Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images

We carry out a critical assessment of machine learning and deep learning models for the classification of skin tumors. Machine learning (ML) algorithms tested in this work include logistic regression, linear discriminant analysis, k-nearest neighbors classifier, decision tree classifier and Gaussian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioengineering (Basel) Jg. 9; H. 3; S. 97
Hauptverfasser: Bechelli, Solene, Delhommelle, Jerome
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 27.02.2022
MDPI
Schlagworte:
ISSN:2306-5354, 2306-5354
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We carry out a critical assessment of machine learning and deep learning models for the classification of skin tumors. Machine learning (ML) algorithms tested in this work include logistic regression, linear discriminant analysis, k-nearest neighbors classifier, decision tree classifier and Gaussian naive Bayes, while deep learning (DL) models employed are either based on a custom Convolutional Neural Network model, or leverage transfer learning via the use of pre-trained models (VGG16, Xception and ResNet50). We find that DL models, with accuracies up to 0.88, all outperform ML models. ML models exhibit accuracies below 0.72, which can be increased to up to 0.75 with ensemble learning. To further assess the performance of DL models, we test them on a larger and more imbalanced dataset. Metrics, such as the F-score and accuracy, indicate that, after fine-tuning, pre-trained models perform extremely well for skin tumor classification. This is most notably the case for VGG16, which exhibits an F-score of 0.88 and an accuracy of 0.88 on the smaller database, and metrics of 0.70 and 0.88, respectively, on the larger database.
AbstractList We carry out a critical assessment of machine learning and deep learning models for the classification of skin tumors. Machine learning (ML) algorithms tested in this work include logistic regression, linear discriminant analysis, k-nearest neighbors classifier, decision tree classifier and Gaussian naive Bayes, while deep learning (DL) models employed are either based on a custom Convolutional Neural Network model, or leverage transfer learning via the use of pre-trained models (VGG16, Xception and ResNet50). We find that DL models, with accuracies up to 0.88, all outperform ML models. ML models exhibit accuracies below 0.72, which can be increased to up to 0.75 with ensemble learning. To further assess the performance of DL models, we test them on a larger and more imbalanced dataset. Metrics, such as the F-score and accuracy, indicate that, after fine-tuning, pre-trained models perform extremely well for skin tumor classification. This is most notably the case for VGG16, which exhibits an F-score of 0.88 and an accuracy of 0.88 on the smaller database, and metrics of 0.70 and 0.88, respectively, on the larger database.
We carry out a critical assessment of machine learning and deep learning models for the classification of skin tumors. Machine learning (ML) algorithms tested in this work include logistic regression, linear discriminant analysis, k-nearest neighbors classifier, decision tree classifier and Gaussian naive Bayes, while deep learning (DL) models employed are either based on a custom Convolutional Neural Network model, or leverage transfer learning via the use of pre-trained models (VGG16, Xception and ResNet50). We find that DL models, with accuracies up to 0.88, all outperform ML models. ML models exhibit accuracies below 0.72, which can be increased to up to 0.75 with ensemble learning. To further assess the performance of DL models, we test them on a larger and more imbalanced dataset. Metrics, such as the F-score and accuracy, indicate that, after fine-tuning, pre-trained models perform extremely well for skin tumor classification. This is most notably the case for VGG16, which exhibits an F-score of 0.88 and an accuracy of 0.88 on the smaller database, and metrics of 0.70 and 0.88, respectively, on the larger database.We carry out a critical assessment of machine learning and deep learning models for the classification of skin tumors. Machine learning (ML) algorithms tested in this work include logistic regression, linear discriminant analysis, k-nearest neighbors classifier, decision tree classifier and Gaussian naive Bayes, while deep learning (DL) models employed are either based on a custom Convolutional Neural Network model, or leverage transfer learning via the use of pre-trained models (VGG16, Xception and ResNet50). We find that DL models, with accuracies up to 0.88, all outperform ML models. ML models exhibit accuracies below 0.72, which can be increased to up to 0.75 with ensemble learning. To further assess the performance of DL models, we test them on a larger and more imbalanced dataset. Metrics, such as the F-score and accuracy, indicate that, after fine-tuning, pre-trained models perform extremely well for skin tumor classification. This is most notably the case for VGG16, which exhibits an F-score of 0.88 and an accuracy of 0.88 on the smaller database, and metrics of 0.70 and 0.88, respectively, on the larger database.
Author Delhommelle, Jerome
Bechelli, Solene
AuthorAffiliation 2 MetaSimulation of Nonequilibrium Processes (MSNEP) Group, Tech Accelerator, University of North Dakota, Grand Forks, ND 58202, USA
4 School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58202, USA
3 Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
1 Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND 58202, USA; solene.bechelli@und.edu
AuthorAffiliation_xml – name: 2 MetaSimulation of Nonequilibrium Processes (MSNEP) Group, Tech Accelerator, University of North Dakota, Grand Forks, ND 58202, USA
– name: 1 Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND 58202, USA; solene.bechelli@und.edu
– name: 3 Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
– name: 4 School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58202, USA
Author_xml – sequence: 1
  givenname: Solene
  surname: Bechelli
  fullname: Bechelli, Solene
– sequence: 2
  givenname: Jerome
  orcidid: 0000-0002-6498-6927
  surname: Delhommelle
  fullname: Delhommelle, Jerome
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35324786$$D View this record in MEDLINE/PubMed
BookMark eNqFkk2LFDEQhoOsuOu6P0Fp8OJlNN2VdHcQhGX8GhjxoJ5DPio9GbuTMekR_PdmdtZ1dxHMJaHqfR8qVfWYnIQYkJCnNX0JIOgr7SOGwQfE5MMgKFAqugfkrAHaLjhwdnLrfUouct5SSmtoeNOyR-QUODSs69szYj8psymgao0qhQKrVLDVW8Td38jlOMTk582UKxdT9eW7D9VSBYOpWo4qZ--8UbOPoXIpTsWcpphN3HlTrSY1YH5CHjo1Zry4vs_Jt_fvvi4_LtafP6yWl-uF4ZTPC9swUIrXLee2Qeq0sFg7zUTbcc5aBLS1BmM4CKZoq11Xd7o2QomS7tHBOVkduTaqrdwlP6n0S0bl5VUgpkGqNHszonSsNARRM86AGQXamhabuu-wHKNtYb05snZ7PaE1GOakxjvQu5ngN3KIP2UvGAdoCuDFNSDFH3vMs5x8NjiOKmDcZ1kmUWoQfU-L9Pk96TbuUyitOqgagB7YQfXsdkU3pfwZZhHwo8CkmHNCdyOpqTzsjfzn3hTf63s-4-ergZaP-fE_7t9jls-q
CitedBy_id crossref_primary_10_1186_s40537_024_01050_0
crossref_primary_10_3390_diagnostics12092115
crossref_primary_10_1016_j_engappai_2022_105634
crossref_primary_10_3390_diagnostics14010089
crossref_primary_10_1016_j_compbiomed_2024_108742
crossref_primary_10_1080_07357907_2024_2422602
crossref_primary_10_1002_ima_23148
crossref_primary_10_1016_j_clinsp_2025_100724
crossref_primary_10_1016_j_compbiomed_2025_109916
crossref_primary_10_1155_2024_3022192
crossref_primary_10_3390_s24247977
crossref_primary_10_1016_j_procs_2023_10_288
crossref_primary_10_1038_s41598_025_15655_9
crossref_primary_10_3390_ani15182758
crossref_primary_10_3390_diagnostics15060710
crossref_primary_10_1002_eng2_70096
crossref_primary_10_1007_s40042_024_01069_9
crossref_primary_10_7759_s44389_025_08412_6
crossref_primary_10_1186_s12885_024_13423_y
crossref_primary_10_3390_fi17030107
crossref_primary_10_1002_ima_23051
crossref_primary_10_3390_cancers16030629
crossref_primary_10_1177_10732748241274978
crossref_primary_10_3390_diagnostics13193155
crossref_primary_10_3390_diagnostics13132139
crossref_primary_10_1016_j_asoc_2024_112013
crossref_primary_10_3390_app14125233
crossref_primary_10_1016_j_bspc_2023_105306
crossref_primary_10_1007_s12626_025_00181_x
crossref_primary_10_1007_s11831_025_10275_y
crossref_primary_10_1007_s44196_025_00772_0
crossref_primary_10_1007_s11042_024_18824_6
crossref_primary_10_3389_fpubh_2023_1102185
crossref_primary_10_1186_s42492_024_00166_7
crossref_primary_10_1155_2022_4348235
crossref_primary_10_1109_ACCESS_2023_3294974
crossref_primary_10_1007_s12065_024_00977_w
crossref_primary_10_3390_app131810076
crossref_primary_10_3233_XST_230204
crossref_primary_10_3390_bioengineering10111322
crossref_primary_10_3390_bioengineering11111053
crossref_primary_10_3390_jimaging10010019
crossref_primary_10_1016_j_bspc_2023_105858
crossref_primary_10_3390_bioengineering10060639
crossref_primary_10_1109_ACCESS_2024_3476110
crossref_primary_10_1155_int_3164952
crossref_primary_10_3390_bioengineering9080369
crossref_primary_10_1109_ACCESS_2024_3485507
crossref_primary_10_1109_ACCESS_2023_3332628
crossref_primary_10_1007_s11042_023_17590_1
crossref_primary_10_3389_fmed_2025_1614046
crossref_primary_10_3390_diagnostics14131338
crossref_primary_10_1038_s41598_024_74847_x
crossref_primary_10_1109_ACCESS_2024_3486153
crossref_primary_10_3390_diagnostics13111911
crossref_primary_10_1007_s00500_023_08611_0
crossref_primary_10_3390_pharmaceutics15020579
crossref_primary_10_2174_0118750362387304250716055022
crossref_primary_10_3390_fi16110394
crossref_primary_10_1371_journal_pone_0315120
crossref_primary_10_1080_13682199_2023_2229018
crossref_primary_10_3389_fonc_2022_931141
Cites_doi 10.1016/j.jiph.2020.06.033
10.1109/SoCPaR.2009.80
10.1016/j.jid.2018.01.028
10.1016/j.bspc.2021.102631
10.1016/j.ejca.2021.06.049
10.1016/j.compbiolchem.2021.107619
10.1001/jamadermatol.2019.3807
10.1038/nature21056
10.3390/biom10081123
10.1016/j.compbiomed.2020.104065
10.1007/s11042-020-09388-2
10.7150/jca.28769
10.1049/iet-cvi.2018.5195
10.1001/archderm.143.1.101
10.1109/ICRTIT.2011.5972349
10.1016/j.bspc.2019.101678
10.1016/j.patrec.2020.05.019
10.1016/j.patrec.2019.12.006
10.1007/s10916-019-1413-3
10.1016/j.bspc.2021.102428
10.1109/ICET48972.2019.8994508
10.14740/wjon1349
10.1016/j.artmed.2015.04.004
10.1109/CVPR.2016.308
10.1147/JRD.2017.2708299
10.1109/AISP.2017.8324083
10.1007/s11704-019-8208-z
10.1109/MAPR49794.2020.9237778
10.1145/1143844.1143934
10.1016/j.ejca.2019.04.001
10.1016/S1470-2045(02)00679-4
10.1109/CVPR.2017.195
10.1016/j.patrec.2004.09.007
10.1007/978-3-030-40850-3_8
10.3390/diagnostics12010040
10.1021/acs.jpcc.9b07936
10.1097/00008390-199806000-00009
10.1109/ACCESS.2020.3002902
10.1109/CIBEC.2018.8641762
10.1016/j.bspc.2019.101581
10.1001/jamadermatol.2015.1187
10.1016/j.bspc.2019.101765
10.1016/S1532-0464(03)00034-0
10.1109/CVPR.2016.90
10.1001/archdermatol.2010.4
10.1109/AEECT.2017.8257738
10.1109/HNICEM.2018.8666296
10.1109/ICTAI.2011.29
10.1016/j.media.2020.101915
10.1002/widm.1249
10.1063/1.4801262
10.1038/nature14539
10.1038/sdata.2018.161
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/bioengineering9030097
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_f4000eeb45434ca3bdc6e2187eeeecbd
PMC8945332
35324786
10_3390_bioengineering9030097
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: OIA-1946202
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c505t-d243aa51655d2e0fb9de1fb49675546e3ed1b3cc5394a06bf717b1c9a95548ef3
IEDL.DBID DOA
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000776171200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2306-5354
IngestDate Fri Oct 03 12:36:20 EDT 2025
Tue Nov 04 02:03:46 EST 2025
Wed Oct 01 14:42:50 EDT 2025
Fri Jul 25 12:08:46 EDT 2025
Thu Jan 02 22:55:34 EST 2025
Sat Nov 29 07:11:10 EST 2025
Tue Nov 18 22:13:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords deep learning
skin cancer
image classification
machine learning
convolutional neural network
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-d243aa51655d2e0fb9de1fb49675546e3ed1b3cc5394a06bf717b1c9a95548ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6498-6927
OpenAccessLink https://doaj.org/article/f4000eeb45434ca3bdc6e2187eeeecbd
PMID 35324786
PQID 2642338340
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_f4000eeb45434ca3bdc6e2187eeeecbd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8945332
proquest_miscellaneous_2644009880
proquest_journals_2642338340
pubmed_primary_35324786
crossref_primary_10_3390_bioengineering9030097
crossref_citationtrail_10_3390_bioengineering9030097
PublicationCentury 2000
PublicationDate 20220227
PublicationDateYYYYMMDD 2022-02-27
PublicationDate_xml – month: 2
  year: 2022
  text: 20220227
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kittler (ref_9) 2002; 3
ref_14
ref_58
Bi (ref_23) 2021; 68
ref_56
ref_11
ref_55
Ghassemi (ref_19) 2020; 57
Krogh (ref_40) 1995; 7
Bhuiyan (ref_54) 2013; 4
ref_17
ref_16
Nematzadeh (ref_28) 2022; 97
ref_15
Thomas (ref_30) 2021; 68
Fan (ref_10) 2020; 8
LeCun (ref_24) 2015; 521
Han (ref_52) 2018; 138
Koh (ref_3) 2007; 143
ref_29
Dong (ref_43) 2020; 14
ref_26
Wang (ref_18) 2021; 66
Tschandl (ref_34) 2018; 5
Li (ref_37) 1984; 40
Sagi (ref_41) 2018; 8
Liong (ref_57) 2013; 1522
Desgranges (ref_42) 2020; 124
ref_32
ref_31
Dreiseitl (ref_35) 2002; 35
Sharif (ref_13) 2020; 131
ref_39
ref_38
Rodrigues (ref_50) 2020; 136
Binder (ref_8) 1998; 8
Arevalo (ref_22) 2015; 64
Esteva (ref_7) 2017; 542
Guan (ref_51) 2019; 10
Han (ref_33) 2020; 156
Rundo (ref_25) 2018; 12
Saba (ref_20) 2019; 43
Chatterjee (ref_21) 2019; 53
Li (ref_36) 2005; 26
ref_47
Ali (ref_49) 2021; 5
ref_46
Rogers (ref_1) 2015; 151
ref_45
Stern (ref_2) 2010; 146
ref_44
Saba (ref_12) 2020; 13
Brinker (ref_59) 2019; 113
Codella (ref_4) 2017; 61
Naik (ref_5) 2021; 12
Pereira (ref_6) 2020; 57
ref_48
Maron (ref_27) 2021; 156
Chaturvedi (ref_53) 2020; 79
Goyal (ref_60) 2020; 127
References_xml – ident: ref_32
– ident: ref_55
– volume: 13
  start-page: 1274
  year: 2020
  ident: ref_12
  article-title: Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges
  publication-title: J. Infect. Public Health
  doi: 10.1016/j.jiph.2020.06.033
– ident: ref_15
  doi: 10.1109/SoCPaR.2009.80
– volume: 138
  start-page: 1529
  year: 2018
  ident: ref_52
  article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm
  publication-title: J. Investig. Dermatol.
  doi: 10.1016/j.jid.2018.01.028
– volume: 68
  start-page: 102631
  year: 2021
  ident: ref_23
  article-title: Computer-aided skin cancer diagnosis based on a new meta-heuristic algorithm combined with support vector method
  publication-title: Biomed. Signal Processing
  doi: 10.1016/j.bspc.2021.102631
– volume: 4
  start-page: 1
  year: 2013
  ident: ref_54
  article-title: Image processing for skin cancer features extraction
  publication-title: Int. J. Sci. Eng. Res.
– volume: 156
  start-page: 202
  year: 2021
  ident: ref_27
  article-title: Skin cancer classification via convolutional neural networks: Systematic review of studies involving human experts
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2021.06.049
– volume: 97
  start-page: 107619
  year: 2022
  ident: ref_28
  article-title: Tuning hyperparameters of machine learning algorithms and deep neural networks using metaheuristics: A bioinformatics study on biomedical and biological cases
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2021.107619
– volume: 156
  start-page: 29
  year: 2020
  ident: ref_33
  article-title: Keratinocytic skin cancer detection on the face using region-based convolutional neural network
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2019.3807
– volume: 542
  start-page: 115
  year: 2017
  ident: ref_7
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: ref_31
  doi: 10.3390/biom10081123
– volume: 127
  start-page: 104065
  year: 2020
  ident: ref_60
  article-title: Artificial intelligence-based image classification for diagnosis of skin cancer: Challenges and opportunities
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104065
– volume: 79
  start-page: 28477
  year: 2020
  ident: ref_53
  article-title: A multi-class skin cancer classification using deep convolutional neural networks, Multimed
  publication-title: Tools Appl.
  doi: 10.1007/s11042-020-09388-2
– volume: 10
  start-page: 4876
  year: 2019
  ident: ref_51
  article-title: Deep convolutional neural network vgg-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: A pilot study
  publication-title: J. Cancer
  doi: 10.7150/jca.28769
– volume: 12
  start-page: 957
  year: 2018
  ident: ref_25
  article-title: Evaluation of levenberg–marquardt neural networks and stacked autoencoders clustering for skin lesion analysis, screening and follow-up
  publication-title: IET Comput. Vision
  doi: 10.1049/iet-cvi.2018.5195
– volume: 143
  start-page: 101
  year: 2007
  ident: ref_3
  article-title: Melanoma screening: Focusing the public health journey
  publication-title: Arch. Dermatol.
  doi: 10.1001/archderm.143.1.101
– ident: ref_38
  doi: 10.1109/ICRTIT.2011.5972349
– volume: 57
  start-page: 101678
  year: 2020
  ident: ref_19
  article-title: Deep neural network with generative adversarial networks pre-training for brain tumor classification based on mr images
  publication-title: Biomed. Signal Processing
  doi: 10.1016/j.bspc.2019.101678
– volume: 136
  start-page: 8
  year: 2020
  ident: ref_50
  article-title: A new approach for classification skin lesion based on transfer learning, deep learning, and iot system
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.05.019
– volume: 131
  start-page: 30
  year: 2020
  ident: ref_13
  article-title: A comprehensive review on multi-organs tumor detection based on machine learning
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.12.006
– volume: 43
  start-page: 289
  year: 2019
  ident: ref_20
  article-title: Region extraction and classification of skin cancer: A heterogeneous framework of deep cnn features fusion and reduction
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1413-3
– volume: 7
  start-page: 231
  year: 1995
  ident: ref_40
  article-title: Neural network ensembles, cross validation, and active learning
  publication-title: Adv. Neural Inf. Processing Syst.
– volume: 66
  start-page: 102428
  year: 2021
  ident: ref_18
  article-title: Unlabeled skin lesion classification by self-supervised topology clustering network
  publication-title: Biomed. Signal Processing
  doi: 10.1016/j.bspc.2021.102428
– ident: ref_26
  doi: 10.1109/ICET48972.2019.8994508
– volume: 12
  start-page: 7
  year: 2021
  ident: ref_5
  article-title: Cutaneous malignant melanoma: A review of early diagnosis and management
  publication-title: World J. Oncol.
  doi: 10.14740/wjon1349
– volume: 64
  start-page: 131
  year: 2015
  ident: ref_22
  article-title: An unsupervised feature learning framework for basal cell carcinoma image analysis
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2015.04.004
– ident: ref_48
  doi: 10.1109/CVPR.2016.308
– volume: 61
  start-page: 5:1
  year: 2017
  ident: ref_4
  article-title: Deep learning ensembles for melanoma recognition in dermoscopy images
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/JRD.2017.2708299
– ident: ref_39
  doi: 10.1109/AISP.2017.8324083
– volume: 14
  start-page: 241
  year: 2020
  ident: ref_43
  article-title: A survey on ensemble learning
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-019-8208-z
– volume: 5
  start-page: 100036
  year: 2021
  ident: ref_49
  article-title: An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models
  publication-title: Mach. Learn. Appl.
– ident: ref_58
  doi: 10.1109/MAPR49794.2020.9237778
– ident: ref_44
  doi: 10.1145/1143844.1143934
– volume: 113
  start-page: 47
  year: 2019
  ident: ref_59
  article-title: Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2019.04.001
– volume: 3
  start-page: 159
  year: 2002
  ident: ref_9
  article-title: Diagnostic accuracy of dermoscopy
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(02)00679-4
– ident: ref_45
  doi: 10.1109/CVPR.2017.195
– volume: 26
  start-page: 527
  year: 2005
  ident: ref_36
  article-title: 2d-lda: A statistical linear discriminant analysis for image matrix
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2004.09.007
– ident: ref_16
  doi: 10.1007/978-3-030-40850-3_8
– ident: ref_29
  doi: 10.3390/diagnostics12010040
– volume: 124
  start-page: 1907
  year: 2020
  ident: ref_42
  article-title: Ensemble learning of partition functions for the prediction of thermodynamic properties of adsorption in metal–organic and covalent organic frameworks
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b07936
– volume: 8
  start-page: 261
  year: 1998
  ident: ref_8
  article-title: Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network
  publication-title: Melanoma Res.
  doi: 10.1097/00008390-199806000-00009
– volume: 8
  start-page: 131975
  year: 2020
  ident: ref_10
  article-title: High voltage gain dc/dc converter using coupled inductor and vm techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002902
– ident: ref_17
  doi: 10.1109/CIBEC.2018.8641762
– volume: 53
  start-page: 101581
  year: 2019
  ident: ref_21
  article-title: Extraction of features from cross correlation in space and frequency domains for classification of skin lesions
  publication-title: Biomed. Signal Processing
  doi: 10.1016/j.bspc.2019.101581
– volume: 40
  start-page: 358
  year: 1984
  ident: ref_37
  article-title: Classification and regression trees (cart)
  publication-title: Biometrics
– volume: 151
  start-page: 1081
  year: 2015
  ident: ref_1
  article-title: Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the us population, 2012
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2015.1187
– ident: ref_46
– volume: 57
  start-page: 101765
  year: 2020
  ident: ref_6
  article-title: Skin lesion classification enhancement using border-line features—The melanoma vs nevus problem
  publication-title: Biomed. Signal Processing
  doi: 10.1016/j.bspc.2019.101765
– volume: 35
  start-page: 352
  year: 2002
  ident: ref_35
  article-title: Logistic regression and artificial neural network classification models: A methodology review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/S1532-0464(03)00034-0
– ident: ref_47
  doi: 10.1109/CVPR.2016.90
– volume: 146
  start-page: 279
  year: 2010
  ident: ref_2
  article-title: Prevalence of a history of skin cancer in 2007: Results of an incidence-based model
  publication-title: Arch. Dermatol.
  doi: 10.1001/archdermatol.2010.4
– ident: ref_14
  doi: 10.1109/AEECT.2017.8257738
– ident: ref_11
  doi: 10.1109/HNICEM.2018.8666296
– ident: ref_56
  doi: 10.1109/ICTAI.2011.29
– volume: 68
  start-page: 101915
  year: 2021
  ident: ref_30
  article-title: Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101915
– volume: 8
  start-page: e1249
  year: 2018
  ident: ref_41
  article-title: Ensemble learning: A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
– volume: 1522
  start-page: 1159
  year: 2013
  ident: ref_57
  article-title: Comparison of linear discriminant analysis and logistic regression for data classification
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4801262
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_24
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 5
  start-page: 180161
  year: 2018
  ident: ref_34
  article-title: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.161
SSID ssj0001325264
Score 2.5346124
Snippet We carry out a critical assessment of machine learning and deep learning models for the classification of skin tumors. Machine learning (ML) algorithms tested...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 97
SubjectTerms Accuracy
Algorithms
Archives & records
Artificial neural networks
Bayesian analysis
Bioengineering
Classification
Classifiers
convolutional neural network
Datasets
Decision analysis
Decision trees
Deep learning
Discriminant analysis
Image classification
Learning algorithms
Machine learning
Melanoma
Model accuracy
Neural networks
Skin cancer
Transfer learning
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QCH8iwECjIS19DEdh4-oba0AglWFQLUW-THZLtSN1mSbX8_M1nvC1VwIMfYjhzNePyNPfMNY-8gF46QbFzL1MTKOB-b1EOsLCS1Ioq4oRjMzy_FaFReXOjzcODWh7DKpU0cDLVvHZ2RH-LGLcidUsmH2a-YqkbR7WoooXGX7RJTGer57vHp6Pzb-pRFigxHLlJ3JPr3h3bSwprpT6OOD4RPG5vSwN1_G-D8M25yYyM6e_i_v_CI7QUIyo8WOvOY3YHmCXuwQUz4lPmvQ4wl8EC_Ouam8fwjwGz95uhqjB-fX057jsCXUxUvfkI61PGh0ibFIA1i55TCgoO7aUs5MBPHP0_RivXP2I-z0-8nn-JQjyF2iJPmsRdKGpOleZZ5gaK02kNaW6XR6chUDhJ8aqVzmdTKJLmt0VW0qdNGY3MJtdxnO03bwAvGfe7yohZW10KqWmYW3UgwNktycLoQZcTUUiCVC2TlVDPjqkKnheRY3SrHiL1fDZst2Dr-NeCYpL3qTGTbw4u2G1dh7VY12rkEwCpKw3VGWu9yQGhUAD7O-ogdLOVdBQvQV2thR-ztqhnXLl3ImAba66GPIkLXEvs8X6jWaiYyQ6hblHnEii2l25rqdkszuRz4wUutEMSLl3-f1it2X1AqB6XnFwdsZ95dw2t2z93MJ333Jiyk30ZPLiY
  priority: 102
  providerName: ProQuest
Title Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images
URI https://www.ncbi.nlm.nih.gov/pubmed/35324786
https://www.proquest.com/docview/2642338340
https://www.proquest.com/docview/2644009880
https://pubmed.ncbi.nlm.nih.gov/PMC8945332
https://doaj.org/article/f4000eeb45434ca3bdc6e2187eeeecbd
Volume 9
WOSCitedRecordID wos000776171200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7P
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7S
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: PIMPY
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcIAD4lkCZWUkrqFJ7Dx8bMtWVKKriJeWU-THpF2pm1TZLUd-OzNOus2iSr2Qgw8eW3I8Y89MMvMNYx8gSyxZsmEtYh1KbV2oYwehNBDVkiDifDGYn1_y2ayYz1U5KvVFMWE9PHC_cfs1ClkEYCTlQFotjLMZoF7KAR9rHN2-Ua5GzpT_uiKSFFV9n7Ij0K_fN4sWbhD-FMq2B3oaKSOP2X-boflvvORIAR0_ZU8Gy5Ef9Ct-xu5B85w9HuEJvmDu1IdGAh9QU8-4bhz_BHB503NwcdZ2i_X5csXRXuVUfIsfEes77gtkUuiQ5xanzBOc3C1bSl1ZWH6yxMtn9ZL9OJ5-P_ocDmUUQovmzTp0iRRap3GWpi5BDhjlIK6NVOgrpDIDAS42wtpUKKmjzNTo4ZnYKq2QXEAtXrGdpm3gNeMus1leJ0bViZC1SA16f6BNGmVgVZ4UAZPX-1nZAWOcSl1cVOhrEBuqW9kQsI-baZc9yMZdEw6JWZvBhJHtO1ByqkFyqrskJ2B716yuhoO7qlBoEvLaZRSw9xsyHjn6j6IbaK_8GEk4rAWO2e0lY7MSkaKFmhdZwPItmdla6jalWZx7WO9CSbS9kzf_493eskcJ5WlQ7n2-x3bW3RW8Yw_t7_Vi1U3Y_XxeTNiDw-ms_DrxJ2dCQa-lb79R-2eK9PLktPz1Fxu3KAo
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFgk48H4EChgJjqGJ7Tx8QKi0VF11d7WHgsop-DHZrtRNlt0tiD_Fb2Tszb5QBaceyDG2o3HyzXjG8XxDyGtImXGebFjyWIVCGRuq2EIoNESlcBRxvhjM507W6-Wnp7K_RX4tcmHcscqFTfSG2tbG7ZHv4sLNXDglovfjb6GrGuX-ri5KaMxhcQw_f2DINn3XPsDv-4axw48n-0dhU1UgNLjaz0LLBFcqidMksQwF0tJCXGoh0XVORAocbKy5MQmXQkWpLjHg0bGRSmJzDiXH514j2wInGLXIdr_d7X9Z7epwlqCk81QhzmW0q4c1rJgFJeqUJ5haWwR9rYDLHNw_z2muLXyHd_63V3aX3G5cbLo314l7ZAuq--TWGvHiA2K7_gwp0IZedkBVZekBwHh1Z-98gJOZnY2mFB176qqU0X2nIxPqK4m6M1Ye1tSl6ODgyah2OT5DQ9sjtNLTh-TTlUzzEWlVdQVPCLWpSbOSaVkyLkqeaAyTQekkSsHIjOUBEQsAFKYhY3c1Qc4LDMocbopLcROQt8th4zkbyb8GfHDoWnZ2ZOL-Rj0ZFI1tKkq04xGAFi7N2CiurUkBXb8M8DLaBmRnga-isXDTYgWugLxaNqNtcj-cVAX1he8jHGFtjn0ez6G8lIQn6MpneRqQbAPkG6JutlTDM89_nkuBQQp7-nexXpIbRyfdTtFp946fkZt-68znkO6Q1mxyAc_JdfN9NpxOXjRKTMnXq1aC34K6i4Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48KYNFFgkOJrYu-vXAaG2aUTUEkUIUG_uPsZppMYOSQrir_HrmHWcF6rg1AM-enetsf3N7Iw98w3Aa4y4cZ6sl4tAeVIZ66nAoic1-rl0FHFVM5ivJ3Gvl5yepv0t-LWohXFplQubWBlqWxr3jbxFGzd34ZT0W3mdFtFvd96Pv3mug5T707popzGHyDH-_EHh2_Rdt03v-g3nnaPPhx-8usOAZ2jnn3mWS6FUGERhaDkJp1OLQa5lSm50KCMUaAMtjAlFKpUf6ZyCHx2YVKU0nGAu6Lo3YDsWFPQ0YPvgqNf_tPrCI3hIUs_LhoRI_ZYelrhiGUxJvyqyqbUNseobcJWz-2fO5tom2Ln3Pz---3C3dr3Z_lxXHsAWFg_hzhoh4yOwH6vcUmQ17eyAqcKyNuJ4dWb_YkA3MzsfTRk5_Mx1L2OHTncmrOow6nKvKrgzV7pDiyej0tX-DA3rjsh6Tx_Dl2u5zSfQKMoCd4HZyERxznWacyFzEWoKn1Hp0I_QpDFPmiAXYMhMTdLueoVcZBSsOQxlV2KoCW-Xy8ZzlpJ_LThwSFtOdiTj1YlyMshqm5XlZN99RC1d-bFRQlsTIbmEMdJhtG3C3gJrWW35ptkKaE14tRwmm-V-RKkCy8tqjnREtgnN2ZnDeimJCMnFj5OoCfEG4DdE3RwphucVL3qSSgpe-NO_i_USbhHys5Nu7_gZ3OaumsUxFMR70JhNLvE53DTfZ8Pp5EWtzwzOrlsHfgNs3JQk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+and+Deep+Learning+Algorithms+for+Skin+Cancer+Classification+from+Dermoscopic+Images&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Bechelli%2C+Solene&rft.au=Delhommelle%2C+Jerome&rft.date=2022-02-27&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=9&rft.issue=3&rft.spage=97&rft_id=info:doi/10.3390%2Fbioengineering9030097&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bioengineering9030097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon