A Generalized Finite Volume Method for Density Driven Flows in Porous Media

In this article, we consider a time evolution equation for solute transport, coupled with a pressure equation in space dimension 2. For the numerical discretization, we combine the generalized finite volume method SUSHI on adaptive meshes with a time semi-implicit scheme. In the first part of this a...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 14; no. 19; p. 6151
Main Authors: Gao, Yueyuan, Hilhorst, Danielle, Vu Do, Huy Cuong
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2021
MDPI
Subjects:
ISSN:1996-1073, 1996-1073
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, we consider a time evolution equation for solute transport, coupled with a pressure equation in space dimension 2. For the numerical discretization, we combine the generalized finite volume method SUSHI on adaptive meshes with a time semi-implicit scheme. In the first part of this article, we present numerical simulations for two problems: a rotating interface between fresh and salt water and a well-known test case proposed by Henry. In the second part, we also introduce heat transfer and perform simulations for a system from the documentation of the software SEAWAT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1996-1073
1996-1073
DOI:10.3390/en14196151