations. First, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure. Recent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening. MD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.
Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations.BACKGROUNDMolecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations.First, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure.SCOPE OF REVIEWFirst, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure.Recent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening.MAJOR CONCLUSIONSRecent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening.MD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.GENERAL SIGNIFICANCEMD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.
Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations.First, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure.Recent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening.MD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.
ArticleNumber 129395
Author Hata, Hiroaki
Kitao, Akio
Nishiyama, Masayoshi
Author_xml – sequence: 1
  givenname: Hiroaki
  surname: Hata
  fullname: Hata, Hiroaki
  organization: School of Life Science and Technology, Tokyo Institute of Technology, Ookayama, 2-12-1 Meguro-ku, Tokyo 152-8550, Japan
– sequence: 2
  givenname: Masayoshi
  surname: Nishiyama
  fullname: Nishiyama, Masayoshi
  organization: Department of Physics, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
– sequence: 3
  givenname: Akio
  surname: Kitao
  fullname: Kitao, Akio
  email: akitao@bio.titech.ac.jp
  organization: School of Life Science and Technology, Tokyo Institute of Technology, Ookayama, 2-12-1 Meguro-ku, Tokyo 152-8550, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31302180$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFf4CQjxxIGCf2xu4BCVVQkIo4AGfLsSddrxK72A5S_z1ut-2BA52LR6PvPVnvnZCjEAMS8ppBy4Bt3-_bcTRXGNoOmGphaAH4M7JhcugaCbA9IhvogTecbcUxOcl5D3WEEi_Icc966JiEDcFvcUa7ziZRdxPM4m2m2S_1UHwMNE70OsWCPmS6BoeJ7vzVrt4w5zXhGf1R0mpLXd_RaQ32TmSCo2WHaYkPli_J88nMGV_dv6fk1-dPP8-_NJffL76ef7xsrABRGmcHN41Oil5YOXDgqKQZ-cgUSmVBTAKdGzoBanDIhbMw4mS7SQnFeyWwPyVvD771079XzEUvPlucZxMwrll3vZSDhF5tn0Y7IZkQkquKvrlH13FBp6-TX0y60Q8pVoAfAJtizgmnR4SBvi1L7_WhLH1bloZB17Kq7OwfmfXlLveSjJ-fEn84iLHm-cdj0tl6DBadT2iLdtH_3-Av5ACziA
CitedBy_id crossref_primary_10_3390_foods14020285
crossref_primary_10_1007_s11224_022_02038_3
crossref_primary_10_3390_md17100576
crossref_primary_10_1016_j_bpj_2022_07_016
crossref_primary_10_1002_advs_202501046
crossref_primary_10_1080_10408398_2023_2217268
crossref_primary_10_1002_pssa_202400608
crossref_primary_10_1002_wcms_1708
crossref_primary_10_1007_s12551_020_00658_9
crossref_primary_10_1242_jcs_245555
crossref_primary_10_1016_j_foodcont_2021_108564
crossref_primary_10_1038_s41598_020_59172_3
crossref_primary_10_1016_j_plipres_2025_101355
crossref_primary_10_1021_acs_jpca_4c08065
crossref_primary_10_1016_j_bbrc_2020_01_047
crossref_primary_10_3390_ijms23115997
crossref_primary_10_1021_acs_jafc_5c09120
crossref_primary_10_1016_j_foodchem_2021_131243
crossref_primary_10_3390_foods12091820
crossref_primary_10_1371_journal_pone_0255866
crossref_primary_10_1016_j_foodchem_2022_133147
crossref_primary_10_1016_j_foodchem_2024_139544
crossref_primary_10_3390_foods11162521
crossref_primary_10_1016_j_fbio_2025_107152
crossref_primary_10_1016_j_foodres_2022_111193
crossref_primary_10_1016_j_lwt_2025_117751
crossref_primary_10_1007_s00894_024_06145_2
crossref_primary_10_1002_cphc_202400618
crossref_primary_10_1371_journal_pone_0291093
crossref_primary_10_1016_j_foodchem_2024_140118
crossref_primary_10_1016_j_sajb_2024_10_010
crossref_primary_10_1039_D5RA00059A
crossref_primary_10_1126_science_adm7607
Cites_doi 10.1063/1.475162
10.1038/nchem.2785
10.1016/S0167-4838(01)00331-4
10.1073/pnas.0708199104
10.1103/PhysRevLett.63.1195
10.1021/jp712109q
10.1021/acs.jpcb.8b10309
10.1002/wcms.1347
10.1063/1.4901112
10.1021/jp111308f
10.1016/S0065-3233(08)60608-7
10.1063/1.2991176
10.1063/1.448118
10.1016/j.bbamem.2006.10.005
10.1016/j.bbapap.2006.01.010
10.1021/acs.langmuir.6b00799
10.7554/eLife.19274
10.1021/jp973084f
10.1063/1.4944991
10.1063/1.4996431
10.1016/S0167-4838(01)00343-0
10.1073/pnas.1200915109
10.1016/0968-0004(85)90108-2
10.1016/S0167-7322(99)00042-2
10.1073/pnas.1800690115
10.1002/prot.24654
10.1016/j.bbapap.2005.02.014
10.1073/pnas.1317973110
10.1063/1.439486
10.1063/1.2121687
10.1039/C7CP08242H
10.1016/0263-7855(96)00018-5
10.1002/jcc.540130812
10.1146/annurev.biochem.67.1.425
10.1016/j.bbapap.2005.11.015
10.1063/1.465445
10.1016/j.cplett.2004.04.073
10.1016/j.bpc.2017.03.010
10.1126/science.aat4010
10.1002/jcc.24767
10.1063/1.3694834
10.1073/pnas.89.19.9335
10.1080/09168451.2018.1448255
10.1063/1.3427224
10.1529/biophysj.108.133702
10.4049/jimmunol.177.1.519
10.1103/PhysRevLett.45.1196
10.1016/j.bbapap.2006.01.006
10.1103/PhysRevE.60.6757
10.1209/0295-5075/19/6/002
10.1143/JPSJ.79.074003
10.1002/prot.22680
10.1021/jp0477147
10.1016/S0006-3495(02)75157-6
10.1021/jp909701j
10.1073/pnas.1705279114
10.1021/acs.jpcb.8b02769
10.1002/prot.24125
10.1021/jp0743121
10.1016/S0167-4838(01)00347-8
10.1016/j.bbapap.2012.01.001
10.1016/S0167-4838(01)00340-5
10.1021/acs.jpcb.5b03828
10.1021/jp047579y
10.1107/S0907444900006685
10.1063/1.3449332
10.1021/ct500569b
10.1038/325763a0
10.1103/PhysRevLett.93.238105
10.1080/00268979600100761
10.1021/jp0756247
10.1016/j.jmgm.2013.09.006
10.1002/prot.25031
10.1021/acs.langmuir.7b01764
10.1016/j.chemphys.2007.07.018
10.1107/S2059798318009397
10.1073/pnas.0408527102
10.1529/biophysj.106.081802
10.1002/prot.5
10.1002/prot.21034
10.1016/S0167-4838(98)00102-2
10.1021/acs.jpcb.5b01017
10.1073/pnas.0508224102
10.1002/anie.201602757
10.1103/PhysRevE.79.011912
10.1021/jp002539p
10.1021/bi00156a031
10.1016/j.bbamem.2011.10.010
10.1016/j.bpj.2014.11.012
10.1016/S0006-3495(04)74082-5
10.1016/S0167-4838(01)00342-9
10.1016/S0009-2614(99)01123-9
10.1016/0370-2693(91)91256-U
10.1016/S0167-4838(01)00344-2
10.1103/PhysRevE.72.061908
10.1073/pnas.95.4.1552
10.1111/j.1432-1033.1994.tb18774.x
10.1016/0022-2836(87)90679-6
10.1016/j.bpj.2013.11.2219
10.1063/1.5026774
10.1128/JB.02139-12
10.1371/journal.pone.0085852
10.1073/pnas.83.21.8069
10.1016/S0021-9258(18)88287-4
10.1083/jcb.65.3.603
10.1021/jp962977p
10.1021/ja055084w
10.1039/C8CP03057J
10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO;2-F
10.1002/prot.22470
10.1039/c0cp00130a
10.1021/jp064615f
10.1021/jz400769w
10.1021/bi010922u
10.1063/1.2978177
10.1021/jp410651u
10.1016/S0006-3495(04)74147-8
10.1021/ja010446v
10.1038/1961173a0
10.1021/ja00124a002
10.1002/prot.21562
10.1016/0010-4655(95)00059-O
10.1002/prot.22302
10.1002/prot.340100203
10.1016/j.bbapap.2006.01.003
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2019.07.004
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 31302180
10_1016_j_bbagen_2019_07_004
S0304416519301758
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c505t-dc7dfbd8535c87404e98ab4b19e89c05f5edd725097de45dc0befc2f9594395e3
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508740100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-4165
1872-8006
IngestDate Wed Oct 01 14:35:30 EDT 2025
Sat Sep 27 22:09:05 EDT 2025
Wed Feb 19 02:31:19 EST 2025
Sat Nov 29 07:21:32 EST 2025
Tue Nov 18 22:11:04 EST 2025
Fri Feb 23 02:50:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Water
Molecular dynamics
Denaturation
Protein
High pressure
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c505t-dc7dfbd8535c87404e98ab4b19e89c05f5edd725097de45dc0befc2f9594395e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 31302180
PQID 2258155849
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2388780396
proquest_miscellaneous_2258155849
pubmed_primary_31302180
crossref_primary_10_1016_j_bbagen_2019_07_004
crossref_citationtrail_10_1016_j_bbagen_2019_07_004
elsevier_sciencedirect_doi_10_1016_j_bbagen_2019_07_004
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Noya, Menduiña, Aragones, Vega (bb0290) 2007; 111
Tran, Kitao (bb0610) 2019; 123
Julius, Al-Ayoubi, Paulus, Tolan, Winter (bb0625) 2018; 20
Calandrini, Hamon, Hinsen, Calligari, Bellissent-Funel, Kneller (bb0335) 2008; 345
Balny, Masson, Heremans (bb0105) 2002; 1595
Appavou, Gibrat, Bellissent-Funel (bb0340) 2006; 1764
Okumura, Okamoto (bb0375) 2008; 112
Wroblowski, Diaz, Heremans, Engelborghs (bb0225) 1996; 25
MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, Joseph-McCarthy, Kuchnir, Kuczera, Lau, Mattos, Michnick, Ngo, Nguyen, Prodhom, Reiher, Roux, Schlenkrich, Smith, Stote, Straub, Watanabe, Wiórkiewicz-Kuczera, Yin, Karplus (bb0215) 1998; 102
Mori, Okamoto (bb0505) 2017; 38
Wakai, Takemura, Morita, Kitao (bb0130) 2014; 9
Nishiyama, Sowa, Kimura, Homma, Ishijima, Terazima (bb0635) 2013; 195
Nishiyama (bb0090) 2017; 231
Finley, Varshavsky (bb0465) 1985; 10
Robustelli, Piana, Shaw (bb0320) 2018; 115
Royer (bb0135) 2002; 1595
Starr, Sciortino, Stanley (bb0250) 1999; 60
Fu, Freire (bb0140) 1992; 89
Okumura (bb0410) 2012; 80
Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman (bb0210) 1995; 117
Erlkamp, Marion, Martinez, Czeslik, Peters, Winter (bb0330) 2015; 119
Imamura, Kato (bb0425) 2009; 75
Plattner, Doerr, De Fabritiis, Noé (bb0615) 2017; 9
Paschek, Gnanakaran, Garcia (bb0400) 2005; 102
Day, García (bb0500) 2007; 70
Parrinello, Rahman (bb0190) 1980; 45
Martyna, Tuckerman, Tobias, Klein (bb0200) 1996; 87
Matsuki, Miyazaki, Sakano, Tamai, Kaneshina (bb0035) 2007; 1768
Hummer, Garde, García, Paulaitis, Pratt (bb0155) 1998; 95
Chow, Ferguson (bb0195) 1995; 91
Usui, Hiraki, Kawamoto, Kurihara, Nogi, Kato, Abe (bb0075) 2012; 1818
Ghosh, García, Garde (bb0160) 2001; 123
Kauzmann (bb0115) 1959; 14
Mori, Okumura (bb0440) 2014; 82
Paci (bb0095) 2002; 1595
Harris, Woolf (bb0325) 1980; 76
Shirts, Chodera (bb0395) 2008; 129
Sgourakis, Day, McCallum, Garcia (bb0495) 2008; 95
Sarupria, Ghosh, García, Garde (bb0555) 2010; 78
Collins, Hummer, Quillin, Matthews, Gruner (bb0525) 2005; 102
Kitchen, Reed, Levy (bb0205) 1992; 31
Hayashi, Nishiyama, Kazayama, Toyota, Harada, Takiguchi (bb0575) 2016; 32
Roche, Caro, Norberto, Barthe, Roumestand, Schlessman, Garcia, Garcia-Moreno, Royer (bb0045) 2012; 109
Salmon (bb0080) 1975; 65
Abascal, Vega (bb0285) 2005; 123
Mori, Okamoto (bb0380) 2010; 79
Sugita, Okamoto (bb0355) 1999; 314
Neumaier, Buttner, Bachmann, Kiefhaber (bb0430) 2013; 110
Humphrey, Dalke, Schulten (bb0485) 1996; 14
Zhu, Tajkhorshid, Schulten (bb0580) 2002; 83
Yamazaki, Imai, Hirata, Kovalenko (bb0175) 2007; 111
Imai, Sugita (bb0345) 2010; 114
Okuno, Nishiyama, Noji (bb0630) 2014; 106
Trzesniak, Lins, van Gunsteren (bb0570) 2006; 65
Berendsen, Postma, van Gunsteren, DiNola, Haak (bb0185) 1984; 81
Hershko, Ciechanover (bb0455) 1998; 67
Hasegawa, Tanimura (bb0310) 2011; 115
Baldwin (bb0145) 1986; 83
Yeh, Hummer (bb0275) 2004; 108
Meinhold, Smith (bb0550) 2005; 72
Imoto, Kibies, Rosin, Winter, Kast, Marx (bb0240) 2016; 55
Marchi, Akasaka (bb0220) 2001; 105
Kumar, Rosenberg, Bouzida, Swendsen, Kollman (bb0390) 1992; 13
Smolin, Winter (bb0545) 2004; 108
Yamamoto, Kumasaka, Inoko, Inoue, Yagi, Fujisawa, Uruga, Ueki, Iwamoto, Oka (bb0055) 2002; 33
Bottaro, Lindorff-Larsen (bb0180) 2018; 361
Boonyaratanakornkit, Park, Clark (bb0100) 2002; 1595
Andersen (bb0165) 1980; 72
Paschek, García (bb0405) 2004; 93
Yu, Mori, Ando, Harada, Jung, Sugita, Feig (bb0640) 2016; 5
Colloc'h, Girard, Dhaussy, Kahn, Ascone, Mezouar, Fourme (bb0065) 2006; 1764
Ferrenberg, Swendsen (bb0385) 1989; 63
Yoshidome, Harano, Kinoshita (bb0605) 2009; 79
Habenicht, Paddison, Tuckerman (bb0235) 2010; 12
Dünweg, Kremer (bb0260) 1993; 99
Bagchi, Balasubramanian, Klein (bb0255) 1997; 107
Smolin, Winter (bb0125) 2006; 1764
Cheung, Shah, Truskett (bb0590) 2006; 91
Yeh, Hummer (bb0265) 2004; 86
Ohmae, Murakami, Tate, Gekko, Hata, Akasaka, Kato (bb0020) 2012; 1824
Sarma, Paul (bb0595) 2012; 136
Kitahara, Yamada, Akasaka (bb0490) 2001; 40
Hoffmann, Mulder, Schäfer (bb0300) 2018; 122
Gekko (bb0110) 2015
Bridgman (bb0010) 1914
Zhu, Tajkhorshid, Schulten (bb0585) 2004; 86
Brooks, Gauthe, Terrill, Rogers, Templer, Ces, Seddon (bb0060) 2010; 81
Harano, Yoshidome, Kinoshita (bb0600) 2008; 129
Winter (bb0050) 2002; 1595
Berg, Neuhaus (bb0360) 1991; 267
Hatch, Stillinger, Debenedetti (bb0450) 2014; 118
Okumura, Okamoto (bb0370) 2004; 391
Ganoth, Tsfadia, Wiener (bb0460) 2013; 46
Castañeda, Fitch, Majumdar, Khangulov, Schlessman, García-Moreno (bb0480) 2009; 77
Yamauchi, Okumura (bb0415) 2017; 147
Fujii, Masanari-Fujii, Kobayashi, Kato, Nishiyama, Harada, Wakai, Sambongi (bb0025) 2018; 82
Persson, Halle (bb0120) 2018; 148
Heremans, Smeller (bb0005) 1998; 1386
Vass, Black, Herzig, Ward, Clegg, Allen (bb0085) 2010; 81
Mitsutake, Sugita, Okamoto (bb0350) 2001; 60
Hölzl, Horinek (bb0295) 2018; 20
Johnson, Lindsay, Nellas, Shen (bb0565) 2016; 84
Russo, Laloni, Filabozzi, Heyden (bb0535) 2017; 114
Weiss, Palm, Hilgenfeld (bb0475) 2000; 56
Meinhold, Smith, Kitao, Zewail (bb0530) 2007; 104
Kimura, Sakamoto, Morishima, Ishimori (bb0015) 2006; 128
Dzwolak, Kato, Taniguchi (bb0030) 2002; 1595
Vijay-kumar, Bugg, Cook (bb0470) 1987; 194
Onufriev, Izadi (bb0245) 2018; 8
Blake, Fenn, North, Phillips, Poljak (bb0520) 1962; 196
GROSS, JAENICKE (bb0620) 1994; 221
Hölzl, Kibies, Imoto, Frach, Suladze, Winter, Marx, Horinek, Kast (bb0230) 2016; 144
Payne, Matubayasi, Murphy, Levy (bb0170) 1997; 101
Mori, Okumura (bb0435) 2013; 4
Maeno, Sindhikara, Hirata, Otten, Dahlquist, Yokoyama, Akasaka, Mulder, Kitahara (bb0040) 2015; 108
Takemura, Kitao (bb0270) 2007; 111
Nagae, Yamada, Watanabe (bb0070) 2018; 74
Kauzmann (bb0150) 1987; 325
Best, Miller, Mittal (bb0445) 2014; 141
McCarthy, Grigera (bb0560) 2006; 1764
Hirata, Yagasaki, Matsumoto, Tanaka (bb0305) 2017; 33
Sirovetz, Schafer, Wolynes (bb0510) 2015; 119
Kalinichev, Gorbaty, Okhulkov (bb0280) 1999; 82
Marinari, Parisi (bb0365) 1992; 19
Takekiyo, Shimizu, Kato, Taniguchi (bb0420) 2005; 1750
Hynes, Fox (bb0540) 1991; 10
Best, Zheng, Mittal (bb0315) 2014; 10
Nash, Ballard, Weaver, Akinbi (bb0515) 2006; 177
Matsuki (10.1016/j.bbagen.2019.07.004_bb0035) 2007; 1768
Russo (10.1016/j.bbagen.2019.07.004_bb0535) 2017; 114
Winter (10.1016/j.bbagen.2019.07.004_bb0050) 2002; 1595
Trzesniak (10.1016/j.bbagen.2019.07.004_bb0570) 2006; 65
Hynes (10.1016/j.bbagen.2019.07.004_bb0540) 1991; 10
Hölzl (10.1016/j.bbagen.2019.07.004_bb0295) 2018; 20
Cornell (10.1016/j.bbagen.2019.07.004_bb0210) 1995; 117
Baldwin (10.1016/j.bbagen.2019.07.004_bb0145) 1986; 83
Ganoth (10.1016/j.bbagen.2019.07.004_bb0460) 2013; 46
Wakai (10.1016/j.bbagen.2019.07.004_bb0130) 2014; 9
Zhu (10.1016/j.bbagen.2019.07.004_bb0585) 2004; 86
Mori (10.1016/j.bbagen.2019.07.004_bb0380) 2010; 79
Mitsutake (10.1016/j.bbagen.2019.07.004_bb0350) 2001; 60
Best (10.1016/j.bbagen.2019.07.004_bb0445) 2014; 141
Habenicht (10.1016/j.bbagen.2019.07.004_bb0235) 2010; 12
Hölzl (10.1016/j.bbagen.2019.07.004_bb0230) 2016; 144
Kauzmann (10.1016/j.bbagen.2019.07.004_bb0115) 1959; 14
Plattner (10.1016/j.bbagen.2019.07.004_bb0615) 2017; 9
Abascal (10.1016/j.bbagen.2019.07.004_bb0285) 2005; 123
Yamamoto (10.1016/j.bbagen.2019.07.004_bb0055) 2002; 33
Meinhold (10.1016/j.bbagen.2019.07.004_bb0530) 2007; 104
Hershko (10.1016/j.bbagen.2019.07.004_bb0455) 1998; 67
Smolin (10.1016/j.bbagen.2019.07.004_bb0545) 2004; 108
Sirovetz (10.1016/j.bbagen.2019.07.004_bb0510) 2015; 119
Marinari (10.1016/j.bbagen.2019.07.004_bb0365) 1992; 19
Onufriev (10.1016/j.bbagen.2019.07.004_bb0245) 2018; 8
Calandrini (10.1016/j.bbagen.2019.07.004_bb0335) 2008; 345
Paschek (10.1016/j.bbagen.2019.07.004_bb0405) 2004; 93
Andersen (10.1016/j.bbagen.2019.07.004_bb0165) 1980; 72
Gekko (10.1016/j.bbagen.2019.07.004_bb0110) 2015
Salmon (10.1016/j.bbagen.2019.07.004_bb0080) 1975; 65
Ohmae (10.1016/j.bbagen.2019.07.004_bb0020) 2012; 1824
Castañeda (10.1016/j.bbagen.2019.07.004_bb0480) 2009; 77
GROSS (10.1016/j.bbagen.2019.07.004_bb0620) 1994; 221
Kimura (10.1016/j.bbagen.2019.07.004_bb0015) 2006; 128
Bottaro (10.1016/j.bbagen.2019.07.004_bb0180) 2018; 361
Ghosh (10.1016/j.bbagen.2019.07.004_bb0160) 2001; 123
Hasegawa (10.1016/j.bbagen.2019.07.004_bb0310) 2011; 115
Hirata (10.1016/j.bbagen.2019.07.004_bb0305) 2017; 33
Imai (10.1016/j.bbagen.2019.07.004_bb0345) 2010; 114
Shirts (10.1016/j.bbagen.2019.07.004_bb0395) 2008; 129
Kalinichev (10.1016/j.bbagen.2019.07.004_bb0280) 1999; 82
Takemura (10.1016/j.bbagen.2019.07.004_bb0270) 2007; 111
Sarupria (10.1016/j.bbagen.2019.07.004_bb0555) 2010; 78
Heremans (10.1016/j.bbagen.2019.07.004_bb0005) 1998; 1386
Dzwolak (10.1016/j.bbagen.2019.07.004_bb0030) 2002; 1595
Harris (10.1016/j.bbagen.2019.07.004_bb0325) 1980; 76
Payne (10.1016/j.bbagen.2019.07.004_bb0170) 1997; 101
Imamura (10.1016/j.bbagen.2019.07.004_bb0425) 2009; 75
Kitchen (10.1016/j.bbagen.2019.07.004_bb0205) 1992; 31
Persson (10.1016/j.bbagen.2019.07.004_bb0120) 2018; 148
Fujii (10.1016/j.bbagen.2019.07.004_bb0025) 2018; 82
Sgourakis (10.1016/j.bbagen.2019.07.004_bb0495) 2008; 95
Robustelli (10.1016/j.bbagen.2019.07.004_bb0320) 2018; 115
Mori (10.1016/j.bbagen.2019.07.004_bb0435) 2013; 4
Collins (10.1016/j.bbagen.2019.07.004_bb0525) 2005; 102
Nishiyama (10.1016/j.bbagen.2019.07.004_bb0635) 2013; 195
Sugita (10.1016/j.bbagen.2019.07.004_bb0355) 1999; 314
Royer (10.1016/j.bbagen.2019.07.004_bb0135) 2002; 1595
Meinhold (10.1016/j.bbagen.2019.07.004_bb0550) 2005; 72
Harano (10.1016/j.bbagen.2019.07.004_bb0600) 2008; 129
Chow (10.1016/j.bbagen.2019.07.004_bb0195) 1995; 91
Brooks (10.1016/j.bbagen.2019.07.004_bb0060) 2010; 81
Vijay-kumar (10.1016/j.bbagen.2019.07.004_bb0470) 1987; 194
Balny (10.1016/j.bbagen.2019.07.004_bb0105) 2002; 1595
Hayashi (10.1016/j.bbagen.2019.07.004_bb0575) 2016; 32
Okuno (10.1016/j.bbagen.2019.07.004_bb0630) 2014; 106
Tran (10.1016/j.bbagen.2019.07.004_bb0610) 2019; 123
Appavou (10.1016/j.bbagen.2019.07.004_bb0340) 2006; 1764
Berg (10.1016/j.bbagen.2019.07.004_bb0360) 1991; 267
McCarthy (10.1016/j.bbagen.2019.07.004_bb0560) 2006; 1764
Hummer (10.1016/j.bbagen.2019.07.004_bb0155) 1998; 95
Ferrenberg (10.1016/j.bbagen.2019.07.004_bb0385) 1989; 63
Starr (10.1016/j.bbagen.2019.07.004_bb0250) 1999; 60
Humphrey (10.1016/j.bbagen.2019.07.004_bb0485) 1996; 14
Yeh (10.1016/j.bbagen.2019.07.004_bb0275) 2004; 108
Yoshidome (10.1016/j.bbagen.2019.07.004_bb0605) 2009; 79
MacKerell (10.1016/j.bbagen.2019.07.004_bb0215) 1998; 102
Erlkamp (10.1016/j.bbagen.2019.07.004_bb0330) 2015; 119
Cheung (10.1016/j.bbagen.2019.07.004_bb0590) 2006; 91
Colloc'h (10.1016/j.bbagen.2019.07.004_bb0065) 2006; 1764
Fu (10.1016/j.bbagen.2019.07.004_bb0140) 1992; 89
Hoffmann (10.1016/j.bbagen.2019.07.004_bb0300) 2018; 122
Roche (10.1016/j.bbagen.2019.07.004_bb0045) 2012; 109
Day (10.1016/j.bbagen.2019.07.004_bb0500) 2007; 70
Kauzmann (10.1016/j.bbagen.2019.07.004_bb0150) 1987; 325
Bridgman (10.1016/j.bbagen.2019.07.004_bb0010) 1914
Marchi (10.1016/j.bbagen.2019.07.004_bb0220) 2001; 105
Okumura (10.1016/j.bbagen.2019.07.004_bb0370) 2004; 391
Johnson (10.1016/j.bbagen.2019.07.004_bb0565) 2016; 84
Usui (10.1016/j.bbagen.2019.07.004_bb0075) 2012; 1818
Noya (10.1016/j.bbagen.2019.07.004_bb0290) 2007; 111
Finley (10.1016/j.bbagen.2019.07.004_bb0465) 1985; 10
Boonyaratanakornkit (10.1016/j.bbagen.2019.07.004_bb0100) 2002; 1595
Dünweg (10.1016/j.bbagen.2019.07.004_bb0260) 1993; 99
Mori (10.1016/j.bbagen.2019.07.004_bb0440) 2014; 82
Best (10.1016/j.bbagen.2019.07.004_bb0315) 2014; 10
Neumaier (10.1016/j.bbagen.2019.07.004_bb0430) 2013; 110
Okumura (10.1016/j.bbagen.2019.07.004_bb0375) 2008; 112
Yamauchi (10.1016/j.bbagen.2019.07.004_bb0415) 2017; 147
Nishiyama (10.1016/j.bbagen.2019.07.004_bb0090) 2017; 231
Imoto (10.1016/j.bbagen.2019.07.004_bb0240) 2016; 55
Paschek (10.1016/j.bbagen.2019.07.004_bb0400) 2005; 102
Yeh (10.1016/j.bbagen.2019.07.004_bb0265) 2004; 86
Maeno (10.1016/j.bbagen.2019.07.004_bb0040) 2015; 108
Takekiyo (10.1016/j.bbagen.2019.07.004_bb0420) 2005; 1750
Kitahara (10.1016/j.bbagen.2019.07.004_bb0490) 2001; 40
Berendsen (10.1016/j.bbagen.2019.07.004_bb0185) 1984; 81
Sarma (10.1016/j.bbagen.2019.07.004_bb0595) 2012; 136
Yamazaki (10.1016/j.bbagen.2019.07.004_bb0175) 2007; 111
Yu (10.1016/j.bbagen.2019.07.004_bb0640) 2016; 5
Martyna (10.1016/j.bbagen.2019.07.004_bb0200) 1996; 87
Kumar (10.1016/j.bbagen.2019.07.004_bb0390) 1992; 13
Nash (10.1016/j.bbagen.2019.07.004_bb0515) 2006; 177
Zhu (10.1016/j.bbagen.2019.07.004_bb0580) 2002; 83
Weiss (10.1016/j.bbagen.2019.07.004_bb0475) 2000; 56
Wroblowski (10.1016/j.bbagen.2019.07.004_bb0225) 1996; 25
Okumura (10.1016/j.bbagen.2019.07.004_bb0410) 2012; 80
Nagae (10.1016/j.bbagen.2019.07.004_bb0070) 2018; 74
Paci (10.1016/j.bbagen.2019.07.004_bb0095) 2002; 1595
Bagchi (10.1016/j.bbagen.2019.07.004_bb0255) 1997; 107
Smolin (10.1016/j.bbagen.2019.07.004_bb0125) 2006; 1764
Blake (10.1016/j.bbagen.2019.07.004_bb0520) 1962; 196
Parrinello (10.1016/j.bbagen.2019.07.004_bb0190) 1980; 45
Mori (10.1016/j.bbagen.2019.07.004_bb0505) 2017; 38
Vass (10.1016/j.bbagen.2019.07.004_bb0085) 2010; 81
Hatch (10.1016/j.bbagen.2019.07.004_bb0450) 2014; 118
Julius (10.1016/j.bbagen.2019.07.004_bb0625) 2018; 20
References_xml – volume: 109
  start-page: 6945
  year: 2012
  end-page: 6950
  ident: bb0045
  article-title: Cavities determine the pressure unfolding of proteins
  publication-title: Proc. Natl. Acad. Sci.
– volume: 314
  start-page: 141
  year: 1999
  end-page: 151
  ident: bb0355
  article-title: Replica-exchange molecular dynamics method for protein folding
  publication-title: Chem. Phys. Lett.
– volume: 60
  start-page: 96
  year: 2001
  end-page: 123
  ident: bb0350
  article-title: Generalized-ensemble algorithms for molecular simulations of biopolymers
  publication-title: Biopolymers
– volume: 87
  start-page: 1117
  year: 1996
  end-page: 1157
  ident: bb0200
  article-title: Explicit reversible integrators for extended systems dynamics
  publication-title: Mol. Phys.
– volume: 123
  start-page: 2469
  year: 2019
  end-page: 2478
  ident: bb0610
  article-title: Dissociation process of a MDM2/p53 complex investigated by parallel cascade selection molecular dynamics and the Markov state model
  publication-title: J. Phys. Chem. B
– volume: 65
  start-page: 136
  year: 2006
  end-page: 144
  ident: bb0570
  article-title: Protein under pressure: molecular dynamics simulation of the arc repressor
  publication-title: Proteins Struct. Funct. Bioinforma
– volume: 105
  start-page: 711
  year: 2001
  end-page: 714
  ident: bb0220
  article-title: Simulation of hydrated BPTI at high pressure: changes in hydrogen bonding and its relation with NMR experiments
  publication-title: J. Phys. Chem. B
– volume: 60
  start-page: 6757
  year: 1999
  end-page: 6768
  ident: bb0250
  article-title: Dynamics of simulated water under pressure
  publication-title: Phys. Rev. E
– volume: 95
  start-page: 3943
  year: 2008
  end-page: 3955
  ident: bb0495
  article-title: Pressure effects on the ensemble dynamics of ubiquitin inspected with molecular dynamics simulations and isotropic reorientational Eigenmode dynamics
  publication-title: Biophys. J.
– volume: 112
  start-page: 12038
  year: 2008
  end-page: 12049
  ident: bb0375
  article-title: Temperature and pressure dependence of alanine dipeptide studied by multibaric-multithermal molecular dynamics simulations
  publication-title: J. Phys. Chem. B
– volume: 123
  start-page: 10997
  year: 2001
  end-page: 11003
  ident: bb0160
  article-title: Molecular dynamics simulations of pressure effects on hydrophobic interactions
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 11870
  year: 2007
  end-page: 11872
  ident: bb0270
  article-title: Effects of water model and simulation box size on protein diffusions motions
  publication-title: J. Phys. Chem. B
– volume: 82
  start-page: 2970
  year: 2014
  end-page: 2981
  ident: bb0440
  article-title: Molecular dynamics of the structural changes of helical peptides induced by pressure
  publication-title: Proteins Struct. Funct. Bioinforma
– volume: 25
  start-page: 446
  year: 1996
  end-page: 455
  ident: bb0225
  article-title: Molecular mechanisms of pressure induced conformational changes in BPTI
  publication-title: Proteins Struct. Funct. Genet.
– volume: 81
  start-page: 3684
  year: 1984
  end-page: 3690
  ident: bb0185
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
– volume: 84
  start-page: 820
  year: 2016
  end-page: 827
  ident: bb0565
  article-title: Pressure-induced conformational switch of an interfacial protein
  publication-title: Proteins Struct. Funct. Bioinforma
– volume: 10
  start-page: 343
  year: 1985
  end-page: 347
  ident: bb0465
  article-title: The ubiquitin system: functions and mechanisms
  publication-title: Trends Biochem. Sci.
– volume: 1764
  start-page: 506
  year: 2006
  end-page: 515
  ident: bb0560
  article-title: Pressure denaturation of apomyoglobin: a molecular dynamics simulation study
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
– volume: 119
  start-page: 4842
  year: 2015
  end-page: 4848
  ident: bb0330
  article-title: Influence of pressure and crowding on the sub-nanosecond dynamics of globular proteins
  publication-title: J. Phys. Chem. B
– volume: 83
  start-page: 8069
  year: 1986
  end-page: 8072
  ident: bb0145
  article-title: Temperature dependence of the hydrophobic interaction in protein folding
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 221
  start-page: 617
  year: 1994
  end-page: 630
  ident: bb0620
  article-title: Proteins under pressure: the influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes
  publication-title: Eur. J. Biochem.
– volume: 1818
  start-page: 574
  year: 2012
  end-page: 583
  ident: bb0075
  article-title: Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 10
  start-page: 5113
  year: 2014
  end-page: 5124
  ident: bb0315
  article-title: Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association
  publication-title: J. Chem. Theory Comput.
– volume: 9
  start-page: 1005
  year: 2017
  end-page: 1011
  ident: bb0615
  article-title: Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling
  publication-title: Nat. Chem.
– volume: 1595
  start-page: 131
  year: 2002
  end-page: 144
  ident: bb0030
  article-title: Fourier transform infrared spectroscopy in high-pressure studies on proteins
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
– start-page: 75
  year: 2015
  end-page: 108
  ident: bb0110
  article-title: Volume and compressibility of proteins
  publication-title: High Press. Biosci. Basic Concepts, Appl. Front
– volume: 196
  start-page: 1173
  year: 1962
  end-page: 1176
  ident: bb0520
  article-title: Structure of lysozyme: a fourier map of the electron density at 6 Å resolution obtained by x-ray diffraction
  publication-title: Nature.
– volume: 110
  start-page: 20988
  year: 2013
  end-page: 20993
  ident: bb0430
  article-title: Transition state and ground state properties of the helix-coil transition in peptides deduced from high-pressure studies
  publication-title: Proc. Natl. Acad. Sci.
– volume: 72
  start-page: 1
  year: 2005
  end-page: 5
  ident: bb0550
  article-title: Pressure-dependent transition in protein dynamics at about 4 kbar revealed by molecular dynamics simulation
  publication-title: Phys. Rev. E Stat. Nonlinear, Soft Matter Phys.
– volume: 122
  start-page: 5038
  year: 2018
  end-page: 5048
  ident: bb0300
  article-title: Accurate methyl group dynamics in protein simulations with AMBER force fields
  publication-title: J. Phys. Chem. B
– start-page: 511
  year: 1914
  end-page: 512
  ident: bb0010
  article-title: The coagulation of albumen by pressure
  publication-title: J. Biol. Chem.
– volume: 91
  start-page: 2427
  year: 2006
  end-page: 2435
  ident: bb0590
  article-title: Heteropolymer collapse theory for protein folding in the pressure-temperature plane
  publication-title: Biophys. J.
– volume: 10
  start-page: 92
  year: 1991
  end-page: 105
  ident: bb0540
  article-title: The crystal structure of staphylococcal nuclease refined at 1.7 Å resolution
  publication-title: Proteins Struct. Funct. Bioinforma
– volume: 19
  start-page: 451
  year: 1992
  end-page: 458
  ident: bb0365
  article-title: Simulated tempering: a new Monte Carlo scheme
  publication-title: Europhys. Lett.
– volume: 13
  start-page: 1011
  year: 1992
  end-page: 1021
  ident: bb0390
  article-title: The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
  publication-title: J. Comput. Chem.
– volume: 1750
  start-page: 1
  year: 2005
  end-page: 4
  ident: bb0420
  article-title: Pressure-tuning FT-IR spectroscopic study on the helix–coil transition of Ala-rich oligopeptide in aqueous solution
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
– volume: 46
  start-page: 29
  year: 2013
  end-page: 40
  ident: bb0460
  article-title: Ubiquitin: molecular modeling and simulations
  publication-title: J. Mol. Graph. Model
– volume: 1595
  start-page: 201
  year: 2002
  end-page: 209
  ident: bb0135
  article-title: Revisiting volume changes in pressure-induced protein unfolding
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
– volume: 123
  start-page: 234505
  year: 2005
  ident: bb0285
  article-title: A general purpose model for the condensed phases of water: TIP4P/2005
  publication-title: J. Chem. Phys.
– volume: 1595
  start-page: 235
  year: 2002
  end-page: 249
  ident: bb0100
  article-title: Pressure effects on intra- and intermolecular interactions within proteins
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
– volume: 108
  start-page: 133
  year: 2015
  end-page: 145
  ident: bb0040
  article-title: Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme
  publication-title: Biophys. J.
– volume: 33
  start-page: 11561
  year: 2017
  end-page: 11569
  ident: bb0305
  article-title: Phase diagram of TIP4P/2005 water at high pressure
  publication-title: Langmuir
– volume: 345
  start-page: 289
  year: 2008
  end-page: 297
  ident: bb0335
  article-title: Relaxation dynamics of lysozyme in solution under pressure: combining molecular dynamics simulations and quasielastic neutron scattering
  publication-title: Chem. Phys.
– volume: 102
  start-page: 3586
  year: 1998
  end-page: 3616
  ident: bb0215
  article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins
  publication-title: J. Phys. Chem. B
– volume: 77
  start-page: 570
  year: 2009
  end-page: 588
  ident: bb0480
  article-title: Molecular determinants of the p K a values of Asp and Glu residues in staphylococcal nuclease
  publication-title: Proteins Struct. Funct. Bioinforma
– volume: 67
  start-page: 425
  year: 1998
  end-page: 479
  ident: bb0455
  article-title: The ubiquitin system
  publication-title: Annu. Rev. Biochem.
– volume: 195
  start-page: 1809
  year: 2013
  end-page: 1814
  ident: bb0635
  article-title: High hydrostatic pressure induces counterclockwise to clockwise reversals of the
  publication-title: J. Bacteriol.
– volume: 33
  start-page: 797
  year: 2002
  end-page: 800
  ident: bb0055
  article-title: Small-angle X-ray scattering station at the SPring-8 RIKEN beamline
  publication-title: J. Appl. Crystallogr.
– volume: 129
  year: 2008
  ident: bb0395
  article-title: Statistically optimal analysis of samples from multiple equilibrium states
  publication-title: J. Chem. Phys.
– volume: 75
  start-page: 911
  year: 2009
  end-page: 918
  ident: bb0425
  article-title: Effect of pressure on helix-coil transition of an alanine-based peptide: an FTIR study
  publication-title: Proteins Struct. Funct. Bioinforma
– volume: 5
  start-page: 1
  year: 2016
  end-page: 22
  ident: bb0640
  article-title: Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm
  publication-title: Elife
– volume: 40
  start-page: 13556
  year: 2001
  end-page: 13563
  ident: bb0490
  article-title: Two folded conformers of ubiquitin revealed by high-pressure NMR
  publication-title: Biochemistry.
– volume: 1595
  start-page: 3
  year: 2002
  end-page: 10
  ident: bb0105
  article-title: High pressure effects on biological macromolecules: from structural changes to alteration of cellular processes
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
– volume: 89
  start-page: 9335
  year: 1992
  end-page: 9338
  ident: bb0140
  article-title: On the origin of the enthalpy and entropy convergence temperatures in protein folding
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 74
  start-page: 895
  year: 2018
  end-page: 905
  ident: bb0070
  article-title: High-pressure protein crystal structure analysis of
  publication-title: Acta Crystallogr. Sect. D, Struct. Biol.
– volume: 12
  start-page: 8728
  year: 2010
  end-page: 8732
  ident: bb0235
  article-title: Ab initio molecular dynamics simulations investigating proton transfer in perfluorosulfonic acid functionalized carbon nanotubes
  publication-title: Phys. Chem. Chem. Phys.
– volume: 99
  start-page: 6983
  year: 1993
  end-page: 6997
  ident: bb0260
  article-title: Molecular dynamics simulation of a polymer chain in solution
  publication-title: J. Chem. Phys.
– volume: 56
  start-page: 952
  year: 2000
  end-page: 958
  ident: bb0475
  article-title: Crystallization, structure solution and refinement of hen egg-white lysozyme at pH 8.0 in the presence of MPD
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
– volume: 136
  start-page: 114510
  year: 2012
  ident: bb0595
  article-title: The effect of pressure on the hydration structure around hydrophobic solute: a molecular dynamics simulation study
  publication-title: J. Chem. Phys.
– volume: 72
  start-page: 2384
  year: 1980
  end-page: 2393
  ident: bb0165
  article-title: Molecular dynamics simulations at constant pressure and/or temperature
  publication-title: J. Chem. Phys.
– volume: 32
  start-page: 3794
  year: 2016
  end-page: 3802
  ident: bb0575
  article-title: Reversible morphological control of tubulin-encapsulating giant liposomes by hydrostatic pressure
  publication-title: Langmuir.
– volume: 65
  start-page: 603
  year: 1975
  end-page: 614
  ident: bb0080
  article-title: Pressure-induced depolymerization of spindle microtubules. I. Changes in birefringence and spindle length
  publication-title: J. Cell Biol.
– volume: 1824
  start-page: 511
  year: 2012
  end-page: 519
  ident: bb0020
  article-title: Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
– volume: 81
  year: 2010
  ident: bb0085
  article-title: A multipurpose modular system for high-resolution microscopy at high hydrostatic pressure
  publication-title: Rev. Sci. Instrum.
– volume: 194
  start-page: 531
  year: 1987
  end-page: 544
  ident: bb0470
  article-title: Structure of ubiquitin refined at 1.8 Å resolution
  publication-title: J. Mol. Biol.
– volume: 177
  start-page: 519
  year: 2006
  end-page: 526
  ident: bb0515
  article-title: The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo
  publication-title: J. Immunol.
– volume: 107
  start-page: 8561
  year: 1997
  end-page: 8567
  ident: bb0255
  article-title: Effects of pressure on structural and dynamical properties of associated liquids: molecular dynamics calculations for the extended simple point charge model of water, the
  publication-title: J. Chem. Phys.
– volume: 86
  start-page: 681
  year: 2004
  end-page: 689
  ident: bb0265
  article-title: Diffusion and electrophoretic mobility of single-stranded RNA from molecular dynamics simulations
  publication-title: Biophys. J.
– volume: 128
  start-page: 670
  year: 2006
  end-page: 671
  ident: bb0015
  article-title: Dehydration in the folding of reduced cytochrome c revealed by the electron-transfer-triggered folding under high pressure
  publication-title: J. Am. Chem. Soc.
– volume: 267
  start-page: 249
  year: 1991
  end-page: 253
  ident: bb0360
  article-title: Multicanonical algorithms for first order phase transitions
  publication-title: Phys. Lett. B
– volume: 91
  start-page: 283
  year: 1995
  end-page: 289
  ident: bb0195
  article-title: Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling
  publication-title: Comput. Phys. Commun.
– volume: 93
  start-page: 10
  year: 2004
  end-page: 13
  ident: bb0405
  article-title: Reversible temperature and pressure denaturation of a protein fragment: a replica exchange molecular dynamics simulation study
  publication-title: Phys. Rev. Lett.
– volume: 101
  start-page: 2054
  year: 1997
  end-page: 2060
  ident: bb0170
  article-title: Monte Carlo study of the effect of pressure on hydrophobic association
  publication-title: J. Phys. Chem. B
– volume: 111
  start-page: 15877
  year: 2007
  end-page: 15888
  ident: bb0290
  article-title: Equation of state, thermal expansion coefficient, and isothermal compressibility for ices Ih, II, III, V, and VI, as obtained from computer simulation
  publication-title: J. Phys. Chem. C
– volume: 391
  start-page: 248
  year: 2004
  end-page: 253
  ident: bb0370
  article-title: Molecular dynamics simulations in the multibaric-multithermal ensemble
  publication-title: Chem. Phys. Lett.
– volume: 1764
  start-page: 522
  year: 2006
  end-page: 534
  ident: bb0125
  article-title: A molecular dynamics simulation of SNase and its hydration shell at high temperature and high pressure
  publication-title: Biochim. Biophys. Acta
– volume: 129
  start-page: 145103
  year: 2008
  ident: bb0600
  article-title: Molecular mechanism of pressure denaturation of proteins
  publication-title: J. Chem. Phys.
– volume: 70
  start-page: 1175
  year: 2007
  end-page: 1184
  ident: bb0500
  article-title: Water penetration in the low and high pressure native states of ubiquitin
  publication-title: Proteins Struct. Funct. Bioinforma
– volume: 79
  year: 2009
  ident: bb0605
  article-title: Pressure effects on structures formed by entropically driven self-assembly: illustration for denaturation of proteins
  publication-title: Phys. Rev. E
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: bb0485
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graph.
– volume: 144
  start-page: 144104
  year: 2016
  ident: bb0230
  article-title: Design principles for high–pressure force fields: aqueous TMAO solutions from ambient to kilobar pressures
  publication-title: J. Chem. Phys.
– volume: 141
  year: 2014
  ident: bb0445
  article-title: Role of solvation in pressure-induced helix stabilization
  publication-title: J. Chem. Phys.
– volume: 14
  start-page: 1
  year: 1959
  end-page: 63
  ident: bb0115
  article-title: Some factors in the interpretation of protein denaturation
  publication-title: Adv. Protein Chem.
– volume: 82
  start-page: 57
  year: 1999
  end-page: 72
  ident: bb0280
  article-title: Structure and hydrogen bonding of liquid water at high hydrostatic pressures: Monte Carlo NPT-ensemble simulations up to 10 kbar
  publication-title: J. Mol. Liq.
– volume: 55
  start-page: 9534
  year: 2016
  end-page: 9538
  ident: bb0240
  article-title: Toward extreme biophysics: deciphering the infrared response of biomolecular solutions at high pressures
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  year: 2018
  ident: bb0245
  article-title: Water models for biomolecular simulations
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 231
  start-page: 71
  year: 2017
  end-page: 78
  ident: bb0090
  article-title: High-pressure microscopy for tracking dynamic properties of molecular machines
  publication-title: Biophys. Chem.
– volume: 81
  year: 2010
  ident: bb0060
  article-title: Automated high pressure cell for pressure jump x-ray diffraction
  publication-title: Rev. Sci. Instrum.
– volume: 1768
  start-page: 479
  year: 2007
  end-page: 489
  ident: bb0035
  article-title: Thermotropic and barotropic phase transitions in bilayer membranes of ether-linked phospholipids with varying alkyl chain lengths
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 1764
  start-page: 391
  year: 2006
  end-page: 397
  ident: bb0065
  article-title: High pressure macromolecular crystallography: The 140-MPa crystal structure at 2.3 Å resolution of urate oxidase, a 135-kDa tetrameric assembly
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
– volume: 102
  start-page: 16668
  year: 2005
  end-page: 16671
  ident: bb0525
  article-title: Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation
  publication-title: Proc. Natl. Acad. Sci.
– volume: 1386
  start-page: 353
  year: 1998
  end-page: 370
  ident: bb0005
  article-title: Protein structure and dynamics at high pressure
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
– volume: 114
  start-page: 11410
  year: 2017
  end-page: 11415
  ident: bb0535
  article-title: Pressure effects on collective density fluctuations in water and protein solutions
  publication-title: Proc. Natl. Acad. Sci.
– volume: 95
  start-page: 1552
  year: 1998
  end-page: 1555
  ident: bb0155
  article-title: The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins
  publication-title: Proc. Natl. Acad. Sci.
– volume: 118
  start-page: 7761
  year: 2014
  end-page: 7769
  ident: bb0450
  article-title: Computational study of the stability of the miniprotein trp-cage, the GB1 β-hairpin, and the AK16 peptide, under negative pressure
  publication-title: J. Phys. Chem. B
– volume: 108
  start-page: 15928
  year: 2004
  end-page: 15937
  ident: bb0545
  article-title: Molecular dynamics simulations of staphylococcal nuclease: properties of water at the protein surface
  publication-title: J. Phys. Chem. B
– volume: 38
  start-page: 1167
  year: 2017
  end-page: 1173
  ident: bb0505
  article-title: Conformational changes of ubiquitin under high pressure conditions: a pressure simulated tempering molecular dynamics study
  publication-title: J. Comput. Chem.
– volume: 361
  start-page: 355
  year: 2018
  end-page: 360
  ident: bb0180
  article-title: Biophysical experiments and biomolecular simulations: a perfect match?
  publication-title: Science
– volume: 108
  start-page: 15873
  year: 2004
  end-page: 15879
  ident: bb0275
  article-title: System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions
  publication-title: J. Phys. Chem. B
– volume: 86
  start-page: 50
  year: 2004
  end-page: 57
  ident: bb0585
  article-title: Theory and simulation of water permeation in aquaporin-1
  publication-title: Biophys. J.
– volume: 45
  start-page: 1196
  year: 1980
  end-page: 1199
  ident: bb0190
  article-title: Crystal structure and pair potentials: a molecular-dynamics study
  publication-title: Phys. Rev. Lett.
– volume: 76
  start-page: 377
  year: 1980
  ident: bb0325
  article-title: Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water
  publication-title: J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases
– volume: 83
  start-page: 154
  year: 2002
  end-page: 160
  ident: bb0580
  article-title: Pressure-induced water transport in membrane channels studied by molecular dynamics
  publication-title: Biophys. J.
– volume: 111
  start-page: 1206
  year: 2007
  end-page: 1212
  ident: bb0175
  article-title: Theoretical study of the cosolvent effect on the partial molar volume change of staphylococcal nuclease associated with pressure denaturation
  publication-title: J. Phys. Chem. B
– volume: 104
  start-page: 17261
  year: 2007
  end-page: 17265
  ident: bb0530
  article-title: Picosecond fluctuating protein energy landscape mapped by pressure temperature molecular dynamics simulation
  publication-title: Proc. Natl. Acad. Sci.
– volume: 114
  start-page: 2281
  year: 2010
  end-page: 2286
  ident: bb0345
  article-title: Dynamic correlation between pressure-induced protein structural transition and water penetration
  publication-title: J. Phys. Chem. B
– volume: 102
  start-page: 6765
  year: 2005
  end-page: 6770
  ident: bb0400
  article-title: Simulations of the pressure and temperature unfolding of an alpha-helical peptide
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1764
  start-page: 414
  year: 2006
  end-page: 423
  ident: bb0340
  article-title: Influence of pressure on structure and dynamics of bovine pancreatic trypsin inhibitor (BPTI): small angle and quasi-elastic neutron scattering studies
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
– volume: 115
  start-page: 5545
  year: 2011
  end-page: 5553
  ident: bb0310
  article-title: A polarizable water model for intramolecular and intermolecular vibrational spectroscopies
  publication-title: J. Phys. Chem. B
– volume: 4
  start-page: 2079
  year: 2013
  end-page: 2083
  ident: bb0435
  article-title: Pressure-induced helical structure of a peptide studied by simulated tempering molecular dynamics simulations
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  year: 2014
  ident: bb0130
  article-title: Mechanism of deep-sea fish α-actin pressure tolerance investigated by molecular dynamics simulations
  publication-title: PLoS One
– volume: 20
  start-page: 7093
  year: 2018
  end-page: 7104
  ident: bb0625
  article-title: The effects of osmolytes and crowding on the pressure-induced dissociation and inactivation of dimeric LADH
  publication-title: Phys. Chem. Chem. Phys.
– volume: 79
  year: 2010
  ident: bb0380
  article-title: Generalized-ensemble algorithms for the isobaric–isothermal ensemble
  publication-title: J. Phys. Soc. Jpn.
– volume: 80
  start-page: 2397
  year: 2012
  end-page: 2416
  ident: bb0410
  article-title: Temperature and pressure denaturation of chignol folding and unfolding simulation by multibaric-multithermal molecular dynamics method
  publication-title: Proteins Struct. Funct. Bioinforma
– volume: 63
  start-page: 1195
  year: 1989
  end-page: 1198
  ident: bb0385
  article-title: Optimized Monte Carlo data analysis
  publication-title: Phys. Rev. Lett.
– volume: 148
  start-page: 215102
  year: 2018
  ident: bb0120
  article-title: Compressibility of the protein-water interface
  publication-title: J. Chem. Phys.
– volume: 1595
  start-page: 160
  year: 2002
  end-page: 184
  ident: bb0050
  article-title: Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
– volume: 20
  start-page: 21257
  year: 2018
  end-page: 21261
  ident: bb0295
  article-title: Pressure increases the ice-like order of water at hydrophobic interfaces
  publication-title: Phys. Chem. Chem. Phys.
– volume: 78
  start-page: 1641
  year: 2010
  end-page: 1651
  ident: bb0555
  article-title: Studying pressure denaturation of a protein by molecular dynamics simulations
  publication-title: Proteins Struct. Funct. Bioinforma
– volume: 1595
  start-page: 185
  year: 2002
  end-page: 200
  ident: bb0095
  article-title: High pressure simulations of biomolecules
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
– volume: 325
  start-page: 763
  year: 1987
  end-page: 764
  ident: bb0150
  article-title: Thermodynamics of unfolding
  publication-title: Nature
– volume: 147
  year: 2017
  ident: bb0415
  article-title: Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin
  publication-title: J. Chem. Phys.
– volume: 82
  start-page: 792
  year: 2018
  end-page: 799
  ident: bb0025
  article-title: Commonly stabilized monomeric cytochromes c from deep-sea Shewanella and Pseudomonas
  publication-title: Biosci Biotechnol Biochem
– volume: 106
  start-page: 393a
  year: 2014
  ident: bb0630
  article-title: Single-molecule analysis of the rotation of F1-ATPase under high hydrostatic pressure
  publication-title: Biophys. J.
– volume: 117
  start-page: 5179
  year: 1995
  end-page: 5197
  ident: bb0210
  article-title: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 10083
  year: 1992
  end-page: 10093
  ident: bb0205
  article-title: Molecular dynamics simulation of solvated protein at high pressure
  publication-title: Biochemistry
– volume: 119
  start-page: 11416
  year: 2015
  end-page: 11427
  ident: bb0510
  article-title: Water mediated interactions and the protein folding phase diagram in the temperature-pressure plane
  publication-title: J. Phys. Chem. B
– volume: 115
  start-page: E4758
  year: 2018
  end-page: E4766
  ident: bb0320
  article-title: Developing a molecular dynamics force field for both folded and disordered protein states
  publication-title: Proc. Natl. Acad. Sci.
– volume: 107
  start-page: 8561
  year: 1997
  ident: 10.1016/j.bbagen.2019.07.004_bb0255
  article-title: Effects of pressure on structural and dynamical properties of associated liquids: molecular dynamics calculations for the extended simple point charge model of water, the
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.475162
– volume: 9
  start-page: 1005
  year: 2017
  ident: 10.1016/j.bbagen.2019.07.004_bb0615
  article-title: Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2785
– volume: 1595
  start-page: 3
  year: 2002
  ident: 10.1016/j.bbagen.2019.07.004_bb0105
  article-title: High pressure effects on biological macromolecules: from structural changes to alteration of cellular processes
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
  doi: 10.1016/S0167-4838(01)00331-4
– volume: 104
  start-page: 17261
  year: 2007
  ident: 10.1016/j.bbagen.2019.07.004_bb0530
  article-title: Picosecond fluctuating protein energy landscape mapped by pressure temperature molecular dynamics simulation
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0708199104
– volume: 63
  start-page: 1195
  year: 1989
  ident: 10.1016/j.bbagen.2019.07.004_bb0385
  article-title: Optimized Monte Carlo data analysis
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.1195
– volume: 112
  start-page: 12038
  year: 2008
  ident: 10.1016/j.bbagen.2019.07.004_bb0375
  article-title: Temperature and pressure dependence of alanine dipeptide studied by multibaric-multithermal molecular dynamics simulations
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp712109q
– volume: 123
  start-page: 2469
  year: 2019
  ident: 10.1016/j.bbagen.2019.07.004_bb0610
  article-title: Dissociation process of a MDM2/p53 complex investigated by parallel cascade selection molecular dynamics and the Markov state model
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b10309
– volume: 8
  year: 2018
  ident: 10.1016/j.bbagen.2019.07.004_bb0245
  article-title: Water models for biomolecular simulations
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1347
– volume: 141
  year: 2014
  ident: 10.1016/j.bbagen.2019.07.004_bb0445
  article-title: Role of solvation in pressure-induced helix stabilization
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4901112
– volume: 115
  start-page: 5545
  year: 2011
  ident: 10.1016/j.bbagen.2019.07.004_bb0310
  article-title: A polarizable water model for intramolecular and intermolecular vibrational spectroscopies
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp111308f
– volume: 14
  start-page: 1
  year: 1959
  ident: 10.1016/j.bbagen.2019.07.004_bb0115
  article-title: Some factors in the interpretation of protein denaturation
  publication-title: Adv. Protein Chem.
  doi: 10.1016/S0065-3233(08)60608-7
– volume: 129
  start-page: 145103
  year: 2008
  ident: 10.1016/j.bbagen.2019.07.004_bb0600
  article-title: Molecular mechanism of pressure denaturation of proteins
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2991176
– volume: 81
  start-page: 3684
  year: 1984
  ident: 10.1016/j.bbagen.2019.07.004_bb0185
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 1768
  start-page: 479
  year: 2007
  ident: 10.1016/j.bbagen.2019.07.004_bb0035
  article-title: Thermotropic and barotropic phase transitions in bilayer membranes of ether-linked phospholipids with varying alkyl chain lengths
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2006.10.005
– volume: 1764
  start-page: 414
  year: 2006
  ident: 10.1016/j.bbagen.2019.07.004_bb0340
  article-title: Influence of pressure on structure and dynamics of bovine pancreatic trypsin inhibitor (BPTI): small angle and quasi-elastic neutron scattering studies
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
  doi: 10.1016/j.bbapap.2006.01.010
– volume: 32
  start-page: 3794
  year: 2016
  ident: 10.1016/j.bbagen.2019.07.004_bb0575
  article-title: Reversible morphological control of tubulin-encapsulating giant liposomes by hydrostatic pressure
  publication-title: Langmuir.
  doi: 10.1021/acs.langmuir.6b00799
– volume: 5
  start-page: 1
  year: 2016
  ident: 10.1016/j.bbagen.2019.07.004_bb0640
  article-title: Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm
  publication-title: Elife
  doi: 10.7554/eLife.19274
– volume: 102
  start-page: 3586
  year: 1998
  ident: 10.1016/j.bbagen.2019.07.004_bb0215
  article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp973084f
– volume: 144
  start-page: 144104
  year: 2016
  ident: 10.1016/j.bbagen.2019.07.004_bb0230
  article-title: Design principles for high–pressure force fields: aqueous TMAO solutions from ambient to kilobar pressures
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4944991
– volume: 147
  year: 2017
  ident: 10.1016/j.bbagen.2019.07.004_bb0415
  article-title: Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4996431
– volume: 1595
  start-page: 185
  year: 2002
  ident: 10.1016/j.bbagen.2019.07.004_bb0095
  article-title: High pressure simulations of biomolecules
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
  doi: 10.1016/S0167-4838(01)00343-0
– volume: 109
  start-page: 6945
  year: 2012
  ident: 10.1016/j.bbagen.2019.07.004_bb0045
  article-title: Cavities determine the pressure unfolding of proteins
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1200915109
– volume: 10
  start-page: 343
  year: 1985
  ident: 10.1016/j.bbagen.2019.07.004_bb0465
  article-title: The ubiquitin system: functions and mechanisms
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/0968-0004(85)90108-2
– volume: 82
  start-page: 57
  year: 1999
  ident: 10.1016/j.bbagen.2019.07.004_bb0280
  article-title: Structure and hydrogen bonding of liquid water at high hydrostatic pressures: Monte Carlo NPT-ensemble simulations up to 10 kbar
  publication-title: J. Mol. Liq.
  doi: 10.1016/S0167-7322(99)00042-2
– volume: 115
  start-page: E4758
  year: 2018
  ident: 10.1016/j.bbagen.2019.07.004_bb0320
  article-title: Developing a molecular dynamics force field for both folded and disordered protein states
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1800690115
– volume: 82
  start-page: 2970
  year: 2014
  ident: 10.1016/j.bbagen.2019.07.004_bb0440
  article-title: Molecular dynamics of the structural changes of helical peptides induced by pressure
  publication-title: Proteins Struct. Funct. Bioinforma
  doi: 10.1002/prot.24654
– volume: 1750
  start-page: 1
  year: 2005
  ident: 10.1016/j.bbagen.2019.07.004_bb0420
  article-title: Pressure-tuning FT-IR spectroscopic study on the helix–coil transition of Ala-rich oligopeptide in aqueous solution
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
  doi: 10.1016/j.bbapap.2005.02.014
– volume: 110
  start-page: 20988
  year: 2013
  ident: 10.1016/j.bbagen.2019.07.004_bb0430
  article-title: Transition state and ground state properties of the helix-coil transition in peptides deduced from high-pressure studies
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1317973110
– volume: 72
  start-page: 2384
  year: 1980
  ident: 10.1016/j.bbagen.2019.07.004_bb0165
  article-title: Molecular dynamics simulations at constant pressure and/or temperature
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.439486
– volume: 123
  start-page: 234505
  year: 2005
  ident: 10.1016/j.bbagen.2019.07.004_bb0285
  article-title: A general purpose model for the condensed phases of water: TIP4P/2005
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2121687
– volume: 20
  start-page: 7093
  year: 2018
  ident: 10.1016/j.bbagen.2019.07.004_bb0625
  article-title: The effects of osmolytes and crowding on the pressure-induced dissociation and inactivation of dimeric LADH
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP08242H
– volume: 14
  start-page: 33
  year: 1996
  ident: 10.1016/j.bbagen.2019.07.004_bb0485
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 13
  start-page: 1011
  year: 1992
  ident: 10.1016/j.bbagen.2019.07.004_bb0390
  article-title: The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540130812
– volume: 67
  start-page: 425
  year: 1998
  ident: 10.1016/j.bbagen.2019.07.004_bb0455
  article-title: The ubiquitin system
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.67.1.425
– volume: 1764
  start-page: 506
  year: 2006
  ident: 10.1016/j.bbagen.2019.07.004_bb0560
  article-title: Pressure denaturation of apomyoglobin: a molecular dynamics simulation study
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
  doi: 10.1016/j.bbapap.2005.11.015
– volume: 99
  start-page: 6983
  year: 1993
  ident: 10.1016/j.bbagen.2019.07.004_bb0260
  article-title: Molecular dynamics simulation of a polymer chain in solution
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465445
– volume: 391
  start-page: 248
  year: 2004
  ident: 10.1016/j.bbagen.2019.07.004_bb0370
  article-title: Molecular dynamics simulations in the multibaric-multithermal ensemble
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.04.073
– volume: 231
  start-page: 71
  year: 2017
  ident: 10.1016/j.bbagen.2019.07.004_bb0090
  article-title: High-pressure microscopy for tracking dynamic properties of molecular machines
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2017.03.010
– volume: 361
  start-page: 355
  year: 2018
  ident: 10.1016/j.bbagen.2019.07.004_bb0180
  article-title: Biophysical experiments and biomolecular simulations: a perfect match?
  publication-title: Science
  doi: 10.1126/science.aat4010
– volume: 38
  start-page: 1167
  year: 2017
  ident: 10.1016/j.bbagen.2019.07.004_bb0505
  article-title: Conformational changes of ubiquitin under high pressure conditions: a pressure simulated tempering molecular dynamics study
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24767
– volume: 136
  start-page: 114510
  year: 2012
  ident: 10.1016/j.bbagen.2019.07.004_bb0595
  article-title: The effect of pressure on the hydration structure around hydrophobic solute: a molecular dynamics simulation study
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3694834
– volume: 89
  start-page: 9335
  year: 1992
  ident: 10.1016/j.bbagen.2019.07.004_bb0140
  article-title: On the origin of the enthalpy and entropy convergence temperatures in protein folding
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.19.9335
– volume: 82
  start-page: 792
  year: 2018
  ident: 10.1016/j.bbagen.2019.07.004_bb0025
  article-title: Commonly stabilized monomeric cytochromes c from deep-sea Shewanella and Pseudomonas
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1080/09168451.2018.1448255
– volume: 81
  year: 2010
  ident: 10.1016/j.bbagen.2019.07.004_bb0085
  article-title: A multipurpose modular system for high-resolution microscopy at high hydrostatic pressure
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3427224
– volume: 95
  start-page: 3943
  year: 2008
  ident: 10.1016/j.bbagen.2019.07.004_bb0495
  article-title: Pressure effects on the ensemble dynamics of ubiquitin inspected with molecular dynamics simulations and isotropic reorientational Eigenmode dynamics
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.133702
– volume: 177
  start-page: 519
  year: 2006
  ident: 10.1016/j.bbagen.2019.07.004_bb0515
  article-title: The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.177.1.519
– volume: 45
  start-page: 1196
  year: 1980
  ident: 10.1016/j.bbagen.2019.07.004_bb0190
  article-title: Crystal structure and pair potentials: a molecular-dynamics study
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.1196
– volume: 1764
  start-page: 391
  year: 2006
  ident: 10.1016/j.bbagen.2019.07.004_bb0065
  article-title: High pressure macromolecular crystallography: The 140-MPa crystal structure at 2.3 Å resolution of urate oxidase, a 135-kDa tetrameric assembly
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
  doi: 10.1016/j.bbapap.2006.01.006
– volume: 60
  start-page: 6757
  year: 1999
  ident: 10.1016/j.bbagen.2019.07.004_bb0250
  article-title: Dynamics of simulated water under pressure
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.60.6757
– volume: 76
  start-page: 377
  year: 1980
  ident: 10.1016/j.bbagen.2019.07.004_bb0325
  article-title: Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water
  publication-title: J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases
– volume: 19
  start-page: 451
  year: 1992
  ident: 10.1016/j.bbagen.2019.07.004_bb0365
  article-title: Simulated tempering: a new Monte Carlo scheme
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/19/6/002
– volume: 79
  year: 2010
  ident: 10.1016/j.bbagen.2019.07.004_bb0380
  article-title: Generalized-ensemble algorithms for the isobaric–isothermal ensemble
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.79.074003
– volume: 78
  start-page: 1641
  year: 2010
  ident: 10.1016/j.bbagen.2019.07.004_bb0555
  article-title: Studying pressure denaturation of a protein by molecular dynamics simulations
  publication-title: Proteins Struct. Funct. Bioinforma
  doi: 10.1002/prot.22680
– volume: 108
  start-page: 15873
  year: 2004
  ident: 10.1016/j.bbagen.2019.07.004_bb0275
  article-title: System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0477147
– volume: 83
  start-page: 154
  year: 2002
  ident: 10.1016/j.bbagen.2019.07.004_bb0580
  article-title: Pressure-induced water transport in membrane channels studied by molecular dynamics
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)75157-6
– volume: 114
  start-page: 2281
  year: 2010
  ident: 10.1016/j.bbagen.2019.07.004_bb0345
  article-title: Dynamic correlation between pressure-induced protein structural transition and water penetration
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp909701j
– volume: 114
  start-page: 11410
  year: 2017
  ident: 10.1016/j.bbagen.2019.07.004_bb0535
  article-title: Pressure effects on collective density fluctuations in water and protein solutions
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1705279114
– volume: 122
  start-page: 5038
  year: 2018
  ident: 10.1016/j.bbagen.2019.07.004_bb0300
  article-title: Accurate methyl group dynamics in protein simulations with AMBER force fields
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b02769
– volume: 80
  start-page: 2397
  year: 2012
  ident: 10.1016/j.bbagen.2019.07.004_bb0410
  article-title: Temperature and pressure denaturation of chignol folding and unfolding simulation by multibaric-multithermal molecular dynamics method
  publication-title: Proteins Struct. Funct. Bioinforma
  doi: 10.1002/prot.24125
– volume: 111
  start-page: 15877
  year: 2007
  ident: 10.1016/j.bbagen.2019.07.004_bb0290
  article-title: Equation of state, thermal expansion coefficient, and isothermal compressibility for ices Ih, II, III, V, and VI, as obtained from computer simulation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0743121
– volume: 1595
  start-page: 235
  year: 2002
  ident: 10.1016/j.bbagen.2019.07.004_bb0100
  article-title: Pressure effects on intra- and intermolecular interactions within proteins
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
  doi: 10.1016/S0167-4838(01)00347-8
– volume: 1824
  start-page: 511
  year: 2012
  ident: 10.1016/j.bbagen.2019.07.004_bb0020
  article-title: Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli
  publication-title: Biochim. Biophys. Acta, Proteins Proteomics
  doi: 10.1016/j.bbapap.2012.01.001
– volume: 1595
  start-page: 131
  year: 2002
  ident: 10.1016/j.bbagen.2019.07.004_bb0030
  article-title: Fourier transform infrared spectroscopy in high-pressure studies on proteins
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
  doi: 10.1016/S0167-4838(01)00340-5
– volume: 119
  start-page: 11416
  year: 2015
  ident: 10.1016/j.bbagen.2019.07.004_bb0510
  article-title: Water mediated interactions and the protein folding phase diagram in the temperature-pressure plane
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b03828
– volume: 108
  start-page: 15928
  year: 2004
  ident: 10.1016/j.bbagen.2019.07.004_bb0545
  article-title: Molecular dynamics simulations of staphylococcal nuclease: properties of water at the protein surface
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047579y
– volume: 56
  start-page: 952
  year: 2000
  ident: 10.1016/j.bbagen.2019.07.004_bb0475
  article-title: Crystallization, structure solution and refinement of hen egg-white lysozyme at pH 8.0 in the presence of MPD
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
  doi: 10.1107/S0907444900006685
– volume: 81
  year: 2010
  ident: 10.1016/j.bbagen.2019.07.004_bb0060
  article-title: Automated high pressure cell for pressure jump x-ray diffraction
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3449332
– volume: 10
  start-page: 5113
  year: 2014
  ident: 10.1016/j.bbagen.2019.07.004_bb0315
  article-title: Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500569b
– volume: 325
  start-page: 763
  year: 1987
  ident: 10.1016/j.bbagen.2019.07.004_bb0150
  article-title: Thermodynamics of unfolding
  publication-title: Nature
  doi: 10.1038/325763a0
– volume: 93
  start-page: 10
  year: 2004
  ident: 10.1016/j.bbagen.2019.07.004_bb0405
  article-title: Reversible temperature and pressure denaturation of a protein fragment: a replica exchange molecular dynamics simulation study
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.238105
– volume: 87
  start-page: 1117
  year: 1996
  ident: 10.1016/j.bbagen.2019.07.004_bb0200
  article-title: Explicit reversible integrators for extended systems dynamics
  publication-title: Mol. Phys.
  doi: 10.1080/00268979600100761
– volume: 111
  start-page: 11870
  year: 2007
  ident: 10.1016/j.bbagen.2019.07.004_bb0270
  article-title: Effects of water model and simulation box size on protein diffusions motions
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0756247
– volume: 46
  start-page: 29
  year: 2013
  ident: 10.1016/j.bbagen.2019.07.004_bb0460
  article-title: Ubiquitin: molecular modeling and simulations
  publication-title: J. Mol. Graph. Model
  doi: 10.1016/j.jmgm.2013.09.006
– start-page: 75
  year: 2015
  ident: 10.1016/j.bbagen.2019.07.004_bb0110
  article-title: Volume and compressibility of proteins
– volume: 84
  start-page: 820
  year: 2016
  ident: 10.1016/j.bbagen.2019.07.004_bb0565
  article-title: Pressure-induced conformational switch of an interfacial protein
  publication-title: Proteins Struct. Funct. Bioinforma
  doi: 10.1002/prot.25031
– volume: 33
  start-page: 11561
  year: 2017
  ident: 10.1016/j.bbagen.2019.07.004_bb0305
  article-title: Phase diagram of TIP4P/2005 water at high pressure
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b01764
– volume: 345
  start-page: 289
  year: 2008
  ident: 10.1016/j.bbagen.2019.07.004_bb0335
  article-title: Relaxation dynamics of lysozyme in solution under pressure: combining molecular dynamics simulations and quasielastic neutron scattering
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2007.07.018
– volume: 74
  start-page: 895
  year: 2018
  ident: 10.1016/j.bbagen.2019.07.004_bb0070
  article-title: High-pressure protein crystal structure analysis of Escherichia coli dihydrofolate reductase complexed with folate and NADP
  publication-title: Acta Crystallogr. Sect. D, Struct. Biol.
  doi: 10.1107/S2059798318009397
– volume: 102
  start-page: 6765
  year: 2005
  ident: 10.1016/j.bbagen.2019.07.004_bb0400
  article-title: Simulations of the pressure and temperature unfolding of an alpha-helical peptide
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0408527102
– volume: 91
  start-page: 2427
  year: 2006
  ident: 10.1016/j.bbagen.2019.07.004_bb0590
  article-title: Heteropolymer collapse theory for protein folding in the pressure-temperature plane
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.081802
– volume: 25
  start-page: 446
  year: 1996
  ident: 10.1016/j.bbagen.2019.07.004_bb0225
  article-title: Molecular mechanisms of pressure induced conformational changes in BPTI
  publication-title: Proteins Struct. Funct. Genet.
  doi: 10.1002/prot.5
– volume: 65
  start-page: 136
  year: 2006
  ident: 10.1016/j.bbagen.2019.07.004_bb0570
  article-title: Protein under pressure: molecular dynamics simulation of the arc repressor
  publication-title: Proteins Struct. Funct. Bioinforma
  doi: 10.1002/prot.21034
– volume: 1386
  start-page: 353
  year: 1998
  ident: 10.1016/j.bbagen.2019.07.004_bb0005
  article-title: Protein structure and dynamics at high pressure
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
  doi: 10.1016/S0167-4838(98)00102-2
– volume: 119
  start-page: 4842
  year: 2015
  ident: 10.1016/j.bbagen.2019.07.004_bb0330
  article-title: Influence of pressure and crowding on the sub-nanosecond dynamics of globular proteins
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b01017
– volume: 102
  start-page: 16668
  year: 2005
  ident: 10.1016/j.bbagen.2019.07.004_bb0525
  article-title: Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0508224102
– volume: 55
  start-page: 9534
  year: 2016
  ident: 10.1016/j.bbagen.2019.07.004_bb0240
  article-title: Toward extreme biophysics: deciphering the infrared response of biomolecular solutions at high pressures
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602757
– volume: 79
  year: 2009
  ident: 10.1016/j.bbagen.2019.07.004_bb0605
  article-title: Pressure effects on structures formed by entropically driven self-assembly: illustration for denaturation of proteins
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.79.011912
– volume: 105
  start-page: 711
  year: 2001
  ident: 10.1016/j.bbagen.2019.07.004_bb0220
  article-title: Simulation of hydrated BPTI at high pressure: changes in hydrogen bonding and its relation with NMR experiments
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp002539p
– volume: 31
  start-page: 10083
  year: 1992
  ident: 10.1016/j.bbagen.2019.07.004_bb0205
  article-title: Molecular dynamics simulation of solvated protein at high pressure
  publication-title: Biochemistry
  doi: 10.1021/bi00156a031
– volume: 1818
  start-page: 574
  year: 2012
  ident: 10.1016/j.bbagen.2019.07.004_bb0075
  article-title: Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2011.10.010
– volume: 108
  start-page: 133
  year: 2015
  ident: 10.1016/j.bbagen.2019.07.004_bb0040
  article-title: Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.11.012
– volume: 86
  start-page: 50
  year: 2004
  ident: 10.1016/j.bbagen.2019.07.004_bb0585
  article-title: Theory and simulation of water permeation in aquaporin-1
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(04)74082-5
– volume: 1595
  start-page: 160
  year: 2002
  ident: 10.1016/j.bbagen.2019.07.004_bb0050
  article-title: Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
  doi: 10.1016/S0167-4838(01)00342-9
– volume: 314
  start-page: 141
  year: 1999
  ident: 10.1016/j.bbagen.2019.07.004_bb0355
  article-title: Replica-exchange molecular dynamics method for protein folding
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)01123-9
– volume: 267
  start-page: 249
  year: 1991
  ident: 10.1016/j.bbagen.2019.07.004_bb0360
  article-title: Multicanonical algorithms for first order phase transitions
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(91)91256-U
– volume: 1595
  start-page: 201
  year: 2002
  ident: 10.1016/j.bbagen.2019.07.004_bb0135
  article-title: Revisiting volume changes in pressure-induced protein unfolding
  publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.
  doi: 10.1016/S0167-4838(01)00344-2
– volume: 72
  start-page: 1
  year: 2005
  ident: 10.1016/j.bbagen.2019.07.004_bb0550
  article-title: Pressure-dependent transition in protein dynamics at about 4 kbar revealed by molecular dynamics simulation
  publication-title: Phys. Rev. E Stat. Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.72.061908
– volume: 95
  start-page: 1552
  year: 1998
  ident: 10.1016/j.bbagen.2019.07.004_bb0155
  article-title: The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.95.4.1552
– volume: 221
  start-page: 617
  year: 1994
  ident: 10.1016/j.bbagen.2019.07.004_bb0620
  article-title: Proteins under pressure: the influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1994.tb18774.x
– volume: 194
  start-page: 531
  year: 1987
  ident: 10.1016/j.bbagen.2019.07.004_bb0470
  article-title: Structure of ubiquitin refined at 1.8 Å resolution
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(87)90679-6
– volume: 106
  start-page: 393a
  year: 2014
  ident: 10.1016/j.bbagen.2019.07.004_bb0630
  article-title: Single-molecule analysis of the rotation of F1-ATPase under high hydrostatic pressure
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.11.2219
– volume: 148
  start-page: 215102
  year: 2018
  ident: 10.1016/j.bbagen.2019.07.004_bb0120
  article-title: Compressibility of the protein-water interface
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5026774
– volume: 195
  start-page: 1809
  year: 2013
  ident: 10.1016/j.bbagen.2019.07.004_bb0635
  article-title: High hydrostatic pressure induces counterclockwise to clockwise reversals of the Escherichia coli flagellar motor
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.02139-12
– volume: 9
  year: 2014
  ident: 10.1016/j.bbagen.2019.07.004_bb0130
  article-title: Mechanism of deep-sea fish α-actin pressure tolerance investigated by molecular dynamics simulations
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0085852
– volume: 83
  start-page: 8069
  year: 1986
  ident: 10.1016/j.bbagen.2019.07.004_bb0145
  article-title: Temperature dependence of the hydrophobic interaction in protein folding
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.83.21.8069
– start-page: 511
  year: 1914
  ident: 10.1016/j.bbagen.2019.07.004_bb0010
  article-title: The coagulation of albumen by pressure
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)88287-4
– volume: 33
  start-page: 797
  year: 2002
  ident: 10.1016/j.bbagen.2019.07.004_bb0055
  article-title: Small-angle X-ray scattering station at the SPring-8 RIKEN beamline
  publication-title: J. Appl. Crystallogr.
– volume: 65
  start-page: 603
  year: 1975
  ident: 10.1016/j.bbagen.2019.07.004_bb0080
  article-title: Pressure-induced depolymerization of spindle microtubules. I. Changes in birefringence and spindle length
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.65.3.603
– volume: 101
  start-page: 2054
  year: 1997
  ident: 10.1016/j.bbagen.2019.07.004_bb0170
  article-title: Monte Carlo study of the effect of pressure on hydrophobic association
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp962977p
– volume: 128
  start-page: 670
  year: 2006
  ident: 10.1016/j.bbagen.2019.07.004_bb0015
  article-title: Dehydration in the folding of reduced cytochrome c revealed by the electron-transfer-triggered folding under high pressure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja055084w
– volume: 20
  start-page: 21257
  year: 2018
  ident: 10.1016/j.bbagen.2019.07.004_bb0295
  article-title: Pressure increases the ice-like order of water at hydrophobic interfaces
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP03057J
– volume: 60
  start-page: 96
  year: 2001
  ident: 10.1016/j.bbagen.2019.07.004_bb0350
  article-title: Generalized-ensemble algorithms for molecular simulations of biopolymers
  publication-title: Biopolymers
  doi: 10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO;2-F
– volume: 77
  start-page: 570
  year: 2009
  ident: 10.1016/j.bbagen.2019.07.004_bb0480
  article-title: Molecular determinants of the p K a values of Asp and Glu residues in staphylococcal nuclease
  publication-title: Proteins Struct. Funct. Bioinforma
  doi: 10.1002/prot.22470
– volume: 12
  start-page: 8728
  year: 2010
  ident: 10.1016/j.bbagen.2019.07.004_bb0235
  article-title: Ab initio molecular dynamics simulations investigating proton transfer in perfluorosulfonic acid functionalized carbon nanotubes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp00130a
– volume: 111
  start-page: 1206
  year: 2007
  ident: 10.1016/j.bbagen.2019.07.004_bb0175
  article-title: Theoretical study of the cosolvent effect on the partial molar volume change of staphylococcal nuclease associated with pressure denaturation
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp064615f
– volume: 4
  start-page: 2079
  year: 2013
  ident: 10.1016/j.bbagen.2019.07.004_bb0435
  article-title: Pressure-induced helical structure of a peptide studied by simulated tempering molecular dynamics simulations
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz400769w
– volume: 40
  start-page: 13556
  year: 2001
  ident: 10.1016/j.bbagen.2019.07.004_bb0490
  article-title: Two folded conformers of ubiquitin revealed by high-pressure NMR
  publication-title: Biochemistry.
  doi: 10.1021/bi010922u
– volume: 129
  year: 2008
  ident: 10.1016/j.bbagen.2019.07.004_bb0395
  article-title: Statistically optimal analysis of samples from multiple equilibrium states
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2978177
– volume: 118
  start-page: 7761
  year: 2014
  ident: 10.1016/j.bbagen.2019.07.004_bb0450
  article-title: Computational study of the stability of the miniprotein trp-cage, the GB1 β-hairpin, and the AK16 peptide, under negative pressure
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp410651u
– volume: 86
  start-page: 681
  year: 2004
  ident: 10.1016/j.bbagen.2019.07.004_bb0265
  article-title: Diffusion and electrophoretic mobility of single-stranded RNA from molecular dynamics simulations
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(04)74147-8
– volume: 123
  start-page: 10997
  year: 2001
  ident: 10.1016/j.bbagen.2019.07.004_bb0160
  article-title: Molecular dynamics simulations of pressure effects on hydrophobic interactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja010446v
– volume: 196
  start-page: 1173
  year: 1962
  ident: 10.1016/j.bbagen.2019.07.004_bb0520
  article-title: Structure of lysozyme: a fourier map of the electron density at 6 Å resolution obtained by x-ray diffraction
  publication-title: Nature.
  doi: 10.1038/1961173a0
– volume: 117
  start-page: 5179
  year: 1995
  ident: 10.1016/j.bbagen.2019.07.004_bb0210
  article-title: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00124a002
– volume: 70
  start-page: 1175
  year: 2007
  ident: 10.1016/j.bbagen.2019.07.004_bb0500
  article-title: Water penetration in the low and high pressure native states of ubiquitin
  publication-title: Proteins Struct. Funct. Bioinforma
  doi: 10.1002/prot.21562
– volume: 91
  start-page: 283
  year: 1995
  ident: 10.1016/j.bbagen.2019.07.004_bb0195
  article-title: Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(95)00059-O
– volume: 75
  start-page: 911
  year: 2009
  ident: 10.1016/j.bbagen.2019.07.004_bb0425
  article-title: Effect of pressure on helix-coil transition of an alanine-based peptide: an FTIR study
  publication-title: Proteins Struct. Funct. Bioinforma
  doi: 10.1002/prot.22302
– volume: 10
  start-page: 92
  year: 1991
  ident: 10.1016/j.bbagen.2019.07.004_bb0540
  article-title: The crystal structure of staphylococcal nuclease refined at 1.7 Å resolution
  publication-title: Proteins Struct. Funct. Bioinforma
  doi: 10.1002/prot.340100203
– volume: 1764
  start-page: 522
  year: 2006
  ident: 10.1016/j.bbagen.2019.07.004_bb0125
  article-title: A molecular dynamics simulation of SNase and its hydration shell at high temperature and high pressure
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2006.01.003
SSID ssj0000595
Score 2.512261
SecondaryResourceType review_article
Snippet Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129395
SubjectTerms ambient pressure
Denaturation
High pressure
Molecular dynamics
Protein
protein structure
proteins
thermodynamics
Water
Title Molecular dynamics simulation of proteins under high pressure: Structure, function and thermodynamics
URI https://dx.doi.org/10.1016/j.bbagen.2019.07.004
https://www.ncbi.nlm.nih.gov/pubmed/31302180
https://www.proquest.com/docview/2258155849
https://www.proquest.com/docview/2388780396
Volume 1864
WOSCitedRecordID wos000508740100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: AIEXJ
  dateStart: 19950118
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6DQQXBIPB-DEZCXEJqdImXmJu09RpoFGQ6KTeLMd2tIw1KU07rSf-dd6L45QKxsaBS1RZcRr1-2p_tt97HyFvMH04UFHmc80D3LrZ96HJ-FyyQIcRyzKe1WYT8XCYjMf8S6fzw-XCXF7ERZFcXfHpf4Ua2gBsTJ39B7jbh0IDfAbQ4Qqww_VWwH9yhreetm7zlVflk8alqw5wxtIMGBmD-WMzDwsWe3U47GJWJ6p_rUvKLuzmNM57cxeyjGJxUrrHrp0H56U6y7H0gGfmXpqXdsdEYq0O2XXFrb1qkeK-T7Ua96x4Pc5nJUjZXw5JzvKlnEibTVTJZQkNq3CBubTJOd9sEJnbtYAlatBGgDTZWkHkgxhk6yOxrWjecK7vTbsoRzjz_zjY232H826awtCLtWx7vC7Eav2M12trDz-Lo9OTEzEajEdvp999tB3D4_nGg2WDbPVjxmFY3Dr4MBh_XE3mrDbuaV_XZV_WIYK_f_F16ua61UutYkYPyYNm-UEPLG0ekY4ptslda0i63Cb3Dp3_32NiWiJRhzhdEYmWGXVEojWRKBKJOiK9py2N3lFHIgokouskekJOjwajw2O_MeXwFYjlua9VrLNUg8pjCu0cI8MTmUZpj5uEq4BlzGgdg7DmsTYR0ypITab6GWcctC8z4Q7ZLMrCPCNUxj3FdcjDVEeR0UYm0vThkXA7i9Mk2iWh-zGFairWo3HKhXChiefCQiAQAhFgKAX08tteU1ux5Yb7Y4eTaFSnVZMCeHZDz9cOVgHY4EmbLEy5qARMkgkI9STif7knhPk9CUK-v0ueWk607xtiOAGMos9v0fsFub_6g70kmwCueUXuqMt5Xs32yEY8TvYaVv8EFM7I2Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulation+of+proteins+under+high+pressure%3A+Structure%2C+function+and+thermodynamics&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Hata%2C+Hiroaki&rft.au=Nishiyama%2C+Masayoshi&rft.au=Kitao%2C+Akio&rft.date=2020-02-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=2+p.129395-&rft_id=info:doi/10.1016%2Fj.bbagen.2019.07.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon