Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats
New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strat...
Saved in:
| Published in: | Learning & memory (Cold Spring Harbor, N.Y.) Vol. 16; no. 2; p. 147 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.02.2009
|
| Subjects: | |
| ISSN: | 1549-5485, 1549-5485 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons with hippocampal function used ablation strategies that were not exclusive to the hippocampus or that were associated with substantial side effects, such as inflammation. We here used a lentiviral approach to specifically block neurogenesis in the dentate gyrus of adult male rats by inhibiting WNT signaling, which is critically involved in the generation of newborn neurons, using a dominant-negative WNT (dnWNT). We found a level-dependent effect of adult neurogenesis on the long-term retention of spatial memory in the water maze task, as rats with substantially reduced levels of newborn neurons showed less preference for the target zone in probe trials >2 wk after acquisition compared with control rats. Furthermore, animals with strongly reduced levels of neurogenesis were impaired in a hippocampus-dependent object recognition task. Social transmission of food preference, a behavioral test that also depends on hippocampal function, was not affected by knockdown of neurogenesis. Here we identified a role for newborn neurons in distinct aspects of hippocampal function that will set the ground to further elucidate, using experimental and computational strategies, the mechanism by which newborn neurons contribute to behavior. |
|---|---|
| AbstractList | New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons with hippocampal function used ablation strategies that were not exclusive to the hippocampus or that were associated with substantial side effects, such as inflammation. We here used a lentiviral approach to specifically block neurogenesis in the dentate gyrus of adult male rats by inhibiting WNT signaling, which is critically involved in the generation of newborn neurons, using a dominant-negative WNT (dnWNT). We found a level-dependent effect of adult neurogenesis on the long-term retention of spatial memory in the water maze task, as rats with substantially reduced levels of newborn neurons showed less preference for the target zone in probe trials >2 wk after acquisition compared with control rats. Furthermore, animals with strongly reduced levels of neurogenesis were impaired in a hippocampus-dependent object recognition task. Social transmission of food preference, a behavioral test that also depends on hippocampal function, was not affected by knockdown of neurogenesis. Here we identified a role for newborn neurons in distinct aspects of hippocampal function that will set the ground to further elucidate, using experimental and computational strategies, the mechanism by which newborn neurons contribute to behavior. New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons with hippocampal function used ablation strategies that were not exclusive to the hippocampus or that were associated with substantial side effects, such as inflammation. We here used a lentiviral approach to specifically block neurogenesis in the dentate gyrus of adult male rats by inhibiting WNT signaling, which is critically involved in the generation of newborn neurons, using a dominant-negative WNT (dnWNT). We found a level-dependent effect of adult neurogenesis on the long-term retention of spatial memory in the water maze task, as rats with substantially reduced levels of newborn neurons showed less preference for the target zone in probe trials >2 wk after acquisition compared with control rats. Furthermore, animals with strongly reduced levels of neurogenesis were impaired in a hippocampus-dependent object recognition task. Social transmission of food preference, a behavioral test that also depends on hippocampal function, was not affected by knockdown of neurogenesis. Here we identified a role for newborn neurons in distinct aspects of hippocampal function that will set the ground to further elucidate, using experimental and computational strategies, the mechanism by which newborn neurons contribute to behavior.New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons with hippocampal function used ablation strategies that were not exclusive to the hippocampus or that were associated with substantial side effects, such as inflammation. We here used a lentiviral approach to specifically block neurogenesis in the dentate gyrus of adult male rats by inhibiting WNT signaling, which is critically involved in the generation of newborn neurons, using a dominant-negative WNT (dnWNT). We found a level-dependent effect of adult neurogenesis on the long-term retention of spatial memory in the water maze task, as rats with substantially reduced levels of newborn neurons showed less preference for the target zone in probe trials >2 wk after acquisition compared with control rats. Furthermore, animals with strongly reduced levels of neurogenesis were impaired in a hippocampus-dependent object recognition task. Social transmission of food preference, a behavioral test that also depends on hippocampal function, was not affected by knockdown of neurogenesis. Here we identified a role for newborn neurons in distinct aspects of hippocampal function that will set the ground to further elucidate, using experimental and computational strategies, the mechanism by which newborn neurons contribute to behavior. |
| Author | Squire, Larry R Clemenson, Jr, Gregory D Gage, Fred H Consiglio, Antonella Clark, Robert E Jessberger, Sebastian Lie, D Chichung Broadbent, Nicola J |
| Author_xml | – sequence: 1 givenname: Sebastian surname: Jessberger fullname: Jessberger, Sebastian organization: Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA – sequence: 2 givenname: Robert E surname: Clark fullname: Clark, Robert E – sequence: 3 givenname: Nicola J surname: Broadbent fullname: Broadbent, Nicola J – sequence: 4 givenname: Gregory D surname: Clemenson, Jr fullname: Clemenson, Jr, Gregory D – sequence: 5 givenname: Antonella surname: Consiglio fullname: Consiglio, Antonella – sequence: 6 givenname: D Chichung surname: Lie fullname: Lie, D Chichung – sequence: 7 givenname: Larry R surname: Squire fullname: Squire, Larry R – sequence: 8 givenname: Fred H surname: Gage fullname: Gage, Fred H |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19181621$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLxDAYRYOMOA_d-AMkK3fVpE3aZCnjEwbc6Lpkkq9DZpqkJiky_96CI7g6l8vlLO4SzXzwgNA1JXeUEnrfu4lNWRN5hhaUM1lwJvjsX56jZUp7QkjTMHqB5lRSQeuSLlB8BJ9VBrw7xjEVaQBtO6vxwQd9MOHb49BhZcY-Yw9jDDvwkGzC1g3KxoTToLJVPVbe4LDdg844gg47b7MNHjtwIR6x9SdHVDldovNO9QmuTlyhz-enj_VrsXl_eVs_bArNCc-F6DoAJUXHtZLbEoTUlIh6qgkDI6Ysta6MMQ2nTDJhGKtKUVVClJ2hoipX6PbXO8TwNULKrbNJQ98rD2FMbV2Lpmk4n4Y3p-G4dWDaIVqn4rH9e6n8AfUUbMQ |
| CitedBy_id | crossref_primary_10_1007_s12017_009_8077_y crossref_primary_10_1002_stem_2310 crossref_primary_10_3390_ijms21010004 crossref_primary_10_1007_s11064_015_1602_5 crossref_primary_10_1038_s41598_020_76176_1 crossref_primary_10_1016_j_neuron_2015_01_002 crossref_primary_10_1016_j_toxlet_2013_04_003 crossref_primary_10_3390_ijms18102147 crossref_primary_10_1002_hipo_22304 crossref_primary_10_3389_fnins_2023_1093180 crossref_primary_10_1038_s41593_022_01073_x crossref_primary_10_1007_s00441_013_1612_z crossref_primary_10_1038_mp_2017_103 crossref_primary_10_1002_bdrc_20193 crossref_primary_10_1080_15622975_2017_1323118 crossref_primary_10_1016_j_neuropharm_2012_02_015 crossref_primary_10_1523_JNEUROSCI_3417_16_2017 crossref_primary_10_3389_fnins_2017_00488 crossref_primary_10_1016_j_ijdevneu_2018_11_005 crossref_primary_10_1038_nrn2755 crossref_primary_10_1073_pnas_1013456108 crossref_primary_10_1016_j_jneumeth_2020_108616 crossref_primary_10_1016_j_neuron_2011_02_034 crossref_primary_10_1038_s41598_020_72362_3 crossref_primary_10_1186_alzrt250 crossref_primary_10_1155_2014_403120 crossref_primary_10_1523_JNEUROSCI_2580_15_2015 crossref_primary_10_1111_acer_12843 crossref_primary_10_1371_journal_pone_0015267 crossref_primary_10_1007_s12975_023_01180_2 crossref_primary_10_1038_s41398_020_0686_0 crossref_primary_10_1007_s12035_018_1103_z crossref_primary_10_1016_j_bbr_2009_11_017 crossref_primary_10_1111_nure_12045 crossref_primary_10_1016_j_neubiorev_2022_104952 crossref_primary_10_1038_s41593_025_01971_w crossref_primary_10_1371_journal_pone_0007506 crossref_primary_10_1016_j_bbr_2011_07_001 crossref_primary_10_1134_S1819712415040030 crossref_primary_10_1097_NEN_0000000000000092 crossref_primary_10_1016_j_neures_2011_06_001 crossref_primary_10_1007_s11055_014_9988_0 crossref_primary_10_3389_fnins_2015_00035 crossref_primary_10_1016_j_bbr_2011_01_021 crossref_primary_10_1016_j_stemcr_2025_102613 crossref_primary_10_1371_journal_pone_0029891 crossref_primary_10_1016_j_nutres_2020_12_003 crossref_primary_10_3233_BPL_170057 crossref_primary_10_3233_BPL_170058 crossref_primary_10_3390_ijms24065921 crossref_primary_10_1016_j_neuroscience_2016_10_062 crossref_primary_10_1016_j_ultrasmedbio_2014_09_015 crossref_primary_10_3389_frdem_2025_1546433 crossref_primary_10_1111_ejn_12819 crossref_primary_10_1016_j_yfrne_2019_100796 crossref_primary_10_1016_j_bbr_2011_07_012 crossref_primary_10_5483_BMBRep_2009_42_5_239 crossref_primary_10_1038_mp_2009_130 crossref_primary_10_1016_j_brainres_2010_07_032 crossref_primary_10_1038_s41598_020_72024_4 crossref_primary_10_3389_fnmol_2017_00275 crossref_primary_10_1007_s12035_023_03890_y crossref_primary_10_3390_brainsci14040320 crossref_primary_10_1007_s11011_021_00774_9 crossref_primary_10_1016_j_bbr_2017_03_016 crossref_primary_10_1002_hipo_22346 crossref_primary_10_5483_BMBRep_2009_42_5_245 crossref_primary_10_3390_biom10020225 crossref_primary_10_1371_journal_pone_0106009 crossref_primary_10_1002_hipo_22218 crossref_primary_10_1080_17470919_2018_1479303 crossref_primary_10_1016_j_expneurol_2023_114618 crossref_primary_10_1371_journal_pone_0075125 crossref_primary_10_1016_j_neuroscience_2017_09_020 crossref_primary_10_1371_journal_pone_0108559 crossref_primary_10_1111_acer_14708 crossref_primary_10_1523_JNEUROSCI_0632_18_2018 crossref_primary_10_1002_hipo_22574 crossref_primary_10_3389_fnins_2017_00571 crossref_primary_10_1074_jbc_M113_497909 crossref_primary_10_3389_fnsys_2015_00112 crossref_primary_10_4103_NRR_NRR_D_23_01993 crossref_primary_10_3389_fnbeh_2019_00051 crossref_primary_10_3389_fphys_2020_565667 crossref_primary_10_1213_ANE_0b013e318232066c crossref_primary_10_1016_j_expneurol_2025_115418 crossref_primary_10_1016_j_neuroscience_2013_10_063 crossref_primary_10_1134_S2079086416020055 crossref_primary_10_1159_000362383 crossref_primary_10_1016_j_neuro_2022_10_005 crossref_primary_10_1155_2020_7348745 crossref_primary_10_1007_s11064_014_1291_5 crossref_primary_10_1371_journal_pone_0079837 crossref_primary_10_1016_j_nbd_2010_07_010 crossref_primary_10_1074_jbc_M115_672857 crossref_primary_10_1016_j_neurobiolaging_2015_10_035 crossref_primary_10_4103_1673_5374_268905 crossref_primary_10_1155_2015_592915 crossref_primary_10_1016_j_nlm_2013_07_011 crossref_primary_10_1007_s12640_015_9568_2 crossref_primary_10_1007_s12640_013_9443_y crossref_primary_10_1038_npp_2011_315 crossref_primary_10_1016_j_pneurobio_2020_101888 crossref_primary_10_1111_gbb_12014 crossref_primary_10_1111_j_1460_9568_2011_07606_x crossref_primary_10_1016_j_physbeh_2023_114353 crossref_primary_10_1016_j_bbi_2010_06_005 crossref_primary_10_1016_j_expneurol_2015_04_017 crossref_primary_10_1186_1756_6606_4_28 crossref_primary_10_1016_j_etap_2009_04_011 crossref_primary_10_1089_neu_2017_5102 crossref_primary_10_1016_j_bbi_2011_07_225 crossref_primary_10_3389_fcell_2021_657149 crossref_primary_10_3390_cells11203234 crossref_primary_10_1016_j_neubiorev_2015_12_004 crossref_primary_10_1111_jnc_12655 crossref_primary_10_1523_JNEUROSCI_4130_14_2015 crossref_primary_10_1111_acel_13101 crossref_primary_10_1111_gbb_12130 crossref_primary_10_4161_cc_10_15_15946 crossref_primary_10_1016_j_nbd_2010_09_007 crossref_primary_10_1016_j_nlm_2016_01_013 crossref_primary_10_1016_j_bbr_2011_03_048 crossref_primary_10_1093_brain_awz371 crossref_primary_10_1016_j_bbih_2020_100106 crossref_primary_10_1126_science_1173215 crossref_primary_10_1016_j_bbr_2011_06_025 crossref_primary_10_1007_s00018_023_04685_z crossref_primary_10_1016_j_neubiorev_2014_01_004 crossref_primary_10_1186_s13014_014_0281_8 crossref_primary_10_3390_nu14071431 crossref_primary_10_1093_cercor_bhad431 crossref_primary_10_1007_s00018_011_0641_6 crossref_primary_10_1523_JNEUROSCI_5462_11_2012 crossref_primary_10_3390_cells14171304 crossref_primary_10_1016_j_yfrne_2014_11_004 crossref_primary_10_3233_BPL_150011 crossref_primary_10_1111_ejn_12531 crossref_primary_10_1002_hipo_22374 crossref_primary_10_1016_j_neubiorev_2020_11_031 crossref_primary_10_1111_jnc_15265 crossref_primary_10_1097_FBP_0b013e32833e16b6 crossref_primary_10_1016_j_bbi_2019_10_007 crossref_primary_10_1038_s41380_018_0036_2 crossref_primary_10_1111_adb_13215 crossref_primary_10_1016_j_neuroscience_2015_12_026 crossref_primary_10_1016_j_brainres_2010_02_075 crossref_primary_10_1002_glia_24468 crossref_primary_10_1016_j_neuropharm_2014_01_026 crossref_primary_10_1113_JP278640 crossref_primary_10_1016_j_expneurol_2020_113372 crossref_primary_10_1016_j_neuroscience_2010_06_038 crossref_primary_10_3390_ijms20174240 crossref_primary_10_1093_toxsci_kfaa144 crossref_primary_10_1172_JCI64650 crossref_primary_10_1016_j_neuroscience_2017_08_013 crossref_primary_10_3389_fnbeh_2015_00055 crossref_primary_10_1016_j_brainresbull_2021_03_006 crossref_primary_10_1016_j_yhbeh_2012_03_005 crossref_primary_10_1242_jcs_088120 crossref_primary_10_1093_chemse_bjx028 crossref_primary_10_1016_j_yebeh_2015_04_046 crossref_primary_10_1523_JNEUROSCI_1571_12_2013 crossref_primary_10_1016_j_nbd_2012_02_007 crossref_primary_10_1038_mp_2016_169 crossref_primary_10_1111_ejn_13406 crossref_primary_10_1007_s12035_013_8422_x crossref_primary_10_1016_j_ijbiomac_2023_127923 crossref_primary_10_1371_journal_pone_0181138 crossref_primary_10_1016_j_bbr_2010_01_016 crossref_primary_10_1016_j_pneurobio_2021_102031 crossref_primary_10_1016_j_nbd_2010_01_008 crossref_primary_10_1155_2014_568587 crossref_primary_10_1093_brain_awq215 crossref_primary_10_1016_j_bbagen_2017_09_006 crossref_primary_10_2353_ajpath_2009_081153 crossref_primary_10_1016_j_nbd_2013_04_016 crossref_primary_10_1007_s00018_015_2028_6 crossref_primary_10_3389_fncel_2025_1544460 crossref_primary_10_1016_j_neuroscience_2009_11_073 crossref_primary_10_1038_tp_2017_16 crossref_primary_10_1016_j_mehy_2011_04_020 crossref_primary_10_1111_ejn_12323 crossref_primary_10_3390_molecules21091165 crossref_primary_10_3389_fnins_2024_1418694 crossref_primary_10_1002_glia_23476 crossref_primary_10_1007_s00726_013_1489_x crossref_primary_10_1111_j_1369_1600_2010_00241_x crossref_primary_10_1016_j_psyneuen_2012_11_007 crossref_primary_10_1016_j_nlm_2017_02_013 crossref_primary_10_1002_stem_1822 crossref_primary_10_1134_S2079086418040035 crossref_primary_10_1016_j_bbi_2018_11_010 crossref_primary_10_3389_fncel_2018_00432 crossref_primary_10_1016_j_stem_2012_11_021 crossref_primary_10_3389_fcell_2020_00654 crossref_primary_10_1146_annurev_pharmtox_011112_140216 crossref_primary_10_1186_s40478_019_0849_5 crossref_primary_10_1002_hipo_23267 crossref_primary_10_1667_RR3026_1 crossref_primary_10_1186_s13195_020_00705_3 crossref_primary_10_1038_s41598_022_10947_w crossref_primary_10_1093_nutrit_nuy016 crossref_primary_10_1371_journal_pone_0061948 crossref_primary_10_1016_j_brainresbull_2020_03_001 crossref_primary_10_1016_j_bbr_2014_09_010 crossref_primary_10_1016_j_brainres_2024_149020 crossref_primary_10_1186_1471_2202_11_146 crossref_primary_10_1016_j_bbr_2012_12_032 crossref_primary_10_1111_j_1471_4159_2010_07131_x crossref_primary_10_1002_emmm_201100177 crossref_primary_10_1016_j_bbi_2016_09_001 crossref_primary_10_1371_journal_pone_0197869 crossref_primary_10_1523_JNEUROSCI_5240_11_2012 crossref_primary_10_3390_nu12051520 crossref_primary_10_1002_ana_23941 crossref_primary_10_1016_j_neuroscience_2014_10_062 crossref_primary_10_3233_BPL_180065 crossref_primary_10_1371_journal_pone_0025522 crossref_primary_10_33549_physiolres_933627 crossref_primary_10_1016_j_biopsych_2024_07_014 crossref_primary_10_1016_j_brainres_2016_01_055 crossref_primary_10_1159_000112234 crossref_primary_10_1016_j_ntt_2020_106865 crossref_primary_10_1073_pnas_1202068109 crossref_primary_10_1007_s12017_019_08532_y crossref_primary_10_1038_nrn2822 crossref_primary_10_1038_s41380_024_02504_w crossref_primary_10_3389_fnbeh_2014_00136 crossref_primary_10_1016_j_bbr_2011_04_023 crossref_primary_10_1242_dev_104596 crossref_primary_10_1096_fj_201900621R crossref_primary_10_3389_fncel_2014_00396 crossref_primary_10_3727_096368915X687011 crossref_primary_10_3390_cells11050791 crossref_primary_10_1038_tp_2016_255 crossref_primary_10_4137_JCNSD_S32204 crossref_primary_10_1155_2019_8502370 crossref_primary_10_1016_j_pharmthera_2011_04_008 crossref_primary_10_1186_s12974_016_0671_y crossref_primary_10_1186_s40659_023_00472_z crossref_primary_10_1177_1073858420914509 crossref_primary_10_1007_s11011_024_01505_6 crossref_primary_10_1093_brain_awr133 crossref_primary_10_1126_science_aat8789 crossref_primary_10_1186_s13041_016_0270_y crossref_primary_10_1016_j_toxlet_2015_04_013 crossref_primary_10_1016_j_yebeh_2012_12_006 crossref_primary_10_1038_tp_2017_48 crossref_primary_10_1002_hipo_20900 crossref_primary_10_1038_s41598_022_18884_4 crossref_primary_10_1016_j_neuroscience_2019_09_012 crossref_primary_10_1007_s13311_023_01427_8 crossref_primary_10_1002_hipo_22090 crossref_primary_10_3389_fnins_2024_1274174 crossref_primary_10_1098_rsob_130181 crossref_primary_10_1371_journal_pone_0081556 crossref_primary_10_1016_j_tics_2010_04_003 crossref_primary_10_3390_ijms21249703 crossref_primary_10_1371_journal_pone_0014713 crossref_primary_10_1007_s11481_012_9350_7 crossref_primary_10_1016_j_nbd_2010_12_002 crossref_primary_10_1016_j_neubiorev_2020_04_007 crossref_primary_10_3390_biom15040542 crossref_primary_10_3390_ijms24087117 crossref_primary_10_7554_eLife_66463 crossref_primary_10_1016_j_neuroscience_2010_09_047 crossref_primary_10_1016_j_neurot_2024_e00500 crossref_primary_10_1371_journal_pone_0073720 crossref_primary_10_1093_brain_awad303 crossref_primary_10_1016_j_nlm_2017_12_008 crossref_primary_10_1016_j_bbr_2017_08_014 crossref_primary_10_1016_j_nlm_2013_04_001 crossref_primary_10_1016_j_lfs_2025_123846 crossref_primary_10_1159_000345353 crossref_primary_10_1371_journal_pone_0062701 crossref_primary_10_1002_stem_446 crossref_primary_10_1007_s00429_017_1512_1 crossref_primary_10_1002_wsbm_1526 crossref_primary_10_1016_j_bbr_2019_112118 crossref_primary_10_1007_s10508_016_0890_4 crossref_primary_10_3233_BPL_220141 crossref_primary_10_1073_pnas_1406779111 crossref_primary_10_3389_fnins_2021_782947 crossref_primary_10_1080_00207454_2023_2300733 crossref_primary_10_1096_fj_10_161802 crossref_primary_10_1134_S1819712416040024 crossref_primary_10_1038_s41598_020_65090_1 crossref_primary_10_1158_0008_5472_CAN_12_2989 crossref_primary_10_1016_j_trsl_2013_11_001 crossref_primary_10_1134_S2079086416060013 crossref_primary_10_1038_s41598_023_40497_8 crossref_primary_10_1111_nan_12107 crossref_primary_10_1177_1759091419892692 crossref_primary_10_3390_cells9122712 crossref_primary_10_3390_biom11030362 crossref_primary_10_1097_NEN_0b013e318236e9ad crossref_primary_10_1371_journal_pgen_1003718 crossref_primary_10_3389_fnagi_2023_1180987 crossref_primary_10_1016_j_bbr_2011_05_007 crossref_primary_10_1089_neu_2014_3545 crossref_primary_10_1111_j_1460_9568_2011_07851_x crossref_primary_10_1111_bph_70015 crossref_primary_10_1016_j_nbd_2014_11_009 crossref_primary_10_1038_s41398_025_03564_4 crossref_primary_10_1002_dneu_22027 crossref_primary_10_1186_s13041_015_0106_1 crossref_primary_10_1002_glia_24155 crossref_primary_10_5966_sctm_2012_0050 crossref_primary_10_1016_j_brainres_2013_07_035 crossref_primary_10_1242_dev_092262 crossref_primary_10_1016_j_yfrne_2016_05_001 crossref_primary_10_1016_j_neuropharm_2011_03_003 crossref_primary_10_3390_foods11213418 crossref_primary_10_7554_eLife_70685 crossref_primary_10_1038_tp_2017_91 crossref_primary_10_1038_clpt_2011_296 crossref_primary_10_1016_j_nlm_2012_12_002 crossref_primary_10_1016_j_expneurol_2011_01_008 crossref_primary_10_1186_s12868_017_0345_4 crossref_primary_10_1371_journal_pone_0040843 crossref_primary_10_1186_s13287_024_03787_0 crossref_primary_10_3389_fncir_2016_00066 crossref_primary_10_3390_cells9051067 crossref_primary_10_1523_JNEUROSCI_1756_17_2018 crossref_primary_10_1007_s11064_013_1177_y crossref_primary_10_1371_journal_pgen_1000898 crossref_primary_10_3390_nu13082758 crossref_primary_10_3389_fncel_2020_576444 crossref_primary_10_3390_life14121627 crossref_primary_10_1016_j_nlm_2017_05_001 crossref_primary_10_1016_j_scr_2016_09_027 crossref_primary_10_1089_neu_2014_3680 crossref_primary_10_1007_s12035_022_02837_z crossref_primary_10_1016_j_arr_2017_06_001 crossref_primary_10_1371_journal_pone_0135493 crossref_primary_10_1016_j_acthis_2019_01_008 crossref_primary_10_1111_j_1365_2826_2011_02203_x crossref_primary_10_1073_pnas_0911725107 crossref_primary_10_1111_bpa_13225 crossref_primary_10_1038_nn_2360 crossref_primary_10_1371_journal_pone_0095883 crossref_primary_10_1016_j_bbi_2015_06_025 crossref_primary_10_1016_j_biopsych_2012_03_013 crossref_primary_10_3233_BPL_200112 crossref_primary_10_1016_j_neuroscience_2014_01_056 crossref_primary_10_3390_brainsci2040745 crossref_primary_10_1007_s12026_015_8716_3 crossref_primary_10_1074_jbc_M116_774109 crossref_primary_10_1016_j_neuroscience_2018_10_003 crossref_primary_10_3945_jn_109_120626 crossref_primary_10_1523_JNEUROSCI_0532_12_2012 crossref_primary_10_1016_j_physbeh_2021_113652 crossref_primary_10_3390_cells8020125 crossref_primary_10_1097_NEN_0b013e3181e4f733 crossref_primary_10_3233_JAD_161182 crossref_primary_10_1134_S1819712415030046 crossref_primary_10_1016_j_jad_2019_02_051 crossref_primary_10_1038_s41583_021_00433_z crossref_primary_10_1523_JNEUROSCI_1567_10_2010 crossref_primary_10_1016_j_jconrel_2023_12_030 crossref_primary_10_1016_j_bbr_2024_115276 crossref_primary_10_1016_j_bbr_2024_115157 crossref_primary_10_1016_j_neubiorev_2016_01_007 crossref_primary_10_1186_s12906_016_1435_z crossref_primary_10_1111_aor_15059 crossref_primary_10_1155_2019_1815371 crossref_primary_10_1111_jne_12040 crossref_primary_10_1016_j_matbio_2018_01_022 crossref_primary_10_1016_j_neuropharm_2024_109960 crossref_primary_10_1016_j_semcdb_2011_07_002 crossref_primary_10_1016_j_bcp_2017_05_003 crossref_primary_10_1016_j_bbagen_2014_12_013 crossref_primary_10_1523_JNEUROSCI_6076_11_2012 crossref_primary_10_1007_s00018_011_0916_y crossref_primary_10_1523_JNEUROSCI_2055_09_2009 crossref_primary_10_1016_j_expneurol_2013_07_021 crossref_primary_10_1016_j_pnpbp_2016_11_003 crossref_primary_10_1016_j_neuroscience_2023_05_018 crossref_primary_10_1016_j_nlm_2021_107558 crossref_primary_10_1523_JNEUROSCI_2011_17_2018 crossref_primary_10_1007_s11055_020_00938_7 crossref_primary_10_1096_fj_201700495R crossref_primary_10_1016_j_brainres_2013_09_007 crossref_primary_10_1093_cercor_bht035 crossref_primary_10_1002_jnr_23347 crossref_primary_10_1016_j_yebeh_2015_07_014 crossref_primary_10_3389_fimmu_2022_866073 crossref_primary_10_1111_ejn_15495 crossref_primary_10_1002_hipo_20776 crossref_primary_10_1016_j_neubiorev_2017_04_030 crossref_primary_10_1523_JNEUROSCI_3362_09_2009 crossref_primary_10_1016_j_yfrne_2016_03_001 crossref_primary_10_1016_j_brainresbull_2017_02_011 crossref_primary_10_1016_j_jneuroim_2021_577530 crossref_primary_10_1016_j_neuroscience_2016_02_011 crossref_primary_10_3389_fnint_2016_00008 crossref_primary_10_1016_j_nlm_2019_107154 crossref_primary_10_1186_s40816_021_00300_5 crossref_primary_10_1371_journal_pone_0156493 crossref_primary_10_3390_nu10060749 crossref_primary_10_31083_j_jin2307131 crossref_primary_10_1016_j_nlm_2022_107710 crossref_primary_10_1016_j_neubiorev_2012_02_002 crossref_primary_10_1038_s41467_021_21468_x crossref_primary_10_1016_j_tins_2011_12_005 crossref_primary_10_1016_j_nlm_2018_09_006 crossref_primary_10_1016_j_yebeh_2019_05_025 crossref_primary_10_1016_j_bbr_2019_111934 crossref_primary_10_4103_1673_5374_382243 crossref_primary_10_1016_j_arr_2016_12_006 crossref_primary_10_1016_j_brainresbull_2020_07_005 crossref_primary_10_1007_s13311_011_0064_y crossref_primary_10_1186_1742_2094_9_168 crossref_primary_10_1016_j_nlm_2015_10_013 crossref_primary_10_1002_brb3_416 crossref_primary_10_1126_sciadv_abf5606 crossref_primary_10_1016_j_neuropharm_2013_11_012 crossref_primary_10_1097_QAI_0000000000000789 crossref_primary_10_1016_j_bbi_2017_07_153 crossref_primary_10_1002_ptr_3319 crossref_primary_10_3389_fnins_2014_00055 crossref_primary_10_1038_tp_2016_185 crossref_primary_10_3390_brainsci10120902 crossref_primary_10_1038_s41380_021_01102_4 crossref_primary_10_1111_j_1460_9568_2012_08279_x crossref_primary_10_3390_ph9010009 crossref_primary_10_3390_cells11050764 crossref_primary_10_1111_jnc_14890 crossref_primary_10_1002_wcs_1427 crossref_primary_10_1002_wcs_1304 crossref_primary_10_1007_s11357_022_00579_3 crossref_primary_10_1371_journal_pbio_1000460 crossref_primary_10_1111_jnc_15501 crossref_primary_10_1074_jbc_M112_344762 crossref_primary_10_1016_j_brainres_2011_11_025 crossref_primary_10_1111_gbb_12408 crossref_primary_10_1002_dev_20546 crossref_primary_10_1016_j_pneurobio_2009_07_003 crossref_primary_10_1159_000446981 crossref_primary_10_1002_hipo_22520 crossref_primary_10_1016_j_neuroscience_2011_03_072 crossref_primary_10_1016_j_peptides_2013_11_019 crossref_primary_10_3390_ijms22147450 crossref_primary_10_3389_fnins_2018_00035 crossref_primary_10_1016_j_bbr_2009_11_003 crossref_primary_10_2302_kjm_59_79 crossref_primary_10_1111_j_1460_9568_2011_07833_x crossref_primary_10_1016_j_bbr_2016_09_067 crossref_primary_10_1146_annurev_psych_093008_100359 crossref_primary_10_1186_s13287_023_03324_5 crossref_primary_10_1016_j_lfs_2020_117755 crossref_primary_10_1111_jnc_12130 crossref_primary_10_1007_s12035_014_9060_7 crossref_primary_10_1016_j_neurobiolaging_2010_06_025 crossref_primary_10_1038_nn_3850 crossref_primary_10_1016_j_jep_2014_07_009 crossref_primary_10_1016_j_exger_2019_110660 crossref_primary_10_1159_000453266 crossref_primary_10_1016_j_expneurol_2013_07_002 crossref_primary_10_1016_j_jep_2012_05_057 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1101/lm.1172609 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1549-5485 |
| ExternalDocumentID | 19181621 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH024600 – fundername: NIA NIH HHS grantid: P50 AG05131 – fundername: NIA NIH HHS grantid: P50 AG005131 – fundername: NINDS NIH HHS grantid: NS050217 – fundername: NINDS NIH HHS grantid: R01 NS050217 |
| GroupedDBID | --- -DZ .GJ 18M 29L 2WC 4.4 53G 5GY 5VS AAFWJ ABDIX ABIVO ACLKE ADBBV AENEX AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P GX1 H13 KQ8 MV1 NPM OK1 P2P P6G RCX RHI RPM SJN TR2 W8F WOQ WOW 7X8 |
| ID | FETCH-LOGICAL-c505t-8ffeea98f5ca9b2e89c10868ff04ed81089cc3ddd7514948d4432833882fd1832 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 527 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262915400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-5485 |
| IngestDate | Fri Jul 11 07:42:29 EDT 2025 Mon Jul 21 06:06:08 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c505t-8ffeea98f5ca9b2e89c10868ff04ed81089cc3ddd7514948d4432833882fd1832 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://recercat.cat/handle/2072/273565 |
| PMID | 19181621 |
| PQID | 66877755 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_66877755 pubmed_primary_19181621 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-02-01 |
| PublicationDateYYYYMMDD | 2009-02-01 |
| PublicationDate_xml | – month: 02 year: 2009 text: 2009-02-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Learning & memory (Cold Spring Harbor, N.Y.) |
| PublicationTitleAlternate | Learn Mem |
| PublicationYear | 2009 |
| SSID | ssj0007741 |
| Score | 2.478585 |
| Snippet | New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 147 |
| SubjectTerms | Animals Animals, Genetically Modified Dentate Gyrus - cytology Dentate Gyrus - growth & development Dentate Gyrus - physiology Food Preferences Form Perception - physiology Genetic Vectors Lentivirus - genetics Male Maze Learning - physiology Memory - physiology Neurons - physiology Psychomotor Performance - physiology Rats Rats, Sprague-Dawley Recognition, Psychology - physiology Social Environment Space Perception - physiology Stereotaxic Techniques Wnt Proteins - genetics Wnt Proteins - physiology |
| Title | Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19181621 https://www.proquest.com/docview/66877755 |
| Volume | 16 |
| WOSCitedRecordID | wos000262915400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qFfHio_VRn3sQb4tNs2myIEhRiwdbelDorST7kKDdaGOF_ntnklRvevASQiDZsJnMfjvzzTcA59Yo3faM4kkgu1wkUcATJXyucW2USRB2RCmS9BAOh9F4LEc1uFrWwhCtcukTC0etM0Ux8stul5TrguD67Z1TzyjKrVYNNFag7iOQIZsOxz9a4QhsSrVUITni8qASJ0UbvHydUrISofwvwLJYYPpb_3u1bdisgCXrlZawAzXjGtDsOdxUTxfsghVUzyKG3oD1QZVRb8Lstig-Mux5MZvnnAoviTzEXhw6So1bdJZZVoh0sEL68pl8Y5ozqq5MZznLiZGN48ZOsyyhoA775iRljk2JyLtgqauegfaW78JT_-7x5p5XfRi4Qnz0wSNrjYllZAMVy6RjIqmoPxNebgujIzyXSvla6xDRlxSRFsJH1OIjeLeaXMYerLrMmQPAsZRnRegbYxJhO15sE6-tLeGItkbX0oKz5RRP0M4peRE7k83zyXKSW7BffqXJWynHMcEdZ-R1O97hn_cewUaZDCI2yjHULf7h5gTW1OdHms9OC_PB43A0-AIl69Lx |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dentate+gyrus-specific+knockdown+of+adult+neurogenesis+impairs+spatial+and+object+recognition+memory+in+adult+rats&rft.jtitle=Learning+%26+memory+%28Cold+Spring+Harbor%2C+N.Y.%29&rft.au=Jessberger%2C+Sebastian&rft.au=Clark%2C+Robert+E&rft.au=Broadbent%2C+Nicola+J&rft.au=Clemenson%2C+Gregory+D&rft.date=2009-02-01&rft.issn=1549-5485&rft.eissn=1549-5485&rft.volume=16&rft.issue=2&rft.spage=147&rft_id=info:doi/10.1101%2Flm.1172609&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-5485&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-5485&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-5485&client=summon |