PAM clustering algorithm based on mutual information matrix for ATR-FTIR spectral feature selection and disease diagnosis
The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the am...
Gespeichert in:
| Veröffentlicht in: | BMC medical research methodology Jg. 25; H. 1; S. 225 - 13 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
01.10.2025
BioMed Central Ltd Springer Nature B.V BMC |
| Schlagworte: | |
| ISSN: | 1471-2288, 1471-2288 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the amount of information characterizing the spectral dataset and the presence of redundancy among data could make the selection of the more informative features cumbersome. Here, a novel approach is proposed to perform feature selection based on redundant information among spectral data. In particular, we consider the Partition Around Medoids algorithm based on a dissimilarity matrix obtained from mutual information measure, in order to obtain groups of variables (wavenumbers) having similar patterns of pairwise dependence. Indeed, an advantage of this grouping algorithm with respect to other more widely used clustering methods, is to facilitate the interpretation of results, since the centre of each cluster, the so-called medoid, corresponds to an observed data point. As a consequence, the obtained medoid can be considered as representative of the whole wavenumbers belonging to the same cluster and retained in the subsequent statistical methods for disease prediction. An application on real data is finally reported to show the ability of the proposed approach in discriminating between patients affected by multiple sclerosis and healthy subjects. |
|---|---|
| AbstractList | The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the amount of information characterizing the spectral dataset and the presence of redundancy among data could make the selection of the more informative features cumbersome. Here, a novel approach is proposed to perform feature selection based on redundant information among spectral data. In particular, we consider the Partition Around Medoids algorithm based on a dissimilarity matrix obtained from mutual information measure, in order to obtain groups of variables (wavenumbers) having similar patterns of pairwise dependence. Indeed, an advantage of this grouping algorithm with respect to other more widely used clustering methods, is to facilitate the interpretation of results, since the centre of each cluster, the so-called medoid, corresponds to an observed data point. As a consequence, the obtained medoid can be considered as representative of the whole wavenumbers belonging to the same cluster and retained in the subsequent statistical methods for disease prediction. An application on real data is finally reported to show the ability of the proposed approach in discriminating between patients affected by multiple sclerosis and healthy subjects. The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the amount of information characterizing the spectral dataset and the presence of redundancy among data could make the selection of the more informative features cumbersome. Here, a novel approach is proposed to perform feature selection based on redundant information among spectral data. In particular, we consider the Partition Around Medoids algorithm based on a dissimilarity matrix obtained from mutual information measure, in order to obtain groups of variables (wavenumbers) having similar patterns of pairwise dependence. Indeed, an advantage of this grouping algorithm with respect to other more widely used clustering methods, is to facilitate the interpretation of results, since the centre of each cluster, the so-called medoid, corresponds to an observed data point. As a consequence, the obtained medoid can be considered as representative of the whole wavenumbers belonging to the same cluster and retained in the subsequent statistical methods for disease prediction. An application on real data is finally reported to show the ability of the proposed approach in discriminating between patients affected by multiple sclerosis and healthy subjects.The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the amount of information characterizing the spectral dataset and the presence of redundancy among data could make the selection of the more informative features cumbersome. Here, a novel approach is proposed to perform feature selection based on redundant information among spectral data. In particular, we consider the Partition Around Medoids algorithm based on a dissimilarity matrix obtained from mutual information measure, in order to obtain groups of variables (wavenumbers) having similar patterns of pairwise dependence. Indeed, an advantage of this grouping algorithm with respect to other more widely used clustering methods, is to facilitate the interpretation of results, since the centre of each cluster, the so-called medoid, corresponds to an observed data point. As a consequence, the obtained medoid can be considered as representative of the whole wavenumbers belonging to the same cluster and retained in the subsequent statistical methods for disease prediction. An application on real data is finally reported to show the ability of the proposed approach in discriminating between patients affected by multiple sclerosis and healthy subjects. Abstract The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the amount of information characterizing the spectral dataset and the presence of redundancy among data could make the selection of the more informative features cumbersome. Here, a novel approach is proposed to perform feature selection based on redundant information among spectral data. In particular, we consider the Partition Around Medoids algorithm based on a dissimilarity matrix obtained from mutual information measure, in order to obtain groups of variables (wavenumbers) having similar patterns of pairwise dependence. Indeed, an advantage of this grouping algorithm with respect to other more widely used clustering methods, is to facilitate the interpretation of results, since the centre of each cluster, the so-called medoid, corresponds to an observed data point. As a consequence, the obtained medoid can be considered as representative of the whole wavenumbers belonging to the same cluster and retained in the subsequent statistical methods for disease prediction. An application on real data is finally reported to show the ability of the proposed approach in discriminating between patients affected by multiple sclerosis and healthy subjects. The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the amount of information characterizing the spectral dataset and the presence of redundancy among data could make the selection of the more informative features cumbersome. Here, a novel approach is proposed to perform feature selection based on redundant information among spectral data. In particular, we consider the Partition Around Medoids algorithm based on a dissimilarity matrix obtained from mutual information measure, in order to obtain groups of variables (wavenumbers) having similar patterns of pairwise dependence. Indeed, an advantage of this grouping algorithm with respect to other more widely used clustering methods, is to facilitate the interpretation of results, since the centre of each cluster, the so-called medoid, corresponds to an observed data point. As a consequence, the obtained medoid can be considered as representative of the whole wavenumbers belonging to the same cluster and retained in the subsequent statistical methods for disease prediction. An application on real data is finally reported to show the ability of the proposed approach in discriminating between patients affected by multiple sclerosis and healthy subjects. Keywords: Feature selection, Shannon entropy, Dependence, Clustering, Dissimilarity measure |
| ArticleNumber | 225 |
| Audience | Academic |
| Author | Guzzi, Rita Condino, Francesca Crocco, Maria Caterina |
| Author_xml | – sequence: 1 givenname: Francesca surname: Condino fullname: Condino, Francesca email: francesca.condino@unical.it organization: Department of Economics, Statistics and Finance “Giovanni Anania”, University of Calabria – sequence: 2 givenname: Maria Caterina surname: Crocco fullname: Crocco, Maria Caterina organization: Department of Physics, Molecular Biophysics Laboratory, University of Calabria, STAR Research Infrastructure, University of Calabria, CNR-Nanotec – sequence: 3 givenname: Rita surname: Guzzi fullname: Guzzi, Rita organization: Department of Physics, Molecular Biophysics Laboratory, University of Calabria, CNR-Nanotec |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41034819$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ktuL1DAYxYusuBf9B3yQgC--dM2lTdLHYXHdgRVlGZ9DLl_GDG0zJi3s_vemO3tREQkl5fA7J3zJOa2OxjhCVb0l-JwQyT9mQqVoakzb8nEuavqiOiGNIDWlUh799n9cnea8w5gIyfir6rghmDWSdCfV3bfVF2T7OU-QwrhFut_GFKYfAzI6g0NxRMM8zbpHYfQxDXoKi6SnFG5REdBqc1NfbtY3KO_BTqmAHvQ0J0AZ-qIsuB4dciFDSSy73o4xh_y6eul1n-HNw35Wfb_8tLm4qq-_fl5frK5r2-J2qlnTcpDUauOEZ0C9BqKJAWONtcS01Las4453huHWOMq4l9IaKjTDlhPOzqr1IddFvVP7FAad7lTUQd0LMW2VTlOwPShpmOs46zwQ07QWdw4DOAmiod534ErWh0PWPsWfM-RJDSFb6Hs9QpyzYrQtdtYwUdD3f6G7OKexTLpQgjIiqHymtrqcv1xxuUK7hKqVbCUWHZFNoc7_QZXlYAi2lMKHov9hePdw-GwGcE9TP757AegBsCnmnMA_IQSrpVzqUC5VyqXuy6VoMbGDKe-XrkB6Huk_rl-iGdC5 |
| Cites_doi | 10.1371/journal.pone.0171122 10.1039/B913876P 10.1002/sim.6441 10.1002/stem.3077 10.18637/jss.v028.i05 10.1002/tbio.202000025 10.1021/acs.analchem.0c04049 10.1016/j.canlet.2020.02.020 10.1198/016214501753382273 10.3390/jpm13111596 10.1038/s41598-023-29617-6 10.1038/nprot.2014.110 10.1201/b12949 10.1016/S1007-0214(11)70008-6 10.1039/C9AN00093C 10.1103/PhysRevE.52.2318 10.1038/s41598-018-19303-3 10.1109/18.761290 10.1186/1471-2105-5-118 10.1111/j.2517-6161.1995.tb02031.x 10.1177/09622802211072456 10.1016/S0167-9473(03)00153-1 10.1002/j.1538-7305.1948.tb00917.x 10.1021/acs.analchem.1c00596 10.1073/pnas.1701517114 10.1007/978-1-4614-7138-7 10.1201/b15991 10.1103/PhysRevE.69.066138 10.1002/9780470316801 10.1016/j.csda.2010.03.026 10.1186/s13059-019-1880-3 10.1016/0377-0427(87)90125-7 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). COPYRIGHT 2025 BioMed Central Ltd. 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: COPYRIGHT 2025 BioMed Central Ltd. – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
| DOI | 10.1186/s12874-025-02667-2 |
| DatabaseName | Springer Nature Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1471-2288 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_8b3d9639fe1b45c09d0eed8e742ff9ed A858079184 41034819 10_1186_s12874_025_02667_2 |
| Genre | Journal Article |
| GeographicLocations | Italy |
| GeographicLocations_xml | – name: Italy |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK IAO IHR INH INR ITC KQ8 M1P MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. M48 PKEHL PQEST PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c505t-3456e82cabd7f3e2fae1a1bebcbcc1b52c5396d69b305bd236f88cb27a30c6163 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001585061000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2288 |
| IngestDate | Mon Oct 13 19:21:04 EDT 2025 Mon Oct 06 16:40:35 EDT 2025 Tue Oct 07 06:59:13 EDT 2025 Tue Nov 11 10:46:08 EST 2025 Tue Nov 04 18:13:33 EST 2025 Mon Oct 06 01:43:35 EDT 2025 Sat Nov 29 07:23:15 EST 2025 Thu Oct 02 04:43:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Shannon entropy Feature selection Dissimilarity measure Clustering Dependence |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c505t-3456e82cabd7f3e2fae1a1bebcbcc1b52c5396d69b305bd236f88cb27a30c6163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/8b3d9639fe1b45c09d0eed8e742ff9ed |
| PMID | 41034819 |
| PQID | 3257231728 |
| PQPubID | 42579 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8b3d9639fe1b45c09d0eed8e742ff9ed proquest_miscellaneous_3256393437 proquest_journals_3257231728 gale_infotracmisc_A858079184 gale_infotracacademiconefile_A858079184 pubmed_primary_41034819 crossref_primary_10_1186_s12874_025_02667_2 springer_journals_10_1186_s12874_025_02667_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC medical research methodology |
| PublicationTitleAbbrev | BMC Med Res Methodol |
| PublicationTitleAlternate | BMC Med Res Methodol |
| PublicationYear | 2025 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | J Fan (2667_CR9) 2001; 96 2667_CR5 GA Darbellay (2667_CR7) 1999; 45 I Kojadinovic (2667_CR16) 2004; 46 2667_CR8 2667_CR22 2667_CR27 A Jensch (2667_CR14) 2022; 31 D Yonar (2667_CR33) 2018; 8 PJ Rousseeuw (2667_CR28) 1987; 20 X Wang (2667_CR32) 2010; 54 L Zhang (2667_CR34) 2021; 93 JV Michalowicz (2667_CR23) 2013 T Hastie (2667_CR12) 2017 F Condino (2667_CR4) 2023; 13 A Banerjee (2667_CR2) 2021; 93 M Kuhn (2667_CR19) 2008; 28 W Liu (2667_CR20) 2017; 12 A Sala (2667_CR29) 2020; 477 J Fang (2667_CR10) 2019; 20 J Ma (2667_CR21) 2011; 16 Y Benjamini (2667_CR3) 1995; 57 MC Crocco (2667_CR6) 2023; 13 2667_CR13 CE Shannon (2667_CR30) 1948; 27 2667_CR11 J Kong (2667_CR17) 2015; 34 Y Moon (2667_CR24) 1995; 52 M Paraskevaidi (2667_CR26) 2017; 114 2667_CR15 V Pancaldi (2667_CR25) 2010; 6 MJ Baker (2667_CR1) 2014; 9 A Kraskov (2667_CR18) 2004; 69 AG Theakstone (2667_CR31) 2021; 3 |
| References_xml | – volume: 12 start-page: e0171122 issue: 2 year: 2017 ident: 2667_CR20 publication-title: PLoS One doi: 10.1371/journal.pone.0171122 – volume: 6 start-page: 543 issue: 3 year: 2010 ident: 2667_CR25 publication-title: Mol Biosyst doi: 10.1039/B913876P – volume: 34 start-page: 1708 year: 2015 ident: 2667_CR17 publication-title: Stat Med doi: 10.1002/sim.6441 – ident: 2667_CR22 doi: 10.1002/stem.3077 – volume: 28 start-page: 1 issue: 5 year: 2008 ident: 2667_CR19 publication-title: J Stat Softw doi: 10.18637/jss.v028.i05 – volume: 3 year: 2021 ident: 2667_CR31 publication-title: Transl Biophotonics doi: 10.1002/tbio.202000025 – volume: 93 start-page: 2191 issue: 4 year: 2021 ident: 2667_CR34 publication-title: Anal Chem doi: 10.1021/acs.analchem.0c04049 – volume: 477 start-page: 122 year: 2020 ident: 2667_CR29 publication-title: Cancer Lett. doi: 10.1016/j.canlet.2020.02.020 – volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction year: 2017 ident: 2667_CR12 – volume: 96 start-page: 1348 year: 2001 ident: 2667_CR9 publication-title: J Am Stat Assoc doi: 10.1198/016214501753382273 – volume: 13 year: 2023 ident: 2667_CR4 publication-title: J Pers Med doi: 10.3390/jpm13111596 – volume: 13 year: 2023 ident: 2667_CR6 publication-title: Sci Rep doi: 10.1038/s41598-023-29617-6 – volume: 9 start-page: 1771 issue: 8 year: 2014 ident: 2667_CR1 publication-title: Nat Protoc. doi: 10.1038/nprot.2014.110 – ident: 2667_CR27 doi: 10.1201/b12949 – volume: 16 start-page: 51 issue: 1 year: 2011 ident: 2667_CR21 publication-title: Tsinghua Sci Technol doi: 10.1016/S1007-0214(11)70008-6 – ident: 2667_CR11 doi: 10.1039/C9AN00093C – ident: 2667_CR5 – volume: 52 start-page: 2318 issue: 3 year: 1995 ident: 2667_CR24 publication-title: Phys Rev E doi: 10.1103/PhysRevE.52.2318 – volume: 8 year: 2018 ident: 2667_CR33 publication-title: Sci Rep doi: 10.1038/s41598-018-19303-3 – volume: 45 start-page: 1315 year: 1999 ident: 2667_CR7 publication-title: IEEE Trans Inf Theory doi: 10.1109/18.761290 – ident: 2667_CR8 doi: 10.1186/1471-2105-5-118 – volume: 57 start-page: 289 year: 1995 ident: 2667_CR3 publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 31 start-page: 947 issue: 5 year: 2022 ident: 2667_CR14 publication-title: Stat Methods Med Res doi: 10.1177/09622802211072456 – volume: 46 start-page: 269 year: 2004 ident: 2667_CR16 publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(03)00153-1 – volume: 27 start-page: 623 issue: 4 year: 1948 ident: 2667_CR30 publication-title: Bell Syst Tech J doi: 10.1002/j.1538-7305.1948.tb00917.x – volume: 93 start-page: 10391 issue: 30 year: 2021 ident: 2667_CR2 publication-title: Anal Chem doi: 10.1021/acs.analchem.1c00596 – volume: 114 start-page: E7929 issue: 38 year: 2017 ident: 2667_CR26 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1701517114 – ident: 2667_CR13 doi: 10.1007/978-1-4614-7138-7 – volume-title: Handbook of differential entropy year: 2013 ident: 2667_CR23 doi: 10.1201/b15991 – volume: 69 start-page: 1 year: 2004 ident: 2667_CR18 publication-title: Phys Rev E doi: 10.1103/PhysRevE.69.066138 – ident: 2667_CR15 doi: 10.1002/9780470316801 – volume: 54 start-page: 2230 issue: 10 year: 2010 ident: 2667_CR32 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2010.03.026 – volume: 20 year: 2019 ident: 2667_CR10 publication-title: Genome Biol doi: 10.1186/s13059-019-1880-3 – volume: 20 start-page: 53 year: 1987 ident: 2667_CR28 publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 |
| SSID | ssj0017836 |
| Score | 2.4413514 |
| Snippet | The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for... Abstract The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be... |
| SourceID | doaj proquest gale pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 225 |
| SubjectTerms | Algorithms Cluster Analysis Clustering Clustering Algorithms Data analysis Dependence Diagnosis Disease Diseases Dissimilarity measure Feature selection Fourier transform infrared spectroscopy Health Sciences High-dimensional statistics and omics data analysis Humans Italy Lipids Medical diagnosis Medical research Medicine Medicine & Public Health Medicine, Experimental Methods Multiple Sclerosis - diagnosis Neurological disorders Physiological aspects Principal components analysis Random variables Shannon entropy Spectroscopy, Fourier Transform Infrared - methods Spectrum analysis Statistical Theory and Methods Statistics for Life Sciences Theory of Medicine/Bioethics |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BQYgLb6ihoEVC4gBW7V0_1icUEBFItKqqIOW22pfbSo1d4qSCf8_MZpMSEFw4RbI3zmTnsTOemW8AXmWN8yYrUdPyGgOUClXRlJRlx9i5pFIb0YZG4S_14aGcTpuj-MJtiGWVa5sYDLXrLb0j3xcoW-iL1Fy-u_iW0tQoyq7GERrX4QaNzSY5r6ebgCunDoV1o4ys9oecwN1TGuCKkQdSxbcOo4DZ_6dl_uVo-i1XGo6g8d3_Jf4e3InOJxutpOU-XPPdA7h1ENPrD-HH0eiA2fMlgScgBUyfn-BTFqczRoedY33HZktqOGERb5W4ymaE8v-d4QU2mhyn48nnYxYaOOe4sPUBOZQNYd4OLdedYzEthJ-h0O9seARfxx8nHz6lcTZDatFnWqQCHS8vudXG1a3wvNU-17nxxhprc1NyW4qmclVjkOfGcVG1UlrDay0yW6ET-Bh2ur7zu8AsJ0wZIbT2puA6b1rftJWunM4K7W2ZwJs1k9TFCoJDhdBFVmrFUoUsVYGliifwnvi4WUnw2eFCPz9RURuVNMKh5cFfyk1RWhTYDH0F6euCt23jXQKvSQoUbSZultWxVwEJJrgsNZKlzOoGo-ME9rZWonLa7dtrgVDROAzqShoSeLm5Td-kgrfO98uwBukThagTeLKSv81fKvKM2qebBN6uBfLq4X_fmaf_puUZ3OakGqFQcQ92FvOlfw437eXibJi_CIr1EyhQKas priority: 102 providerName: ProQuest – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZbtQwcIQKQrxwH4EWGQmJB4hI7BzO44K6AolW1bKgvlm245SVuglKdhH9-854nYXleICnSMnEceYezWGA50lVO5PkKGlpiQFKgaJocsqyY-ycU6mNaHyj8Ify-FienlYnoSlsGKvdx5Sk19RerGXxekhpNHtMx69i3IBrouK9iuZO0oENs4-ft7kD6ksY22P--N6OCfKT-n_Xxz8ZpF8ypN7wTG_935Zvw83gaLLJhjPuwBXX3oXrRyGVfg8uTiZHzJ6vaVACrsn0-VnXL1ZflowMW826li3X1FzCwmxVoiBb0kT_7wxvsMl8Fk_n72fMN2v2CNg4PyWUDf5sHQLXbc1CCgivvqhvMdyHT9PD-dt3cTiHIbboH61igU6Wk9xqU5eNcLzRLtWpccYaa1OTc5uLqqiLyiB9Tc1F0UhpDS-1SGyBDt8D2Gu71j0CZjnNjxFCa2cyrtOqcVVT6KLWSaadzSN4OZJGfd2M21A-TJGF2mBTITaVx6biEbwh6m0haVS2v9H1ZypInpJG1Khl8EupyXKLzJmgXyBdmfGmqVwdwQuivSJkIrKsDn0JuGEajaUmMpdJWWEkHMH-DiQKot19PHKPCopgUAJVIrrQJZcRPNs-pjepuK113drD4P5EJsoIHm64bvtLWZpQq3QVwauRxX4s_nfMPP438CdwgxOX-iLFfdhb9Wt3ANfst9Vi6J968boEmvQf7w priority: 102 providerName: Springer Nature |
| Title | PAM clustering algorithm based on mutual information matrix for ATR-FTIR spectral feature selection and disease diagnosis |
| URI | https://link.springer.com/article/10.1186/s12874-025-02667-2 https://www.ncbi.nlm.nih.gov/pubmed/41034819 https://www.proquest.com/docview/3257231728 https://www.proquest.com/docview/3256393437 https://doaj.org/article/8b3d9639fe1b45c09d0eed8e742ff9ed |
| Volume | 25 |
| WOSCitedRecordID | wos001585061000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: RSV dateStart: 20011201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BQIgXxDeBURkJiQeoltj5cB47tIpJtIpKQeXJsh1nTFrTqWkn-O-5c5KyghAvvKRKcrHc-7DvdHc_A7wO89KZMEFLizIMUFI0RZNQlh1j54RKbUTlG4U_ZtOpXCzy4tpRX1QT1sIDt4w7kkaUqCR55SITJxbHDnFZlw5DuqrKXUmrb5jlfTDV5Q-oN6FvkZHpURMRrPuQjm7FmAPnw_e2IY_W_-eafG1T-i1L6jef8X2413mNbNTO9gHccPVDuDPp8uKP4EcxmjB7sSXUAxyA6YuzFUb935aMdqmSrWq23FKnCOuAUkkcbEnw_N8ZPmCj-Ww4np_OmO-8XCNh5TzkJ2v8QTlEruuSdfkc_PUVeufNY_g8Ppm__zDsDlUYWnR2NkOBHpOT3GpTZpVwvNIu0pFxxhprI5Nwm4g8LdPcoLBMyUVaSWkNz7QIbYre2xM4qFe1ewbMcgKDEUJrZ2KuI5RRXqU6LXUYa2eTAN72PFaXLXaG8jGHTFUrEYUSUV4iigdwTGLYURLutX-A2qA6bVD_0oYA3pAQFTETmWV112SAEyacKzWSiURtwbA2gMM9SrQqu_-6VwPVWXWjBK5v6A9nXAbwaveavqRKtdqttp4G5ydikQXwtFWf3V-Ko5D6nvMA3vX69Gvwv3Pm-f_gzAu4y0n_fR3iIRxs1lv3Em7bq815sx7AzWyR-ascwK3jk2kxG3iLwrvidFJ8xbvZpy8_AVmTI1E |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoALb4qhwCKBOIBVe9fPA0LhETVqElVVkHJbdtfrtlLjlDgB-qf4jcxs7JSA4NYDp0j2xJmdfDOz450HwPMgL6wOYtS0MMUAJUFV1DGdsmPsHFOqjShdoXA_HQ6z8Tjf34AfbS0MpVW2NtEZ6mJq6B35jkBs4V4k5dnb0y8-TY2i09V2hMYSFnv27BuGbPWb3gf8f19w3v04er_rN1MFfIPefu4L3DLYjBuli7QUlpfKhirUVhttTKhjbmKRJ0WSa-RWF1wkZZYZzVMlApPg9gWfewkuox1PKdhLx6sAL6SKiLYwJ0t26pCayfs0MBYjHZQCX3N-bkbAn57gF1f429msc3ndm_-bsG7BjWZzzTpLbbgNG7a6A1cHTfrAXTjb7wyYOVlQcwhcMVMnh8j1_GjCyJkXbFqxyYIKaljTT5ZQyyY0xeA7wwusMzrwu6PeAXMFqjMkLK3rjMpqN0-IyFVVsObYCz9dIuNxfQ8-XcjC78NmNa3sA2CGU88cIZSyOuIqzEubl4lKChVEyprYg1ctKOTpssWIdKFZlsglhCRCSDoISe7BO8LNipLag7sL09mhbKyNzLQo0LLiL4U6ig0qZIB7ocymES_L3BYevCTUSRImCsuophYDGaZ2YLKTxVmQ5hj9e7C9RonGx6zfbgEoG-NXy3P0efBsdZu-SQl9lZ0uHA3yJyKRerC1xPtqSVEYUHl47sHrVgHOH_53yTz8Ny9P4druaNCX_d5w7xFc56SWLilzGzbns4V9DFfM1_lxPXvilJrB54tWjJ94MIjV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQQRUX3pRAASMhcYCoiZ2Hc1weKyra1aosqDfLduyyUjepkiyCf8-MkyxdHgfEKVIycZzxzHhGM_OZkOdRUVodpaBpcQ4BSgaqqFPMskPsnGKpDXe-Ufgon83E6Wkxv9TF76vdx5Rk39OAKE1Vd3BRul7FRXbQxgjTHuJRrBBDwPhghK8mWEiP8frHz5s8AvYojK0yf3xvazvyqP2_2-ZLm9Mv2VK_CU1v_v_0b5EbgwNKJ73E3CZXbHWH7B4PKfa75Pt8ckzN-RoBFGB8qs7P6mbZfVlR3PBKWld0tcamEzpgruLK0hUi_X-jcINOFifhdHF4Qn0TZwOEznr0UNr6M3eQXFUlHVJDcPXFfsv2Hvk0fbd48z4czmcIDfhNXcjB-bKCGaXL3HHLnLKxirXVRhsT65SZlBdZmRUa1l2XjGdOCKNZrnhkMnAE75Odqq7sA0INQ1wZzpWyOmEqLpwtXKayUkWJsiYNyMtxmeRFD8MhffgiMtlzUwI3peemZAF5jSu5oUQIbX-jbs7koJFSaF6C9YEvxTpJDQhtBP6CsHnCnCtsGZAXKAcSmQnMMmroV4AJI2SWnIhURHkBEXJA9rcoQUHN9uNRkuRgIFrJwVSCa50zEZBnm8f4Jha9VbZeexqYH094HpC9XgI3vwTCji3URUBejeL2c_C_c-bhv5E_Jbvzt1N5dDj78IhcZyiwvo5xn-x0zdo-JtfM127ZNk-81v0APuMrtw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PAM+clustering+algorithm+based+on+mutual+information+matrix+for+ATR-FTIR+spectral+feature+selection+and+disease+diagnosis&rft.jtitle=BMC+medical+research+methodology&rft.au=Condino%2C+Francesca&rft.au=Crocco%2C+Maria+Caterina&rft.au=Guzzi%2C+Rita&rft.date=2025-10-01&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1186%2Fs12874-025-02667-2&rft.externalDocID=A858079184 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon |