Electronic Nose Based on Independent Component Analysis Combined with Partial Least Squares and Artificial Neural Networks for Wine Prediction

The aim of this work is to propose an alternative way for wine classification and prediction based on an electronic nose (e-nose) combined with Independent Component Analysis (ICA) as a dimensionality reduction technique, Partial Least Squares (PLS) to predict sensorial descriptors and Artificial Ne...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 12; číslo 6; s. 8055 - 8072
Hlavní autoři: Aguilera, Teodoro, Lozano, Jesús, Paredes, José A., Álvarez, Fernando J., Suárez, José I.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 01.06.2012
Molecular Diversity Preservation International (MDPI)
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The aim of this work is to propose an alternative way for wine classification and prediction based on an electronic nose (e-nose) combined with Independent Component Analysis (ICA) as a dimensionality reduction technique, Partial Least Squares (PLS) to predict sensorial descriptors and Artificial Neural Networks (ANNs) for classification purpose. A total of 26 wines from different regions, varieties and elaboration processes have been analyzed with an e-nose and tasted by a sensory panel. Successful results have been obtained in most cases for prediction and classification.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s120608055