Crowdsourcing in biomedicine: challenges and opportunities
The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health information seekers, science enthusiasts and domain experts. In this arti...
Gespeichert in:
| Veröffentlicht in: | Briefings in bioinformatics Jg. 17; H. 1; S. 23 - 32 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Oxford Publishing Limited (England)
01.01.2016
Oxford University Press |
| Schlagworte: | |
| ISSN: | 1467-5463, 1477-4054, 1477-4054 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health information seekers, science enthusiasts and domain experts. In this article, we review and highlight recent studies that use crowdsourcing to advance biomedicine. We classify these studies into two broad categories: (i) mining big data generated from a crowd (e.g. search logs) and (ii) active crowdsourcing via specific technical platforms, e.g. labor markets, wikis, scientific games and community challenges. Through describing each study in detail, we demonstrate the applicability of different methods in a variety of domains in biomedical research, including genomics, biocuration and clinical research. Furthermore, we discuss and highlight the strengths and limitations of different crowdsourcing platforms. Finally, we identify important emerging trends, opportunities and remaining challenges for future crowdsourcing research in biomedicine. |
|---|---|
| AbstractList | The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health information seekers, science enthusiasts and domain experts. In this article, we review and highlight recent studies that use crowdsourcing to advance biomedicine. We classify these studies into two broad categories: (i) mining big data generated from a crowd (e.g. search logs) and (ii) active crowdsourcing via specific technical platforms, e.g. labor markets, wikis, scientific games and community challenges. Through describing each study in detail, we demonstrate the applicability of different methods in a variety of domains in biomedical research, including genomics, biocuration and clinical research. Furthermore, we discuss and highlight the strengths and limitations of different crowdsourcing platforms. Finally, we identify important emerging trends, opportunities and remaining challenges for future crowdsourcing research in biomedicine.The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health information seekers, science enthusiasts and domain experts. In this article, we review and highlight recent studies that use crowdsourcing to advance biomedicine. We classify these studies into two broad categories: (i) mining big data generated from a crowd (e.g. search logs) and (ii) active crowdsourcing via specific technical platforms, e.g. labor markets, wikis, scientific games and community challenges. Through describing each study in detail, we demonstrate the applicability of different methods in a variety of domains in biomedical research, including genomics, biocuration and clinical research. Furthermore, we discuss and highlight the strengths and limitations of different crowdsourcing platforms. Finally, we identify important emerging trends, opportunities and remaining challenges for future crowdsourcing research in biomedicine. The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health information seekers, science enthusiasts and domain experts. In this article, we review and highlight recent studies that use crowdsourcing to advance biomedicine. We classify these studies into two broad categories: (i) mining big data generated from a crowd (e.g. search logs) and (ii) active crowdsourcing via specific technical platforms, e.g. labor markets, wikis, scientific games and community challenges. Through describing each study in detail, we demonstrate the applicability of different methods in a variety of domains in biomedical research, including genomics, biocuration and clinical research. Furthermore, we discuss and highlight the strengths and limitations of different crowdsourcing platforms. Finally, we identify important emerging trends, opportunities and remaining challenges for future crowdsourcing research in biomedicine. |
| Author | Lu, Zhiyong Su, Andrew I. Khare, Ritu Good, Benjamin M. Leaman, Robert |
| Author_xml | – sequence: 1 givenname: Ritu surname: Khare fullname: Khare, Ritu – sequence: 2 givenname: Benjamin M. surname: Good fullname: Good, Benjamin M. – sequence: 3 givenname: Robert surname: Leaman fullname: Leaman, Robert – sequence: 4 givenname: Andrew I. surname: Su fullname: Su, Andrew I. – sequence: 5 givenname: Zhiyong surname: Lu fullname: Lu, Zhiyong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25888696$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtr3DAUhUVJaB7tpj8gGLoJBSdXsl7OohCGPgID2WQvJFmeKHikqWRPyb-PzCRDGwJZSUKfzj065wQdhBgcQl8wXGBom0vjzaUxWyD4AzrGVIiaAqMH856LmlHeHKGTnB8ACAiJP6IjwqSUvOXH6GqR4t8uxylZH1aVD5Xxce06X47uqrL3ehhcWLlc6dBVcbOJaZyCH73Ln9Bhr4fsPj-vp-ju54-7xe96efvrZnG9rC0DNtZlIuNCEgxcECdM0-EOetvrRpjeSNYKLHoKxIgeGFjRayZazTtO5Qw2p-j7TnYzmWLMujAmPahN8mudHlXUXv1_E_y9WsWtogK3wGUROH8WSPHP5PKo1j5bNww6uDhlRQhrCAdJ30ex4NBi0gAt6NdX6EMJMZQgZoqIEjVvCnX2r_m965cCCvBtB9gUc06u3yMY1NyuKu2qXbsFhlew9aMefZw_7oe3njwBof2oJA |
| CitedBy_id | crossref_primary_10_1186_s13063_020_04860_8 crossref_primary_10_7189_jogh_08_010502 crossref_primary_10_1016_j_jclinepi_2020_01_023 crossref_primary_10_1371_journal_pcbi_1007128 crossref_primary_10_2196_jmir_9330 crossref_primary_10_3414_ME15_01_0122 crossref_primary_10_1016_j_juro_2017_09_167 crossref_primary_10_1016_j_vaccine_2018_05_079 crossref_primary_10_1016_j_jbi_2017_05_006 crossref_primary_10_12688_f1000research_10788_1 crossref_primary_10_2196_13371 crossref_primary_10_1080_17460441_2017_1335302 crossref_primary_10_1186_s13321_024_00868_3 crossref_primary_10_1371_journal_pbio_3000716 crossref_primary_10_2139_ssrn_5344843 crossref_primary_10_1002_ajpa_23367 crossref_primary_10_1089_jicm_2023_0233 crossref_primary_10_1093_jamia_ocz009 crossref_primary_10_1016_j_kint_2018_11_048 crossref_primary_10_1371_journal_pone_0313882 crossref_primary_10_1016_j_jmpt_2022_02_004 crossref_primary_10_1186_s12911_023_02309_x crossref_primary_10_1108_IJCS_08_2017_0011 crossref_primary_10_1186_s12967_018_1499_2 crossref_primary_10_7189_jogh_07_020601 crossref_primary_10_1007_s00404_020_05839_1 crossref_primary_10_1007_s40264_020_01028_w crossref_primary_10_1111_chd_12669 crossref_primary_10_3389_fmed_2022_961360 crossref_primary_10_1177_1460458218796599 crossref_primary_10_1007_s10994_018_5716_2 crossref_primary_10_1016_j_procs_2023_10_184 crossref_primary_10_1038_ncomms12846 crossref_primary_10_1186_s12859_019_2801_x crossref_primary_10_1186_s12911_018_0635_5 crossref_primary_10_2196_13151 crossref_primary_10_1093_nar_gkaa794 crossref_primary_10_1038_s41587_019_0180_5 crossref_primary_10_1109_TETC_2020_3017198 crossref_primary_10_1016_j_ienj_2024_101424 crossref_primary_10_2196_40765 crossref_primary_10_1371_journal_pbio_2002846 crossref_primary_10_1007_s12551_018_0490_8 crossref_primary_10_1016_j_jvoice_2022_06_011 crossref_primary_10_3389_fpubh_2023_1212544 crossref_primary_10_1016_j_procs_2018_07_155 crossref_primary_10_3390_data4020085 crossref_primary_10_2196_12047 crossref_primary_10_3390_safety5030061 crossref_primary_10_2196_resprot_5028 crossref_primary_10_1016_j_jbi_2017_04_003 crossref_primary_10_1038_nbt_4214 crossref_primary_10_1093_bib_bbx057 crossref_primary_10_1016_j_crbiot_2025_100282 crossref_primary_10_1038_nrg_2016_69 crossref_primary_10_1155_2015_674296 |
| Cites_doi | 10.1145/1378704.1378719 10.3115/1613715.1613751 10.1136/amiajnl-2014-002901 10.1093/database/bas041 10.1093/database/bau039 10.1039/C0LC00399A 10.1093/bioinformatics/btq667 10.1002/prot.24538 10.1136/amiajnl-2012-001110 10.1007/s10791-008-9076-6 10.1136/amiajnl-2014-002636 10.1002/prot.340230303 10.1186/1471-2164-12-603 10.1371/journal.pone.0100647 10.1093/bib/bbv024 10.1197/jamia.M2935 10.1038/494155a 10.1145/2484762.2484833 10.1126/scitranslmed.3006112 10.1016/j.jbi.2013.12.006 10.1186/gb-2011-12-12-135 10.1371/journal.pone.0038460 10.1145/1882992.1882997 10.1007/s11325-014-0965-1 10.1038/nature09304 10.1371/journal.pcbi.1003799 10.1016/j.jbi.2010.11.001 10.2196/jmir.2426 10.1039/C4FD00014E 10.1145/2487575.2488214 10.1093/database/bap018 10.1093/jnci/dju258 10.1136/amiajnl-2012-000852 10.1126/scitranslmed.3003377 10.1371/journal.pone.0055814 10.1093/database/bau094 10.1007/978-3-642-31040-9_8 10.1038/nmeth.2016 10.1109/MPUL.2013.2289467 10.1186/s13321-014-0051-5 10.1097/ACM.0b013e31828f86ef 10.1093/database/bas056 10.1093/database/bas049 10.1093/database/bau074 10.1038/psp.2013.52 10.1093/database/bav016 10.1093/bioinformatics/btt333 10.1371/journal.pone.0071171 10.1093/database/bas043 10.1016/j.jbi.2014.08.004 10.1007/s10791-008-9074-8 10.1177/0165551512437638 10.1093/nar/gkt441 10.1007/978-1-4939-0709-0_2 10.1016/j.ajem.2014.05.052 10.1136/amiajnl-2010-000055 10.1186/1471-2105-12-S1-S3 10.1162/COLI_a_00057 10.1371/journal.pone.0100662 10.1136/amiajnl-2012-001482 10.1136/postgradmedj-2013-132486 10.1177/1524839912470654 10.1038/nbt.2495 10.1136/amiajnl-2011-000203 10.1038/nsmb.2119 10.1136/amiajnl-2013-001613 10.1016/j.tibs.2014.08.005 10.1186/1471-2105-12-S9-S2 10.1007/s40264-014-0155-x 10.1145/2576233 10.1093/nar/gkr1195 10.3115/1572340.1572342 10.1371/journal.pone.0031362 10.1093/bioinformatics/btt474 10.1073/pnas.1313039111 |
| ContentType | Journal Article |
| Copyright | Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US. Copyright Oxford Publishing Limited(England) Jan 2016 Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US. 2015 |
| Copyright_xml | – notice: Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US. – notice: Copyright Oxford Publishing Limited(England) Jan 2016 – notice: Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US. 2015 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 7S9 L.6 5PM |
| DOI | 10.1093/bib/bbv021 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Medicine |
| EISSN | 1477-4054 |
| EndPage | 32 |
| ExternalDocumentID | PMC4719068 3943872021 25888696 10_1093_bib_bbv021 |
| Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM083924 – fundername: NIGMS NIH HHS grantid: R01 GM089820 – fundername: NIGMS NIH HHS grantid: 1U54GM114833 – fundername: NCATS NIH HHS grantid: UL1TR001114 – fundername: NIGMS NIH HHS grantid: R01GM089820 – fundername: NIGMS NIH HHS grantid: U54 GM114833 – fundername: NIGMS NIH HHS grantid: R01GM083924 – fundername: NCATS NIH HHS grantid: UL1 TR001114 |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 77I 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c505t-7815678210672e7b3d1d0fcfa37bfb859717f402b7f050c7fa579a6d6481d0f3 |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369219800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1467-5463 1477-4054 |
| IngestDate | Tue Sep 30 16:43:17 EDT 2025 Fri Sep 05 12:49:33 EDT 2025 Thu Oct 02 09:47:57 EDT 2025 Fri Oct 03 04:12:07 EDT 2025 Mon Jul 21 06:05:31 EDT 2025 Tue Nov 18 22:36:16 EST 2025 Sat Nov 29 07:52:33 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | games biomedicine crowdsourcing big data mining community challenges Amazon Mechanical Turk |
| Language | English |
| License | Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c505t-7815678210672e7b3d1d0fcfa37bfb859717f402b7f050c7fa579a6d6481d0f3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://academic.oup.com/bib/article-pdf/17/1/23/6684984/bbv021.pdf |
| PMID | 25888696 |
| PQID | 1762720763 |
| PQPubID | 26846 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4719068 proquest_miscellaneous_2253260848 proquest_miscellaneous_1760912304 proquest_journals_1762720763 pubmed_primary_25888696 crossref_primary_10_1093_bib_bbv021 crossref_citationtrail_10_1093_bib_bbv021 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-01 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Briefings in bioinformatics |
| PublicationTitleAlternate | Brief Bioinform |
| PublicationYear | 2016 |
| Publisher | Oxford Publishing Limited (England) Oxford University Press |
| Publisher_xml | – name: Oxford Publishing Limited (England) – name: Oxford University Press |
| References | Morton (2016011923430581000_17.1.23.30) 2014; 5 2016011923430581000_17.1.23.82 2016011923430581000_17.1.23.81 2016011923430581000_17.1.23.40 2016011923430581000_17.1.23.84 2016011923430581000_17.1.23.83 2016011923430581000_17.1.23.42 2016011923430581000_17.1.23.86 2016011923430581000_17.1.23.41 2016011923430581000_17.1.23.85 2016011923430581000_17.1.23.33 2016011923430581000_17.1.23.77 2016011923430581000_17.1.23.32 2016011923430581000_17.1.23.76 2016011923430581000_17.1.23.35 2016011923430581000_17.1.23.79 2016011923430581000_17.1.23.34 2016011923430581000_17.1.23.78 2016011923430581000_17.1.23.37 2016011923430581000_17.1.23.36 2016011923430581000_17.1.23.39 2016011923430581000_17.1.23.38 Leaman (2016011923430581000_17.1.23.17) 2015; Vol. 20 Margolin (2016011923430581000_17.1.23.80) 2013; 5 2016011923430581000_17.1.23.71 2016011923430581000_17.1.23.70 2016011923430581000_17.1.23.73 2016011923430581000_17.1.23.72 2016011923430581000_17.1.23.31 2016011923430581000_17.1.23.75 2016011923430581000_17.1.23.74 2016011923430581000_17.1.23.9 2016011923430581000_17.1.23.66 2016011923430581000_17.1.23.21 2016011923430581000_17.1.23.65 2016011923430581000_17.1.23.24 2016011923430581000_17.1.23.68 2016011923430581000_17.1.23.23 2016011923430581000_17.1.23.67 2016011923430581000_17.1.23.26 2016011923430581000_17.1.23.69 2016011923430581000_17.1.23.28 2016011923430581000_17.1.23.27 2016011923430581000_17.1.23.1 2016011923430581000_17.1.23.2 2016011923430581000_17.1.23.29 2016011923430581000_17.1.23.3 2016011923430581000_17.1.23.4 2016011923430581000_17.1.23.5 2016011923430581000_17.1.23.6 2016011923430581000_17.1.23.7 2016011923430581000_17.1.23.8 Odgers (2016011923430581000_17.1.23.19) 2015; Vol. 20 2016011923430581000_17.1.23.60 2016011923430581000_17.1.23.20 2016011923430581000_17.1.23.64 2016011923430581000_17.1.23.63 2016011923430581000_17.1.23.11 2016011923430581000_17.1.23.55 2016011923430581000_17.1.23.10 2016011923430581000_17.1.23.54 2016011923430581000_17.1.23.13 Wang (2016011923430581000_17.1.23.25) 2011; 2011 2016011923430581000_17.1.23.57 2016011923430581000_17.1.23.12 2016011923430581000_17.1.23.56 2016011923430581000_17.1.23.15 2016011923430581000_17.1.23.59 2016011923430581000_17.1.23.14 2016011923430581000_17.1.23.58 2016011923430581000_17.1.23.16 2016011923430581000_17.1.23.18 Good (2016011923430581000_17.1.23.45) 2015; Vol. 20 Yu (2016011923430581000_17.1.23.91) 2013; 15 2016011923430581000_17.1.23.90 2016011923430581000_17.1.23.93 Ahn (2016011923430581000_17.1.23.62) 2008; 51 2016011923430581000_17.1.23.92 2016011923430581000_17.1.23.51 2016011923430581000_17.1.23.95 2016011923430581000_17.1.23.50 2016011923430581000_17.1.23.94 2016011923430581000_17.1.23.53 Waldispühl (2016011923430581000_17.1.23.61) 2015; Vol. 20 2016011923430581000_17.1.23.52 2016011923430581000_17.1.23.44 2016011923430581000_17.1.23.88 2016011923430581000_17.1.23.43 2016011923430581000_17.1.23.87 2016011923430581000_17.1.23.46 2016011923430581000_17.1.23.89 2016011923430581000_17.1.23.48 2016011923430581000_17.1.23.47 2016011923430581000_17.1.23.49 Tatonetti (2016011923430581000_17.1.23.22) 2012; 4 24393765 - J Biomed Inform. 2014 Feb;47:1-10 25935162 - Brief Bioinform. 2016 Jan;17(1):132-44 24469816 - Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2122-7 23645553 - J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1120-7 24677212 - Proteins. 2014 Sep;82(9):1850-68 18952932 - J Am Med Inform Assoc. 2009 Jan-Feb;16(1):32-6 21094696 - J Biomed Inform. 2011 Apr;44(2):310-8 25220766 - J Biomed Inform. 2014 Dec;52:448-56 24777653 - Drug Saf. 2014 May;37(5):343-50 24988466 - PLoS One. 2014;9(7):e100647 25246425 - Database (Oxford). 2014;2014. pii: bau094. doi: 10.1093/database/bau094 23564631 - J Am Med Inform Assoc. 2013 Jul-Aug;20(4):749-57 22582202 - J Am Med Inform Assoc. 2012 Sep-Oct;19(5):713-8 22165947 - BMC Genomics. 2011;12:603 22412834 - PLoS One. 2012;7(3):e31362 23160414 - Database (Oxford). 2012;2012:bas041 20157491 - Database (Oxford). 2009;2009:bap018 23327936 - Database (Oxford). 2013;2013:bas056 23407515 - Nature. 2013 Feb 14;494(7436):155-6 25037278 - Am J Emerg Med. 2014 Sep;32(9):1016-23 22151901 - BMC Bioinformatics. 2011;12 Suppl 8:S2 23299912 - Health Promot Pract. 2013 Mar;14(2):163-7 21138947 - Bioinformatics. 2011 Feb 1;27(3):408-15 23703206 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W518-22 23732572 - J Med Internet Res. 2013;15(6):e108 21085736 - Lab Chip. 2011 Jan 7;11(1):14-22 22195210 - AMIA Annu Symp Proc. 2011;2011:1464-70 25352673 - Postgrad Med J. 2014 Dec;90(1070):685-93 24852177 - Database (Oxford). 2014;2014. pii: bau039. doi: 10.1093/database/bau039 25340640 - Faraday Discuss. 2014;169:403-23 22422992 - Sci Transl Med. 2012 Mar 14;4(125):125ra31 25342179 - J Am Med Inform Assoc. 2015 May;22(3):640-8 23548263 - J Med Internet Res. 2013;15(4):e73 21926992 - Nat Struct Mol Biol. 2011 Oct;18(10):1175-7 24448022 - CPT Pharmacometrics Syst Pharmacol. 2013 Sep 18;2:e76 23467469 - J Am Med Inform Assoc. 2013 May 1;20(3):404-8 23619061 - Acad Med. 2013 Jun;88(6):766-70 25070993 - Database (Oxford). 2014;2014. pii: bau074. doi: 10.1093/database/bau074 25025865 - PLoS One. 2014;9(7):e100662 23969135 - Bioinformatics. 2013 Nov 15;29(22):2909-17 21658290 - BMC Bioinformatics. 2011;12 Suppl 3:S3 25592589 - Pac Symp Biocomput. 2015;:282-93 22679507 - PLoS One. 2012;7(6):e38460 25810774 - J Cheminform. 2015 Jan 19;7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S3 23613707 - PLoS One. 2013;8(4):e55814 19774223 - Inf Retr Boston. 2009;12(1):69-80 25592587 - Pac Symp Biocomput. 2015;:267-9 24595717 - Sleep Breath. 2015 Mar;19(1):79-84 25797061 - Database (Oxford). 2015;2015. pii: bav016. doi: 10.1093/database/bav016 25092793 - J Am Med Inform Assoc. 2015 Apr;22(e1):e112-9 21685143 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6 25255227 - PLoS Comput Biol. 2014 Sep;10(9):e1003799 22796662 - Nat Methods. 2012 Aug;9(8):796-804 23596205 - Sci Transl Med. 2013 Apr 17;5(181):181re1 20686574 - Nature. 2010 Aug 5;466(7307):756-60 23392504 - Nat Biotechnol. 2013 Feb;31(2):108-11 21613640 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):660-7 25300714 - Trends Biochem Sci. 2014 Nov;39(11):507-9 22204700 - Genome Biol. 2011;12(12):135 24788259 - Methods Mol Biol. 2014;1159:11-31 22144683 - Nucleic Acids Res. 2012 Jan;40(Database issue):D9-12 25592591 - Pac Symp Biocomput. 2015;:306-17 23160416 - Database (Oxford). 2012;2012:bas043 25296376 - IEEE Pulse. 2014 Jan-Feb;5(1):63-7 25592593 - Pac Symp Biocomput. 2015;:330-41 23951102 - PLoS One. 2013;8(8):e71171 8710822 - Proteins. 1995 Nov;23(3):ii-v 25217580 - J Natl Cancer Inst. 2014 Oct;106(10). pii: dju258. doi: 10.1093/jnci/dju258 23221175 - Database (Oxford). 2012;2012:bas049 23782614 - Bioinformatics. 2013 Aug 15;29(16):1925-33 |
| References_xml | – volume: 51 start-page: 58 year: 2008 ident: 2016011923430581000_17.1.23.62 article-title: Designing games with a purpose publication-title: Commun ACM doi: 10.1145/1378704.1378719 – ident: 2016011923430581000_17.1.23.11 doi: 10.3115/1613715.1613751 – ident: 2016011923430581000_17.1.23.56 doi: 10.1136/amiajnl-2014-002901 – ident: 2016011923430581000_17.1.23.49 doi: 10.1093/database/bas041 – ident: 2016011923430581000_17.1.23.73 doi: 10.1093/database/bau039 – ident: 2016011923430581000_17.1.23.70 doi: 10.1039/C0LC00399A – ident: 2016011923430581000_17.1.23.55 doi: 10.1093/bioinformatics/btq667 – ident: 2016011923430581000_17.1.23.42 – ident: 2016011923430581000_17.1.23.81 doi: 10.1002/prot.24538 – ident: 2016011923430581000_17.1.23.43 doi: 10.1136/amiajnl-2012-001110 – ident: 2016011923430581000_17.1.23.76 doi: 10.1007/s10791-008-9076-6 – ident: 2016011923430581000_17.1.23.31 doi: 10.1136/amiajnl-2014-002636 – ident: 2016011923430581000_17.1.23.85 – ident: 2016011923430581000_17.1.23.37 – ident: 2016011923430581000_17.1.23.72 doi: 10.1002/prot.340230303 – ident: 2016011923430581000_17.1.23.60 doi: 10.1186/1471-2164-12-603 – volume: Vol. 20 start-page: 306 volume-title: Pacific Symposium on Biocomputing year: 2015 ident: 2016011923430581000_17.1.23.19 article-title: Analyzing search behavior of healthcare professionals for drug safety surveillance – ident: 2016011923430581000_17.1.23.71 – ident: 2016011923430581000_17.1.23.57 doi: 10.1371/journal.pone.0100647 – ident: 2016011923430581000_17.1.23.78 doi: 10.1093/bib/bbv024 – ident: 2016011923430581000_17.1.23.34 doi: 10.1197/jamia.M2935 – ident: 2016011923430581000_17.1.23.83 doi: 10.1038/494155a – ident: 2016011923430581000_17.1.23.65 doi: 10.1145/2484762.2484833 – volume: Vol. 20 start-page: 267 volume-title: Pacific Symposium on Biocomputing year: 2015 ident: 2016011923430581000_17.1.23.17 article-title: Session Introduction – volume: 5 start-page: 181re181 year: 2013 ident: 2016011923430581000_17.1.23.80 article-title: Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer publication-title: Sci Trans Med doi: 10.1126/scitranslmed.3006112 – ident: 2016011923430581000_17.1.23.46 doi: 10.1016/j.jbi.2013.12.006 – ident: 2016011923430581000_17.1.23.7 doi: 10.1186/gb-2011-12-12-135 – ident: 2016011923430581000_17.1.23.54 doi: 10.1371/journal.pone.0038460 – ident: 2016011923430581000_17.1.23.87 doi: 10.1145/1882992.1882997 – ident: 2016011923430581000_17.1.23.26 doi: 10.1007/s11325-014-0965-1 – ident: 2016011923430581000_17.1.23.28 – ident: 2016011923430581000_17.1.23.16 doi: 10.1038/nature09304 – ident: 2016011923430581000_17.1.23.90 doi: 10.1371/journal.pcbi.1003799 – volume: Vol. 20 start-page: 282 volume-title: Pacific Symposium on Biocomputing year: 2015 ident: 2016011923430581000_17.1.23.45 article-title: Microtask Crowdsourcing for Disease Mention Annotation in PubMed Abstracts – ident: 2016011923430581000_17.1.23.82 – ident: 2016011923430581000_17.1.23.38 doi: 10.1016/j.jbi.2010.11.001 – ident: 2016011923430581000_17.1.23.39 doi: 10.2196/jmir.2426 – ident: 2016011923430581000_17.1.23.64 doi: 10.1039/C4FD00014E – ident: 2016011923430581000_17.1.23.94 doi: 10.1145/2487575.2488214 – ident: 2016011923430581000_17.1.23.2 doi: 10.1093/database/bap018 – ident: 2016011923430581000_17.1.23.6 doi: 10.1093/jnci/dju258 – ident: 2016011923430581000_17.1.23.8 doi: 10.1136/amiajnl-2012-000852 – volume: 4 start-page: 125ra131 year: 2012 ident: 2016011923430581000_17.1.23.22 article-title: Data-driven prediction of drug effects and interactions publication-title: Sci Trans Med doi: 10.1126/scitranslmed.3003377 – volume: 2011 start-page: 1464 year: 2011 ident: 2016011923430581000_17.1.23.25 article-title: A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations publication-title: AMIA – ident: 2016011923430581000_17.1.23.14 doi: 10.1371/journal.pone.0055814 – ident: 2016011923430581000_17.1.23.5 doi: 10.1093/database/bau094 – ident: 2016011923430581000_17.1.23.53 doi: 10.1007/978-3-642-31040-9_8 – ident: 2016011923430581000_17.1.23.79 doi: 10.1038/nmeth.2016 – volume: 5 start-page: 63 year: 2014 ident: 2016011923430581000_17.1.23.30 article-title: Innovating openly: researchers and patients turn to crowdsourcing to collaborate on clinical trials, drug discovery, and more publication-title: IEEE Pulse doi: 10.1109/MPUL.2013.2289467 – ident: 2016011923430581000_17.1.23.21 – ident: 2016011923430581000_17.1.23.41 doi: 10.1186/s13321-014-0051-5 – ident: 2016011923430581000_17.1.23.9 doi: 10.1097/ACM.0b013e31828f86ef – ident: 2016011923430581000_17.1.23.50 doi: 10.1093/database/bas056 – ident: 2016011923430581000_17.1.23.29 – ident: 2016011923430581000_17.1.23.74 doi: 10.1093/database/bas049 – ident: 2016011923430581000_17.1.23.35 doi: 10.1093/database/bau074 – ident: 2016011923430581000_17.1.23.44 – ident: 2016011923430581000_17.1.23.24 doi: 10.1038/psp.2013.52 – ident: 2016011923430581000_17.1.23.63 – ident: 2016011923430581000_17.1.23.4 doi: 10.1093/database/bav016 – ident: 2016011923430581000_17.1.23.10 doi: 10.1093/bioinformatics/btt333 – ident: 2016011923430581000_17.1.23.12 – ident: 2016011923430581000_17.1.23.59 doi: 10.1371/journal.pone.0071171 – ident: 2016011923430581000_17.1.23.51 doi: 10.1093/database/bas043 – ident: 2016011923430581000_17.1.23.52 doi: 10.1016/j.jbi.2014.08.004 – ident: 2016011923430581000_17.1.23.33 doi: 10.1007/s10791-008-9074-8 – ident: 2016011923430581000_17.1.23.1 doi: 10.1177/0165551512437638 – ident: 2016011923430581000_17.1.23.48 doi: 10.1093/nar/gkt441 – ident: 2016011923430581000_17.1.23.3 doi: 10.1007/978-1-4939-0709-0_2 – ident: 2016011923430581000_17.1.23.27 doi: 10.1016/j.ajem.2014.05.052 – ident: 2016011923430581000_17.1.23.32 doi: 10.1136/amiajnl-2010-000055 – ident: 2016011923430581000_17.1.23.47 – ident: 2016011923430581000_17.1.23.36 doi: 10.1186/1471-2105-12-S1-S3 – ident: 2016011923430581000_17.1.23.84 doi: 10.1162/COLI_a_00057 – ident: 2016011923430581000_17.1.23.93 doi: 10.1371/journal.pone.0100662 – ident: 2016011923430581000_17.1.23.18 doi: 10.1136/amiajnl-2012-001482 – ident: 2016011923430581000_17.1.23.92 doi: 10.1136/postgradmedj-2013-132486 – ident: 2016011923430581000_17.1.23.89 – ident: 2016011923430581000_17.1.23.86 doi: 10.1177/1524839912470654 – volume: Vol. 20 start-page: 330 volume-title: Pacific Symposium on Biocomputing year: 2015 ident: 2016011923430581000_17.1.23.61 article-title: Crowdsourcing RNA Structural Alignments with an Online Computer Game – ident: 2016011923430581000_17.1.23.15 doi: 10.1038/nbt.2495 – ident: 2016011923430581000_17.1.23.77 doi: 10.1136/amiajnl-2011-000203 – ident: 2016011923430581000_17.1.23.67 doi: 10.1038/nsmb.2119 – ident: 2016011923430581000_17.1.23.88 doi: 10.1136/amiajnl-2013-001613 – ident: 2016011923430581000_17.1.23.69 doi: 10.1016/j.tibs.2014.08.005 – volume: 15 start-page: e108 year: 2013 ident: 2016011923430581000_17.1.23.91 article-title: Crowdsourcing participatory evaluation of medical pictograms using Amazon Mechanical Turk publication-title: J Med Int Res – ident: 2016011923430581000_17.1.23.13 doi: 10.1186/1471-2105-12-S9-S2 – ident: 2016011923430581000_17.1.23.20 doi: 10.1007/s40264-014-0155-x – ident: 2016011923430581000_17.1.23.23 doi: 10.1145/2576233 – ident: 2016011923430581000_17.1.23.58 doi: 10.1093/nar/gkr1195 – ident: 2016011923430581000_17.1.23.75 doi: 10.3115/1572340.1572342 – ident: 2016011923430581000_17.1.23.95 – ident: 2016011923430581000_17.1.23.66 doi: 10.1371/journal.pone.0031362 – ident: 2016011923430581000_17.1.23.40 doi: 10.1093/bioinformatics/btt474 – ident: 2016011923430581000_17.1.23.68 doi: 10.1073/pnas.1313039111 – reference: 25070993 - Database (Oxford). 2014;2014. pii: bau074. doi: 10.1093/database/bau074 – reference: 22195210 - AMIA Annu Symp Proc. 2011;2011:1464-70 – reference: 22204700 - Genome Biol. 2011;12(12):135 – reference: 25300714 - Trends Biochem Sci. 2014 Nov;39(11):507-9 – reference: 23407515 - Nature. 2013 Feb 14;494(7436):155-6 – reference: 22144683 - Nucleic Acids Res. 2012 Jan;40(Database issue):D9-12 – reference: 24448022 - CPT Pharmacometrics Syst Pharmacol. 2013 Sep 18;2:e76 – reference: 24777653 - Drug Saf. 2014 May;37(5):343-50 – reference: 23160414 - Database (Oxford). 2012;2012:bas041 – reference: 20686574 - Nature. 2010 Aug 5;466(7307):756-60 – reference: 25342179 - J Am Med Inform Assoc. 2015 May;22(3):640-8 – reference: 23564631 - J Am Med Inform Assoc. 2013 Jul-Aug;20(4):749-57 – reference: 21658290 - BMC Bioinformatics. 2011;12 Suppl 3:S3 – reference: 25340640 - Faraday Discuss. 2014;169:403-23 – reference: 23782614 - Bioinformatics. 2013 Aug 15;29(16):1925-33 – reference: 23619061 - Acad Med. 2013 Jun;88(6):766-70 – reference: 23969135 - Bioinformatics. 2013 Nov 15;29(22):2909-17 – reference: 25092793 - J Am Med Inform Assoc. 2015 Apr;22(e1):e112-9 – reference: 25296376 - IEEE Pulse. 2014 Jan-Feb;5(1):63-7 – reference: 21085736 - Lab Chip. 2011 Jan 7;11(1):14-22 – reference: 25592589 - Pac Symp Biocomput. 2015;:282-93 – reference: 22151901 - BMC Bioinformatics. 2011;12 Suppl 8:S2 – reference: 24988466 - PLoS One. 2014;9(7):e100647 – reference: 25352673 - Postgrad Med J. 2014 Dec;90(1070):685-93 – reference: 21926992 - Nat Struct Mol Biol. 2011 Oct;18(10):1175-7 – reference: 23613707 - PLoS One. 2013;8(4):e55814 – reference: 18952932 - J Am Med Inform Assoc. 2009 Jan-Feb;16(1):32-6 – reference: 25025865 - PLoS One. 2014;9(7):e100662 – reference: 21094696 - J Biomed Inform. 2011 Apr;44(2):310-8 – reference: 22582202 - J Am Med Inform Assoc. 2012 Sep-Oct;19(5):713-8 – reference: 23392504 - Nat Biotechnol. 2013 Feb;31(2):108-11 – reference: 22796662 - Nat Methods. 2012 Aug;9(8):796-804 – reference: 23467469 - J Am Med Inform Assoc. 2013 May 1;20(3):404-8 – reference: 21685143 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6 – reference: 23221175 - Database (Oxford). 2012;2012:bas049 – reference: 25935162 - Brief Bioinform. 2016 Jan;17(1):132-44 – reference: 25592593 - Pac Symp Biocomput. 2015;:330-41 – reference: 23645553 - J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1120-7 – reference: 24469816 - Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2122-7 – reference: 23160416 - Database (Oxford). 2012;2012:bas043 – reference: 25797061 - Database (Oxford). 2015;2015. pii: bav016. doi: 10.1093/database/bav016 – reference: 23327936 - Database (Oxford). 2013;2013:bas056 – reference: 8710822 - Proteins. 1995 Nov;23(3):ii-v – reference: 25037278 - Am J Emerg Med. 2014 Sep;32(9):1016-23 – reference: 25810774 - J Cheminform. 2015 Jan 19;7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S3 – reference: 23596205 - Sci Transl Med. 2013 Apr 17;5(181):181re1 – reference: 24788259 - Methods Mol Biol. 2014;1159:11-31 – reference: 22412834 - PLoS One. 2012;7(3):e31362 – reference: 25246425 - Database (Oxford). 2014;2014. pii: bau094. doi: 10.1093/database/bau094 – reference: 21138947 - Bioinformatics. 2011 Feb 1;27(3):408-15 – reference: 23951102 - PLoS One. 2013;8(8):e71171 – reference: 25220766 - J Biomed Inform. 2014 Dec;52:448-56 – reference: 22679507 - PLoS One. 2012;7(6):e38460 – reference: 23703206 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W518-22 – reference: 23732572 - J Med Internet Res. 2013;15(6):e108 – reference: 23299912 - Health Promot Pract. 2013 Mar;14(2):163-7 – reference: 25217580 - J Natl Cancer Inst. 2014 Oct;106(10). pii: dju258. doi: 10.1093/jnci/dju258 – reference: 24852177 - Database (Oxford). 2014;2014. pii: bau039. doi: 10.1093/database/bau039 – reference: 25592591 - Pac Symp Biocomput. 2015;:306-17 – reference: 25592587 - Pac Symp Biocomput. 2015;:267-9 – reference: 22165947 - BMC Genomics. 2011;12:603 – reference: 24677212 - Proteins. 2014 Sep;82(9):1850-68 – reference: 20157491 - Database (Oxford). 2009;2009:bap018 – reference: 21613640 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):660-7 – reference: 23548263 - J Med Internet Res. 2013;15(4):e73 – reference: 19774223 - Inf Retr Boston. 2009;12(1):69-80 – reference: 25255227 - PLoS Comput Biol. 2014 Sep;10(9):e1003799 – reference: 22422992 - Sci Transl Med. 2012 Mar 14;4(125):125ra31 – reference: 24393765 - J Biomed Inform. 2014 Feb;47:1-10 – reference: 24595717 - Sleep Breath. 2015 Mar;19(1):79-84 |
| SSID | ssj0020781 |
| Score | 2.4171317 |
| SecondaryResourceType | review_article |
| Snippet | The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches.... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 23 |
| SubjectTerms | Bioinformatics Biomedical research Computational Biology - trends Crowdsourcing Crowdsourcing - trends Current Progress in Bioinformatics 2016 Papers Data Mining experts Genomics health information Humans Internet markets medicine Search Engine Smartphone Social Media Video Games |
| Title | Crowdsourcing in biomedicine: challenges and opportunities |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25888696 https://www.proquest.com/docview/1762720763 https://www.proquest.com/docview/1760912304 https://www.proquest.com/docview/2253260848 https://pubmed.ncbi.nlm.nih.gov/PMC4719068 |
| Volume | 17 |
| WOSCitedRecordID | wos000369219800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2BSQuiDcppQqCC4eoSZz1JL1BBUICFQR72FsUO7aaqvWu2uyq_PuOH8kmfUhw4GKt4kmy8jexZ8bjbwh5L2qRMxbzSKWxijJQSVRwnqIu17g6oEHLZWaLTcDRUT6fFz8nk9_dWZj1KWidX14Wy_8KNV5DsM3R2X-Au38oXsDfCDq2CDu2fwX8ITrWtY3J--Mq7oS93UE3_r_oyqc4dubF0ljgK22ZVUdbvOhEK1vU0z3DU6y2g_T4b8eVC2H_atpVn8njk3g-SX1SneG9fWznu6x8vNXlc282pDaplT6K6-MQyTAOId3cmQGgO-o4ofvJFW4okZ8p6a0TuCO34g03LV_H7vj0ALblmcUtnaLrzoprLNp2Xe66tsi9FKaFma1nP-a9F27YjTqe2oLu46v23YsML7S_dWyk3PA8rifQDiyS2WPyyLsS4UenAk_IROqn5IErLvrnGTkYKULY6HCgCAfhRg1CVINwpAbPyezL59nh18hXyogEWrBtBIbzB209wweYSuC0TupYCVVR4Irn6DQmoLI45aDiaSxAVVMoKlazLDeC9AXZ1gstX5GQMckrRdGpBXTcecWlSsDUyxSCFTXNA_KhG5lSeBZ5U8zktHTZDLTEAS3dgAbkXS-7dNwpt0rtdgNc-s_ookxwjQaEitGAvO27ceYz21mVlouVlUFj12xq3C2DqxX6J6ZmREBeOsz6v9KBHRAYodkLGOb1cY9uji0DO1p0RczynTuf-Zo83Hwju2S7PV_JN-S-WLfNxfke2YJ5vmfV8gqdgaLD |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crowdsourcing+in+biomedicine%3A+challenges+and+opportunities&rft.jtitle=Briefings+in+bioinformatics&rft.au=Khare%2C+Ritu&rft.au=Good%2C+Benjamin+M&rft.au=Leaman%2C+Robert&rft.au=Su%2C+Andrew+I&rft.date=2016-01-01&rft.eissn=1477-4054&rft.volume=17&rft.issue=1&rft.spage=23&rft_id=info:doi/10.1093%2Fbib%2Fbbv021&rft_id=info%3Apmid%2F25888696&rft.externalDocID=25888696 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |