Molecular dynamics simulation of proteins under high pressure: Structure, function and thermodynamics
Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be address...
Gespeichert in:
| Veröffentlicht in: | Biochimica et biophysica acta. General subjects Jg. 1864; H. 2; S. 129395 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier B.V
01.02.2020
|
| Schlagworte: | |
| ISSN: | 0304-4165, 1872-8006, 1872-8006 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations.
First, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure.
Recent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening.
MD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.
[Display omitted]
•MD simulations demonstrate property differences of proteins and water between ambient and high-pressure conditions.•The TIP4P/2005 water model better reproduces pressure- dependent quantities of protein in solution.•Microsecond-long MD observes conformational transitions of proteins by pressure.•Enhanced samplings simulate large pressure-induced changes of protein conformation.•MD reveals that two amino acid differences allows pressure adaptation of deep-sea fish actins. |
|---|---|
| AbstractList | Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations.
First, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure.
Recent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening.
MD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.
[Display omitted]
•MD simulations demonstrate property differences of proteins and water between ambient and high-pressure conditions.•The TIP4P/2005 water model better reproduces pressure- dependent quantities of protein in solution.•Microsecond-long MD observes conformational transitions of proteins by pressure.•Enhanced samplings simulate large pressure-induced changes of protein conformation.•MD reveals that two amino acid differences allows pressure adaptation of deep-sea fish actins. Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations. First, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure. Recent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening. MD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules. Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations.BACKGROUNDMolecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations.First, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure.SCOPE OF REVIEWFirst, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure.Recent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening.MAJOR CONCLUSIONSRecent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening.MD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.GENERAL SIGNIFICANCEMD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules. Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations.First, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure.Recent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening.MD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules. |
| ArticleNumber | 129395 |
| Author | Hata, Hiroaki Kitao, Akio Nishiyama, Masayoshi |
| Author_xml | – sequence: 1 givenname: Hiroaki surname: Hata fullname: Hata, Hiroaki organization: School of Life Science and Technology, Tokyo Institute of Technology, Ookayama, 2-12-1 Meguro-ku, Tokyo 152-8550, Japan – sequence: 2 givenname: Masayoshi surname: Nishiyama fullname: Nishiyama, Masayoshi organization: Department of Physics, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan – sequence: 3 givenname: Akio surname: Kitao fullname: Kitao, Akio email: akitao@bio.titech.ac.jp organization: School of Life Science and Technology, Tokyo Institute of Technology, Ookayama, 2-12-1 Meguro-ku, Tokyo 152-8550, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31302180$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUFv1DAQhS1URLeFf4CQjxxIGCf2xu4BCVVQkIo4AGfLsSddrxK72A5S_z1ut-2BA52LR6PvPVnvnZCjEAMS8ppBy4Bt3-_bcTRXGNoOmGphaAH4M7JhcugaCbA9IhvogTecbcUxOcl5D3WEEi_Icc966JiEDcFvcUa7ziZRdxPM4m2m2S_1UHwMNE70OsWCPmS6BoeJ7vzVrt4w5zXhGf1R0mpLXd_RaQ32TmSCo2WHaYkPli_J88nMGV_dv6fk1-dPP8-_NJffL76ef7xsrABRGmcHN41Oil5YOXDgqKQZ-cgUSmVBTAKdGzoBanDIhbMw4mS7SQnFeyWwPyVvD771079XzEUvPlucZxMwrll3vZSDhF5tn0Y7IZkQkquKvrlH13FBp6-TX0y60Q8pVoAfAJtizgmnR4SBvi1L7_WhLH1bloZB17Kq7OwfmfXlLveSjJ-fEn84iLHm-cdj0tl6DBadT2iLdtH_3-Av5ACziA |
| CitedBy_id | crossref_primary_10_3390_foods14020285 crossref_primary_10_1007_s11224_022_02038_3 crossref_primary_10_3390_md17100576 crossref_primary_10_1016_j_bpj_2022_07_016 crossref_primary_10_1002_advs_202501046 crossref_primary_10_1080_10408398_2023_2217268 crossref_primary_10_1002_pssa_202400608 crossref_primary_10_1002_wcms_1708 crossref_primary_10_1007_s12551_020_00658_9 crossref_primary_10_1242_jcs_245555 crossref_primary_10_1016_j_foodcont_2021_108564 crossref_primary_10_1038_s41598_020_59172_3 crossref_primary_10_1016_j_plipres_2025_101355 crossref_primary_10_1021_acs_jpca_4c08065 crossref_primary_10_1016_j_bbrc_2020_01_047 crossref_primary_10_3390_ijms23115997 crossref_primary_10_1021_acs_jafc_5c09120 crossref_primary_10_1016_j_foodchem_2021_131243 crossref_primary_10_3390_foods12091820 crossref_primary_10_1371_journal_pone_0255866 crossref_primary_10_1016_j_foodchem_2022_133147 crossref_primary_10_1016_j_foodchem_2024_139544 crossref_primary_10_3390_foods11162521 crossref_primary_10_1016_j_fbio_2025_107152 crossref_primary_10_1016_j_foodres_2022_111193 crossref_primary_10_1016_j_lwt_2025_117751 crossref_primary_10_1007_s00894_024_06145_2 crossref_primary_10_1002_cphc_202400618 crossref_primary_10_1371_journal_pone_0291093 crossref_primary_10_1016_j_foodchem_2024_140118 crossref_primary_10_1016_j_sajb_2024_10_010 crossref_primary_10_1039_D5RA00059A crossref_primary_10_1126_science_adm7607 |
| Cites_doi | 10.1063/1.475162 10.1038/nchem.2785 10.1016/S0167-4838(01)00331-4 10.1073/pnas.0708199104 10.1103/PhysRevLett.63.1195 10.1021/jp712109q 10.1021/acs.jpcb.8b10309 10.1002/wcms.1347 10.1063/1.4901112 10.1021/jp111308f 10.1016/S0065-3233(08)60608-7 10.1063/1.2991176 10.1063/1.448118 10.1016/j.bbamem.2006.10.005 10.1016/j.bbapap.2006.01.010 10.1021/acs.langmuir.6b00799 10.7554/eLife.19274 10.1021/jp973084f 10.1063/1.4944991 10.1063/1.4996431 10.1016/S0167-4838(01)00343-0 10.1073/pnas.1200915109 10.1016/0968-0004(85)90108-2 10.1016/S0167-7322(99)00042-2 10.1073/pnas.1800690115 10.1002/prot.24654 10.1016/j.bbapap.2005.02.014 10.1073/pnas.1317973110 10.1063/1.439486 10.1063/1.2121687 10.1039/C7CP08242H 10.1016/0263-7855(96)00018-5 10.1002/jcc.540130812 10.1146/annurev.biochem.67.1.425 10.1016/j.bbapap.2005.11.015 10.1063/1.465445 10.1016/j.cplett.2004.04.073 10.1016/j.bpc.2017.03.010 10.1126/science.aat4010 10.1002/jcc.24767 10.1063/1.3694834 10.1073/pnas.89.19.9335 10.1080/09168451.2018.1448255 10.1063/1.3427224 10.1529/biophysj.108.133702 10.4049/jimmunol.177.1.519 10.1103/PhysRevLett.45.1196 10.1016/j.bbapap.2006.01.006 10.1103/PhysRevE.60.6757 10.1209/0295-5075/19/6/002 10.1143/JPSJ.79.074003 10.1002/prot.22680 10.1021/jp0477147 10.1016/S0006-3495(02)75157-6 10.1021/jp909701j 10.1073/pnas.1705279114 10.1021/acs.jpcb.8b02769 10.1002/prot.24125 10.1021/jp0743121 10.1016/S0167-4838(01)00347-8 10.1016/j.bbapap.2012.01.001 10.1016/S0167-4838(01)00340-5 10.1021/acs.jpcb.5b03828 10.1021/jp047579y 10.1107/S0907444900006685 10.1063/1.3449332 10.1021/ct500569b 10.1038/325763a0 10.1103/PhysRevLett.93.238105 10.1080/00268979600100761 10.1021/jp0756247 10.1016/j.jmgm.2013.09.006 10.1002/prot.25031 10.1021/acs.langmuir.7b01764 10.1016/j.chemphys.2007.07.018 10.1107/S2059798318009397 10.1073/pnas.0408527102 10.1529/biophysj.106.081802 10.1002/prot.5 10.1002/prot.21034 10.1016/S0167-4838(98)00102-2 10.1021/acs.jpcb.5b01017 10.1073/pnas.0508224102 10.1002/anie.201602757 10.1103/PhysRevE.79.011912 10.1021/jp002539p 10.1021/bi00156a031 10.1016/j.bbamem.2011.10.010 10.1016/j.bpj.2014.11.012 10.1016/S0006-3495(04)74082-5 10.1016/S0167-4838(01)00342-9 10.1016/S0009-2614(99)01123-9 10.1016/0370-2693(91)91256-U 10.1016/S0167-4838(01)00344-2 10.1103/PhysRevE.72.061908 10.1073/pnas.95.4.1552 10.1111/j.1432-1033.1994.tb18774.x 10.1016/0022-2836(87)90679-6 10.1016/j.bpj.2013.11.2219 10.1063/1.5026774 10.1128/JB.02139-12 10.1371/journal.pone.0085852 10.1073/pnas.83.21.8069 10.1016/S0021-9258(18)88287-4 10.1083/jcb.65.3.603 10.1021/jp962977p 10.1021/ja055084w 10.1039/C8CP03057J 10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO;2-F 10.1002/prot.22470 10.1039/c0cp00130a 10.1021/jp064615f 10.1021/jz400769w 10.1021/bi010922u 10.1063/1.2978177 10.1021/jp410651u 10.1016/S0006-3495(04)74147-8 10.1021/ja010446v 10.1038/1961173a0 10.1021/ja00124a002 10.1002/prot.21562 10.1016/0010-4655(95)00059-O 10.1002/prot.22302 10.1002/prot.340100203 10.1016/j.bbapap.2006.01.003 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.bbagen.2019.07.004 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| EISSN | 1872-8006 |
| ExternalDocumentID | 31302180 10_1016_j_bbagen_2019_07_004 S0304416519301758 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c505t-dc7dfbd8535c87404e98ab4b19e89c05f5edd725097de45dc0befc2f9594395e3 |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508740100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-4165 1872-8006 |
| IngestDate | Wed Oct 01 14:35:30 EDT 2025 Sat Sep 27 22:09:05 EDT 2025 Wed Feb 19 02:31:19 EST 2025 Sat Nov 29 07:21:32 EST 2025 Tue Nov 18 22:11:04 EST 2025 Fri Feb 23 02:50:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Water Molecular dynamics Denaturation Protein High pressure |
| Language | English |
| License | Copyright © 2019 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c505t-dc7dfbd8535c87404e98ab4b19e89c05f5edd725097de45dc0befc2f9594395e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 31302180 |
| PQID | 2258155849 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2388780396 proquest_miscellaneous_2258155849 pubmed_primary_31302180 crossref_primary_10_1016_j_bbagen_2019_07_004 crossref_citationtrail_10_1016_j_bbagen_2019_07_004 elsevier_sciencedirect_doi_10_1016_j_bbagen_2019_07_004 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biochimica et biophysica acta. General subjects |
| PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Noya, Menduiña, Aragones, Vega (bb0290) 2007; 111 Tran, Kitao (bb0610) 2019; 123 Julius, Al-Ayoubi, Paulus, Tolan, Winter (bb0625) 2018; 20 Calandrini, Hamon, Hinsen, Calligari, Bellissent-Funel, Kneller (bb0335) 2008; 345 Balny, Masson, Heremans (bb0105) 2002; 1595 Appavou, Gibrat, Bellissent-Funel (bb0340) 2006; 1764 Okumura, Okamoto (bb0375) 2008; 112 Wroblowski, Diaz, Heremans, Engelborghs (bb0225) 1996; 25 MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, Joseph-McCarthy, Kuchnir, Kuczera, Lau, Mattos, Michnick, Ngo, Nguyen, Prodhom, Reiher, Roux, Schlenkrich, Smith, Stote, Straub, Watanabe, Wiórkiewicz-Kuczera, Yin, Karplus (bb0215) 1998; 102 Mori, Okamoto (bb0505) 2017; 38 Wakai, Takemura, Morita, Kitao (bb0130) 2014; 9 Nishiyama, Sowa, Kimura, Homma, Ishijima, Terazima (bb0635) 2013; 195 Nishiyama (bb0090) 2017; 231 Finley, Varshavsky (bb0465) 1985; 10 Robustelli, Piana, Shaw (bb0320) 2018; 115 Royer (bb0135) 2002; 1595 Starr, Sciortino, Stanley (bb0250) 1999; 60 Fu, Freire (bb0140) 1992; 89 Okumura (bb0410) 2012; 80 Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman (bb0210) 1995; 117 Erlkamp, Marion, Martinez, Czeslik, Peters, Winter (bb0330) 2015; 119 Imamura, Kato (bb0425) 2009; 75 Plattner, Doerr, De Fabritiis, Noé (bb0615) 2017; 9 Paschek, Gnanakaran, Garcia (bb0400) 2005; 102 Day, García (bb0500) 2007; 70 Parrinello, Rahman (bb0190) 1980; 45 Martyna, Tuckerman, Tobias, Klein (bb0200) 1996; 87 Matsuki, Miyazaki, Sakano, Tamai, Kaneshina (bb0035) 2007; 1768 Hummer, Garde, García, Paulaitis, Pratt (bb0155) 1998; 95 Chow, Ferguson (bb0195) 1995; 91 Usui, Hiraki, Kawamoto, Kurihara, Nogi, Kato, Abe (bb0075) 2012; 1818 Ghosh, García, Garde (bb0160) 2001; 123 Kauzmann (bb0115) 1959; 14 Mori, Okumura (bb0440) 2014; 82 Paci (bb0095) 2002; 1595 Harris, Woolf (bb0325) 1980; 76 Shirts, Chodera (bb0395) 2008; 129 Sgourakis, Day, McCallum, Garcia (bb0495) 2008; 95 Sarupria, Ghosh, García, Garde (bb0555) 2010; 78 Collins, Hummer, Quillin, Matthews, Gruner (bb0525) 2005; 102 Kitchen, Reed, Levy (bb0205) 1992; 31 Hayashi, Nishiyama, Kazayama, Toyota, Harada, Takiguchi (bb0575) 2016; 32 Roche, Caro, Norberto, Barthe, Roumestand, Schlessman, Garcia, Garcia-Moreno, Royer (bb0045) 2012; 109 Salmon (bb0080) 1975; 65 Abascal, Vega (bb0285) 2005; 123 Mori, Okamoto (bb0380) 2010; 79 Sugita, Okamoto (bb0355) 1999; 314 Neumaier, Buttner, Bachmann, Kiefhaber (bb0430) 2013; 110 Humphrey, Dalke, Schulten (bb0485) 1996; 14 Zhu, Tajkhorshid, Schulten (bb0580) 2002; 83 Yamazaki, Imai, Hirata, Kovalenko (bb0175) 2007; 111 Imai, Sugita (bb0345) 2010; 114 Okuno, Nishiyama, Noji (bb0630) 2014; 106 Trzesniak, Lins, van Gunsteren (bb0570) 2006; 65 Berendsen, Postma, van Gunsteren, DiNola, Haak (bb0185) 1984; 81 Hershko, Ciechanover (bb0455) 1998; 67 Hasegawa, Tanimura (bb0310) 2011; 115 Baldwin (bb0145) 1986; 83 Yeh, Hummer (bb0275) 2004; 108 Meinhold, Smith (bb0550) 2005; 72 Imoto, Kibies, Rosin, Winter, Kast, Marx (bb0240) 2016; 55 Marchi, Akasaka (bb0220) 2001; 105 Kumar, Rosenberg, Bouzida, Swendsen, Kollman (bb0390) 1992; 13 Smolin, Winter (bb0545) 2004; 108 Yamamoto, Kumasaka, Inoko, Inoue, Yagi, Fujisawa, Uruga, Ueki, Iwamoto, Oka (bb0055) 2002; 33 Bottaro, Lindorff-Larsen (bb0180) 2018; 361 Boonyaratanakornkit, Park, Clark (bb0100) 2002; 1595 Andersen (bb0165) 1980; 72 Paschek, García (bb0405) 2004; 93 Yu, Mori, Ando, Harada, Jung, Sugita, Feig (bb0640) 2016; 5 Colloc'h, Girard, Dhaussy, Kahn, Ascone, Mezouar, Fourme (bb0065) 2006; 1764 Ferrenberg, Swendsen (bb0385) 1989; 63 Yoshidome, Harano, Kinoshita (bb0605) 2009; 79 Habenicht, Paddison, Tuckerman (bb0235) 2010; 12 Dünweg, Kremer (bb0260) 1993; 99 Bagchi, Balasubramanian, Klein (bb0255) 1997; 107 Smolin, Winter (bb0125) 2006; 1764 Cheung, Shah, Truskett (bb0590) 2006; 91 Yeh, Hummer (bb0265) 2004; 86 Ohmae, Murakami, Tate, Gekko, Hata, Akasaka, Kato (bb0020) 2012; 1824 Sarma, Paul (bb0595) 2012; 136 Kitahara, Yamada, Akasaka (bb0490) 2001; 40 Hoffmann, Mulder, Schäfer (bb0300) 2018; 122 Gekko (bb0110) 2015 Bridgman (bb0010) 1914 Zhu, Tajkhorshid, Schulten (bb0585) 2004; 86 Brooks, Gauthe, Terrill, Rogers, Templer, Ces, Seddon (bb0060) 2010; 81 Harano, Yoshidome, Kinoshita (bb0600) 2008; 129 Winter (bb0050) 2002; 1595 Berg, Neuhaus (bb0360) 1991; 267 Hatch, Stillinger, Debenedetti (bb0450) 2014; 118 Okumura, Okamoto (bb0370) 2004; 391 Ganoth, Tsfadia, Wiener (bb0460) 2013; 46 Castañeda, Fitch, Majumdar, Khangulov, Schlessman, García-Moreno (bb0480) 2009; 77 Yamauchi, Okumura (bb0415) 2017; 147 Fujii, Masanari-Fujii, Kobayashi, Kato, Nishiyama, Harada, Wakai, Sambongi (bb0025) 2018; 82 Persson, Halle (bb0120) 2018; 148 Heremans, Smeller (bb0005) 1998; 1386 Vass, Black, Herzig, Ward, Clegg, Allen (bb0085) 2010; 81 Mitsutake, Sugita, Okamoto (bb0350) 2001; 60 Hölzl, Horinek (bb0295) 2018; 20 Johnson, Lindsay, Nellas, Shen (bb0565) 2016; 84 Russo, Laloni, Filabozzi, Heyden (bb0535) 2017; 114 Weiss, Palm, Hilgenfeld (bb0475) 2000; 56 Meinhold, Smith, Kitao, Zewail (bb0530) 2007; 104 Kimura, Sakamoto, Morishima, Ishimori (bb0015) 2006; 128 Dzwolak, Kato, Taniguchi (bb0030) 2002; 1595 Vijay-kumar, Bugg, Cook (bb0470) 1987; 194 Onufriev, Izadi (bb0245) 2018; 8 Blake, Fenn, North, Phillips, Poljak (bb0520) 1962; 196 GROSS, JAENICKE (bb0620) 1994; 221 Hölzl, Kibies, Imoto, Frach, Suladze, Winter, Marx, Horinek, Kast (bb0230) 2016; 144 Payne, Matubayasi, Murphy, Levy (bb0170) 1997; 101 Mori, Okumura (bb0435) 2013; 4 Maeno, Sindhikara, Hirata, Otten, Dahlquist, Yokoyama, Akasaka, Mulder, Kitahara (bb0040) 2015; 108 Takemura, Kitao (bb0270) 2007; 111 Nagae, Yamada, Watanabe (bb0070) 2018; 74 Kauzmann (bb0150) 1987; 325 Best, Miller, Mittal (bb0445) 2014; 141 McCarthy, Grigera (bb0560) 2006; 1764 Hirata, Yagasaki, Matsumoto, Tanaka (bb0305) 2017; 33 Sirovetz, Schafer, Wolynes (bb0510) 2015; 119 Kalinichev, Gorbaty, Okhulkov (bb0280) 1999; 82 Marinari, Parisi (bb0365) 1992; 19 Takekiyo, Shimizu, Kato, Taniguchi (bb0420) 2005; 1750 Hynes, Fox (bb0540) 1991; 10 Best, Zheng, Mittal (bb0315) 2014; 10 Nash, Ballard, Weaver, Akinbi (bb0515) 2006; 177 Matsuki (10.1016/j.bbagen.2019.07.004_bb0035) 2007; 1768 Russo (10.1016/j.bbagen.2019.07.004_bb0535) 2017; 114 Winter (10.1016/j.bbagen.2019.07.004_bb0050) 2002; 1595 Trzesniak (10.1016/j.bbagen.2019.07.004_bb0570) 2006; 65 Hynes (10.1016/j.bbagen.2019.07.004_bb0540) 1991; 10 Hölzl (10.1016/j.bbagen.2019.07.004_bb0295) 2018; 20 Cornell (10.1016/j.bbagen.2019.07.004_bb0210) 1995; 117 Baldwin (10.1016/j.bbagen.2019.07.004_bb0145) 1986; 83 Ganoth (10.1016/j.bbagen.2019.07.004_bb0460) 2013; 46 Wakai (10.1016/j.bbagen.2019.07.004_bb0130) 2014; 9 Zhu (10.1016/j.bbagen.2019.07.004_bb0585) 2004; 86 Mori (10.1016/j.bbagen.2019.07.004_bb0380) 2010; 79 Mitsutake (10.1016/j.bbagen.2019.07.004_bb0350) 2001; 60 Best (10.1016/j.bbagen.2019.07.004_bb0445) 2014; 141 Habenicht (10.1016/j.bbagen.2019.07.004_bb0235) 2010; 12 Hölzl (10.1016/j.bbagen.2019.07.004_bb0230) 2016; 144 Kauzmann (10.1016/j.bbagen.2019.07.004_bb0115) 1959; 14 Plattner (10.1016/j.bbagen.2019.07.004_bb0615) 2017; 9 Abascal (10.1016/j.bbagen.2019.07.004_bb0285) 2005; 123 Yamamoto (10.1016/j.bbagen.2019.07.004_bb0055) 2002; 33 Meinhold (10.1016/j.bbagen.2019.07.004_bb0530) 2007; 104 Hershko (10.1016/j.bbagen.2019.07.004_bb0455) 1998; 67 Smolin (10.1016/j.bbagen.2019.07.004_bb0545) 2004; 108 Sirovetz (10.1016/j.bbagen.2019.07.004_bb0510) 2015; 119 Marinari (10.1016/j.bbagen.2019.07.004_bb0365) 1992; 19 Onufriev (10.1016/j.bbagen.2019.07.004_bb0245) 2018; 8 Calandrini (10.1016/j.bbagen.2019.07.004_bb0335) 2008; 345 Paschek (10.1016/j.bbagen.2019.07.004_bb0405) 2004; 93 Andersen (10.1016/j.bbagen.2019.07.004_bb0165) 1980; 72 Gekko (10.1016/j.bbagen.2019.07.004_bb0110) 2015 Salmon (10.1016/j.bbagen.2019.07.004_bb0080) 1975; 65 Ohmae (10.1016/j.bbagen.2019.07.004_bb0020) 2012; 1824 Castañeda (10.1016/j.bbagen.2019.07.004_bb0480) 2009; 77 GROSS (10.1016/j.bbagen.2019.07.004_bb0620) 1994; 221 Kimura (10.1016/j.bbagen.2019.07.004_bb0015) 2006; 128 Bottaro (10.1016/j.bbagen.2019.07.004_bb0180) 2018; 361 Ghosh (10.1016/j.bbagen.2019.07.004_bb0160) 2001; 123 Hasegawa (10.1016/j.bbagen.2019.07.004_bb0310) 2011; 115 Hirata (10.1016/j.bbagen.2019.07.004_bb0305) 2017; 33 Imai (10.1016/j.bbagen.2019.07.004_bb0345) 2010; 114 Shirts (10.1016/j.bbagen.2019.07.004_bb0395) 2008; 129 Kalinichev (10.1016/j.bbagen.2019.07.004_bb0280) 1999; 82 Takemura (10.1016/j.bbagen.2019.07.004_bb0270) 2007; 111 Sarupria (10.1016/j.bbagen.2019.07.004_bb0555) 2010; 78 Heremans (10.1016/j.bbagen.2019.07.004_bb0005) 1998; 1386 Dzwolak (10.1016/j.bbagen.2019.07.004_bb0030) 2002; 1595 Harris (10.1016/j.bbagen.2019.07.004_bb0325) 1980; 76 Payne (10.1016/j.bbagen.2019.07.004_bb0170) 1997; 101 Imamura (10.1016/j.bbagen.2019.07.004_bb0425) 2009; 75 Kitchen (10.1016/j.bbagen.2019.07.004_bb0205) 1992; 31 Persson (10.1016/j.bbagen.2019.07.004_bb0120) 2018; 148 Fujii (10.1016/j.bbagen.2019.07.004_bb0025) 2018; 82 Sgourakis (10.1016/j.bbagen.2019.07.004_bb0495) 2008; 95 Robustelli (10.1016/j.bbagen.2019.07.004_bb0320) 2018; 115 Mori (10.1016/j.bbagen.2019.07.004_bb0435) 2013; 4 Collins (10.1016/j.bbagen.2019.07.004_bb0525) 2005; 102 Nishiyama (10.1016/j.bbagen.2019.07.004_bb0635) 2013; 195 Sugita (10.1016/j.bbagen.2019.07.004_bb0355) 1999; 314 Royer (10.1016/j.bbagen.2019.07.004_bb0135) 2002; 1595 Meinhold (10.1016/j.bbagen.2019.07.004_bb0550) 2005; 72 Harano (10.1016/j.bbagen.2019.07.004_bb0600) 2008; 129 Chow (10.1016/j.bbagen.2019.07.004_bb0195) 1995; 91 Brooks (10.1016/j.bbagen.2019.07.004_bb0060) 2010; 81 Vijay-kumar (10.1016/j.bbagen.2019.07.004_bb0470) 1987; 194 Balny (10.1016/j.bbagen.2019.07.004_bb0105) 2002; 1595 Hayashi (10.1016/j.bbagen.2019.07.004_bb0575) 2016; 32 Okuno (10.1016/j.bbagen.2019.07.004_bb0630) 2014; 106 Tran (10.1016/j.bbagen.2019.07.004_bb0610) 2019; 123 Appavou (10.1016/j.bbagen.2019.07.004_bb0340) 2006; 1764 Berg (10.1016/j.bbagen.2019.07.004_bb0360) 1991; 267 McCarthy (10.1016/j.bbagen.2019.07.004_bb0560) 2006; 1764 Hummer (10.1016/j.bbagen.2019.07.004_bb0155) 1998; 95 Ferrenberg (10.1016/j.bbagen.2019.07.004_bb0385) 1989; 63 Starr (10.1016/j.bbagen.2019.07.004_bb0250) 1999; 60 Humphrey (10.1016/j.bbagen.2019.07.004_bb0485) 1996; 14 Yeh (10.1016/j.bbagen.2019.07.004_bb0275) 2004; 108 Yoshidome (10.1016/j.bbagen.2019.07.004_bb0605) 2009; 79 MacKerell (10.1016/j.bbagen.2019.07.004_bb0215) 1998; 102 Erlkamp (10.1016/j.bbagen.2019.07.004_bb0330) 2015; 119 Cheung (10.1016/j.bbagen.2019.07.004_bb0590) 2006; 91 Colloc'h (10.1016/j.bbagen.2019.07.004_bb0065) 2006; 1764 Fu (10.1016/j.bbagen.2019.07.004_bb0140) 1992; 89 Hoffmann (10.1016/j.bbagen.2019.07.004_bb0300) 2018; 122 Roche (10.1016/j.bbagen.2019.07.004_bb0045) 2012; 109 Day (10.1016/j.bbagen.2019.07.004_bb0500) 2007; 70 Kauzmann (10.1016/j.bbagen.2019.07.004_bb0150) 1987; 325 Bridgman (10.1016/j.bbagen.2019.07.004_bb0010) 1914 Marchi (10.1016/j.bbagen.2019.07.004_bb0220) 2001; 105 Okumura (10.1016/j.bbagen.2019.07.004_bb0370) 2004; 391 Johnson (10.1016/j.bbagen.2019.07.004_bb0565) 2016; 84 Usui (10.1016/j.bbagen.2019.07.004_bb0075) 2012; 1818 Noya (10.1016/j.bbagen.2019.07.004_bb0290) 2007; 111 Finley (10.1016/j.bbagen.2019.07.004_bb0465) 1985; 10 Boonyaratanakornkit (10.1016/j.bbagen.2019.07.004_bb0100) 2002; 1595 Dünweg (10.1016/j.bbagen.2019.07.004_bb0260) 1993; 99 Mori (10.1016/j.bbagen.2019.07.004_bb0440) 2014; 82 Best (10.1016/j.bbagen.2019.07.004_bb0315) 2014; 10 Neumaier (10.1016/j.bbagen.2019.07.004_bb0430) 2013; 110 Okumura (10.1016/j.bbagen.2019.07.004_bb0375) 2008; 112 Yamauchi (10.1016/j.bbagen.2019.07.004_bb0415) 2017; 147 Nishiyama (10.1016/j.bbagen.2019.07.004_bb0090) 2017; 231 Imoto (10.1016/j.bbagen.2019.07.004_bb0240) 2016; 55 Paschek (10.1016/j.bbagen.2019.07.004_bb0400) 2005; 102 Yeh (10.1016/j.bbagen.2019.07.004_bb0265) 2004; 86 Maeno (10.1016/j.bbagen.2019.07.004_bb0040) 2015; 108 Takekiyo (10.1016/j.bbagen.2019.07.004_bb0420) 2005; 1750 Kitahara (10.1016/j.bbagen.2019.07.004_bb0490) 2001; 40 Berendsen (10.1016/j.bbagen.2019.07.004_bb0185) 1984; 81 Sarma (10.1016/j.bbagen.2019.07.004_bb0595) 2012; 136 Yamazaki (10.1016/j.bbagen.2019.07.004_bb0175) 2007; 111 Yu (10.1016/j.bbagen.2019.07.004_bb0640) 2016; 5 Martyna (10.1016/j.bbagen.2019.07.004_bb0200) 1996; 87 Kumar (10.1016/j.bbagen.2019.07.004_bb0390) 1992; 13 Nash (10.1016/j.bbagen.2019.07.004_bb0515) 2006; 177 Zhu (10.1016/j.bbagen.2019.07.004_bb0580) 2002; 83 Weiss (10.1016/j.bbagen.2019.07.004_bb0475) 2000; 56 Wroblowski (10.1016/j.bbagen.2019.07.004_bb0225) 1996; 25 Okumura (10.1016/j.bbagen.2019.07.004_bb0410) 2012; 80 Nagae (10.1016/j.bbagen.2019.07.004_bb0070) 2018; 74 Paci (10.1016/j.bbagen.2019.07.004_bb0095) 2002; 1595 Bagchi (10.1016/j.bbagen.2019.07.004_bb0255) 1997; 107 Smolin (10.1016/j.bbagen.2019.07.004_bb0125) 2006; 1764 Blake (10.1016/j.bbagen.2019.07.004_bb0520) 1962; 196 Parrinello (10.1016/j.bbagen.2019.07.004_bb0190) 1980; 45 Mori (10.1016/j.bbagen.2019.07.004_bb0505) 2017; 38 Vass (10.1016/j.bbagen.2019.07.004_bb0085) 2010; 81 Hatch (10.1016/j.bbagen.2019.07.004_bb0450) 2014; 118 Julius (10.1016/j.bbagen.2019.07.004_bb0625) 2018; 20 |
| References_xml | – volume: 109 start-page: 6945 year: 2012 end-page: 6950 ident: bb0045 article-title: Cavities determine the pressure unfolding of proteins publication-title: Proc. Natl. Acad. Sci. – volume: 314 start-page: 141 year: 1999 end-page: 151 ident: bb0355 article-title: Replica-exchange molecular dynamics method for protein folding publication-title: Chem. Phys. Lett. – volume: 60 start-page: 96 year: 2001 end-page: 123 ident: bb0350 article-title: Generalized-ensemble algorithms for molecular simulations of biopolymers publication-title: Biopolymers – volume: 87 start-page: 1117 year: 1996 end-page: 1157 ident: bb0200 article-title: Explicit reversible integrators for extended systems dynamics publication-title: Mol. Phys. – volume: 123 start-page: 2469 year: 2019 end-page: 2478 ident: bb0610 article-title: Dissociation process of a MDM2/p53 complex investigated by parallel cascade selection molecular dynamics and the Markov state model publication-title: J. Phys. Chem. B – volume: 65 start-page: 136 year: 2006 end-page: 144 ident: bb0570 article-title: Protein under pressure: molecular dynamics simulation of the arc repressor publication-title: Proteins Struct. Funct. Bioinforma – volume: 105 start-page: 711 year: 2001 end-page: 714 ident: bb0220 article-title: Simulation of hydrated BPTI at high pressure: changes in hydrogen bonding and its relation with NMR experiments publication-title: J. Phys. Chem. B – volume: 60 start-page: 6757 year: 1999 end-page: 6768 ident: bb0250 article-title: Dynamics of simulated water under pressure publication-title: Phys. Rev. E – volume: 95 start-page: 3943 year: 2008 end-page: 3955 ident: bb0495 article-title: Pressure effects on the ensemble dynamics of ubiquitin inspected with molecular dynamics simulations and isotropic reorientational Eigenmode dynamics publication-title: Biophys. J. – volume: 112 start-page: 12038 year: 2008 end-page: 12049 ident: bb0375 article-title: Temperature and pressure dependence of alanine dipeptide studied by multibaric-multithermal molecular dynamics simulations publication-title: J. Phys. Chem. B – volume: 123 start-page: 10997 year: 2001 end-page: 11003 ident: bb0160 article-title: Molecular dynamics simulations of pressure effects on hydrophobic interactions publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 11870 year: 2007 end-page: 11872 ident: bb0270 article-title: Effects of water model and simulation box size on protein diffusions motions publication-title: J. Phys. Chem. B – volume: 82 start-page: 2970 year: 2014 end-page: 2981 ident: bb0440 article-title: Molecular dynamics of the structural changes of helical peptides induced by pressure publication-title: Proteins Struct. Funct. Bioinforma – volume: 25 start-page: 446 year: 1996 end-page: 455 ident: bb0225 article-title: Molecular mechanisms of pressure induced conformational changes in BPTI publication-title: Proteins Struct. Funct. Genet. – volume: 81 start-page: 3684 year: 1984 end-page: 3690 ident: bb0185 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. – volume: 84 start-page: 820 year: 2016 end-page: 827 ident: bb0565 article-title: Pressure-induced conformational switch of an interfacial protein publication-title: Proteins Struct. Funct. Bioinforma – volume: 10 start-page: 343 year: 1985 end-page: 347 ident: bb0465 article-title: The ubiquitin system: functions and mechanisms publication-title: Trends Biochem. Sci. – volume: 1764 start-page: 506 year: 2006 end-page: 515 ident: bb0560 article-title: Pressure denaturation of apomyoglobin: a molecular dynamics simulation study publication-title: Biochim. Biophys. Acta, Proteins Proteomics – volume: 119 start-page: 4842 year: 2015 end-page: 4848 ident: bb0330 article-title: Influence of pressure and crowding on the sub-nanosecond dynamics of globular proteins publication-title: J. Phys. Chem. B – volume: 83 start-page: 8069 year: 1986 end-page: 8072 ident: bb0145 article-title: Temperature dependence of the hydrophobic interaction in protein folding publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 221 start-page: 617 year: 1994 end-page: 630 ident: bb0620 article-title: Proteins under pressure: the influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes publication-title: Eur. J. Biochem. – volume: 1818 start-page: 574 year: 2012 end-page: 583 ident: bb0075 article-title: Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement publication-title: Biochim. Biophys. Acta Biomembr. – volume: 10 start-page: 5113 year: 2014 end-page: 5124 ident: bb0315 article-title: Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association publication-title: J. Chem. Theory Comput. – volume: 9 start-page: 1005 year: 2017 end-page: 1011 ident: bb0615 article-title: Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling publication-title: Nat. Chem. – volume: 1595 start-page: 131 year: 2002 end-page: 144 ident: bb0030 article-title: Fourier transform infrared spectroscopy in high-pressure studies on proteins publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. – start-page: 75 year: 2015 end-page: 108 ident: bb0110 article-title: Volume and compressibility of proteins publication-title: High Press. Biosci. Basic Concepts, Appl. Front – volume: 196 start-page: 1173 year: 1962 end-page: 1176 ident: bb0520 article-title: Structure of lysozyme: a fourier map of the electron density at 6 Å resolution obtained by x-ray diffraction publication-title: Nature. – volume: 110 start-page: 20988 year: 2013 end-page: 20993 ident: bb0430 article-title: Transition state and ground state properties of the helix-coil transition in peptides deduced from high-pressure studies publication-title: Proc. Natl. Acad. Sci. – volume: 72 start-page: 1 year: 2005 end-page: 5 ident: bb0550 article-title: Pressure-dependent transition in protein dynamics at about 4 kbar revealed by molecular dynamics simulation publication-title: Phys. Rev. E Stat. Nonlinear, Soft Matter Phys. – volume: 122 start-page: 5038 year: 2018 end-page: 5048 ident: bb0300 article-title: Accurate methyl group dynamics in protein simulations with AMBER force fields publication-title: J. Phys. Chem. B – start-page: 511 year: 1914 end-page: 512 ident: bb0010 article-title: The coagulation of albumen by pressure publication-title: J. Biol. Chem. – volume: 91 start-page: 2427 year: 2006 end-page: 2435 ident: bb0590 article-title: Heteropolymer collapse theory for protein folding in the pressure-temperature plane publication-title: Biophys. J. – volume: 10 start-page: 92 year: 1991 end-page: 105 ident: bb0540 article-title: The crystal structure of staphylococcal nuclease refined at 1.7 Å resolution publication-title: Proteins Struct. Funct. Bioinforma – volume: 19 start-page: 451 year: 1992 end-page: 458 ident: bb0365 article-title: Simulated tempering: a new Monte Carlo scheme publication-title: Europhys. Lett. – volume: 13 start-page: 1011 year: 1992 end-page: 1021 ident: bb0390 article-title: The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method publication-title: J. Comput. Chem. – volume: 1750 start-page: 1 year: 2005 end-page: 4 ident: bb0420 article-title: Pressure-tuning FT-IR spectroscopic study on the helix–coil transition of Ala-rich oligopeptide in aqueous solution publication-title: Biochim. Biophys. Acta, Proteins Proteomics – volume: 46 start-page: 29 year: 2013 end-page: 40 ident: bb0460 article-title: Ubiquitin: molecular modeling and simulations publication-title: J. Mol. Graph. Model – volume: 1595 start-page: 201 year: 2002 end-page: 209 ident: bb0135 article-title: Revisiting volume changes in pressure-induced protein unfolding publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. – volume: 123 start-page: 234505 year: 2005 ident: bb0285 article-title: A general purpose model for the condensed phases of water: TIP4P/2005 publication-title: J. Chem. Phys. – volume: 1595 start-page: 235 year: 2002 end-page: 249 ident: bb0100 article-title: Pressure effects on intra- and intermolecular interactions within proteins publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. – volume: 108 start-page: 133 year: 2015 end-page: 145 ident: bb0040 article-title: Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme publication-title: Biophys. J. – volume: 33 start-page: 11561 year: 2017 end-page: 11569 ident: bb0305 article-title: Phase diagram of TIP4P/2005 water at high pressure publication-title: Langmuir – volume: 345 start-page: 289 year: 2008 end-page: 297 ident: bb0335 article-title: Relaxation dynamics of lysozyme in solution under pressure: combining molecular dynamics simulations and quasielastic neutron scattering publication-title: Chem. Phys. – volume: 102 start-page: 3586 year: 1998 end-page: 3616 ident: bb0215 article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins publication-title: J. Phys. Chem. B – volume: 77 start-page: 570 year: 2009 end-page: 588 ident: bb0480 article-title: Molecular determinants of the p K a values of Asp and Glu residues in staphylococcal nuclease publication-title: Proteins Struct. Funct. Bioinforma – volume: 67 start-page: 425 year: 1998 end-page: 479 ident: bb0455 article-title: The ubiquitin system publication-title: Annu. Rev. Biochem. – volume: 195 start-page: 1809 year: 2013 end-page: 1814 ident: bb0635 article-title: High hydrostatic pressure induces counterclockwise to clockwise reversals of the publication-title: J. Bacteriol. – volume: 33 start-page: 797 year: 2002 end-page: 800 ident: bb0055 article-title: Small-angle X-ray scattering station at the SPring-8 RIKEN beamline publication-title: J. Appl. Crystallogr. – volume: 129 year: 2008 ident: bb0395 article-title: Statistically optimal analysis of samples from multiple equilibrium states publication-title: J. Chem. Phys. – volume: 75 start-page: 911 year: 2009 end-page: 918 ident: bb0425 article-title: Effect of pressure on helix-coil transition of an alanine-based peptide: an FTIR study publication-title: Proteins Struct. Funct. Bioinforma – volume: 5 start-page: 1 year: 2016 end-page: 22 ident: bb0640 article-title: Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm publication-title: Elife – volume: 40 start-page: 13556 year: 2001 end-page: 13563 ident: bb0490 article-title: Two folded conformers of ubiquitin revealed by high-pressure NMR publication-title: Biochemistry. – volume: 1595 start-page: 3 year: 2002 end-page: 10 ident: bb0105 article-title: High pressure effects on biological macromolecules: from structural changes to alteration of cellular processes publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. – volume: 89 start-page: 9335 year: 1992 end-page: 9338 ident: bb0140 article-title: On the origin of the enthalpy and entropy convergence temperatures in protein folding publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 74 start-page: 895 year: 2018 end-page: 905 ident: bb0070 article-title: High-pressure protein crystal structure analysis of publication-title: Acta Crystallogr. Sect. D, Struct. Biol. – volume: 12 start-page: 8728 year: 2010 end-page: 8732 ident: bb0235 article-title: Ab initio molecular dynamics simulations investigating proton transfer in perfluorosulfonic acid functionalized carbon nanotubes publication-title: Phys. Chem. Chem. Phys. – volume: 99 start-page: 6983 year: 1993 end-page: 6997 ident: bb0260 article-title: Molecular dynamics simulation of a polymer chain in solution publication-title: J. Chem. Phys. – volume: 56 start-page: 952 year: 2000 end-page: 958 ident: bb0475 article-title: Crystallization, structure solution and refinement of hen egg-white lysozyme at pH 8.0 in the presence of MPD publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. – volume: 136 start-page: 114510 year: 2012 ident: bb0595 article-title: The effect of pressure on the hydration structure around hydrophobic solute: a molecular dynamics simulation study publication-title: J. Chem. Phys. – volume: 72 start-page: 2384 year: 1980 end-page: 2393 ident: bb0165 article-title: Molecular dynamics simulations at constant pressure and/or temperature publication-title: J. Chem. Phys. – volume: 32 start-page: 3794 year: 2016 end-page: 3802 ident: bb0575 article-title: Reversible morphological control of tubulin-encapsulating giant liposomes by hydrostatic pressure publication-title: Langmuir. – volume: 65 start-page: 603 year: 1975 end-page: 614 ident: bb0080 article-title: Pressure-induced depolymerization of spindle microtubules. I. Changes in birefringence and spindle length publication-title: J. Cell Biol. – volume: 1824 start-page: 511 year: 2012 end-page: 519 ident: bb0020 article-title: Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and publication-title: Biochim. Biophys. Acta, Proteins Proteomics – volume: 81 year: 2010 ident: bb0085 article-title: A multipurpose modular system for high-resolution microscopy at high hydrostatic pressure publication-title: Rev. Sci. Instrum. – volume: 194 start-page: 531 year: 1987 end-page: 544 ident: bb0470 article-title: Structure of ubiquitin refined at 1.8 Å resolution publication-title: J. Mol. Biol. – volume: 177 start-page: 519 year: 2006 end-page: 526 ident: bb0515 article-title: The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo publication-title: J. Immunol. – volume: 107 start-page: 8561 year: 1997 end-page: 8567 ident: bb0255 article-title: Effects of pressure on structural and dynamical properties of associated liquids: molecular dynamics calculations for the extended simple point charge model of water, the publication-title: J. Chem. Phys. – volume: 86 start-page: 681 year: 2004 end-page: 689 ident: bb0265 article-title: Diffusion and electrophoretic mobility of single-stranded RNA from molecular dynamics simulations publication-title: Biophys. J. – volume: 128 start-page: 670 year: 2006 end-page: 671 ident: bb0015 article-title: Dehydration in the folding of reduced cytochrome c revealed by the electron-transfer-triggered folding under high pressure publication-title: J. Am. Chem. Soc. – volume: 267 start-page: 249 year: 1991 end-page: 253 ident: bb0360 article-title: Multicanonical algorithms for first order phase transitions publication-title: Phys. Lett. B – volume: 91 start-page: 283 year: 1995 end-page: 289 ident: bb0195 article-title: Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling publication-title: Comput. Phys. Commun. – volume: 93 start-page: 10 year: 2004 end-page: 13 ident: bb0405 article-title: Reversible temperature and pressure denaturation of a protein fragment: a replica exchange molecular dynamics simulation study publication-title: Phys. Rev. Lett. – volume: 101 start-page: 2054 year: 1997 end-page: 2060 ident: bb0170 article-title: Monte Carlo study of the effect of pressure on hydrophobic association publication-title: J. Phys. Chem. B – volume: 111 start-page: 15877 year: 2007 end-page: 15888 ident: bb0290 article-title: Equation of state, thermal expansion coefficient, and isothermal compressibility for ices Ih, II, III, V, and VI, as obtained from computer simulation publication-title: J. Phys. Chem. C – volume: 391 start-page: 248 year: 2004 end-page: 253 ident: bb0370 article-title: Molecular dynamics simulations in the multibaric-multithermal ensemble publication-title: Chem. Phys. Lett. – volume: 1764 start-page: 522 year: 2006 end-page: 534 ident: bb0125 article-title: A molecular dynamics simulation of SNase and its hydration shell at high temperature and high pressure publication-title: Biochim. Biophys. Acta – volume: 129 start-page: 145103 year: 2008 ident: bb0600 article-title: Molecular mechanism of pressure denaturation of proteins publication-title: J. Chem. Phys. – volume: 70 start-page: 1175 year: 2007 end-page: 1184 ident: bb0500 article-title: Water penetration in the low and high pressure native states of ubiquitin publication-title: Proteins Struct. Funct. Bioinforma – volume: 79 year: 2009 ident: bb0605 article-title: Pressure effects on structures formed by entropically driven self-assembly: illustration for denaturation of proteins publication-title: Phys. Rev. E – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: bb0485 article-title: VMD: visual molecular dynamics publication-title: J. Mol. Graph. – volume: 144 start-page: 144104 year: 2016 ident: bb0230 article-title: Design principles for high–pressure force fields: aqueous TMAO solutions from ambient to kilobar pressures publication-title: J. Chem. Phys. – volume: 141 year: 2014 ident: bb0445 article-title: Role of solvation in pressure-induced helix stabilization publication-title: J. Chem. Phys. – volume: 14 start-page: 1 year: 1959 end-page: 63 ident: bb0115 article-title: Some factors in the interpretation of protein denaturation publication-title: Adv. Protein Chem. – volume: 82 start-page: 57 year: 1999 end-page: 72 ident: bb0280 article-title: Structure and hydrogen bonding of liquid water at high hydrostatic pressures: Monte Carlo NPT-ensemble simulations up to 10 kbar publication-title: J. Mol. Liq. – volume: 55 start-page: 9534 year: 2016 end-page: 9538 ident: bb0240 article-title: Toward extreme biophysics: deciphering the infrared response of biomolecular solutions at high pressures publication-title: Angew. Chem. Int. Ed. – volume: 8 year: 2018 ident: bb0245 article-title: Water models for biomolecular simulations publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 231 start-page: 71 year: 2017 end-page: 78 ident: bb0090 article-title: High-pressure microscopy for tracking dynamic properties of molecular machines publication-title: Biophys. Chem. – volume: 81 year: 2010 ident: bb0060 article-title: Automated high pressure cell for pressure jump x-ray diffraction publication-title: Rev. Sci. Instrum. – volume: 1768 start-page: 479 year: 2007 end-page: 489 ident: bb0035 article-title: Thermotropic and barotropic phase transitions in bilayer membranes of ether-linked phospholipids with varying alkyl chain lengths publication-title: Biochim. Biophys. Acta Biomembr. – volume: 1764 start-page: 391 year: 2006 end-page: 397 ident: bb0065 article-title: High pressure macromolecular crystallography: The 140-MPa crystal structure at 2.3 Å resolution of urate oxidase, a 135-kDa tetrameric assembly publication-title: Biochim. Biophys. Acta, Proteins Proteomics – volume: 102 start-page: 16668 year: 2005 end-page: 16671 ident: bb0525 article-title: Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation publication-title: Proc. Natl. Acad. Sci. – volume: 1386 start-page: 353 year: 1998 end-page: 370 ident: bb0005 article-title: Protein structure and dynamics at high pressure publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. – volume: 114 start-page: 11410 year: 2017 end-page: 11415 ident: bb0535 article-title: Pressure effects on collective density fluctuations in water and protein solutions publication-title: Proc. Natl. Acad. Sci. – volume: 95 start-page: 1552 year: 1998 end-page: 1555 ident: bb0155 article-title: The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins publication-title: Proc. Natl. Acad. Sci. – volume: 118 start-page: 7761 year: 2014 end-page: 7769 ident: bb0450 article-title: Computational study of the stability of the miniprotein trp-cage, the GB1 β-hairpin, and the AK16 peptide, under negative pressure publication-title: J. Phys. Chem. B – volume: 108 start-page: 15928 year: 2004 end-page: 15937 ident: bb0545 article-title: Molecular dynamics simulations of staphylococcal nuclease: properties of water at the protein surface publication-title: J. Phys. Chem. B – volume: 38 start-page: 1167 year: 2017 end-page: 1173 ident: bb0505 article-title: Conformational changes of ubiquitin under high pressure conditions: a pressure simulated tempering molecular dynamics study publication-title: J. Comput. Chem. – volume: 361 start-page: 355 year: 2018 end-page: 360 ident: bb0180 article-title: Biophysical experiments and biomolecular simulations: a perfect match? publication-title: Science – volume: 108 start-page: 15873 year: 2004 end-page: 15879 ident: bb0275 article-title: System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions publication-title: J. Phys. Chem. B – volume: 86 start-page: 50 year: 2004 end-page: 57 ident: bb0585 article-title: Theory and simulation of water permeation in aquaporin-1 publication-title: Biophys. J. – volume: 45 start-page: 1196 year: 1980 end-page: 1199 ident: bb0190 article-title: Crystal structure and pair potentials: a molecular-dynamics study publication-title: Phys. Rev. Lett. – volume: 76 start-page: 377 year: 1980 ident: bb0325 article-title: Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water publication-title: J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases – volume: 83 start-page: 154 year: 2002 end-page: 160 ident: bb0580 article-title: Pressure-induced water transport in membrane channels studied by molecular dynamics publication-title: Biophys. J. – volume: 111 start-page: 1206 year: 2007 end-page: 1212 ident: bb0175 article-title: Theoretical study of the cosolvent effect on the partial molar volume change of staphylococcal nuclease associated with pressure denaturation publication-title: J. Phys. Chem. B – volume: 104 start-page: 17261 year: 2007 end-page: 17265 ident: bb0530 article-title: Picosecond fluctuating protein energy landscape mapped by pressure temperature molecular dynamics simulation publication-title: Proc. Natl. Acad. Sci. – volume: 114 start-page: 2281 year: 2010 end-page: 2286 ident: bb0345 article-title: Dynamic correlation between pressure-induced protein structural transition and water penetration publication-title: J. Phys. Chem. B – volume: 102 start-page: 6765 year: 2005 end-page: 6770 ident: bb0400 article-title: Simulations of the pressure and temperature unfolding of an alpha-helical peptide publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1764 start-page: 414 year: 2006 end-page: 423 ident: bb0340 article-title: Influence of pressure on structure and dynamics of bovine pancreatic trypsin inhibitor (BPTI): small angle and quasi-elastic neutron scattering studies publication-title: Biochim. Biophys. Acta, Proteins Proteomics – volume: 115 start-page: 5545 year: 2011 end-page: 5553 ident: bb0310 article-title: A polarizable water model for intramolecular and intermolecular vibrational spectroscopies publication-title: J. Phys. Chem. B – volume: 4 start-page: 2079 year: 2013 end-page: 2083 ident: bb0435 article-title: Pressure-induced helical structure of a peptide studied by simulated tempering molecular dynamics simulations publication-title: J. Phys. Chem. Lett. – volume: 9 year: 2014 ident: bb0130 article-title: Mechanism of deep-sea fish α-actin pressure tolerance investigated by molecular dynamics simulations publication-title: PLoS One – volume: 20 start-page: 7093 year: 2018 end-page: 7104 ident: bb0625 article-title: The effects of osmolytes and crowding on the pressure-induced dissociation and inactivation of dimeric LADH publication-title: Phys. Chem. Chem. Phys. – volume: 79 year: 2010 ident: bb0380 article-title: Generalized-ensemble algorithms for the isobaric–isothermal ensemble publication-title: J. Phys. Soc. Jpn. – volume: 80 start-page: 2397 year: 2012 end-page: 2416 ident: bb0410 article-title: Temperature and pressure denaturation of chignol folding and unfolding simulation by multibaric-multithermal molecular dynamics method publication-title: Proteins Struct. Funct. Bioinforma – volume: 63 start-page: 1195 year: 1989 end-page: 1198 ident: bb0385 article-title: Optimized Monte Carlo data analysis publication-title: Phys. Rev. Lett. – volume: 148 start-page: 215102 year: 2018 ident: bb0120 article-title: Compressibility of the protein-water interface publication-title: J. Chem. Phys. – volume: 1595 start-page: 160 year: 2002 end-page: 184 ident: bb0050 article-title: Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. – volume: 20 start-page: 21257 year: 2018 end-page: 21261 ident: bb0295 article-title: Pressure increases the ice-like order of water at hydrophobic interfaces publication-title: Phys. Chem. Chem. Phys. – volume: 78 start-page: 1641 year: 2010 end-page: 1651 ident: bb0555 article-title: Studying pressure denaturation of a protein by molecular dynamics simulations publication-title: Proteins Struct. Funct. Bioinforma – volume: 1595 start-page: 185 year: 2002 end-page: 200 ident: bb0095 article-title: High pressure simulations of biomolecules publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. – volume: 325 start-page: 763 year: 1987 end-page: 764 ident: bb0150 article-title: Thermodynamics of unfolding publication-title: Nature – volume: 147 year: 2017 ident: bb0415 article-title: Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin publication-title: J. Chem. Phys. – volume: 82 start-page: 792 year: 2018 end-page: 799 ident: bb0025 article-title: Commonly stabilized monomeric cytochromes c from deep-sea Shewanella and Pseudomonas publication-title: Biosci Biotechnol Biochem – volume: 106 start-page: 393a year: 2014 ident: bb0630 article-title: Single-molecule analysis of the rotation of F1-ATPase under high hydrostatic pressure publication-title: Biophys. J. – volume: 117 start-page: 5179 year: 1995 end-page: 5197 ident: bb0210 article-title: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 10083 year: 1992 end-page: 10093 ident: bb0205 article-title: Molecular dynamics simulation of solvated protein at high pressure publication-title: Biochemistry – volume: 119 start-page: 11416 year: 2015 end-page: 11427 ident: bb0510 article-title: Water mediated interactions and the protein folding phase diagram in the temperature-pressure plane publication-title: J. Phys. Chem. B – volume: 115 start-page: E4758 year: 2018 end-page: E4766 ident: bb0320 article-title: Developing a molecular dynamics force field for both folded and disordered protein states publication-title: Proc. Natl. Acad. Sci. – volume: 107 start-page: 8561 year: 1997 ident: 10.1016/j.bbagen.2019.07.004_bb0255 article-title: Effects of pressure on structural and dynamical properties of associated liquids: molecular dynamics calculations for the extended simple point charge model of water, the publication-title: J. Chem. Phys. doi: 10.1063/1.475162 – volume: 9 start-page: 1005 year: 2017 ident: 10.1016/j.bbagen.2019.07.004_bb0615 article-title: Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling publication-title: Nat. Chem. doi: 10.1038/nchem.2785 – volume: 1595 start-page: 3 year: 2002 ident: 10.1016/j.bbagen.2019.07.004_bb0105 article-title: High pressure effects on biological macromolecules: from structural changes to alteration of cellular processes publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. doi: 10.1016/S0167-4838(01)00331-4 – volume: 104 start-page: 17261 year: 2007 ident: 10.1016/j.bbagen.2019.07.004_bb0530 article-title: Picosecond fluctuating protein energy landscape mapped by pressure temperature molecular dynamics simulation publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0708199104 – volume: 63 start-page: 1195 year: 1989 ident: 10.1016/j.bbagen.2019.07.004_bb0385 article-title: Optimized Monte Carlo data analysis publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.63.1195 – volume: 112 start-page: 12038 year: 2008 ident: 10.1016/j.bbagen.2019.07.004_bb0375 article-title: Temperature and pressure dependence of alanine dipeptide studied by multibaric-multithermal molecular dynamics simulations publication-title: J. Phys. Chem. B doi: 10.1021/jp712109q – volume: 123 start-page: 2469 year: 2019 ident: 10.1016/j.bbagen.2019.07.004_bb0610 article-title: Dissociation process of a MDM2/p53 complex investigated by parallel cascade selection molecular dynamics and the Markov state model publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b10309 – volume: 8 year: 2018 ident: 10.1016/j.bbagen.2019.07.004_bb0245 article-title: Water models for biomolecular simulations publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.1347 – volume: 141 year: 2014 ident: 10.1016/j.bbagen.2019.07.004_bb0445 article-title: Role of solvation in pressure-induced helix stabilization publication-title: J. Chem. Phys. doi: 10.1063/1.4901112 – volume: 115 start-page: 5545 year: 2011 ident: 10.1016/j.bbagen.2019.07.004_bb0310 article-title: A polarizable water model for intramolecular and intermolecular vibrational spectroscopies publication-title: J. Phys. Chem. B doi: 10.1021/jp111308f – volume: 14 start-page: 1 year: 1959 ident: 10.1016/j.bbagen.2019.07.004_bb0115 article-title: Some factors in the interpretation of protein denaturation publication-title: Adv. Protein Chem. doi: 10.1016/S0065-3233(08)60608-7 – volume: 129 start-page: 145103 year: 2008 ident: 10.1016/j.bbagen.2019.07.004_bb0600 article-title: Molecular mechanism of pressure denaturation of proteins publication-title: J. Chem. Phys. doi: 10.1063/1.2991176 – volume: 81 start-page: 3684 year: 1984 ident: 10.1016/j.bbagen.2019.07.004_bb0185 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 1768 start-page: 479 year: 2007 ident: 10.1016/j.bbagen.2019.07.004_bb0035 article-title: Thermotropic and barotropic phase transitions in bilayer membranes of ether-linked phospholipids with varying alkyl chain lengths publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2006.10.005 – volume: 1764 start-page: 414 year: 2006 ident: 10.1016/j.bbagen.2019.07.004_bb0340 article-title: Influence of pressure on structure and dynamics of bovine pancreatic trypsin inhibitor (BPTI): small angle and quasi-elastic neutron scattering studies publication-title: Biochim. Biophys. Acta, Proteins Proteomics doi: 10.1016/j.bbapap.2006.01.010 – volume: 32 start-page: 3794 year: 2016 ident: 10.1016/j.bbagen.2019.07.004_bb0575 article-title: Reversible morphological control of tubulin-encapsulating giant liposomes by hydrostatic pressure publication-title: Langmuir. doi: 10.1021/acs.langmuir.6b00799 – volume: 5 start-page: 1 year: 2016 ident: 10.1016/j.bbagen.2019.07.004_bb0640 article-title: Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm publication-title: Elife doi: 10.7554/eLife.19274 – volume: 102 start-page: 3586 year: 1998 ident: 10.1016/j.bbagen.2019.07.004_bb0215 article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins publication-title: J. Phys. Chem. B doi: 10.1021/jp973084f – volume: 144 start-page: 144104 year: 2016 ident: 10.1016/j.bbagen.2019.07.004_bb0230 article-title: Design principles for high–pressure force fields: aqueous TMAO solutions from ambient to kilobar pressures publication-title: J. Chem. Phys. doi: 10.1063/1.4944991 – volume: 147 year: 2017 ident: 10.1016/j.bbagen.2019.07.004_bb0415 article-title: Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin publication-title: J. Chem. Phys. doi: 10.1063/1.4996431 – volume: 1595 start-page: 185 year: 2002 ident: 10.1016/j.bbagen.2019.07.004_bb0095 article-title: High pressure simulations of biomolecules publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. doi: 10.1016/S0167-4838(01)00343-0 – volume: 109 start-page: 6945 year: 2012 ident: 10.1016/j.bbagen.2019.07.004_bb0045 article-title: Cavities determine the pressure unfolding of proteins publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1200915109 – volume: 10 start-page: 343 year: 1985 ident: 10.1016/j.bbagen.2019.07.004_bb0465 article-title: The ubiquitin system: functions and mechanisms publication-title: Trends Biochem. Sci. doi: 10.1016/0968-0004(85)90108-2 – volume: 82 start-page: 57 year: 1999 ident: 10.1016/j.bbagen.2019.07.004_bb0280 article-title: Structure and hydrogen bonding of liquid water at high hydrostatic pressures: Monte Carlo NPT-ensemble simulations up to 10 kbar publication-title: J. Mol. Liq. doi: 10.1016/S0167-7322(99)00042-2 – volume: 115 start-page: E4758 year: 2018 ident: 10.1016/j.bbagen.2019.07.004_bb0320 article-title: Developing a molecular dynamics force field for both folded and disordered protein states publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1800690115 – volume: 82 start-page: 2970 year: 2014 ident: 10.1016/j.bbagen.2019.07.004_bb0440 article-title: Molecular dynamics of the structural changes of helical peptides induced by pressure publication-title: Proteins Struct. Funct. Bioinforma doi: 10.1002/prot.24654 – volume: 1750 start-page: 1 year: 2005 ident: 10.1016/j.bbagen.2019.07.004_bb0420 article-title: Pressure-tuning FT-IR spectroscopic study on the helix–coil transition of Ala-rich oligopeptide in aqueous solution publication-title: Biochim. Biophys. Acta, Proteins Proteomics doi: 10.1016/j.bbapap.2005.02.014 – volume: 110 start-page: 20988 year: 2013 ident: 10.1016/j.bbagen.2019.07.004_bb0430 article-title: Transition state and ground state properties of the helix-coil transition in peptides deduced from high-pressure studies publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1317973110 – volume: 72 start-page: 2384 year: 1980 ident: 10.1016/j.bbagen.2019.07.004_bb0165 article-title: Molecular dynamics simulations at constant pressure and/or temperature publication-title: J. Chem. Phys. doi: 10.1063/1.439486 – volume: 123 start-page: 234505 year: 2005 ident: 10.1016/j.bbagen.2019.07.004_bb0285 article-title: A general purpose model for the condensed phases of water: TIP4P/2005 publication-title: J. Chem. Phys. doi: 10.1063/1.2121687 – volume: 20 start-page: 7093 year: 2018 ident: 10.1016/j.bbagen.2019.07.004_bb0625 article-title: The effects of osmolytes and crowding on the pressure-induced dissociation and inactivation of dimeric LADH publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP08242H – volume: 14 start-page: 33 year: 1996 ident: 10.1016/j.bbagen.2019.07.004_bb0485 article-title: VMD: visual molecular dynamics publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – volume: 13 start-page: 1011 year: 1992 ident: 10.1016/j.bbagen.2019.07.004_bb0390 article-title: The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method publication-title: J. Comput. Chem. doi: 10.1002/jcc.540130812 – volume: 67 start-page: 425 year: 1998 ident: 10.1016/j.bbagen.2019.07.004_bb0455 article-title: The ubiquitin system publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.67.1.425 – volume: 1764 start-page: 506 year: 2006 ident: 10.1016/j.bbagen.2019.07.004_bb0560 article-title: Pressure denaturation of apomyoglobin: a molecular dynamics simulation study publication-title: Biochim. Biophys. Acta, Proteins Proteomics doi: 10.1016/j.bbapap.2005.11.015 – volume: 99 start-page: 6983 year: 1993 ident: 10.1016/j.bbagen.2019.07.004_bb0260 article-title: Molecular dynamics simulation of a polymer chain in solution publication-title: J. Chem. Phys. doi: 10.1063/1.465445 – volume: 391 start-page: 248 year: 2004 ident: 10.1016/j.bbagen.2019.07.004_bb0370 article-title: Molecular dynamics simulations in the multibaric-multithermal ensemble publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.04.073 – volume: 231 start-page: 71 year: 2017 ident: 10.1016/j.bbagen.2019.07.004_bb0090 article-title: High-pressure microscopy for tracking dynamic properties of molecular machines publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2017.03.010 – volume: 361 start-page: 355 year: 2018 ident: 10.1016/j.bbagen.2019.07.004_bb0180 article-title: Biophysical experiments and biomolecular simulations: a perfect match? publication-title: Science doi: 10.1126/science.aat4010 – volume: 38 start-page: 1167 year: 2017 ident: 10.1016/j.bbagen.2019.07.004_bb0505 article-title: Conformational changes of ubiquitin under high pressure conditions: a pressure simulated tempering molecular dynamics study publication-title: J. Comput. Chem. doi: 10.1002/jcc.24767 – volume: 136 start-page: 114510 year: 2012 ident: 10.1016/j.bbagen.2019.07.004_bb0595 article-title: The effect of pressure on the hydration structure around hydrophobic solute: a molecular dynamics simulation study publication-title: J. Chem. Phys. doi: 10.1063/1.3694834 – volume: 89 start-page: 9335 year: 1992 ident: 10.1016/j.bbagen.2019.07.004_bb0140 article-title: On the origin of the enthalpy and entropy convergence temperatures in protein folding publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.89.19.9335 – volume: 82 start-page: 792 year: 2018 ident: 10.1016/j.bbagen.2019.07.004_bb0025 article-title: Commonly stabilized monomeric cytochromes c from deep-sea Shewanella and Pseudomonas publication-title: Biosci Biotechnol Biochem doi: 10.1080/09168451.2018.1448255 – volume: 81 year: 2010 ident: 10.1016/j.bbagen.2019.07.004_bb0085 article-title: A multipurpose modular system for high-resolution microscopy at high hydrostatic pressure publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3427224 – volume: 95 start-page: 3943 year: 2008 ident: 10.1016/j.bbagen.2019.07.004_bb0495 article-title: Pressure effects on the ensemble dynamics of ubiquitin inspected with molecular dynamics simulations and isotropic reorientational Eigenmode dynamics publication-title: Biophys. J. doi: 10.1529/biophysj.108.133702 – volume: 177 start-page: 519 year: 2006 ident: 10.1016/j.bbagen.2019.07.004_bb0515 article-title: The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo publication-title: J. Immunol. doi: 10.4049/jimmunol.177.1.519 – volume: 45 start-page: 1196 year: 1980 ident: 10.1016/j.bbagen.2019.07.004_bb0190 article-title: Crystal structure and pair potentials: a molecular-dynamics study publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.1196 – volume: 1764 start-page: 391 year: 2006 ident: 10.1016/j.bbagen.2019.07.004_bb0065 article-title: High pressure macromolecular crystallography: The 140-MPa crystal structure at 2.3 Å resolution of urate oxidase, a 135-kDa tetrameric assembly publication-title: Biochim. Biophys. Acta, Proteins Proteomics doi: 10.1016/j.bbapap.2006.01.006 – volume: 60 start-page: 6757 year: 1999 ident: 10.1016/j.bbagen.2019.07.004_bb0250 article-title: Dynamics of simulated water under pressure publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.60.6757 – volume: 76 start-page: 377 year: 1980 ident: 10.1016/j.bbagen.2019.07.004_bb0325 article-title: Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water publication-title: J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases – volume: 19 start-page: 451 year: 1992 ident: 10.1016/j.bbagen.2019.07.004_bb0365 article-title: Simulated tempering: a new Monte Carlo scheme publication-title: Europhys. Lett. doi: 10.1209/0295-5075/19/6/002 – volume: 79 year: 2010 ident: 10.1016/j.bbagen.2019.07.004_bb0380 article-title: Generalized-ensemble algorithms for the isobaric–isothermal ensemble publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.79.074003 – volume: 78 start-page: 1641 year: 2010 ident: 10.1016/j.bbagen.2019.07.004_bb0555 article-title: Studying pressure denaturation of a protein by molecular dynamics simulations publication-title: Proteins Struct. Funct. Bioinforma doi: 10.1002/prot.22680 – volume: 108 start-page: 15873 year: 2004 ident: 10.1016/j.bbagen.2019.07.004_bb0275 article-title: System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions publication-title: J. Phys. Chem. B doi: 10.1021/jp0477147 – volume: 83 start-page: 154 year: 2002 ident: 10.1016/j.bbagen.2019.07.004_bb0580 article-title: Pressure-induced water transport in membrane channels studied by molecular dynamics publication-title: Biophys. J. doi: 10.1016/S0006-3495(02)75157-6 – volume: 114 start-page: 2281 year: 2010 ident: 10.1016/j.bbagen.2019.07.004_bb0345 article-title: Dynamic correlation between pressure-induced protein structural transition and water penetration publication-title: J. Phys. Chem. B doi: 10.1021/jp909701j – volume: 114 start-page: 11410 year: 2017 ident: 10.1016/j.bbagen.2019.07.004_bb0535 article-title: Pressure effects on collective density fluctuations in water and protein solutions publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1705279114 – volume: 122 start-page: 5038 year: 2018 ident: 10.1016/j.bbagen.2019.07.004_bb0300 article-title: Accurate methyl group dynamics in protein simulations with AMBER force fields publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b02769 – volume: 80 start-page: 2397 year: 2012 ident: 10.1016/j.bbagen.2019.07.004_bb0410 article-title: Temperature and pressure denaturation of chignol folding and unfolding simulation by multibaric-multithermal molecular dynamics method publication-title: Proteins Struct. Funct. Bioinforma doi: 10.1002/prot.24125 – volume: 111 start-page: 15877 year: 2007 ident: 10.1016/j.bbagen.2019.07.004_bb0290 article-title: Equation of state, thermal expansion coefficient, and isothermal compressibility for ices Ih, II, III, V, and VI, as obtained from computer simulation publication-title: J. Phys. Chem. C doi: 10.1021/jp0743121 – volume: 1595 start-page: 235 year: 2002 ident: 10.1016/j.bbagen.2019.07.004_bb0100 article-title: Pressure effects on intra- and intermolecular interactions within proteins publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. doi: 10.1016/S0167-4838(01)00347-8 – volume: 1824 start-page: 511 year: 2012 ident: 10.1016/j.bbagen.2019.07.004_bb0020 article-title: Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli publication-title: Biochim. Biophys. Acta, Proteins Proteomics doi: 10.1016/j.bbapap.2012.01.001 – volume: 1595 start-page: 131 year: 2002 ident: 10.1016/j.bbagen.2019.07.004_bb0030 article-title: Fourier transform infrared spectroscopy in high-pressure studies on proteins publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. doi: 10.1016/S0167-4838(01)00340-5 – volume: 119 start-page: 11416 year: 2015 ident: 10.1016/j.bbagen.2019.07.004_bb0510 article-title: Water mediated interactions and the protein folding phase diagram in the temperature-pressure plane publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b03828 – volume: 108 start-page: 15928 year: 2004 ident: 10.1016/j.bbagen.2019.07.004_bb0545 article-title: Molecular dynamics simulations of staphylococcal nuclease: properties of water at the protein surface publication-title: J. Phys. Chem. B doi: 10.1021/jp047579y – volume: 56 start-page: 952 year: 2000 ident: 10.1016/j.bbagen.2019.07.004_bb0475 article-title: Crystallization, structure solution and refinement of hen egg-white lysozyme at pH 8.0 in the presence of MPD publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. doi: 10.1107/S0907444900006685 – volume: 81 year: 2010 ident: 10.1016/j.bbagen.2019.07.004_bb0060 article-title: Automated high pressure cell for pressure jump x-ray diffraction publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3449332 – volume: 10 start-page: 5113 year: 2014 ident: 10.1016/j.bbagen.2019.07.004_bb0315 article-title: Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500569b – volume: 325 start-page: 763 year: 1987 ident: 10.1016/j.bbagen.2019.07.004_bb0150 article-title: Thermodynamics of unfolding publication-title: Nature doi: 10.1038/325763a0 – volume: 93 start-page: 10 year: 2004 ident: 10.1016/j.bbagen.2019.07.004_bb0405 article-title: Reversible temperature and pressure denaturation of a protein fragment: a replica exchange molecular dynamics simulation study publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.238105 – volume: 87 start-page: 1117 year: 1996 ident: 10.1016/j.bbagen.2019.07.004_bb0200 article-title: Explicit reversible integrators for extended systems dynamics publication-title: Mol. Phys. doi: 10.1080/00268979600100761 – volume: 111 start-page: 11870 year: 2007 ident: 10.1016/j.bbagen.2019.07.004_bb0270 article-title: Effects of water model and simulation box size on protein diffusions motions publication-title: J. Phys. Chem. B doi: 10.1021/jp0756247 – volume: 46 start-page: 29 year: 2013 ident: 10.1016/j.bbagen.2019.07.004_bb0460 article-title: Ubiquitin: molecular modeling and simulations publication-title: J. Mol. Graph. Model doi: 10.1016/j.jmgm.2013.09.006 – start-page: 75 year: 2015 ident: 10.1016/j.bbagen.2019.07.004_bb0110 article-title: Volume and compressibility of proteins – volume: 84 start-page: 820 year: 2016 ident: 10.1016/j.bbagen.2019.07.004_bb0565 article-title: Pressure-induced conformational switch of an interfacial protein publication-title: Proteins Struct. Funct. Bioinforma doi: 10.1002/prot.25031 – volume: 33 start-page: 11561 year: 2017 ident: 10.1016/j.bbagen.2019.07.004_bb0305 article-title: Phase diagram of TIP4P/2005 water at high pressure publication-title: Langmuir doi: 10.1021/acs.langmuir.7b01764 – volume: 345 start-page: 289 year: 2008 ident: 10.1016/j.bbagen.2019.07.004_bb0335 article-title: Relaxation dynamics of lysozyme in solution under pressure: combining molecular dynamics simulations and quasielastic neutron scattering publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2007.07.018 – volume: 74 start-page: 895 year: 2018 ident: 10.1016/j.bbagen.2019.07.004_bb0070 article-title: High-pressure protein crystal structure analysis of Escherichia coli dihydrofolate reductase complexed with folate and NADP publication-title: Acta Crystallogr. Sect. D, Struct. Biol. doi: 10.1107/S2059798318009397 – volume: 102 start-page: 6765 year: 2005 ident: 10.1016/j.bbagen.2019.07.004_bb0400 article-title: Simulations of the pressure and temperature unfolding of an alpha-helical peptide publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0408527102 – volume: 91 start-page: 2427 year: 2006 ident: 10.1016/j.bbagen.2019.07.004_bb0590 article-title: Heteropolymer collapse theory for protein folding in the pressure-temperature plane publication-title: Biophys. J. doi: 10.1529/biophysj.106.081802 – volume: 25 start-page: 446 year: 1996 ident: 10.1016/j.bbagen.2019.07.004_bb0225 article-title: Molecular mechanisms of pressure induced conformational changes in BPTI publication-title: Proteins Struct. Funct. Genet. doi: 10.1002/prot.5 – volume: 65 start-page: 136 year: 2006 ident: 10.1016/j.bbagen.2019.07.004_bb0570 article-title: Protein under pressure: molecular dynamics simulation of the arc repressor publication-title: Proteins Struct. Funct. Bioinforma doi: 10.1002/prot.21034 – volume: 1386 start-page: 353 year: 1998 ident: 10.1016/j.bbagen.2019.07.004_bb0005 article-title: Protein structure and dynamics at high pressure publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. doi: 10.1016/S0167-4838(98)00102-2 – volume: 119 start-page: 4842 year: 2015 ident: 10.1016/j.bbagen.2019.07.004_bb0330 article-title: Influence of pressure and crowding on the sub-nanosecond dynamics of globular proteins publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b01017 – volume: 102 start-page: 16668 year: 2005 ident: 10.1016/j.bbagen.2019.07.004_bb0525 article-title: Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0508224102 – volume: 55 start-page: 9534 year: 2016 ident: 10.1016/j.bbagen.2019.07.004_bb0240 article-title: Toward extreme biophysics: deciphering the infrared response of biomolecular solutions at high pressures publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602757 – volume: 79 year: 2009 ident: 10.1016/j.bbagen.2019.07.004_bb0605 article-title: Pressure effects on structures formed by entropically driven self-assembly: illustration for denaturation of proteins publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.011912 – volume: 105 start-page: 711 year: 2001 ident: 10.1016/j.bbagen.2019.07.004_bb0220 article-title: Simulation of hydrated BPTI at high pressure: changes in hydrogen bonding and its relation with NMR experiments publication-title: J. Phys. Chem. B doi: 10.1021/jp002539p – volume: 31 start-page: 10083 year: 1992 ident: 10.1016/j.bbagen.2019.07.004_bb0205 article-title: Molecular dynamics simulation of solvated protein at high pressure publication-title: Biochemistry doi: 10.1021/bi00156a031 – volume: 1818 start-page: 574 year: 2012 ident: 10.1016/j.bbagen.2019.07.004_bb0075 article-title: Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2011.10.010 – volume: 108 start-page: 133 year: 2015 ident: 10.1016/j.bbagen.2019.07.004_bb0040 article-title: Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme publication-title: Biophys. J. doi: 10.1016/j.bpj.2014.11.012 – volume: 86 start-page: 50 year: 2004 ident: 10.1016/j.bbagen.2019.07.004_bb0585 article-title: Theory and simulation of water permeation in aquaporin-1 publication-title: Biophys. J. doi: 10.1016/S0006-3495(04)74082-5 – volume: 1595 start-page: 160 year: 2002 ident: 10.1016/j.bbagen.2019.07.004_bb0050 article-title: Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. doi: 10.1016/S0167-4838(01)00342-9 – volume: 314 start-page: 141 year: 1999 ident: 10.1016/j.bbagen.2019.07.004_bb0355 article-title: Replica-exchange molecular dynamics method for protein folding publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)01123-9 – volume: 267 start-page: 249 year: 1991 ident: 10.1016/j.bbagen.2019.07.004_bb0360 article-title: Multicanonical algorithms for first order phase transitions publication-title: Phys. Lett. B doi: 10.1016/0370-2693(91)91256-U – volume: 1595 start-page: 201 year: 2002 ident: 10.1016/j.bbagen.2019.07.004_bb0135 article-title: Revisiting volume changes in pressure-induced protein unfolding publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. doi: 10.1016/S0167-4838(01)00344-2 – volume: 72 start-page: 1 year: 2005 ident: 10.1016/j.bbagen.2019.07.004_bb0550 article-title: Pressure-dependent transition in protein dynamics at about 4 kbar revealed by molecular dynamics simulation publication-title: Phys. Rev. E Stat. Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.72.061908 – volume: 95 start-page: 1552 year: 1998 ident: 10.1016/j.bbagen.2019.07.004_bb0155 article-title: The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.95.4.1552 – volume: 221 start-page: 617 year: 1994 ident: 10.1016/j.bbagen.2019.07.004_bb0620 article-title: Proteins under pressure: the influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1994.tb18774.x – volume: 194 start-page: 531 year: 1987 ident: 10.1016/j.bbagen.2019.07.004_bb0470 article-title: Structure of ubiquitin refined at 1.8 Å resolution publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(87)90679-6 – volume: 106 start-page: 393a year: 2014 ident: 10.1016/j.bbagen.2019.07.004_bb0630 article-title: Single-molecule analysis of the rotation of F1-ATPase under high hydrostatic pressure publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.11.2219 – volume: 148 start-page: 215102 year: 2018 ident: 10.1016/j.bbagen.2019.07.004_bb0120 article-title: Compressibility of the protein-water interface publication-title: J. Chem. Phys. doi: 10.1063/1.5026774 – volume: 195 start-page: 1809 year: 2013 ident: 10.1016/j.bbagen.2019.07.004_bb0635 article-title: High hydrostatic pressure induces counterclockwise to clockwise reversals of the Escherichia coli flagellar motor publication-title: J. Bacteriol. doi: 10.1128/JB.02139-12 – volume: 9 year: 2014 ident: 10.1016/j.bbagen.2019.07.004_bb0130 article-title: Mechanism of deep-sea fish α-actin pressure tolerance investigated by molecular dynamics simulations publication-title: PLoS One doi: 10.1371/journal.pone.0085852 – volume: 83 start-page: 8069 year: 1986 ident: 10.1016/j.bbagen.2019.07.004_bb0145 article-title: Temperature dependence of the hydrophobic interaction in protein folding publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.83.21.8069 – start-page: 511 year: 1914 ident: 10.1016/j.bbagen.2019.07.004_bb0010 article-title: The coagulation of albumen by pressure publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)88287-4 – volume: 33 start-page: 797 year: 2002 ident: 10.1016/j.bbagen.2019.07.004_bb0055 article-title: Small-angle X-ray scattering station at the SPring-8 RIKEN beamline publication-title: J. Appl. Crystallogr. – volume: 65 start-page: 603 year: 1975 ident: 10.1016/j.bbagen.2019.07.004_bb0080 article-title: Pressure-induced depolymerization of spindle microtubules. I. Changes in birefringence and spindle length publication-title: J. Cell Biol. doi: 10.1083/jcb.65.3.603 – volume: 101 start-page: 2054 year: 1997 ident: 10.1016/j.bbagen.2019.07.004_bb0170 article-title: Monte Carlo study of the effect of pressure on hydrophobic association publication-title: J. Phys. Chem. B doi: 10.1021/jp962977p – volume: 128 start-page: 670 year: 2006 ident: 10.1016/j.bbagen.2019.07.004_bb0015 article-title: Dehydration in the folding of reduced cytochrome c revealed by the electron-transfer-triggered folding under high pressure publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055084w – volume: 20 start-page: 21257 year: 2018 ident: 10.1016/j.bbagen.2019.07.004_bb0295 article-title: Pressure increases the ice-like order of water at hydrophobic interfaces publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP03057J – volume: 60 start-page: 96 year: 2001 ident: 10.1016/j.bbagen.2019.07.004_bb0350 article-title: Generalized-ensemble algorithms for molecular simulations of biopolymers publication-title: Biopolymers doi: 10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO;2-F – volume: 77 start-page: 570 year: 2009 ident: 10.1016/j.bbagen.2019.07.004_bb0480 article-title: Molecular determinants of the p K a values of Asp and Glu residues in staphylococcal nuclease publication-title: Proteins Struct. Funct. Bioinforma doi: 10.1002/prot.22470 – volume: 12 start-page: 8728 year: 2010 ident: 10.1016/j.bbagen.2019.07.004_bb0235 article-title: Ab initio molecular dynamics simulations investigating proton transfer in perfluorosulfonic acid functionalized carbon nanotubes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00130a – volume: 111 start-page: 1206 year: 2007 ident: 10.1016/j.bbagen.2019.07.004_bb0175 article-title: Theoretical study of the cosolvent effect on the partial molar volume change of staphylococcal nuclease associated with pressure denaturation publication-title: J. Phys. Chem. B doi: 10.1021/jp064615f – volume: 4 start-page: 2079 year: 2013 ident: 10.1016/j.bbagen.2019.07.004_bb0435 article-title: Pressure-induced helical structure of a peptide studied by simulated tempering molecular dynamics simulations publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz400769w – volume: 40 start-page: 13556 year: 2001 ident: 10.1016/j.bbagen.2019.07.004_bb0490 article-title: Two folded conformers of ubiquitin revealed by high-pressure NMR publication-title: Biochemistry. doi: 10.1021/bi010922u – volume: 129 year: 2008 ident: 10.1016/j.bbagen.2019.07.004_bb0395 article-title: Statistically optimal analysis of samples from multiple equilibrium states publication-title: J. Chem. Phys. doi: 10.1063/1.2978177 – volume: 118 start-page: 7761 year: 2014 ident: 10.1016/j.bbagen.2019.07.004_bb0450 article-title: Computational study of the stability of the miniprotein trp-cage, the GB1 β-hairpin, and the AK16 peptide, under negative pressure publication-title: J. Phys. Chem. B doi: 10.1021/jp410651u – volume: 86 start-page: 681 year: 2004 ident: 10.1016/j.bbagen.2019.07.004_bb0265 article-title: Diffusion and electrophoretic mobility of single-stranded RNA from molecular dynamics simulations publication-title: Biophys. J. doi: 10.1016/S0006-3495(04)74147-8 – volume: 123 start-page: 10997 year: 2001 ident: 10.1016/j.bbagen.2019.07.004_bb0160 article-title: Molecular dynamics simulations of pressure effects on hydrophobic interactions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010446v – volume: 196 start-page: 1173 year: 1962 ident: 10.1016/j.bbagen.2019.07.004_bb0520 article-title: Structure of lysozyme: a fourier map of the electron density at 6 Å resolution obtained by x-ray diffraction publication-title: Nature. doi: 10.1038/1961173a0 – volume: 117 start-page: 5179 year: 1995 ident: 10.1016/j.bbagen.2019.07.004_bb0210 article-title: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00124a002 – volume: 70 start-page: 1175 year: 2007 ident: 10.1016/j.bbagen.2019.07.004_bb0500 article-title: Water penetration in the low and high pressure native states of ubiquitin publication-title: Proteins Struct. Funct. Bioinforma doi: 10.1002/prot.21562 – volume: 91 start-page: 283 year: 1995 ident: 10.1016/j.bbagen.2019.07.004_bb0195 article-title: Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(95)00059-O – volume: 75 start-page: 911 year: 2009 ident: 10.1016/j.bbagen.2019.07.004_bb0425 article-title: Effect of pressure on helix-coil transition of an alanine-based peptide: an FTIR study publication-title: Proteins Struct. Funct. Bioinforma doi: 10.1002/prot.22302 – volume: 10 start-page: 92 year: 1991 ident: 10.1016/j.bbagen.2019.07.004_bb0540 article-title: The crystal structure of staphylococcal nuclease refined at 1.7 Å resolution publication-title: Proteins Struct. Funct. Bioinforma doi: 10.1002/prot.340100203 – volume: 1764 start-page: 522 year: 2006 ident: 10.1016/j.bbagen.2019.07.004_bb0125 article-title: A molecular dynamics simulation of SNase and its hydration shell at high temperature and high pressure publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2006.01.003 |
| SSID | ssj0000595 |
| Score | 2.512261 |
| SecondaryResourceType | review_article |
| Snippet | Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 129395 |
| SubjectTerms | ambient pressure Denaturation High pressure Molecular dynamics Protein protein structure proteins thermodynamics Water |
| Title | Molecular dynamics simulation of proteins under high pressure: Structure, function and thermodynamics |
| URI | https://dx.doi.org/10.1016/j.bbagen.2019.07.004 https://www.ncbi.nlm.nih.gov/pubmed/31302180 https://www.proquest.com/docview/2258155849 https://www.proquest.com/docview/2388780396 |
| Volume | 1864 |
| WOSCitedRecordID | wos000508740100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: AIEXJ dateStart: 19950118 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jcteEIwB5TIZibeQKW2SxuZtmoYGEhMSQ-pb5Fu0jDWpmnRafwV_mXPiOG2ZyuCBl6hyHLfq9-X42D7nfIS8G3EtgyjUvglV5EeCaV8yAa97LA3QBxZjMmvEJpKzMzYe86-93k-XC3N9lRQFu7nh0_8KNbQB2Jg6-w9wd4NCA3wG0OEKsMP1r4D_4gRvPW3V5iuvyietSlcT4IylGTAyBvPHZh4WLPaacNj5rElU_9aUlJ3bzWmc92oXsozO4qR0w66dB-elusix9IBnak_mpd0xEVirQxy64tZeNZe471Mt7Z51Xk_zWQmu7MohyUW-EBNhs4kqsSihYRkuUAubnPPDBpG5XQtYogZdBIixlpYlYIqDYLRuim1J85Z0wxXLin6JleO8ZfTt_sPloZTQEWvaDnhTkNXqGq9APp00mId4WDuwAlK_Fdt2t7bIzjCJOZjJnaNPJ-PPy8k95rHLwGzCBG9_6S554IbZ5OxsWsw0Ts35Y_KoXY3QI8uiJ6Rnij1y3-qTLvbIw2MnB_iUmI5X1BGALnlFy4w6XtGGVxR5RR2vPtCOVe-p4xQFTtF1Tu2T7x9Pzo9P_Vajw1fgO9e-VonOpAanL1ao7hgZzoSM5IAbxlUQZ7HROgE_myfaRLFWgTSZGmY85uAKxyZ8RraLsjAvCI2UHimlEoWaBnwISz-cUaSJeAiTsJB9Ero_M1VtAXvUUblKXaTiZWrRSBGNNMDIiqhP_O6pqS3gckf_xOGUtk6odS5ToNsdT751sKaADR68icKU8yoFo8fAb2cR_0OfEKZ7FoR81CfPLSe63-vo9HLjnVdkd_mWvSbbAKl5Q-6p6zqvZgdkKxmzg5bKvwAx58hL |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulation+of+proteins+under+high+pressure%3A+Structure%2C+function+and+thermodynamics&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Hata%2C+Hiroaki&rft.au=Nishiyama%2C+Masayoshi&rft.au=Kitao%2C+Akio&rft.date=2020-02-01&rft.eissn=1872-8006&rft.volume=1864&rft.issue=2&rft.spage=129395&rft_id=info:doi/10.1016%2Fj.bbagen.2019.07.004&rft_id=info%3Apmid%2F31302180&rft.externalDocID=31302180 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |