PAM clustering algorithm based on mutual information matrix for ATR-FTIR spectral feature selection and disease diagnosis

The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC medical research methodology Jg. 25; H. 1; S. 225 - 13
Hauptverfasser: Condino, Francesca, Crocco, Maria Caterina, Guzzi, Rita
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 01.10.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1471-2288, 1471-2288
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the amount of information characterizing the spectral dataset and the presence of redundancy among data could make the selection of the more informative features cumbersome. Here, a novel approach is proposed to perform feature selection based on redundant information among spectral data. In particular, we consider the Partition Around Medoids algorithm based on a dissimilarity matrix obtained from mutual information measure, in order to obtain groups of variables (wavenumbers) having similar patterns of pairwise dependence. Indeed, an advantage of this grouping algorithm with respect to other more widely used clustering methods, is to facilitate the interpretation of results, since the centre of each cluster, the so-called medoid, corresponds to an observed data point. As a consequence, the obtained medoid can be considered as representative of the whole wavenumbers belonging to the same cluster and retained in the subsequent statistical methods for disease prediction. An application on real data is finally reported to show the ability of the proposed approach in discriminating between patients affected by multiple sclerosis and healthy subjects.
AbstractList The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the amount of information characterizing the spectral dataset and the presence of redundancy among data could make the selection of the more informative features cumbersome. Here, a novel approach is proposed to perform feature selection based on redundant information among spectral data. In particular, we consider the Partition Around Medoids algorithm based on a dissimilarity matrix obtained from mutual information measure, in order to obtain groups of variables (wavenumbers) having similar patterns of pairwise dependence. Indeed, an advantage of this grouping algorithm with respect to other more widely used clustering methods, is to facilitate the interpretation of results, since the centre of each cluster, the so-called medoid, corresponds to an observed data point. As a consequence, the obtained medoid can be considered as representative of the whole wavenumbers belonging to the same cluster and retained in the subsequent statistical methods for disease prediction. An application on real data is finally reported to show the ability of the proposed approach in discriminating between patients affected by multiple sclerosis and healthy subjects.
The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the amount of information characterizing the spectral dataset and the presence of redundancy among data could make the selection of the more informative features cumbersome. Here, a novel approach is proposed to perform feature selection based on redundant information among spectral data. In particular, we consider the Partition Around Medoids algorithm based on a dissimilarity matrix obtained from mutual information measure, in order to obtain groups of variables (wavenumbers) having similar patterns of pairwise dependence. Indeed, an advantage of this grouping algorithm with respect to other more widely used clustering methods, is to facilitate the interpretation of results, since the centre of each cluster, the so-called medoid, corresponds to an observed data point. As a consequence, the obtained medoid can be considered as representative of the whole wavenumbers belonging to the same cluster and retained in the subsequent statistical methods for disease prediction. An application on real data is finally reported to show the ability of the proposed approach in discriminating between patients affected by multiple sclerosis and healthy subjects.The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the amount of information characterizing the spectral dataset and the presence of redundancy among data could make the selection of the more informative features cumbersome. Here, a novel approach is proposed to perform feature selection based on redundant information among spectral data. In particular, we consider the Partition Around Medoids algorithm based on a dissimilarity matrix obtained from mutual information measure, in order to obtain groups of variables (wavenumbers) having similar patterns of pairwise dependence. Indeed, an advantage of this grouping algorithm with respect to other more widely used clustering methods, is to facilitate the interpretation of results, since the centre of each cluster, the so-called medoid, corresponds to an observed data point. As a consequence, the obtained medoid can be considered as representative of the whole wavenumbers belonging to the same cluster and retained in the subsequent statistical methods for disease prediction. An application on real data is finally reported to show the ability of the proposed approach in discriminating between patients affected by multiple sclerosis and healthy subjects.
Abstract The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the amount of information characterizing the spectral dataset and the presence of redundancy among data could make the selection of the more informative features cumbersome. Here, a novel approach is proposed to perform feature selection based on redundant information among spectral data. In particular, we consider the Partition Around Medoids algorithm based on a dissimilarity matrix obtained from mutual information measure, in order to obtain groups of variables (wavenumbers) having similar patterns of pairwise dependence. Indeed, an advantage of this grouping algorithm with respect to other more widely used clustering methods, is to facilitate the interpretation of results, since the centre of each cluster, the so-called medoid, corresponds to an observed data point. As a consequence, the obtained medoid can be considered as representative of the whole wavenumbers belonging to the same cluster and retained in the subsequent statistical methods for disease prediction. An application on real data is finally reported to show the ability of the proposed approach in discriminating between patients affected by multiple sclerosis and healthy subjects.
The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for disease discrimination. To this end, the identification of the potential spectral biomarkers among all possible candidates is needed, but the amount of information characterizing the spectral dataset and the presence of redundancy among data could make the selection of the more informative features cumbersome. Here, a novel approach is proposed to perform feature selection based on redundant information among spectral data. In particular, we consider the Partition Around Medoids algorithm based on a dissimilarity matrix obtained from mutual information measure, in order to obtain groups of variables (wavenumbers) having similar patterns of pairwise dependence. Indeed, an advantage of this grouping algorithm with respect to other more widely used clustering methods, is to facilitate the interpretation of results, since the centre of each cluster, the so-called medoid, corresponds to an observed data point. As a consequence, the obtained medoid can be considered as representative of the whole wavenumbers belonging to the same cluster and retained in the subsequent statistical methods for disease prediction. An application on real data is finally reported to show the ability of the proposed approach in discriminating between patients affected by multiple sclerosis and healthy subjects. Keywords: Feature selection, Shannon entropy, Dependence, Clustering, Dissimilarity measure
ArticleNumber 225
Audience Academic
Author Guzzi, Rita
Condino, Francesca
Crocco, Maria Caterina
Author_xml – sequence: 1
  givenname: Francesca
  surname: Condino
  fullname: Condino, Francesca
  email: francesca.condino@unical.it
  organization: Department of Economics, Statistics and Finance “Giovanni Anania”, University of Calabria
– sequence: 2
  givenname: Maria Caterina
  surname: Crocco
  fullname: Crocco, Maria Caterina
  organization: Department of Physics, Molecular Biophysics Laboratory, University of Calabria, STAR Research Infrastructure, University of Calabria, CNR-Nanotec
– sequence: 3
  givenname: Rita
  surname: Guzzi
  fullname: Guzzi, Rita
  organization: Department of Physics, Molecular Biophysics Laboratory, University of Calabria, CNR-Nanotec
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41034819$$D View this record in MEDLINE/PubMed
BookMark eNp9ktuL1DAYxYusuBf9B3yQgC--dM2lTdLHYXHdgRVlGZ9DLl_GDG0zJi3s_vemO3tREQkl5fA7J3zJOa2OxjhCVb0l-JwQyT9mQqVoakzb8nEuavqiOiGNIDWlUh799n9cnea8w5gIyfir6rghmDWSdCfV3bfVF2T7OU-QwrhFut_GFKYfAzI6g0NxRMM8zbpHYfQxDXoKi6SnFG5REdBqc1NfbtY3KO_BTqmAHvQ0J0AZ-qIsuB4dciFDSSy73o4xh_y6eul1n-HNw35Wfb_8tLm4qq-_fl5frK5r2-J2qlnTcpDUauOEZ0C9BqKJAWONtcS01Las4453huHWOMq4l9IaKjTDlhPOzqr1IddFvVP7FAad7lTUQd0LMW2VTlOwPShpmOs46zwQ07QWdw4DOAmiod534ErWh0PWPsWfM-RJDSFb6Hs9QpyzYrQtdtYwUdD3f6G7OKexTLpQgjIiqHymtrqcv1xxuUK7hKqVbCUWHZFNoc7_QZXlYAi2lMKHov9hePdw-GwGcE9TP757AegBsCnmnMA_IQSrpVzqUC5VyqXuy6VoMbGDKe-XrkB6Huk_rl-iGdC5
Cites_doi 10.1371/journal.pone.0171122
10.1039/B913876P
10.1002/sim.6441
10.1002/stem.3077
10.18637/jss.v028.i05
10.1002/tbio.202000025
10.1021/acs.analchem.0c04049
10.1016/j.canlet.2020.02.020
10.1198/016214501753382273
10.3390/jpm13111596
10.1038/s41598-023-29617-6
10.1038/nprot.2014.110
10.1201/b12949
10.1016/S1007-0214(11)70008-6
10.1039/C9AN00093C
10.1103/PhysRevE.52.2318
10.1038/s41598-018-19303-3
10.1109/18.761290
10.1186/1471-2105-5-118
10.1111/j.2517-6161.1995.tb02031.x
10.1177/09622802211072456
10.1016/S0167-9473(03)00153-1
10.1002/j.1538-7305.1948.tb00917.x
10.1021/acs.analchem.1c00596
10.1073/pnas.1701517114
10.1007/978-1-4614-7138-7
10.1201/b15991
10.1103/PhysRevE.69.066138
10.1002/9780470316801
10.1016/j.csda.2010.03.026
10.1186/s13059-019-1880-3
10.1016/0377-0427(87)90125-7
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.1186/s12874-025-02667-2
DatabaseName Springer Nature Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2288
EndPage 13
ExternalDocumentID oai_doaj_org_article_8b3d9639fe1b45c09d0eed8e742ff9ed
A858079184
41034819
10_1186_s12874_025_02667_2
Genre Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
IAO
IHR
INH
INR
ITC
KQ8
M1P
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c505t-3456e82cabd7f3e2fae1a1bebcbcc1b52c5396d69b305bd236f88cb27a30c6163
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001585061000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2288
IngestDate Mon Oct 13 19:21:04 EDT 2025
Mon Oct 06 16:40:35 EDT 2025
Tue Oct 07 06:59:13 EDT 2025
Tue Nov 11 10:46:08 EST 2025
Tue Nov 04 18:13:33 EST 2025
Mon Oct 06 01:43:35 EDT 2025
Sat Nov 29 07:23:15 EST 2025
Thu Oct 02 04:43:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Shannon entropy
Feature selection
Dissimilarity measure
Clustering
Dependence
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c505t-3456e82cabd7f3e2fae1a1bebcbcc1b52c5396d69b305bd236f88cb27a30c6163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/8b3d9639fe1b45c09d0eed8e742ff9ed
PMID 41034819
PQID 3257231728
PQPubID 42579
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_8b3d9639fe1b45c09d0eed8e742ff9ed
proquest_miscellaneous_3256393437
proquest_journals_3257231728
gale_infotracmisc_A858079184
gale_infotracacademiconefile_A858079184
pubmed_primary_41034819
crossref_primary_10_1186_s12874_025_02667_2
springer_journals_10_1186_s12874_025_02667_2
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical research methodology
PublicationTitleAbbrev BMC Med Res Methodol
PublicationTitleAlternate BMC Med Res Methodol
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References J Fan (2667_CR9) 2001; 96
2667_CR5
GA Darbellay (2667_CR7) 1999; 45
I Kojadinovic (2667_CR16) 2004; 46
2667_CR8
2667_CR22
2667_CR27
A Jensch (2667_CR14) 2022; 31
D Yonar (2667_CR33) 2018; 8
PJ Rousseeuw (2667_CR28) 1987; 20
X Wang (2667_CR32) 2010; 54
L Zhang (2667_CR34) 2021; 93
JV Michalowicz (2667_CR23) 2013
T Hastie (2667_CR12) 2017
F Condino (2667_CR4) 2023; 13
A Banerjee (2667_CR2) 2021; 93
M Kuhn (2667_CR19) 2008; 28
W Liu (2667_CR20) 2017; 12
A Sala (2667_CR29) 2020; 477
J Fang (2667_CR10) 2019; 20
J Ma (2667_CR21) 2011; 16
Y Benjamini (2667_CR3) 1995; 57
MC Crocco (2667_CR6) 2023; 13
2667_CR13
CE Shannon (2667_CR30) 1948; 27
2667_CR11
J Kong (2667_CR17) 2015; 34
Y Moon (2667_CR24) 1995; 52
M Paraskevaidi (2667_CR26) 2017; 114
2667_CR15
V Pancaldi (2667_CR25) 2010; 6
MJ Baker (2667_CR1) 2014; 9
A Kraskov (2667_CR18) 2004; 69
AG Theakstone (2667_CR31) 2021; 3
References_xml – volume: 12
  start-page: e0171122
  issue: 2
  year: 2017
  ident: 2667_CR20
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0171122
– volume: 6
  start-page: 543
  issue: 3
  year: 2010
  ident: 2667_CR25
  publication-title: Mol Biosyst
  doi: 10.1039/B913876P
– volume: 34
  start-page: 1708
  year: 2015
  ident: 2667_CR17
  publication-title: Stat Med
  doi: 10.1002/sim.6441
– ident: 2667_CR22
  doi: 10.1002/stem.3077
– volume: 28
  start-page: 1
  issue: 5
  year: 2008
  ident: 2667_CR19
  publication-title: J Stat Softw
  doi: 10.18637/jss.v028.i05
– volume: 3
  year: 2021
  ident: 2667_CR31
  publication-title: Transl Biophotonics
  doi: 10.1002/tbio.202000025
– volume: 93
  start-page: 2191
  issue: 4
  year: 2021
  ident: 2667_CR34
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.0c04049
– volume: 477
  start-page: 122
  year: 2020
  ident: 2667_CR29
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2020.02.020
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2017
  ident: 2667_CR12
– volume: 96
  start-page: 1348
  year: 2001
  ident: 2667_CR9
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753382273
– volume: 13
  year: 2023
  ident: 2667_CR4
  publication-title: J Pers Med
  doi: 10.3390/jpm13111596
– volume: 13
  year: 2023
  ident: 2667_CR6
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-29617-6
– volume: 9
  start-page: 1771
  issue: 8
  year: 2014
  ident: 2667_CR1
  publication-title: Nat Protoc.
  doi: 10.1038/nprot.2014.110
– ident: 2667_CR27
  doi: 10.1201/b12949
– volume: 16
  start-page: 51
  issue: 1
  year: 2011
  ident: 2667_CR21
  publication-title: Tsinghua Sci Technol
  doi: 10.1016/S1007-0214(11)70008-6
– ident: 2667_CR11
  doi: 10.1039/C9AN00093C
– ident: 2667_CR5
– volume: 52
  start-page: 2318
  issue: 3
  year: 1995
  ident: 2667_CR24
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.52.2318
– volume: 8
  year: 2018
  ident: 2667_CR33
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-19303-3
– volume: 45
  start-page: 1315
  year: 1999
  ident: 2667_CR7
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.761290
– ident: 2667_CR8
  doi: 10.1186/1471-2105-5-118
– volume: 57
  start-page: 289
  year: 1995
  ident: 2667_CR3
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 31
  start-page: 947
  issue: 5
  year: 2022
  ident: 2667_CR14
  publication-title: Stat Methods Med Res
  doi: 10.1177/09622802211072456
– volume: 46
  start-page: 269
  year: 2004
  ident: 2667_CR16
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(03)00153-1
– volume: 27
  start-page: 623
  issue: 4
  year: 1948
  ident: 2667_CR30
  publication-title: Bell Syst Tech J
  doi: 10.1002/j.1538-7305.1948.tb00917.x
– volume: 93
  start-page: 10391
  issue: 30
  year: 2021
  ident: 2667_CR2
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.1c00596
– volume: 114
  start-page: E7929
  issue: 38
  year: 2017
  ident: 2667_CR26
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1701517114
– ident: 2667_CR13
  doi: 10.1007/978-1-4614-7138-7
– volume-title: Handbook of differential entropy
  year: 2013
  ident: 2667_CR23
  doi: 10.1201/b15991
– volume: 69
  start-page: 1
  year: 2004
  ident: 2667_CR18
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.066138
– ident: 2667_CR15
  doi: 10.1002/9780470316801
– volume: 54
  start-page: 2230
  issue: 10
  year: 2010
  ident: 2667_CR32
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2010.03.026
– volume: 20
  year: 2019
  ident: 2667_CR10
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1880-3
– volume: 20
  start-page: 53
  year: 1987
  ident: 2667_CR28
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
SSID ssj0017836
Score 2.4413514
Snippet The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be used for...
Abstract The ATR-FTIR spectral data represent a valuable source of information in a wide range of pathologies, including neurological disorders, and can be...
SourceID doaj
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 225
SubjectTerms Algorithms
Cluster Analysis
Clustering
Clustering Algorithms
Data analysis
Dependence
Diagnosis
Disease
Diseases
Dissimilarity measure
Feature selection
Fourier transform infrared spectroscopy
Health Sciences
High-dimensional statistics and omics data analysis
Humans
Italy
Lipids
Medical diagnosis
Medical research
Medicine
Medicine & Public Health
Medicine, Experimental
Methods
Multiple Sclerosis - diagnosis
Neurological disorders
Physiological aspects
Principal components analysis
Random variables
Shannon entropy
Spectroscopy, Fourier Transform Infrared - methods
Spectrum analysis
Statistical Theory and Methods
Statistics for Life Sciences
Theory of Medicine/Bioethics
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BQYgLb6ihoEVC4gBW7V0_1icUEBFItKqqIOW22pfbSo1d4qSCf8_MZpMSEFw4RbI3zmTnsTOemW8AXmWN8yYrUdPyGgOUClXRlJRlx9i5pFIb0YZG4S_14aGcTpuj-MJtiGWVa5sYDLXrLb0j3xcoW-iL1Fy-u_iW0tQoyq7GERrX4QaNzSY5r6ebgCunDoV1o4ys9oecwN1TGuCKkQdSxbcOo4DZ_6dl_uVo-i1XGo6g8d3_Jf4e3InOJxutpOU-XPPdA7h1ENPrD-HH0eiA2fMlgScgBUyfn-BTFqczRoedY33HZktqOGERb5W4ymaE8v-d4QU2mhyn48nnYxYaOOe4sPUBOZQNYd4OLdedYzEthJ-h0O9seARfxx8nHz6lcTZDatFnWqQCHS8vudXG1a3wvNU-17nxxhprc1NyW4qmclVjkOfGcVG1UlrDay0yW6ET-Bh2ur7zu8AsJ0wZIbT2puA6b1rftJWunM4K7W2ZwJs1k9TFCoJDhdBFVmrFUoUsVYGliifwnvi4WUnw2eFCPz9RURuVNMKh5cFfyk1RWhTYDH0F6euCt23jXQKvSQoUbSZultWxVwEJJrgsNZKlzOoGo-ME9rZWonLa7dtrgVDROAzqShoSeLm5Td-kgrfO98uwBukThagTeLKSv81fKvKM2qebBN6uBfLq4X_fmaf_puUZ3OakGqFQcQ92FvOlfw437eXibJi_CIr1EyhQKas
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZbtQwcIQKQrxwH4EWGQmJB4hI7BzO44K6AolW1bKgvlm245SVuglKdhH9-854nYXleICnSMnEceYezWGA50lVO5PkKGlpiQFKgaJocsqyY-ycU6mNaHyj8Ify-FienlYnoSlsGKvdx5Sk19RerGXxekhpNHtMx69i3IBrouK9iuZO0oENs4-ft7kD6ksY22P--N6OCfKT-n_Xxz8ZpF8ypN7wTG_935Zvw83gaLLJhjPuwBXX3oXrRyGVfg8uTiZHzJ6vaVACrsn0-VnXL1ZflowMW826li3X1FzCwmxVoiBb0kT_7wxvsMl8Fk_n72fMN2v2CNg4PyWUDf5sHQLXbc1CCgivvqhvMdyHT9PD-dt3cTiHIbboH61igU6Wk9xqU5eNcLzRLtWpccYaa1OTc5uLqqiLyiB9Tc1F0UhpDS-1SGyBDt8D2Gu71j0CZjnNjxFCa2cyrtOqcVVT6KLWSaadzSN4OZJGfd2M21A-TJGF2mBTITaVx6biEbwh6m0haVS2v9H1ZypInpJG1Khl8EupyXKLzJmgXyBdmfGmqVwdwQuivSJkIrKsDn0JuGEajaUmMpdJWWEkHMH-DiQKot19PHKPCopgUAJVIrrQJZcRPNs-pjepuK113drD4P5EJsoIHm64bvtLWZpQq3QVwauRxX4s_nfMPP438CdwgxOX-iLFfdhb9Wt3ANfst9Vi6J968boEmvQf7w
  priority: 102
  providerName: Springer Nature
Title PAM clustering algorithm based on mutual information matrix for ATR-FTIR spectral feature selection and disease diagnosis
URI https://link.springer.com/article/10.1186/s12874-025-02667-2
https://www.ncbi.nlm.nih.gov/pubmed/41034819
https://www.proquest.com/docview/3257231728
https://www.proquest.com/docview/3256393437
https://doaj.org/article/8b3d9639fe1b45c09d0eed8e742ff9ed
Volume 25
WOSCitedRecordID wos001585061000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RSV
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BQIgXxDeBURkJiQeoltj5cB47tIpJtIpKQeXJsh1nTFrTqWkn-O-5c5KyghAvvKRKcrHc-7DvdHc_A7wO89KZMEFLizIMUFI0RZNQlh1j54RKbUTlG4U_ZtOpXCzy4tpRX1QT1sIDt4w7kkaUqCR55SITJxbHDnFZlw5DuqrKXUmrb5jlfTDV5Q-oN6FvkZHpURMRrPuQjm7FmAPnw_e2IY_W_-eafG1T-i1L6jef8X2413mNbNTO9gHccPVDuDPp8uKP4EcxmjB7sSXUAxyA6YuzFUb935aMdqmSrWq23FKnCOuAUkkcbEnw_N8ZPmCj-Ww4np_OmO-8XCNh5TzkJ2v8QTlEruuSdfkc_PUVeufNY_g8Ppm__zDsDlUYWnR2NkOBHpOT3GpTZpVwvNIu0pFxxhprI5Nwm4g8LdPcoLBMyUVaSWkNz7QIbYre2xM4qFe1ewbMcgKDEUJrZ2KuI5RRXqU6LXUYa2eTAN72PFaXLXaG8jGHTFUrEYUSUV4iigdwTGLYURLutX-A2qA6bVD_0oYA3pAQFTETmWV112SAEyacKzWSiURtwbA2gMM9SrQqu_-6VwPVWXWjBK5v6A9nXAbwaveavqRKtdqttp4G5ydikQXwtFWf3V-Ko5D6nvMA3vX69Gvwv3Pm-f_gzAu4y0n_fR3iIRxs1lv3Em7bq815sx7AzWyR-ascwK3jk2kxG3iLwrvidFJ8xbvZpy8_AVmTI1E
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoALb4qhwCKBOIBVe9fPA0LhETVqElVVkHJbdtfrtlLjlDgB-qf4jcxs7JSA4NYDp0j2xJmdfDOz450HwPMgL6wOYtS0MMUAJUFV1DGdsmPsHFOqjShdoXA_HQ6z8Tjf34AfbS0MpVW2NtEZ6mJq6B35jkBs4V4k5dnb0y8-TY2i09V2hMYSFnv27BuGbPWb3gf8f19w3v04er_rN1MFfIPefu4L3DLYjBuli7QUlpfKhirUVhttTKhjbmKRJ0WSa-RWF1wkZZYZzVMlApPg9gWfewkuox1PKdhLx6sAL6SKiLYwJ0t26pCayfs0MBYjHZQCX3N-bkbAn57gF1f429msc3ndm_-bsG7BjWZzzTpLbbgNG7a6A1cHTfrAXTjb7wyYOVlQcwhcMVMnh8j1_GjCyJkXbFqxyYIKaljTT5ZQyyY0xeA7wwusMzrwu6PeAXMFqjMkLK3rjMpqN0-IyFVVsObYCz9dIuNxfQ8-XcjC78NmNa3sA2CGU88cIZSyOuIqzEubl4lKChVEyprYg1ctKOTpssWIdKFZlsglhCRCSDoISe7BO8LNipLag7sL09mhbKyNzLQo0LLiL4U6ig0qZIB7ocymES_L3BYevCTUSRImCsuophYDGaZ2YLKTxVmQ5hj9e7C9RonGx6zfbgEoG-NXy3P0efBsdZu-SQl9lZ0uHA3yJyKRerC1xPtqSVEYUHl47sHrVgHOH_53yTz8Ny9P4druaNCX_d5w7xFc56SWLilzGzbns4V9DFfM1_lxPXvilJrB54tWjJ94MIjV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQQRUX3pRAASMhcYCoiZ2Hc1weKyra1aosqDfLduyyUjepkiyCf8-MkyxdHgfEKVIycZzxzHhGM_OZkOdRUVodpaBpcQ4BSgaqqFPMskPsnGKpDXe-Ufgon83E6Wkxv9TF76vdx5Rk39OAKE1Vd3BRul7FRXbQxgjTHuJRrBBDwPhghK8mWEiP8frHz5s8AvYojK0yf3xvazvyqP2_2-ZLm9Mv2VK_CU1v_v_0b5EbgwNKJ73E3CZXbHWH7B4PKfa75Pt8ckzN-RoBFGB8qs7P6mbZfVlR3PBKWld0tcamEzpgruLK0hUi_X-jcINOFifhdHF4Qn0TZwOEznr0UNr6M3eQXFUlHVJDcPXFfsv2Hvk0fbd48z4czmcIDfhNXcjB-bKCGaXL3HHLnLKxirXVRhsT65SZlBdZmRUa1l2XjGdOCKNZrnhkMnAE75Odqq7sA0INQ1wZzpWyOmEqLpwtXKayUkWJsiYNyMtxmeRFD8MhffgiMtlzUwI3peemZAF5jSu5oUQIbX-jbs7koJFSaF6C9YEvxTpJDQhtBP6CsHnCnCtsGZAXKAcSmQnMMmroV4AJI2SWnIhURHkBEXJA9rcoQUHN9uNRkuRgIFrJwVSCa50zEZBnm8f4Jha9VbZeexqYH094HpC9XgI3vwTCji3URUBejeL2c_C_c-bhv5E_Jbvzt1N5dDj78IhcZyiwvo5xn-x0zdo-JtfM127ZNk-81v0APuMrtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PAM+clustering+algorithm+based+on+mutual+information+matrix+for+ATR-FTIR+spectral+feature+selection+and+disease+diagnosis&rft.jtitle=BMC+medical+research+methodology&rft.au=Condino%2C+Francesca&rft.au=Crocco%2C+Maria+Caterina&rft.au=Guzzi%2C+Rita&rft.date=2025-10-01&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1186%2Fs12874-025-02667-2&rft.externalDocID=A858079184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon