Crowdsourcing in biomedicine: challenges and opportunities

The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health information seekers, science enthusiasts and domain experts. In this arti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics Jg. 17; H. 1; S. 23 - 32
Hauptverfasser: Khare, Ritu, Good, Benjamin M., Leaman, Robert, Su, Andrew I., Lu, Zhiyong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Oxford Publishing Limited (England) 01.01.2016
Oxford University Press
Schlagworte:
ISSN:1467-5463, 1477-4054, 1477-4054
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health information seekers, science enthusiasts and domain experts. In this article, we review and highlight recent studies that use crowdsourcing to advance biomedicine. We classify these studies into two broad categories: (i) mining big data generated from a crowd (e.g. search logs) and (ii) active crowdsourcing via specific technical platforms, e.g. labor markets, wikis, scientific games and community challenges. Through describing each study in detail, we demonstrate the applicability of different methods in a variety of domains in biomedical research, including genomics, biocuration and clinical research. Furthermore, we discuss and highlight the strengths and limitations of different crowdsourcing platforms. Finally, we identify important emerging trends, opportunities and remaining challenges for future crowdsourcing research in biomedicine.
AbstractList The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health information seekers, science enthusiasts and domain experts. In this article, we review and highlight recent studies that use crowdsourcing to advance biomedicine. We classify these studies into two broad categories: (i) mining big data generated from a crowd (e.g. search logs) and (ii) active crowdsourcing via specific technical platforms, e.g. labor markets, wikis, scientific games and community challenges. Through describing each study in detail, we demonstrate the applicability of different methods in a variety of domains in biomedical research, including genomics, biocuration and clinical research. Furthermore, we discuss and highlight the strengths and limitations of different crowdsourcing platforms. Finally, we identify important emerging trends, opportunities and remaining challenges for future crowdsourcing research in biomedicine.The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health information seekers, science enthusiasts and domain experts. In this article, we review and highlight recent studies that use crowdsourcing to advance biomedicine. We classify these studies into two broad categories: (i) mining big data generated from a crowd (e.g. search logs) and (ii) active crowdsourcing via specific technical platforms, e.g. labor markets, wikis, scientific games and community challenges. Through describing each study in detail, we demonstrate the applicability of different methods in a variety of domains in biomedical research, including genomics, biocuration and clinical research. Furthermore, we discuss and highlight the strengths and limitations of different crowdsourcing platforms. Finally, we identify important emerging trends, opportunities and remaining challenges for future crowdsourcing research in biomedicine.
The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health information seekers, science enthusiasts and domain experts. In this article, we review and highlight recent studies that use crowdsourcing to advance biomedicine. We classify these studies into two broad categories: (i) mining big data generated from a crowd (e.g. search logs) and (ii) active crowdsourcing via specific technical platforms, e.g. labor markets, wikis, scientific games and community challenges. Through describing each study in detail, we demonstrate the applicability of different methods in a variety of domains in biomedical research, including genomics, biocuration and clinical research. Furthermore, we discuss and highlight the strengths and limitations of different crowdsourcing platforms. Finally, we identify important emerging trends, opportunities and remaining challenges for future crowdsourcing research in biomedicine.
Author Lu, Zhiyong
Su, Andrew I.
Khare, Ritu
Good, Benjamin M.
Leaman, Robert
Author_xml – sequence: 1
  givenname: Ritu
  surname: Khare
  fullname: Khare, Ritu
– sequence: 2
  givenname: Benjamin M.
  surname: Good
  fullname: Good, Benjamin M.
– sequence: 3
  givenname: Robert
  surname: Leaman
  fullname: Leaman, Robert
– sequence: 4
  givenname: Andrew I.
  surname: Su
  fullname: Su, Andrew I.
– sequence: 5
  givenname: Zhiyong
  surname: Lu
  fullname: Lu, Zhiyong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25888696$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVJaB7tpj8gGLoJBSdXsl7OohCGPgID2WQvJFmeKHikqWRPyb-PzCRDGwJZSUKfzj065wQdhBgcQl8wXGBom0vjzaUxWyD4AzrGVIiaAqMH856LmlHeHKGTnB8ACAiJP6IjwqSUvOXH6GqR4t8uxylZH1aVD5Xxce06X47uqrL3ehhcWLlc6dBVcbOJaZyCH73Ln9Bhr4fsPj-vp-ju54-7xe96efvrZnG9rC0DNtZlIuNCEgxcECdM0-EOetvrRpjeSNYKLHoKxIgeGFjRayZazTtO5Qw2p-j7TnYzmWLMujAmPahN8mudHlXUXv1_E_y9WsWtogK3wGUROH8WSPHP5PKo1j5bNww6uDhlRQhrCAdJ30ex4NBi0gAt6NdX6EMJMZQgZoqIEjVvCnX2r_m965cCCvBtB9gUc06u3yMY1NyuKu2qXbsFhlew9aMefZw_7oe3njwBof2oJA
CitedBy_id crossref_primary_10_1186_s13063_020_04860_8
crossref_primary_10_7189_jogh_08_010502
crossref_primary_10_1016_j_jclinepi_2020_01_023
crossref_primary_10_1371_journal_pcbi_1007128
crossref_primary_10_2196_jmir_9330
crossref_primary_10_3414_ME15_01_0122
crossref_primary_10_1016_j_juro_2017_09_167
crossref_primary_10_1016_j_vaccine_2018_05_079
crossref_primary_10_1016_j_jbi_2017_05_006
crossref_primary_10_12688_f1000research_10788_1
crossref_primary_10_2196_13371
crossref_primary_10_1080_17460441_2017_1335302
crossref_primary_10_1186_s13321_024_00868_3
crossref_primary_10_1371_journal_pbio_3000716
crossref_primary_10_2139_ssrn_5344843
crossref_primary_10_1002_ajpa_23367
crossref_primary_10_1089_jicm_2023_0233
crossref_primary_10_1093_jamia_ocz009
crossref_primary_10_1016_j_kint_2018_11_048
crossref_primary_10_1371_journal_pone_0313882
crossref_primary_10_1016_j_jmpt_2022_02_004
crossref_primary_10_1186_s12911_023_02309_x
crossref_primary_10_1108_IJCS_08_2017_0011
crossref_primary_10_1186_s12967_018_1499_2
crossref_primary_10_7189_jogh_07_020601
crossref_primary_10_1007_s00404_020_05839_1
crossref_primary_10_1007_s40264_020_01028_w
crossref_primary_10_1111_chd_12669
crossref_primary_10_3389_fmed_2022_961360
crossref_primary_10_1177_1460458218796599
crossref_primary_10_1007_s10994_018_5716_2
crossref_primary_10_1016_j_procs_2023_10_184
crossref_primary_10_1038_ncomms12846
crossref_primary_10_1186_s12859_019_2801_x
crossref_primary_10_1186_s12911_018_0635_5
crossref_primary_10_2196_13151
crossref_primary_10_1093_nar_gkaa794
crossref_primary_10_1038_s41587_019_0180_5
crossref_primary_10_1109_TETC_2020_3017198
crossref_primary_10_1016_j_ienj_2024_101424
crossref_primary_10_2196_40765
crossref_primary_10_1371_journal_pbio_2002846
crossref_primary_10_1007_s12551_018_0490_8
crossref_primary_10_1016_j_jvoice_2022_06_011
crossref_primary_10_3389_fpubh_2023_1212544
crossref_primary_10_1016_j_procs_2018_07_155
crossref_primary_10_3390_data4020085
crossref_primary_10_2196_12047
crossref_primary_10_3390_safety5030061
crossref_primary_10_2196_resprot_5028
crossref_primary_10_1016_j_jbi_2017_04_003
crossref_primary_10_1038_nbt_4214
crossref_primary_10_1093_bib_bbx057
crossref_primary_10_1016_j_crbiot_2025_100282
crossref_primary_10_1038_nrg_2016_69
crossref_primary_10_1155_2015_674296
Cites_doi 10.1145/1378704.1378719
10.3115/1613715.1613751
10.1136/amiajnl-2014-002901
10.1093/database/bas041
10.1093/database/bau039
10.1039/C0LC00399A
10.1093/bioinformatics/btq667
10.1002/prot.24538
10.1136/amiajnl-2012-001110
10.1007/s10791-008-9076-6
10.1136/amiajnl-2014-002636
10.1002/prot.340230303
10.1186/1471-2164-12-603
10.1371/journal.pone.0100647
10.1093/bib/bbv024
10.1197/jamia.M2935
10.1038/494155a
10.1145/2484762.2484833
10.1126/scitranslmed.3006112
10.1016/j.jbi.2013.12.006
10.1186/gb-2011-12-12-135
10.1371/journal.pone.0038460
10.1145/1882992.1882997
10.1007/s11325-014-0965-1
10.1038/nature09304
10.1371/journal.pcbi.1003799
10.1016/j.jbi.2010.11.001
10.2196/jmir.2426
10.1039/C4FD00014E
10.1145/2487575.2488214
10.1093/database/bap018
10.1093/jnci/dju258
10.1136/amiajnl-2012-000852
10.1126/scitranslmed.3003377
10.1371/journal.pone.0055814
10.1093/database/bau094
10.1007/978-3-642-31040-9_8
10.1038/nmeth.2016
10.1109/MPUL.2013.2289467
10.1186/s13321-014-0051-5
10.1097/ACM.0b013e31828f86ef
10.1093/database/bas056
10.1093/database/bas049
10.1093/database/bau074
10.1038/psp.2013.52
10.1093/database/bav016
10.1093/bioinformatics/btt333
10.1371/journal.pone.0071171
10.1093/database/bas043
10.1016/j.jbi.2014.08.004
10.1007/s10791-008-9074-8
10.1177/0165551512437638
10.1093/nar/gkt441
10.1007/978-1-4939-0709-0_2
10.1016/j.ajem.2014.05.052
10.1136/amiajnl-2010-000055
10.1186/1471-2105-12-S1-S3
10.1162/COLI_a_00057
10.1371/journal.pone.0100662
10.1136/amiajnl-2012-001482
10.1136/postgradmedj-2013-132486
10.1177/1524839912470654
10.1038/nbt.2495
10.1136/amiajnl-2011-000203
10.1038/nsmb.2119
10.1136/amiajnl-2013-001613
10.1016/j.tibs.2014.08.005
10.1186/1471-2105-12-S9-S2
10.1007/s40264-014-0155-x
10.1145/2576233
10.1093/nar/gkr1195
10.3115/1572340.1572342
10.1371/journal.pone.0031362
10.1093/bioinformatics/btt474
10.1073/pnas.1313039111
ContentType Journal Article
Copyright Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.
Copyright Oxford Publishing Limited(England) Jan 2016
Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US. 2015
Copyright_xml – notice: Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.
– notice: Copyright Oxford Publishing Limited(England) Jan 2016
– notice: Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1093/bib/bbv021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
EISSN 1477-4054
EndPage 32
ExternalDocumentID PMC4719068
3943872021
25888696
10_1093_bib_bbv021
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM083924
– fundername: NIGMS NIH HHS
  grantid: R01 GM089820
– fundername: NIGMS NIH HHS
  grantid: 1U54GM114833
– fundername: NCATS NIH HHS
  grantid: UL1TR001114
– fundername: NIGMS NIH HHS
  grantid: R01GM089820
– fundername: NIGMS NIH HHS
  grantid: U54 GM114833
– fundername: NIGMS NIH HHS
  grantid: R01GM083924
– fundername: NCATS NIH HHS
  grantid: UL1 TR001114
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
77I
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c505t-7815678210672e7b3d1d0fcfa37bfb859717f402b7f050c7fa579a6d6481d0f3
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369219800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-5463
1477-4054
IngestDate Tue Sep 30 16:43:17 EDT 2025
Fri Sep 05 12:49:33 EDT 2025
Thu Oct 02 09:47:57 EDT 2025
Fri Oct 03 04:12:07 EDT 2025
Mon Jul 21 06:05:31 EDT 2025
Tue Nov 18 22:36:16 EST 2025
Sat Nov 29 07:52:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords games
biomedicine
crowdsourcing
big data mining
community challenges
Amazon Mechanical Turk
Language English
License Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c505t-7815678210672e7b3d1d0fcfa37bfb859717f402b7f050c7fa579a6d6481d0f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://academic.oup.com/bib/article-pdf/17/1/23/6684984/bbv021.pdf
PMID 25888696
PQID 1762720763
PQPubID 26846
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4719068
proquest_miscellaneous_2253260848
proquest_miscellaneous_1760912304
proquest_journals_1762720763
pubmed_primary_25888696
crossref_primary_10_1093_bib_bbv021
crossref_citationtrail_10_1093_bib_bbv021
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2016
Publisher Oxford Publishing Limited (England)
Oxford University Press
Publisher_xml – name: Oxford Publishing Limited (England)
– name: Oxford University Press
References Morton (2016011923430581000_17.1.23.30) 2014; 5
2016011923430581000_17.1.23.82
2016011923430581000_17.1.23.81
2016011923430581000_17.1.23.40
2016011923430581000_17.1.23.84
2016011923430581000_17.1.23.83
2016011923430581000_17.1.23.42
2016011923430581000_17.1.23.86
2016011923430581000_17.1.23.41
2016011923430581000_17.1.23.85
2016011923430581000_17.1.23.33
2016011923430581000_17.1.23.77
2016011923430581000_17.1.23.32
2016011923430581000_17.1.23.76
2016011923430581000_17.1.23.35
2016011923430581000_17.1.23.79
2016011923430581000_17.1.23.34
2016011923430581000_17.1.23.78
2016011923430581000_17.1.23.37
2016011923430581000_17.1.23.36
2016011923430581000_17.1.23.39
2016011923430581000_17.1.23.38
Leaman (2016011923430581000_17.1.23.17) 2015; Vol. 20
Margolin (2016011923430581000_17.1.23.80) 2013; 5
2016011923430581000_17.1.23.71
2016011923430581000_17.1.23.70
2016011923430581000_17.1.23.73
2016011923430581000_17.1.23.72
2016011923430581000_17.1.23.31
2016011923430581000_17.1.23.75
2016011923430581000_17.1.23.74
2016011923430581000_17.1.23.9
2016011923430581000_17.1.23.66
2016011923430581000_17.1.23.21
2016011923430581000_17.1.23.65
2016011923430581000_17.1.23.24
2016011923430581000_17.1.23.68
2016011923430581000_17.1.23.23
2016011923430581000_17.1.23.67
2016011923430581000_17.1.23.26
2016011923430581000_17.1.23.69
2016011923430581000_17.1.23.28
2016011923430581000_17.1.23.27
2016011923430581000_17.1.23.1
2016011923430581000_17.1.23.2
2016011923430581000_17.1.23.29
2016011923430581000_17.1.23.3
2016011923430581000_17.1.23.4
2016011923430581000_17.1.23.5
2016011923430581000_17.1.23.6
2016011923430581000_17.1.23.7
2016011923430581000_17.1.23.8
Odgers (2016011923430581000_17.1.23.19) 2015; Vol. 20
2016011923430581000_17.1.23.60
2016011923430581000_17.1.23.20
2016011923430581000_17.1.23.64
2016011923430581000_17.1.23.63
2016011923430581000_17.1.23.11
2016011923430581000_17.1.23.55
2016011923430581000_17.1.23.10
2016011923430581000_17.1.23.54
2016011923430581000_17.1.23.13
Wang (2016011923430581000_17.1.23.25) 2011; 2011
2016011923430581000_17.1.23.57
2016011923430581000_17.1.23.12
2016011923430581000_17.1.23.56
2016011923430581000_17.1.23.15
2016011923430581000_17.1.23.59
2016011923430581000_17.1.23.14
2016011923430581000_17.1.23.58
2016011923430581000_17.1.23.16
2016011923430581000_17.1.23.18
Good (2016011923430581000_17.1.23.45) 2015; Vol. 20
Yu (2016011923430581000_17.1.23.91) 2013; 15
2016011923430581000_17.1.23.90
2016011923430581000_17.1.23.93
Ahn (2016011923430581000_17.1.23.62) 2008; 51
2016011923430581000_17.1.23.92
2016011923430581000_17.1.23.51
2016011923430581000_17.1.23.95
2016011923430581000_17.1.23.50
2016011923430581000_17.1.23.94
2016011923430581000_17.1.23.53
Waldispühl (2016011923430581000_17.1.23.61) 2015; Vol. 20
2016011923430581000_17.1.23.52
2016011923430581000_17.1.23.44
2016011923430581000_17.1.23.88
2016011923430581000_17.1.23.43
2016011923430581000_17.1.23.87
2016011923430581000_17.1.23.46
2016011923430581000_17.1.23.89
2016011923430581000_17.1.23.48
2016011923430581000_17.1.23.47
2016011923430581000_17.1.23.49
Tatonetti (2016011923430581000_17.1.23.22) 2012; 4
24393765 - J Biomed Inform. 2014 Feb;47:1-10
25935162 - Brief Bioinform. 2016 Jan;17(1):132-44
24469816 - Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2122-7
23645553 - J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1120-7
24677212 - Proteins. 2014 Sep;82(9):1850-68
18952932 - J Am Med Inform Assoc. 2009 Jan-Feb;16(1):32-6
21094696 - J Biomed Inform. 2011 Apr;44(2):310-8
25220766 - J Biomed Inform. 2014 Dec;52:448-56
24777653 - Drug Saf. 2014 May;37(5):343-50
24988466 - PLoS One. 2014;9(7):e100647
25246425 - Database (Oxford). 2014;2014. pii: bau094. doi: 10.1093/database/bau094
23564631 - J Am Med Inform Assoc. 2013 Jul-Aug;20(4):749-57
22582202 - J Am Med Inform Assoc. 2012 Sep-Oct;19(5):713-8
22165947 - BMC Genomics. 2011;12:603
22412834 - PLoS One. 2012;7(3):e31362
23160414 - Database (Oxford). 2012;2012:bas041
20157491 - Database (Oxford). 2009;2009:bap018
23327936 - Database (Oxford). 2013;2013:bas056
23407515 - Nature. 2013 Feb 14;494(7436):155-6
25037278 - Am J Emerg Med. 2014 Sep;32(9):1016-23
22151901 - BMC Bioinformatics. 2011;12 Suppl 8:S2
23299912 - Health Promot Pract. 2013 Mar;14(2):163-7
21138947 - Bioinformatics. 2011 Feb 1;27(3):408-15
23703206 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W518-22
23732572 - J Med Internet Res. 2013;15(6):e108
21085736 - Lab Chip. 2011 Jan 7;11(1):14-22
22195210 - AMIA Annu Symp Proc. 2011;2011:1464-70
25352673 - Postgrad Med J. 2014 Dec;90(1070):685-93
24852177 - Database (Oxford). 2014;2014. pii: bau039. doi: 10.1093/database/bau039
25340640 - Faraday Discuss. 2014;169:403-23
22422992 - Sci Transl Med. 2012 Mar 14;4(125):125ra31
25342179 - J Am Med Inform Assoc. 2015 May;22(3):640-8
23548263 - J Med Internet Res. 2013;15(4):e73
21926992 - Nat Struct Mol Biol. 2011 Oct;18(10):1175-7
24448022 - CPT Pharmacometrics Syst Pharmacol. 2013 Sep 18;2:e76
23467469 - J Am Med Inform Assoc. 2013 May 1;20(3):404-8
23619061 - Acad Med. 2013 Jun;88(6):766-70
25070993 - Database (Oxford). 2014;2014. pii: bau074. doi: 10.1093/database/bau074
25025865 - PLoS One. 2014;9(7):e100662
23969135 - Bioinformatics. 2013 Nov 15;29(22):2909-17
21658290 - BMC Bioinformatics. 2011;12 Suppl 3:S3
25592589 - Pac Symp Biocomput. 2015;:282-93
22679507 - PLoS One. 2012;7(6):e38460
25810774 - J Cheminform. 2015 Jan 19;7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S3
23613707 - PLoS One. 2013;8(4):e55814
19774223 - Inf Retr Boston. 2009;12(1):69-80
25592587 - Pac Symp Biocomput. 2015;:267-9
24595717 - Sleep Breath. 2015 Mar;19(1):79-84
25797061 - Database (Oxford). 2015;2015. pii: bav016. doi: 10.1093/database/bav016
25092793 - J Am Med Inform Assoc. 2015 Apr;22(e1):e112-9
21685143 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6
25255227 - PLoS Comput Biol. 2014 Sep;10(9):e1003799
22796662 - Nat Methods. 2012 Aug;9(8):796-804
23596205 - Sci Transl Med. 2013 Apr 17;5(181):181re1
20686574 - Nature. 2010 Aug 5;466(7307):756-60
23392504 - Nat Biotechnol. 2013 Feb;31(2):108-11
21613640 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):660-7
25300714 - Trends Biochem Sci. 2014 Nov;39(11):507-9
22204700 - Genome Biol. 2011;12(12):135
24788259 - Methods Mol Biol. 2014;1159:11-31
22144683 - Nucleic Acids Res. 2012 Jan;40(Database issue):D9-12
25592591 - Pac Symp Biocomput. 2015;:306-17
23160416 - Database (Oxford). 2012;2012:bas043
25296376 - IEEE Pulse. 2014 Jan-Feb;5(1):63-7
25592593 - Pac Symp Biocomput. 2015;:330-41
23951102 - PLoS One. 2013;8(8):e71171
8710822 - Proteins. 1995 Nov;23(3):ii-v
25217580 - J Natl Cancer Inst. 2014 Oct;106(10). pii: dju258. doi: 10.1093/jnci/dju258
23221175 - Database (Oxford). 2012;2012:bas049
23782614 - Bioinformatics. 2013 Aug 15;29(16):1925-33
References_xml – volume: 51
  start-page: 58
  year: 2008
  ident: 2016011923430581000_17.1.23.62
  article-title: Designing games with a purpose
  publication-title: Commun ACM
  doi: 10.1145/1378704.1378719
– ident: 2016011923430581000_17.1.23.11
  doi: 10.3115/1613715.1613751
– ident: 2016011923430581000_17.1.23.56
  doi: 10.1136/amiajnl-2014-002901
– ident: 2016011923430581000_17.1.23.49
  doi: 10.1093/database/bas041
– ident: 2016011923430581000_17.1.23.73
  doi: 10.1093/database/bau039
– ident: 2016011923430581000_17.1.23.70
  doi: 10.1039/C0LC00399A
– ident: 2016011923430581000_17.1.23.55
  doi: 10.1093/bioinformatics/btq667
– ident: 2016011923430581000_17.1.23.42
– ident: 2016011923430581000_17.1.23.81
  doi: 10.1002/prot.24538
– ident: 2016011923430581000_17.1.23.43
  doi: 10.1136/amiajnl-2012-001110
– ident: 2016011923430581000_17.1.23.76
  doi: 10.1007/s10791-008-9076-6
– ident: 2016011923430581000_17.1.23.31
  doi: 10.1136/amiajnl-2014-002636
– ident: 2016011923430581000_17.1.23.85
– ident: 2016011923430581000_17.1.23.37
– ident: 2016011923430581000_17.1.23.72
  doi: 10.1002/prot.340230303
– ident: 2016011923430581000_17.1.23.60
  doi: 10.1186/1471-2164-12-603
– volume: Vol. 20
  start-page: 306
  volume-title: Pacific Symposium on Biocomputing
  year: 2015
  ident: 2016011923430581000_17.1.23.19
  article-title: Analyzing search behavior of healthcare professionals for drug safety surveillance
– ident: 2016011923430581000_17.1.23.71
– ident: 2016011923430581000_17.1.23.57
  doi: 10.1371/journal.pone.0100647
– ident: 2016011923430581000_17.1.23.78
  doi: 10.1093/bib/bbv024
– ident: 2016011923430581000_17.1.23.34
  doi: 10.1197/jamia.M2935
– ident: 2016011923430581000_17.1.23.83
  doi: 10.1038/494155a
– ident: 2016011923430581000_17.1.23.65
  doi: 10.1145/2484762.2484833
– volume: Vol. 20
  start-page: 267
  volume-title: Pacific Symposium on Biocomputing
  year: 2015
  ident: 2016011923430581000_17.1.23.17
  article-title: Session Introduction
– volume: 5
  start-page: 181re181
  year: 2013
  ident: 2016011923430581000_17.1.23.80
  article-title: Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer
  publication-title: Sci Trans Med
  doi: 10.1126/scitranslmed.3006112
– ident: 2016011923430581000_17.1.23.46
  doi: 10.1016/j.jbi.2013.12.006
– ident: 2016011923430581000_17.1.23.7
  doi: 10.1186/gb-2011-12-12-135
– ident: 2016011923430581000_17.1.23.54
  doi: 10.1371/journal.pone.0038460
– ident: 2016011923430581000_17.1.23.87
  doi: 10.1145/1882992.1882997
– ident: 2016011923430581000_17.1.23.26
  doi: 10.1007/s11325-014-0965-1
– ident: 2016011923430581000_17.1.23.28
– ident: 2016011923430581000_17.1.23.16
  doi: 10.1038/nature09304
– ident: 2016011923430581000_17.1.23.90
  doi: 10.1371/journal.pcbi.1003799
– volume: Vol. 20
  start-page: 282
  volume-title: Pacific Symposium on Biocomputing
  year: 2015
  ident: 2016011923430581000_17.1.23.45
  article-title: Microtask Crowdsourcing for Disease Mention Annotation in PubMed Abstracts
– ident: 2016011923430581000_17.1.23.82
– ident: 2016011923430581000_17.1.23.38
  doi: 10.1016/j.jbi.2010.11.001
– ident: 2016011923430581000_17.1.23.39
  doi: 10.2196/jmir.2426
– ident: 2016011923430581000_17.1.23.64
  doi: 10.1039/C4FD00014E
– ident: 2016011923430581000_17.1.23.94
  doi: 10.1145/2487575.2488214
– ident: 2016011923430581000_17.1.23.2
  doi: 10.1093/database/bap018
– ident: 2016011923430581000_17.1.23.6
  doi: 10.1093/jnci/dju258
– ident: 2016011923430581000_17.1.23.8
  doi: 10.1136/amiajnl-2012-000852
– volume: 4
  start-page: 125ra131
  year: 2012
  ident: 2016011923430581000_17.1.23.22
  article-title: Data-driven prediction of drug effects and interactions
  publication-title: Sci Trans Med
  doi: 10.1126/scitranslmed.3003377
– volume: 2011
  start-page: 1464
  year: 2011
  ident: 2016011923430581000_17.1.23.25
  article-title: A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations
  publication-title: AMIA
– ident: 2016011923430581000_17.1.23.14
  doi: 10.1371/journal.pone.0055814
– ident: 2016011923430581000_17.1.23.5
  doi: 10.1093/database/bau094
– ident: 2016011923430581000_17.1.23.53
  doi: 10.1007/978-3-642-31040-9_8
– ident: 2016011923430581000_17.1.23.79
  doi: 10.1038/nmeth.2016
– volume: 5
  start-page: 63
  year: 2014
  ident: 2016011923430581000_17.1.23.30
  article-title: Innovating openly: researchers and patients turn to crowdsourcing to collaborate on clinical trials, drug discovery, and more
  publication-title: IEEE Pulse
  doi: 10.1109/MPUL.2013.2289467
– ident: 2016011923430581000_17.1.23.21
– ident: 2016011923430581000_17.1.23.41
  doi: 10.1186/s13321-014-0051-5
– ident: 2016011923430581000_17.1.23.9
  doi: 10.1097/ACM.0b013e31828f86ef
– ident: 2016011923430581000_17.1.23.50
  doi: 10.1093/database/bas056
– ident: 2016011923430581000_17.1.23.29
– ident: 2016011923430581000_17.1.23.74
  doi: 10.1093/database/bas049
– ident: 2016011923430581000_17.1.23.35
  doi: 10.1093/database/bau074
– ident: 2016011923430581000_17.1.23.44
– ident: 2016011923430581000_17.1.23.24
  doi: 10.1038/psp.2013.52
– ident: 2016011923430581000_17.1.23.63
– ident: 2016011923430581000_17.1.23.4
  doi: 10.1093/database/bav016
– ident: 2016011923430581000_17.1.23.10
  doi: 10.1093/bioinformatics/btt333
– ident: 2016011923430581000_17.1.23.12
– ident: 2016011923430581000_17.1.23.59
  doi: 10.1371/journal.pone.0071171
– ident: 2016011923430581000_17.1.23.51
  doi: 10.1093/database/bas043
– ident: 2016011923430581000_17.1.23.52
  doi: 10.1016/j.jbi.2014.08.004
– ident: 2016011923430581000_17.1.23.33
  doi: 10.1007/s10791-008-9074-8
– ident: 2016011923430581000_17.1.23.1
  doi: 10.1177/0165551512437638
– ident: 2016011923430581000_17.1.23.48
  doi: 10.1093/nar/gkt441
– ident: 2016011923430581000_17.1.23.3
  doi: 10.1007/978-1-4939-0709-0_2
– ident: 2016011923430581000_17.1.23.27
  doi: 10.1016/j.ajem.2014.05.052
– ident: 2016011923430581000_17.1.23.32
  doi: 10.1136/amiajnl-2010-000055
– ident: 2016011923430581000_17.1.23.47
– ident: 2016011923430581000_17.1.23.36
  doi: 10.1186/1471-2105-12-S1-S3
– ident: 2016011923430581000_17.1.23.84
  doi: 10.1162/COLI_a_00057
– ident: 2016011923430581000_17.1.23.93
  doi: 10.1371/journal.pone.0100662
– ident: 2016011923430581000_17.1.23.18
  doi: 10.1136/amiajnl-2012-001482
– ident: 2016011923430581000_17.1.23.92
  doi: 10.1136/postgradmedj-2013-132486
– ident: 2016011923430581000_17.1.23.89
– ident: 2016011923430581000_17.1.23.86
  doi: 10.1177/1524839912470654
– volume: Vol. 20
  start-page: 330
  volume-title: Pacific Symposium on Biocomputing
  year: 2015
  ident: 2016011923430581000_17.1.23.61
  article-title: Crowdsourcing RNA Structural Alignments with an Online Computer Game
– ident: 2016011923430581000_17.1.23.15
  doi: 10.1038/nbt.2495
– ident: 2016011923430581000_17.1.23.77
  doi: 10.1136/amiajnl-2011-000203
– ident: 2016011923430581000_17.1.23.67
  doi: 10.1038/nsmb.2119
– ident: 2016011923430581000_17.1.23.88
  doi: 10.1136/amiajnl-2013-001613
– ident: 2016011923430581000_17.1.23.69
  doi: 10.1016/j.tibs.2014.08.005
– volume: 15
  start-page: e108
  year: 2013
  ident: 2016011923430581000_17.1.23.91
  article-title: Crowdsourcing participatory evaluation of medical pictograms using Amazon Mechanical Turk
  publication-title: J Med Int Res
– ident: 2016011923430581000_17.1.23.13
  doi: 10.1186/1471-2105-12-S9-S2
– ident: 2016011923430581000_17.1.23.20
  doi: 10.1007/s40264-014-0155-x
– ident: 2016011923430581000_17.1.23.23
  doi: 10.1145/2576233
– ident: 2016011923430581000_17.1.23.58
  doi: 10.1093/nar/gkr1195
– ident: 2016011923430581000_17.1.23.75
  doi: 10.3115/1572340.1572342
– ident: 2016011923430581000_17.1.23.95
– ident: 2016011923430581000_17.1.23.66
  doi: 10.1371/journal.pone.0031362
– ident: 2016011923430581000_17.1.23.40
  doi: 10.1093/bioinformatics/btt474
– ident: 2016011923430581000_17.1.23.68
  doi: 10.1073/pnas.1313039111
– reference: 25070993 - Database (Oxford). 2014;2014. pii: bau074. doi: 10.1093/database/bau074
– reference: 22195210 - AMIA Annu Symp Proc. 2011;2011:1464-70
– reference: 22204700 - Genome Biol. 2011;12(12):135
– reference: 25300714 - Trends Biochem Sci. 2014 Nov;39(11):507-9
– reference: 23407515 - Nature. 2013 Feb 14;494(7436):155-6
– reference: 22144683 - Nucleic Acids Res. 2012 Jan;40(Database issue):D9-12
– reference: 24448022 - CPT Pharmacometrics Syst Pharmacol. 2013 Sep 18;2:e76
– reference: 24777653 - Drug Saf. 2014 May;37(5):343-50
– reference: 23160414 - Database (Oxford). 2012;2012:bas041
– reference: 20686574 - Nature. 2010 Aug 5;466(7307):756-60
– reference: 25342179 - J Am Med Inform Assoc. 2015 May;22(3):640-8
– reference: 23564631 - J Am Med Inform Assoc. 2013 Jul-Aug;20(4):749-57
– reference: 21658290 - BMC Bioinformatics. 2011;12 Suppl 3:S3
– reference: 25340640 - Faraday Discuss. 2014;169:403-23
– reference: 23782614 - Bioinformatics. 2013 Aug 15;29(16):1925-33
– reference: 23619061 - Acad Med. 2013 Jun;88(6):766-70
– reference: 23969135 - Bioinformatics. 2013 Nov 15;29(22):2909-17
– reference: 25092793 - J Am Med Inform Assoc. 2015 Apr;22(e1):e112-9
– reference: 25296376 - IEEE Pulse. 2014 Jan-Feb;5(1):63-7
– reference: 21085736 - Lab Chip. 2011 Jan 7;11(1):14-22
– reference: 25592589 - Pac Symp Biocomput. 2015;:282-93
– reference: 22151901 - BMC Bioinformatics. 2011;12 Suppl 8:S2
– reference: 24988466 - PLoS One. 2014;9(7):e100647
– reference: 25352673 - Postgrad Med J. 2014 Dec;90(1070):685-93
– reference: 21926992 - Nat Struct Mol Biol. 2011 Oct;18(10):1175-7
– reference: 23613707 - PLoS One. 2013;8(4):e55814
– reference: 18952932 - J Am Med Inform Assoc. 2009 Jan-Feb;16(1):32-6
– reference: 25025865 - PLoS One. 2014;9(7):e100662
– reference: 21094696 - J Biomed Inform. 2011 Apr;44(2):310-8
– reference: 22582202 - J Am Med Inform Assoc. 2012 Sep-Oct;19(5):713-8
– reference: 23392504 - Nat Biotechnol. 2013 Feb;31(2):108-11
– reference: 22796662 - Nat Methods. 2012 Aug;9(8):796-804
– reference: 23467469 - J Am Med Inform Assoc. 2013 May 1;20(3):404-8
– reference: 21685143 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6
– reference: 23221175 - Database (Oxford). 2012;2012:bas049
– reference: 25935162 - Brief Bioinform. 2016 Jan;17(1):132-44
– reference: 25592593 - Pac Symp Biocomput. 2015;:330-41
– reference: 23645553 - J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1120-7
– reference: 24469816 - Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2122-7
– reference: 23160416 - Database (Oxford). 2012;2012:bas043
– reference: 25797061 - Database (Oxford). 2015;2015. pii: bav016. doi: 10.1093/database/bav016
– reference: 23327936 - Database (Oxford). 2013;2013:bas056
– reference: 8710822 - Proteins. 1995 Nov;23(3):ii-v
– reference: 25037278 - Am J Emerg Med. 2014 Sep;32(9):1016-23
– reference: 25810774 - J Cheminform. 2015 Jan 19;7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S3
– reference: 23596205 - Sci Transl Med. 2013 Apr 17;5(181):181re1
– reference: 24788259 - Methods Mol Biol. 2014;1159:11-31
– reference: 22412834 - PLoS One. 2012;7(3):e31362
– reference: 25246425 - Database (Oxford). 2014;2014. pii: bau094. doi: 10.1093/database/bau094
– reference: 21138947 - Bioinformatics. 2011 Feb 1;27(3):408-15
– reference: 23951102 - PLoS One. 2013;8(8):e71171
– reference: 25220766 - J Biomed Inform. 2014 Dec;52:448-56
– reference: 22679507 - PLoS One. 2012;7(6):e38460
– reference: 23703206 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W518-22
– reference: 23732572 - J Med Internet Res. 2013;15(6):e108
– reference: 23299912 - Health Promot Pract. 2013 Mar;14(2):163-7
– reference: 25217580 - J Natl Cancer Inst. 2014 Oct;106(10). pii: dju258. doi: 10.1093/jnci/dju258
– reference: 24852177 - Database (Oxford). 2014;2014. pii: bau039. doi: 10.1093/database/bau039
– reference: 25592591 - Pac Symp Biocomput. 2015;:306-17
– reference: 25592587 - Pac Symp Biocomput. 2015;:267-9
– reference: 22165947 - BMC Genomics. 2011;12:603
– reference: 24677212 - Proteins. 2014 Sep;82(9):1850-68
– reference: 20157491 - Database (Oxford). 2009;2009:bap018
– reference: 21613640 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):660-7
– reference: 23548263 - J Med Internet Res. 2013;15(4):e73
– reference: 19774223 - Inf Retr Boston. 2009;12(1):69-80
– reference: 25255227 - PLoS Comput Biol. 2014 Sep;10(9):e1003799
– reference: 22422992 - Sci Transl Med. 2012 Mar 14;4(125):125ra31
– reference: 24393765 - J Biomed Inform. 2014 Feb;47:1-10
– reference: 24595717 - Sleep Breath. 2015 Mar;19(1):79-84
SSID ssj0020781
Score 2.4171317
SecondaryResourceType review_article
Snippet The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 23
SubjectTerms Bioinformatics
Biomedical research
Computational Biology - trends
Crowdsourcing
Crowdsourcing - trends
Current Progress in Bioinformatics 2016 Papers
Data Mining
experts
Genomics
health information
Humans
Internet
markets
medicine
Search Engine
Smartphone
Social Media
Video Games
Title Crowdsourcing in biomedicine: challenges and opportunities
URI https://www.ncbi.nlm.nih.gov/pubmed/25888696
https://www.proquest.com/docview/1762720763
https://www.proquest.com/docview/1760912304
https://www.proquest.com/docview/2253260848
https://pubmed.ncbi.nlm.nih.gov/PMC4719068
Volume 17
WOSCitedRecordID wos000369219800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2BSQuiDcppQqCC4eoSZz1JL1BBUICFQR72FsUO7aaqvWu2uyq_PuOH8kmfUhw4GKt4kmy8jexZ8bjbwh5L2qRMxbzSKWxijJQSVRwnqIu17g6oEHLZWaLTcDRUT6fFz8nk9_dWZj1KWidX14Wy_8KNV5DsM3R2X-Au38oXsDfCDq2CDu2fwX8ITrWtY3J--Mq7oS93UE3_r_oyqc4dubF0ljgK22ZVUdbvOhEK1vU0z3DU6y2g_T4b8eVC2H_atpVn8njk3g-SX1SneG9fWznu6x8vNXlc282pDaplT6K6-MQyTAOId3cmQGgO-o4ofvJFW4okZ8p6a0TuCO34g03LV_H7vj0ALblmcUtnaLrzoprLNp2Xe66tsi9FKaFma1nP-a9F27YjTqe2oLu46v23YsML7S_dWyk3PA8rifQDiyS2WPyyLsS4UenAk_IROqn5IErLvrnGTkYKULY6HCgCAfhRg1CVINwpAbPyezL59nh18hXyogEWrBtBIbzB209wweYSuC0TupYCVVR4Irn6DQmoLI45aDiaSxAVVMoKlazLDeC9AXZ1gstX5GQMckrRdGpBXTcecWlSsDUyxSCFTXNA_KhG5lSeBZ5U8zktHTZDLTEAS3dgAbkXS-7dNwpt0rtdgNc-s_ookxwjQaEitGAvO27ceYz21mVlouVlUFj12xq3C2DqxX6J6ZmREBeOsz6v9KBHRAYodkLGOb1cY9uji0DO1p0RczynTuf-Zo83Hwju2S7PV_JN-S-WLfNxfke2YJ5vmfV8gqdgaLD
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crowdsourcing+in+biomedicine%3A+challenges+and+opportunities&rft.jtitle=Briefings+in+bioinformatics&rft.au=Khare%2C+Ritu&rft.au=Good%2C+Benjamin+M&rft.au=Leaman%2C+Robert&rft.au=Su%2C+Andrew+I&rft.date=2016-01-01&rft.eissn=1477-4054&rft.volume=17&rft.issue=1&rft.spage=23&rft_id=info:doi/10.1093%2Fbib%2Fbbv021&rft_id=info%3Apmid%2F25888696&rft.externalDocID=25888696
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon