Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats

New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strat...

Full description

Saved in:
Bibliographic Details
Published in:Learning & memory (Cold Spring Harbor, N.Y.) Vol. 16; no. 2; p. 147
Main Authors: Jessberger, Sebastian, Clark, Robert E, Broadbent, Nicola J, Clemenson, Jr, Gregory D, Consiglio, Antonella, Lie, D Chichung, Squire, Larry R, Gage, Fred H
Format: Journal Article
Language:English
Published: United States 01.02.2009
Subjects:
ISSN:1549-5485, 1549-5485
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons with hippocampal function used ablation strategies that were not exclusive to the hippocampus or that were associated with substantial side effects, such as inflammation. We here used a lentiviral approach to specifically block neurogenesis in the dentate gyrus of adult male rats by inhibiting WNT signaling, which is critically involved in the generation of newborn neurons, using a dominant-negative WNT (dnWNT). We found a level-dependent effect of adult neurogenesis on the long-term retention of spatial memory in the water maze task, as rats with substantially reduced levels of newborn neurons showed less preference for the target zone in probe trials >2 wk after acquisition compared with control rats. Furthermore, animals with strongly reduced levels of neurogenesis were impaired in a hippocampus-dependent object recognition task. Social transmission of food preference, a behavioral test that also depends on hippocampal function, was not affected by knockdown of neurogenesis. Here we identified a role for newborn neurons in distinct aspects of hippocampal function that will set the ground to further elucidate, using experimental and computational strategies, the mechanism by which newborn neurons contribute to behavior.
AbstractList New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons with hippocampal function used ablation strategies that were not exclusive to the hippocampus or that were associated with substantial side effects, such as inflammation. We here used a lentiviral approach to specifically block neurogenesis in the dentate gyrus of adult male rats by inhibiting WNT signaling, which is critically involved in the generation of newborn neurons, using a dominant-negative WNT (dnWNT). We found a level-dependent effect of adult neurogenesis on the long-term retention of spatial memory in the water maze task, as rats with substantially reduced levels of newborn neurons showed less preference for the target zone in probe trials >2 wk after acquisition compared with control rats. Furthermore, animals with strongly reduced levels of neurogenesis were impaired in a hippocampus-dependent object recognition task. Social transmission of food preference, a behavioral test that also depends on hippocampal function, was not affected by knockdown of neurogenesis. Here we identified a role for newborn neurons in distinct aspects of hippocampal function that will set the ground to further elucidate, using experimental and computational strategies, the mechanism by which newborn neurons contribute to behavior.
New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons with hippocampal function used ablation strategies that were not exclusive to the hippocampus or that were associated with substantial side effects, such as inflammation. We here used a lentiviral approach to specifically block neurogenesis in the dentate gyrus of adult male rats by inhibiting WNT signaling, which is critically involved in the generation of newborn neurons, using a dominant-negative WNT (dnWNT). We found a level-dependent effect of adult neurogenesis on the long-term retention of spatial memory in the water maze task, as rats with substantially reduced levels of newborn neurons showed less preference for the target zone in probe trials >2 wk after acquisition compared with control rats. Furthermore, animals with strongly reduced levels of neurogenesis were impaired in a hippocampus-dependent object recognition task. Social transmission of food preference, a behavioral test that also depends on hippocampal function, was not affected by knockdown of neurogenesis. Here we identified a role for newborn neurons in distinct aspects of hippocampal function that will set the ground to further elucidate, using experimental and computational strategies, the mechanism by which newborn neurons contribute to behavior.New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons with hippocampal function used ablation strategies that were not exclusive to the hippocampus or that were associated with substantial side effects, such as inflammation. We here used a lentiviral approach to specifically block neurogenesis in the dentate gyrus of adult male rats by inhibiting WNT signaling, which is critically involved in the generation of newborn neurons, using a dominant-negative WNT (dnWNT). We found a level-dependent effect of adult neurogenesis on the long-term retention of spatial memory in the water maze task, as rats with substantially reduced levels of newborn neurons showed less preference for the target zone in probe trials >2 wk after acquisition compared with control rats. Furthermore, animals with strongly reduced levels of neurogenesis were impaired in a hippocampus-dependent object recognition task. Social transmission of food preference, a behavioral test that also depends on hippocampal function, was not affected by knockdown of neurogenesis. Here we identified a role for newborn neurons in distinct aspects of hippocampal function that will set the ground to further elucidate, using experimental and computational strategies, the mechanism by which newborn neurons contribute to behavior.
Author Squire, Larry R
Clemenson, Jr, Gregory D
Gage, Fred H
Consiglio, Antonella
Clark, Robert E
Jessberger, Sebastian
Lie, D Chichung
Broadbent, Nicola J
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Jessberger
  fullname: Jessberger, Sebastian
  organization: Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA
– sequence: 2
  givenname: Robert E
  surname: Clark
  fullname: Clark, Robert E
– sequence: 3
  givenname: Nicola J
  surname: Broadbent
  fullname: Broadbent, Nicola J
– sequence: 4
  givenname: Gregory D
  surname: Clemenson, Jr
  fullname: Clemenson, Jr, Gregory D
– sequence: 5
  givenname: Antonella
  surname: Consiglio
  fullname: Consiglio, Antonella
– sequence: 6
  givenname: D Chichung
  surname: Lie
  fullname: Lie, D Chichung
– sequence: 7
  givenname: Larry R
  surname: Squire
  fullname: Squire, Larry R
– sequence: 8
  givenname: Fred H
  surname: Gage
  fullname: Gage, Fred H
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19181621$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAYRYOMOA_d-AMkK3fVpE3aZCnjEwbc6Lpkkq9DZpqkJiky_96CI7g6l8vlLO4SzXzwgNA1JXeUEnrfu4lNWRN5hhaUM1lwJvjsX56jZUp7QkjTMHqB5lRSQeuSLlB8BJ9VBrw7xjEVaQBtO6vxwQd9MOHb49BhZcY-Yw9jDDvwkGzC1g3KxoTToLJVPVbe4LDdg844gg47b7MNHjtwIR6x9SdHVDldovNO9QmuTlyhz-enj_VrsXl_eVs_bArNCc-F6DoAJUXHtZLbEoTUlIh6qgkDI6Ysta6MMQ2nTDJhGKtKUVVClJ2hoipX6PbXO8TwNULKrbNJQ98rD2FMbV2Lpmk4n4Y3p-G4dWDaIVqn4rH9e6n8AfUUbMQ
CitedBy_id crossref_primary_10_1007_s12017_009_8077_y
crossref_primary_10_1002_stem_2310
crossref_primary_10_3390_ijms21010004
crossref_primary_10_1007_s11064_015_1602_5
crossref_primary_10_1038_s41598_020_76176_1
crossref_primary_10_1016_j_neuron_2015_01_002
crossref_primary_10_1016_j_toxlet_2013_04_003
crossref_primary_10_3390_ijms18102147
crossref_primary_10_1002_hipo_22304
crossref_primary_10_3389_fnins_2023_1093180
crossref_primary_10_1038_s41593_022_01073_x
crossref_primary_10_1007_s00441_013_1612_z
crossref_primary_10_1038_mp_2017_103
crossref_primary_10_1002_bdrc_20193
crossref_primary_10_1080_15622975_2017_1323118
crossref_primary_10_1016_j_neuropharm_2012_02_015
crossref_primary_10_1523_JNEUROSCI_3417_16_2017
crossref_primary_10_3389_fnins_2017_00488
crossref_primary_10_1016_j_ijdevneu_2018_11_005
crossref_primary_10_1038_nrn2755
crossref_primary_10_1073_pnas_1013456108
crossref_primary_10_1016_j_jneumeth_2020_108616
crossref_primary_10_1016_j_neuron_2011_02_034
crossref_primary_10_1038_s41598_020_72362_3
crossref_primary_10_1186_alzrt250
crossref_primary_10_1155_2014_403120
crossref_primary_10_1523_JNEUROSCI_2580_15_2015
crossref_primary_10_1111_acer_12843
crossref_primary_10_1371_journal_pone_0015267
crossref_primary_10_1007_s12975_023_01180_2
crossref_primary_10_1038_s41398_020_0686_0
crossref_primary_10_1007_s12035_018_1103_z
crossref_primary_10_1016_j_bbr_2009_11_017
crossref_primary_10_1111_nure_12045
crossref_primary_10_1016_j_neubiorev_2022_104952
crossref_primary_10_1038_s41593_025_01971_w
crossref_primary_10_1371_journal_pone_0007506
crossref_primary_10_1016_j_bbr_2011_07_001
crossref_primary_10_1134_S1819712415040030
crossref_primary_10_1097_NEN_0000000000000092
crossref_primary_10_1016_j_neures_2011_06_001
crossref_primary_10_1007_s11055_014_9988_0
crossref_primary_10_3389_fnins_2015_00035
crossref_primary_10_1016_j_bbr_2011_01_021
crossref_primary_10_1016_j_stemcr_2025_102613
crossref_primary_10_1371_journal_pone_0029891
crossref_primary_10_1016_j_nutres_2020_12_003
crossref_primary_10_3233_BPL_170057
crossref_primary_10_3233_BPL_170058
crossref_primary_10_3390_ijms24065921
crossref_primary_10_1016_j_neuroscience_2016_10_062
crossref_primary_10_1016_j_ultrasmedbio_2014_09_015
crossref_primary_10_3389_frdem_2025_1546433
crossref_primary_10_1111_ejn_12819
crossref_primary_10_1016_j_yfrne_2019_100796
crossref_primary_10_1016_j_bbr_2011_07_012
crossref_primary_10_5483_BMBRep_2009_42_5_239
crossref_primary_10_1038_mp_2009_130
crossref_primary_10_1016_j_brainres_2010_07_032
crossref_primary_10_1038_s41598_020_72024_4
crossref_primary_10_3389_fnmol_2017_00275
crossref_primary_10_1007_s12035_023_03890_y
crossref_primary_10_3390_brainsci14040320
crossref_primary_10_1007_s11011_021_00774_9
crossref_primary_10_1016_j_bbr_2017_03_016
crossref_primary_10_1002_hipo_22346
crossref_primary_10_5483_BMBRep_2009_42_5_245
crossref_primary_10_3390_biom10020225
crossref_primary_10_1371_journal_pone_0106009
crossref_primary_10_1002_hipo_22218
crossref_primary_10_1080_17470919_2018_1479303
crossref_primary_10_1016_j_expneurol_2023_114618
crossref_primary_10_1371_journal_pone_0075125
crossref_primary_10_1016_j_neuroscience_2017_09_020
crossref_primary_10_1371_journal_pone_0108559
crossref_primary_10_1111_acer_14708
crossref_primary_10_1523_JNEUROSCI_0632_18_2018
crossref_primary_10_1002_hipo_22574
crossref_primary_10_3389_fnins_2017_00571
crossref_primary_10_1074_jbc_M113_497909
crossref_primary_10_3389_fnsys_2015_00112
crossref_primary_10_4103_NRR_NRR_D_23_01993
crossref_primary_10_3389_fnbeh_2019_00051
crossref_primary_10_3389_fphys_2020_565667
crossref_primary_10_1213_ANE_0b013e318232066c
crossref_primary_10_1016_j_expneurol_2025_115418
crossref_primary_10_1016_j_neuroscience_2013_10_063
crossref_primary_10_1134_S2079086416020055
crossref_primary_10_1159_000362383
crossref_primary_10_1016_j_neuro_2022_10_005
crossref_primary_10_1155_2020_7348745
crossref_primary_10_1007_s11064_014_1291_5
crossref_primary_10_1371_journal_pone_0079837
crossref_primary_10_1016_j_nbd_2010_07_010
crossref_primary_10_1074_jbc_M115_672857
crossref_primary_10_1016_j_neurobiolaging_2015_10_035
crossref_primary_10_4103_1673_5374_268905
crossref_primary_10_1155_2015_592915
crossref_primary_10_1016_j_nlm_2013_07_011
crossref_primary_10_1007_s12640_015_9568_2
crossref_primary_10_1007_s12640_013_9443_y
crossref_primary_10_1038_npp_2011_315
crossref_primary_10_1016_j_pneurobio_2020_101888
crossref_primary_10_1111_gbb_12014
crossref_primary_10_1111_j_1460_9568_2011_07606_x
crossref_primary_10_1016_j_physbeh_2023_114353
crossref_primary_10_1016_j_bbi_2010_06_005
crossref_primary_10_1016_j_expneurol_2015_04_017
crossref_primary_10_1186_1756_6606_4_28
crossref_primary_10_1016_j_etap_2009_04_011
crossref_primary_10_1089_neu_2017_5102
crossref_primary_10_1016_j_bbi_2011_07_225
crossref_primary_10_3389_fcell_2021_657149
crossref_primary_10_3390_cells11203234
crossref_primary_10_1016_j_neubiorev_2015_12_004
crossref_primary_10_1111_jnc_12655
crossref_primary_10_1523_JNEUROSCI_4130_14_2015
crossref_primary_10_1111_acel_13101
crossref_primary_10_1111_gbb_12130
crossref_primary_10_4161_cc_10_15_15946
crossref_primary_10_1016_j_nbd_2010_09_007
crossref_primary_10_1016_j_nlm_2016_01_013
crossref_primary_10_1016_j_bbr_2011_03_048
crossref_primary_10_1093_brain_awz371
crossref_primary_10_1016_j_bbih_2020_100106
crossref_primary_10_1126_science_1173215
crossref_primary_10_1016_j_bbr_2011_06_025
crossref_primary_10_1007_s00018_023_04685_z
crossref_primary_10_1016_j_neubiorev_2014_01_004
crossref_primary_10_1186_s13014_014_0281_8
crossref_primary_10_3390_nu14071431
crossref_primary_10_1093_cercor_bhad431
crossref_primary_10_1007_s00018_011_0641_6
crossref_primary_10_1523_JNEUROSCI_5462_11_2012
crossref_primary_10_3390_cells14171304
crossref_primary_10_1016_j_yfrne_2014_11_004
crossref_primary_10_3233_BPL_150011
crossref_primary_10_1111_ejn_12531
crossref_primary_10_1002_hipo_22374
crossref_primary_10_1016_j_neubiorev_2020_11_031
crossref_primary_10_1111_jnc_15265
crossref_primary_10_1097_FBP_0b013e32833e16b6
crossref_primary_10_1016_j_bbi_2019_10_007
crossref_primary_10_1038_s41380_018_0036_2
crossref_primary_10_1111_adb_13215
crossref_primary_10_1016_j_neuroscience_2015_12_026
crossref_primary_10_1016_j_brainres_2010_02_075
crossref_primary_10_1002_glia_24468
crossref_primary_10_1016_j_neuropharm_2014_01_026
crossref_primary_10_1113_JP278640
crossref_primary_10_1016_j_expneurol_2020_113372
crossref_primary_10_1016_j_neuroscience_2010_06_038
crossref_primary_10_3390_ijms20174240
crossref_primary_10_1093_toxsci_kfaa144
crossref_primary_10_1172_JCI64650
crossref_primary_10_1016_j_neuroscience_2017_08_013
crossref_primary_10_3389_fnbeh_2015_00055
crossref_primary_10_1016_j_brainresbull_2021_03_006
crossref_primary_10_1016_j_yhbeh_2012_03_005
crossref_primary_10_1242_jcs_088120
crossref_primary_10_1093_chemse_bjx028
crossref_primary_10_1016_j_yebeh_2015_04_046
crossref_primary_10_1523_JNEUROSCI_1571_12_2013
crossref_primary_10_1016_j_nbd_2012_02_007
crossref_primary_10_1038_mp_2016_169
crossref_primary_10_1111_ejn_13406
crossref_primary_10_1007_s12035_013_8422_x
crossref_primary_10_1016_j_ijbiomac_2023_127923
crossref_primary_10_1371_journal_pone_0181138
crossref_primary_10_1016_j_bbr_2010_01_016
crossref_primary_10_1016_j_pneurobio_2021_102031
crossref_primary_10_1016_j_nbd_2010_01_008
crossref_primary_10_1155_2014_568587
crossref_primary_10_1093_brain_awq215
crossref_primary_10_1016_j_bbagen_2017_09_006
crossref_primary_10_2353_ajpath_2009_081153
crossref_primary_10_1016_j_nbd_2013_04_016
crossref_primary_10_1007_s00018_015_2028_6
crossref_primary_10_3389_fncel_2025_1544460
crossref_primary_10_1016_j_neuroscience_2009_11_073
crossref_primary_10_1038_tp_2017_16
crossref_primary_10_1016_j_mehy_2011_04_020
crossref_primary_10_1111_ejn_12323
crossref_primary_10_3390_molecules21091165
crossref_primary_10_3389_fnins_2024_1418694
crossref_primary_10_1002_glia_23476
crossref_primary_10_1007_s00726_013_1489_x
crossref_primary_10_1111_j_1369_1600_2010_00241_x
crossref_primary_10_1016_j_psyneuen_2012_11_007
crossref_primary_10_1016_j_nlm_2017_02_013
crossref_primary_10_1002_stem_1822
crossref_primary_10_1134_S2079086418040035
crossref_primary_10_1016_j_bbi_2018_11_010
crossref_primary_10_3389_fncel_2018_00432
crossref_primary_10_1016_j_stem_2012_11_021
crossref_primary_10_3389_fcell_2020_00654
crossref_primary_10_1146_annurev_pharmtox_011112_140216
crossref_primary_10_1186_s40478_019_0849_5
crossref_primary_10_1002_hipo_23267
crossref_primary_10_1667_RR3026_1
crossref_primary_10_1186_s13195_020_00705_3
crossref_primary_10_1038_s41598_022_10947_w
crossref_primary_10_1093_nutrit_nuy016
crossref_primary_10_1371_journal_pone_0061948
crossref_primary_10_1016_j_brainresbull_2020_03_001
crossref_primary_10_1016_j_bbr_2014_09_010
crossref_primary_10_1016_j_brainres_2024_149020
crossref_primary_10_1186_1471_2202_11_146
crossref_primary_10_1016_j_bbr_2012_12_032
crossref_primary_10_1111_j_1471_4159_2010_07131_x
crossref_primary_10_1002_emmm_201100177
crossref_primary_10_1016_j_bbi_2016_09_001
crossref_primary_10_1371_journal_pone_0197869
crossref_primary_10_1523_JNEUROSCI_5240_11_2012
crossref_primary_10_3390_nu12051520
crossref_primary_10_1002_ana_23941
crossref_primary_10_1016_j_neuroscience_2014_10_062
crossref_primary_10_3233_BPL_180065
crossref_primary_10_1371_journal_pone_0025522
crossref_primary_10_33549_physiolres_933627
crossref_primary_10_1016_j_biopsych_2024_07_014
crossref_primary_10_1016_j_brainres_2016_01_055
crossref_primary_10_1159_000112234
crossref_primary_10_1016_j_ntt_2020_106865
crossref_primary_10_1073_pnas_1202068109
crossref_primary_10_1007_s12017_019_08532_y
crossref_primary_10_1038_nrn2822
crossref_primary_10_1038_s41380_024_02504_w
crossref_primary_10_3389_fnbeh_2014_00136
crossref_primary_10_1016_j_bbr_2011_04_023
crossref_primary_10_1242_dev_104596
crossref_primary_10_1096_fj_201900621R
crossref_primary_10_3389_fncel_2014_00396
crossref_primary_10_3727_096368915X687011
crossref_primary_10_3390_cells11050791
crossref_primary_10_1038_tp_2016_255
crossref_primary_10_4137_JCNSD_S32204
crossref_primary_10_1155_2019_8502370
crossref_primary_10_1016_j_pharmthera_2011_04_008
crossref_primary_10_1186_s12974_016_0671_y
crossref_primary_10_1186_s40659_023_00472_z
crossref_primary_10_1177_1073858420914509
crossref_primary_10_1007_s11011_024_01505_6
crossref_primary_10_1093_brain_awr133
crossref_primary_10_1126_science_aat8789
crossref_primary_10_1186_s13041_016_0270_y
crossref_primary_10_1016_j_toxlet_2015_04_013
crossref_primary_10_1016_j_yebeh_2012_12_006
crossref_primary_10_1038_tp_2017_48
crossref_primary_10_1002_hipo_20900
crossref_primary_10_1038_s41598_022_18884_4
crossref_primary_10_1016_j_neuroscience_2019_09_012
crossref_primary_10_1007_s13311_023_01427_8
crossref_primary_10_1002_hipo_22090
crossref_primary_10_3389_fnins_2024_1274174
crossref_primary_10_1098_rsob_130181
crossref_primary_10_1371_journal_pone_0081556
crossref_primary_10_1016_j_tics_2010_04_003
crossref_primary_10_3390_ijms21249703
crossref_primary_10_1371_journal_pone_0014713
crossref_primary_10_1007_s11481_012_9350_7
crossref_primary_10_1016_j_nbd_2010_12_002
crossref_primary_10_1016_j_neubiorev_2020_04_007
crossref_primary_10_3390_biom15040542
crossref_primary_10_3390_ijms24087117
crossref_primary_10_7554_eLife_66463
crossref_primary_10_1016_j_neuroscience_2010_09_047
crossref_primary_10_1016_j_neurot_2024_e00500
crossref_primary_10_1371_journal_pone_0073720
crossref_primary_10_1093_brain_awad303
crossref_primary_10_1016_j_nlm_2017_12_008
crossref_primary_10_1016_j_bbr_2017_08_014
crossref_primary_10_1016_j_nlm_2013_04_001
crossref_primary_10_1016_j_lfs_2025_123846
crossref_primary_10_1159_000345353
crossref_primary_10_1371_journal_pone_0062701
crossref_primary_10_1002_stem_446
crossref_primary_10_1007_s00429_017_1512_1
crossref_primary_10_1002_wsbm_1526
crossref_primary_10_1016_j_bbr_2019_112118
crossref_primary_10_1007_s10508_016_0890_4
crossref_primary_10_3233_BPL_220141
crossref_primary_10_1073_pnas_1406779111
crossref_primary_10_3389_fnins_2021_782947
crossref_primary_10_1080_00207454_2023_2300733
crossref_primary_10_1096_fj_10_161802
crossref_primary_10_1134_S1819712416040024
crossref_primary_10_1038_s41598_020_65090_1
crossref_primary_10_1158_0008_5472_CAN_12_2989
crossref_primary_10_1016_j_trsl_2013_11_001
crossref_primary_10_1134_S2079086416060013
crossref_primary_10_1038_s41598_023_40497_8
crossref_primary_10_1111_nan_12107
crossref_primary_10_1177_1759091419892692
crossref_primary_10_3390_cells9122712
crossref_primary_10_3390_biom11030362
crossref_primary_10_1097_NEN_0b013e318236e9ad
crossref_primary_10_1371_journal_pgen_1003718
crossref_primary_10_3389_fnagi_2023_1180987
crossref_primary_10_1016_j_bbr_2011_05_007
crossref_primary_10_1089_neu_2014_3545
crossref_primary_10_1111_j_1460_9568_2011_07851_x
crossref_primary_10_1111_bph_70015
crossref_primary_10_1016_j_nbd_2014_11_009
crossref_primary_10_1038_s41398_025_03564_4
crossref_primary_10_1002_dneu_22027
crossref_primary_10_1186_s13041_015_0106_1
crossref_primary_10_1002_glia_24155
crossref_primary_10_5966_sctm_2012_0050
crossref_primary_10_1016_j_brainres_2013_07_035
crossref_primary_10_1242_dev_092262
crossref_primary_10_1016_j_yfrne_2016_05_001
crossref_primary_10_1016_j_neuropharm_2011_03_003
crossref_primary_10_3390_foods11213418
crossref_primary_10_7554_eLife_70685
crossref_primary_10_1038_tp_2017_91
crossref_primary_10_1038_clpt_2011_296
crossref_primary_10_1016_j_nlm_2012_12_002
crossref_primary_10_1016_j_expneurol_2011_01_008
crossref_primary_10_1186_s12868_017_0345_4
crossref_primary_10_1371_journal_pone_0040843
crossref_primary_10_1186_s13287_024_03787_0
crossref_primary_10_3389_fncir_2016_00066
crossref_primary_10_3390_cells9051067
crossref_primary_10_1523_JNEUROSCI_1756_17_2018
crossref_primary_10_1007_s11064_013_1177_y
crossref_primary_10_1371_journal_pgen_1000898
crossref_primary_10_3390_nu13082758
crossref_primary_10_3389_fncel_2020_576444
crossref_primary_10_3390_life14121627
crossref_primary_10_1016_j_nlm_2017_05_001
crossref_primary_10_1016_j_scr_2016_09_027
crossref_primary_10_1089_neu_2014_3680
crossref_primary_10_1007_s12035_022_02837_z
crossref_primary_10_1016_j_arr_2017_06_001
crossref_primary_10_1371_journal_pone_0135493
crossref_primary_10_1016_j_acthis_2019_01_008
crossref_primary_10_1111_j_1365_2826_2011_02203_x
crossref_primary_10_1073_pnas_0911725107
crossref_primary_10_1111_bpa_13225
crossref_primary_10_1038_nn_2360
crossref_primary_10_1371_journal_pone_0095883
crossref_primary_10_1016_j_bbi_2015_06_025
crossref_primary_10_1016_j_biopsych_2012_03_013
crossref_primary_10_3233_BPL_200112
crossref_primary_10_1016_j_neuroscience_2014_01_056
crossref_primary_10_3390_brainsci2040745
crossref_primary_10_1007_s12026_015_8716_3
crossref_primary_10_1074_jbc_M116_774109
crossref_primary_10_1016_j_neuroscience_2018_10_003
crossref_primary_10_3945_jn_109_120626
crossref_primary_10_1523_JNEUROSCI_0532_12_2012
crossref_primary_10_1016_j_physbeh_2021_113652
crossref_primary_10_3390_cells8020125
crossref_primary_10_1097_NEN_0b013e3181e4f733
crossref_primary_10_3233_JAD_161182
crossref_primary_10_1134_S1819712415030046
crossref_primary_10_1016_j_jad_2019_02_051
crossref_primary_10_1038_s41583_021_00433_z
crossref_primary_10_1523_JNEUROSCI_1567_10_2010
crossref_primary_10_1016_j_jconrel_2023_12_030
crossref_primary_10_1016_j_bbr_2024_115276
crossref_primary_10_1016_j_bbr_2024_115157
crossref_primary_10_1016_j_neubiorev_2016_01_007
crossref_primary_10_1186_s12906_016_1435_z
crossref_primary_10_1111_aor_15059
crossref_primary_10_1155_2019_1815371
crossref_primary_10_1111_jne_12040
crossref_primary_10_1016_j_matbio_2018_01_022
crossref_primary_10_1016_j_neuropharm_2024_109960
crossref_primary_10_1016_j_semcdb_2011_07_002
crossref_primary_10_1016_j_bcp_2017_05_003
crossref_primary_10_1016_j_bbagen_2014_12_013
crossref_primary_10_1523_JNEUROSCI_6076_11_2012
crossref_primary_10_1007_s00018_011_0916_y
crossref_primary_10_1523_JNEUROSCI_2055_09_2009
crossref_primary_10_1016_j_expneurol_2013_07_021
crossref_primary_10_1016_j_pnpbp_2016_11_003
crossref_primary_10_1016_j_neuroscience_2023_05_018
crossref_primary_10_1016_j_nlm_2021_107558
crossref_primary_10_1523_JNEUROSCI_2011_17_2018
crossref_primary_10_1007_s11055_020_00938_7
crossref_primary_10_1096_fj_201700495R
crossref_primary_10_1016_j_brainres_2013_09_007
crossref_primary_10_1093_cercor_bht035
crossref_primary_10_1002_jnr_23347
crossref_primary_10_1016_j_yebeh_2015_07_014
crossref_primary_10_3389_fimmu_2022_866073
crossref_primary_10_1111_ejn_15495
crossref_primary_10_1002_hipo_20776
crossref_primary_10_1016_j_neubiorev_2017_04_030
crossref_primary_10_1523_JNEUROSCI_3362_09_2009
crossref_primary_10_1016_j_yfrne_2016_03_001
crossref_primary_10_1016_j_brainresbull_2017_02_011
crossref_primary_10_1016_j_jneuroim_2021_577530
crossref_primary_10_1016_j_neuroscience_2016_02_011
crossref_primary_10_3389_fnint_2016_00008
crossref_primary_10_1016_j_nlm_2019_107154
crossref_primary_10_1186_s40816_021_00300_5
crossref_primary_10_1371_journal_pone_0156493
crossref_primary_10_3390_nu10060749
crossref_primary_10_31083_j_jin2307131
crossref_primary_10_1016_j_nlm_2022_107710
crossref_primary_10_1016_j_neubiorev_2012_02_002
crossref_primary_10_1038_s41467_021_21468_x
crossref_primary_10_1016_j_tins_2011_12_005
crossref_primary_10_1016_j_nlm_2018_09_006
crossref_primary_10_1016_j_yebeh_2019_05_025
crossref_primary_10_1016_j_bbr_2019_111934
crossref_primary_10_4103_1673_5374_382243
crossref_primary_10_1016_j_arr_2016_12_006
crossref_primary_10_1016_j_brainresbull_2020_07_005
crossref_primary_10_1007_s13311_011_0064_y
crossref_primary_10_1186_1742_2094_9_168
crossref_primary_10_1016_j_nlm_2015_10_013
crossref_primary_10_1002_brb3_416
crossref_primary_10_1126_sciadv_abf5606
crossref_primary_10_1016_j_neuropharm_2013_11_012
crossref_primary_10_1097_QAI_0000000000000789
crossref_primary_10_1016_j_bbi_2017_07_153
crossref_primary_10_1002_ptr_3319
crossref_primary_10_3389_fnins_2014_00055
crossref_primary_10_1038_tp_2016_185
crossref_primary_10_3390_brainsci10120902
crossref_primary_10_1038_s41380_021_01102_4
crossref_primary_10_1111_j_1460_9568_2012_08279_x
crossref_primary_10_3390_ph9010009
crossref_primary_10_3390_cells11050764
crossref_primary_10_1111_jnc_14890
crossref_primary_10_1002_wcs_1427
crossref_primary_10_1002_wcs_1304
crossref_primary_10_1007_s11357_022_00579_3
crossref_primary_10_1371_journal_pbio_1000460
crossref_primary_10_1111_jnc_15501
crossref_primary_10_1074_jbc_M112_344762
crossref_primary_10_1016_j_brainres_2011_11_025
crossref_primary_10_1111_gbb_12408
crossref_primary_10_1002_dev_20546
crossref_primary_10_1016_j_pneurobio_2009_07_003
crossref_primary_10_1159_000446981
crossref_primary_10_1002_hipo_22520
crossref_primary_10_1016_j_neuroscience_2011_03_072
crossref_primary_10_1016_j_peptides_2013_11_019
crossref_primary_10_3390_ijms22147450
crossref_primary_10_3389_fnins_2018_00035
crossref_primary_10_1016_j_bbr_2009_11_003
crossref_primary_10_2302_kjm_59_79
crossref_primary_10_1111_j_1460_9568_2011_07833_x
crossref_primary_10_1016_j_bbr_2016_09_067
crossref_primary_10_1146_annurev_psych_093008_100359
crossref_primary_10_1186_s13287_023_03324_5
crossref_primary_10_1016_j_lfs_2020_117755
crossref_primary_10_1111_jnc_12130
crossref_primary_10_1007_s12035_014_9060_7
crossref_primary_10_1016_j_neurobiolaging_2010_06_025
crossref_primary_10_1038_nn_3850
crossref_primary_10_1016_j_jep_2014_07_009
crossref_primary_10_1016_j_exger_2019_110660
crossref_primary_10_1159_000453266
crossref_primary_10_1016_j_expneurol_2013_07_002
crossref_primary_10_1016_j_jep_2012_05_057
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1101/lm.1172609
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1549-5485
ExternalDocumentID 19181621
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH024600
– fundername: NIA NIH HHS
  grantid: P50 AG05131
– fundername: NIA NIH HHS
  grantid: P50 AG005131
– fundername: NINDS NIH HHS
  grantid: NS050217
– fundername: NINDS NIH HHS
  grantid: R01 NS050217
GroupedDBID ---
-DZ
.GJ
18M
29L
2WC
4.4
53G
5GY
5VS
AAFWJ
ABDIX
ABIVO
ACLKE
ADBBV
AENEX
AHPUY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
KQ8
MV1
NPM
OK1
P2P
P6G
RCX
RHI
RPM
SJN
TR2
W8F
WOQ
WOW
7X8
ID FETCH-LOGICAL-c505t-8ffeea98f5ca9b2e89c10868ff04ed81089cc3ddd7514948d4432833882fd1832
IEDL.DBID 7X8
ISICitedReferencesCount 527
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262915400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-5485
IngestDate Fri Jul 11 07:42:29 EDT 2025
Mon Jul 21 06:06:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-8ffeea98f5ca9b2e89c10868ff04ed81089cc3ddd7514948d4432833882fd1832
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/273565
PMID 19181621
PQID 66877755
PQPubID 23479
ParticipantIDs proquest_miscellaneous_66877755
pubmed_primary_19181621
PublicationCentury 2000
PublicationDate 2009-02-01
PublicationDateYYYYMMDD 2009-02-01
PublicationDate_xml – month: 02
  year: 2009
  text: 2009-02-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Learning & memory (Cold Spring Harbor, N.Y.)
PublicationTitleAlternate Learn Mem
PublicationYear 2009
SSID ssj0007741
Score 2.478585
Snippet New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 147
SubjectTerms Animals
Animals, Genetically Modified
Dentate Gyrus - cytology
Dentate Gyrus - growth & development
Dentate Gyrus - physiology
Food Preferences
Form Perception - physiology
Genetic Vectors
Lentivirus - genetics
Male
Maze Learning - physiology
Memory - physiology
Neurons - physiology
Psychomotor Performance - physiology
Rats
Rats, Sprague-Dawley
Recognition, Psychology - physiology
Social Environment
Space Perception - physiology
Stereotaxic Techniques
Wnt Proteins - genetics
Wnt Proteins - physiology
Title Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats
URI https://www.ncbi.nlm.nih.gov/pubmed/19181621
https://www.proquest.com/docview/66877755
Volume 16
WOSCitedRecordID wos000262915400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qFfHio_VRn3sQb4tNs2myIEhRiwdbelDorST7kKDdaGOF_ntnklRvevASQiDZsJnMfjvzzTcA59Yo3faM4kkgu1wkUcATJXyucW2USRB2RCmS9BAOh9F4LEc1uFrWwhCtcukTC0etM0Ux8stul5TrguD67Z1TzyjKrVYNNFag7iOQIZsOxz9a4QhsSrVUITni8qASJ0UbvHydUrISofwvwLJYYPpb_3u1bdisgCXrlZawAzXjGtDsOdxUTxfsghVUzyKG3oD1QZVRb8Lstig-Mux5MZvnnAoviTzEXhw6So1bdJZZVoh0sEL68pl8Y5ozqq5MZznLiZGN48ZOsyyhoA775iRljk2JyLtgqauegfaW78JT_-7x5p5XfRi4Qnz0wSNrjYllZAMVy6RjIqmoPxNebgujIzyXSvla6xDRlxSRFsJH1OIjeLeaXMYerLrMmQPAsZRnRegbYxJhO15sE6-tLeGItkbX0oKz5RRP0M4peRE7k83zyXKSW7BffqXJWynHMcEdZ-R1O97hn_cewUaZDCI2yjHULf7h5gTW1OdHms9OC_PB43A0-AIl69Lx
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dentate+gyrus-specific+knockdown+of+adult+neurogenesis+impairs+spatial+and+object+recognition+memory+in+adult+rats&rft.jtitle=Learning+%26+memory+%28Cold+Spring+Harbor%2C+N.Y.%29&rft.au=Jessberger%2C+Sebastian&rft.au=Clark%2C+Robert+E&rft.au=Broadbent%2C+Nicola+J&rft.au=Clemenson%2C+Gregory+D&rft.date=2009-02-01&rft.issn=1549-5485&rft.eissn=1549-5485&rft.volume=16&rft.issue=2&rft.spage=147&rft_id=info:doi/10.1101%2Flm.1172609&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-5485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-5485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-5485&client=summon