The Mini‐Organo: A rapid high‐throughput 3D coculture organotypic assay for oncology screening and drug development

Background The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine‐tuned control of a range of microenvironmental elements in...

Full description

Saved in:
Bibliographic Details
Published in:Cancer reports Vol. 3; no. 1; pp. e1209 - n/a
Main Authors: Chitty, Jessica L., Skhinas, Joanna N., Filipe, Elysse C., Wang, Shan, Cupello, Carmen Rodriguez, Grant, Rhiannon D., Yam, Michelle, Papanicolaou, Michael, Major, Gretel, Zaratzian, Anaiis, Da Silva, Andrew M., Tayao, Michael, Vennin, Claire, Timpson, Paul, Madsen, Chris D., Cox, Thomas R.
Format: Journal Article
Language:English
Published: United States John Wiley and Sons Inc 01.02.2020
Subjects:
ISSN:2573-8348, 2573-8348
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine‐tuned control of a range of microenvironmental elements independently within an isolated setting. The recent expansion in the use of three‐dimensional (3D) in vitro assays has created a number of representative tools to study cell behaviour in a more physiologically 3D relevant microenvironment. Complex 3D in vitro models that can recapitulate human tissue biology are essential for understanding the pathophysiology of disease. Aim The development of the 3D coculture collagen contraction and invasion assay, the “organotypic assay,” has been widely adopted as a powerful approach to bridge the gap between standard two‐dimensional tissue culture and in vivo mouse models. In the cancer setting, these assays can then be used to dissect how stromal cells, such as cancer‐associated fibroblasts (CAFs), drive extracellular matrix (ECM) remodelling to alter cancer cell behaviour and response to intervention. However, to date, many of the published organotypic protocols are low‐throughput, time‐consuming (up to several weeks), and work‐intensive with often limited scalability. Our aim was to develop a fast, high‐throughput, scalable 3D organotypic assay for use in oncology screening and drug development. Methods and results Here, we describe a modified 96‐well organotypic assay, the “Mini‐Organo,” which can be easily completed within 5 days. We demonstrate its application in a wide range of mouse and human cancer biology approaches including evaluation of stromal cell 3D ECM remodelling, 3D cancer cell invasion, and the assessment of efficacy of potential anticancer therapeutic targets. Furthermore, the organotypic assay described is highly amenable to customisation using different cell types under diverse experimental conditions. Conclusions The Mini‐Organo high‐throughput 3D organotypic assay allows the rapid screening of potential cancer therapeutics in human and mouse models in a time‐efficient manner.
AbstractList The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine-tuned control of a range of microenvironmental elements independently within an isolated setting. The recent expansion in the use of three-dimensional (3D) in vitro assays has created a number of representative tools to study cell behaviour in a more physiologically 3D relevant microenvironment. Complex 3D in vitro models that can recapitulate human tissue biology are essential for understanding the pathophysiology of disease.BACKGROUNDThe use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine-tuned control of a range of microenvironmental elements independently within an isolated setting. The recent expansion in the use of three-dimensional (3D) in vitro assays has created a number of representative tools to study cell behaviour in a more physiologically 3D relevant microenvironment. Complex 3D in vitro models that can recapitulate human tissue biology are essential for understanding the pathophysiology of disease.The development of the 3D coculture collagen contraction and invasion assay, the "organotypic assay," has been widely adopted as a powerful approach to bridge the gap between standard two-dimensional tissue culture and in vivo mouse models. In the cancer setting, these assays can then be used to dissect how stromal cells, such as cancer-associated fibroblasts (CAFs), drive extracellular matrix (ECM) remodelling to alter cancer cell behaviour and response to intervention. However, to date, many of the published organotypic protocols are low-throughput, time-consuming (up to several weeks), and work-intensive with often limited scalability. Our aim was to develop a fast, high-throughput, scalable 3D organotypic assay for use in oncology screening and drug development.AIMThe development of the 3D coculture collagen contraction and invasion assay, the "organotypic assay," has been widely adopted as a powerful approach to bridge the gap between standard two-dimensional tissue culture and in vivo mouse models. In the cancer setting, these assays can then be used to dissect how stromal cells, such as cancer-associated fibroblasts (CAFs), drive extracellular matrix (ECM) remodelling to alter cancer cell behaviour and response to intervention. However, to date, many of the published organotypic protocols are low-throughput, time-consuming (up to several weeks), and work-intensive with often limited scalability. Our aim was to develop a fast, high-throughput, scalable 3D organotypic assay for use in oncology screening and drug development.Here, we describe a modified 96-well organotypic assay, the "Mini-Organo," which can be easily completed within 5 days. We demonstrate its application in a wide range of mouse and human cancer biology approaches including evaluation of stromal cell 3D ECM remodelling, 3D cancer cell invasion, and the assessment of efficacy of potential anticancer therapeutic targets. Furthermore, the organotypic assay described is highly amenable to customisation using different cell types under diverse experimental conditions.METHODS AND RESULTSHere, we describe a modified 96-well organotypic assay, the "Mini-Organo," which can be easily completed within 5 days. We demonstrate its application in a wide range of mouse and human cancer biology approaches including evaluation of stromal cell 3D ECM remodelling, 3D cancer cell invasion, and the assessment of efficacy of potential anticancer therapeutic targets. Furthermore, the organotypic assay described is highly amenable to customisation using different cell types under diverse experimental conditions.The Mini-Organo high-throughput 3D organotypic assay allows the rapid screening of potential cancer therapeutics in human and mouse models in a time-efficient manner.CONCLUSIONSThe Mini-Organo high-throughput 3D organotypic assay allows the rapid screening of potential cancer therapeutics in human and mouse models in a time-efficient manner.
The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine-tuned control of a range of microenvironmental elements independently within an isolated setting. The recent expansion in the use of three-dimensional (3D) in vitro assays has created a number of representative tools to study cell behaviour in a more physiologically 3D relevant microenvironment. Complex 3D in vitro models that can recapitulate human tissue biology are essential for understanding the pathophysiology of disease. The development of the 3D coculture collagen contraction and invasion assay, the "organotypic assay," has been widely adopted as a powerful approach to bridge the gap between standard two-dimensional tissue culture and in vivo mouse models. In the cancer setting, these assays can then be used to dissect how stromal cells, such as cancer-associated fibroblasts (CAFs), drive extracellular matrix (ECM) remodelling to alter cancer cell behaviour and response to intervention. However, to date, many of the published organotypic protocols are low-throughput, time-consuming (up to several weeks), and work-intensive with often limited scalability. Our aim was to develop a fast, high-throughput, scalable 3D organotypic assay for use in oncology screening and drug development. Here, we describe a modified 96-well organotypic assay, the "Mini-Organo," which can be easily completed within 5 days. We demonstrate its application in a wide range of mouse and human cancer biology approaches including evaluation of stromal cell 3D ECM remodelling, 3D cancer cell invasion, and the assessment of efficacy of potential anticancer therapeutic targets. Furthermore, the organotypic assay described is highly amenable to customisation using different cell types under diverse experimental conditions. The Mini-Organo high-throughput 3D organotypic assay allows the rapid screening of potential cancer therapeutics in human and mouse models in a time-efficient manner.
Background The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine‐tuned control of a range of microenvironmental elements independently within an isolated setting. The recent expansion in the use of three‐dimensional (3D) in vitro assays has created a number of representative tools to study cell behaviour in a more physiologically 3D relevant microenvironment. Complex 3D in vitro models that can recapitulate human tissue biology are essential for understanding the pathophysiology of disease. Aim The development of the 3D coculture collagen contraction and invasion assay, the “organotypic assay,” has been widely adopted as a powerful approach to bridge the gap between standard two‐dimensional tissue culture and in vivo mouse models. In the cancer setting, these assays can then be used to dissect how stromal cells, such as cancer‐associated fibroblasts (CAFs), drive extracellular matrix (ECM) remodelling to alter cancer cell behaviour and response to intervention. However, to date, many of the published organotypic protocols are low‐throughput, time‐consuming (up to several weeks), and work‐intensive with often limited scalability. Our aim was to develop a fast, high‐throughput, scalable 3D organotypic assay for use in oncology screening and drug development. Methods and results Here, we describe a modified 96‐well organotypic assay, the “Mini‐Organo,” which can be easily completed within 5 days. We demonstrate its application in a wide range of mouse and human cancer biology approaches including evaluation of stromal cell 3D ECM remodelling, 3D cancer cell invasion, and the assessment of efficacy of potential anticancer therapeutic targets. Furthermore, the organotypic assay described is highly amenable to customisation using different cell types under diverse experimental conditions. Conclusions The Mini‐Organo high‐throughput 3D organotypic assay allows the rapid screening of potential cancer therapeutics in human and mouse models in a time‐efficient manner.
Background: The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine-tuned control of a range of microenvironmental elements independently within an isolated setting. The recent expansion in the use of three-dimensional (3D) in vitro assays has created a number of representative tools to study cell behaviour in a more physiologically 3D relevant microenvironment. Complex 3D in vitro models that can recapitulate human tissue biology are essential for understanding the pathophysiology of disease. Aim: The development of the 3D coculture collagen contraction and invasion assay, the "organotypic assay," has been widely adopted as a powerful approach to bridge the gap between standard two-dimensional tissue culture and in vivo mouse models. In the cancer setting, these assays can then be used to dissect how stromal cells, such as cancer-associated fibroblasts (CAFs), drive extracellular matrix (ECM) remodelling to alter cancer cell behaviour and response to intervention. However, to date, many of the published organotypic protocols are low-throughput, time-consuming (up to several weeks), and work-intensive with often limited scalability. Our aim was to develop a fast, high-throughput, scalable 3D organotypic assay for use in oncology screening and drug development. Methods and results Here, we describe a modified 96-well organotypic assay, the "Mini-Organo," which can be easily completed within 5 days. We demonstrate its application in a wide range of mouse and human cancer biology approaches including evaluation of stromal cell 3D ECM remodelling, 3D cancer cell invasion, and the assessment of efficacy of potential anticancer therapeutic targets. Furthermore, the organotypic assay described is highly amenable to customisation using different cell types under diverse experimental conditions. Conclusions: The Mini-Organo high-throughput 3D organotypic assay allows the rapid screening of potential cancer therapeutics in human and mouse models in a time-efficient manner.
Author Grant, Rhiannon D.
Tayao, Michael
Zaratzian, Anaiis
Chitty, Jessica L.
Cupello, Carmen Rodriguez
Da Silva, Andrew M.
Vennin, Claire
Cox, Thomas R.
Yam, Michelle
Madsen, Chris D.
Filipe, Elysse C.
Major, Gretel
Timpson, Paul
Skhinas, Joanna N.
Wang, Shan
Papanicolaou, Michael
AuthorAffiliation 2 St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney NSW Australia
4 School of Life Sciences University of Technology Sydney Sydney Australia
5 Molecular Pathology Oncode Institute, The Netherlands Cancer Institute Amsterdam The Netherlands
1 The Garvan Institute of Medical Research and the Kinghorn Cancer Centre Sydney NSW Australia
3 Department of Laboratory Medicine, Division of Translational Cancer Research Lund University Lund Sweden
AuthorAffiliation_xml – name: 3 Department of Laboratory Medicine, Division of Translational Cancer Research Lund University Lund Sweden
– name: 5 Molecular Pathology Oncode Institute, The Netherlands Cancer Institute Amsterdam The Netherlands
– name: 1 The Garvan Institute of Medical Research and the Kinghorn Cancer Centre Sydney NSW Australia
– name: 4 School of Life Sciences University of Technology Sydney Sydney Australia
– name: 2 St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney NSW Australia
Author_xml – sequence: 1
  givenname: Jessica L.
  orcidid: 0000-0003-1776-1618
  surname: Chitty
  fullname: Chitty, Jessica L.
  organization: St Vincent's Clinical School, Faculty of Medicine, UNSW
– sequence: 2
  givenname: Joanna N.
  orcidid: 0000-0001-8797-8228
  surname: Skhinas
  fullname: Skhinas, Joanna N.
– sequence: 3
  givenname: Elysse C.
  orcidid: 0000-0003-1956-0852
  surname: Filipe
  fullname: Filipe, Elysse C.
  organization: St Vincent's Clinical School, Faculty of Medicine, UNSW
– sequence: 4
  givenname: Shan
  surname: Wang
  fullname: Wang, Shan
  organization: Lund University
– sequence: 5
  givenname: Carmen Rodriguez
  orcidid: 0000-0003-3611-2496
  surname: Cupello
  fullname: Cupello, Carmen Rodriguez
  organization: Lund University
– sequence: 6
  givenname: Rhiannon D.
  surname: Grant
  fullname: Grant, Rhiannon D.
– sequence: 7
  givenname: Michelle
  surname: Yam
  fullname: Yam, Michelle
– sequence: 8
  givenname: Michael
  surname: Papanicolaou
  fullname: Papanicolaou, Michael
  organization: University of Technology Sydney
– sequence: 9
  givenname: Gretel
  surname: Major
  fullname: Major, Gretel
– sequence: 10
  givenname: Anaiis
  surname: Zaratzian
  fullname: Zaratzian, Anaiis
– sequence: 11
  givenname: Andrew M.
  surname: Da Silva
  fullname: Da Silva, Andrew M.
– sequence: 12
  givenname: Michael
  surname: Tayao
  fullname: Tayao, Michael
– sequence: 13
  givenname: Claire
  orcidid: 0000-0001-9088-4177
  surname: Vennin
  fullname: Vennin, Claire
  organization: Oncode Institute, The Netherlands Cancer Institute
– sequence: 14
  givenname: Paul
  orcidid: 0000-0002-5514-7080
  surname: Timpson
  fullname: Timpson, Paul
  organization: St Vincent's Clinical School, Faculty of Medicine, UNSW
– sequence: 15
  givenname: Chris D.
  orcidid: 0000-0001-6838-2103
  surname: Madsen
  fullname: Madsen, Chris D.
  email: chris.madsen@med.lu.se
  organization: Lund University
– sequence: 16
  givenname: Thomas R.
  orcidid: 0000-0001-9294-1745
  surname: Cox
  fullname: Cox, Thomas R.
  email: t.cox@garvan.org.au
  organization: St Vincent's Clinical School, Faculty of Medicine, UNSW
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32671954$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1u1DAUhSNUREvpghdAXtLFtLbj_LFAqoZfqVAJlfWVY98kRh472Emr2fEIPCNPguenqEWwsuX7nXN05fM0O3DeYZY9Z_SMUcrPlQv8jHHaPMqOeFHlizoX9cG9-2F2EuM3Simry5w3-ZPsMOdlxZpCHGW31wOST8aZXz9-XoVeOv-KXJAgR6PJYPohPU9D8HM_jPNE8jdEeTXbaQ5I_Baf1qNRRMYo16TzgXinvPX9mkQVEJ1xPZFOEx3mnmi8QevHFbrpWfa4kzbiyf48zr6-e3u9_LC4vHr_cXlxuVAFLZpF2zSctVh1lcZKKSqERsawbNuuKPOElJWkmjGqao552cq8FpWWsqC5VE3d5ceZ3PnGWxznFsZgVjKswUsDow-TtBAwogxqADtDREiUNUpOxrsIHdMlk6oF1rUaBCtaaBhrQVSoNNOyplynjNe7jCRdoVZpvZB8H0Q9mDgzQO9voGoEE0WTDF7uDYL_PmOcYGWiQmulQz9H4IILIaqyqBP64n7Wn5C7H03A-Q5QwccYsANlpu02KdpYYBQ2tYFNbWBTm6Q4_UtxZ_ovdu9-ayyu_w_C8vMXvlX8BtKB2Co
CitedBy_id crossref_primary_10_1002_advs_202307963
crossref_primary_10_3389_fdgth_2021_704584
crossref_primary_10_1038_s41563_021_01087_z
crossref_primary_10_1002_btm2_10741
crossref_primary_10_1038_s41467_022_32255_7
crossref_primary_10_3390_ijms22031195
crossref_primary_10_1038_s43018_023_00614_y
Cites_doi 10.1038/nm.4352
10.4155/fmc-2016-0025
10.1016/j.tiv.2018.05.006
10.1101/sqb.2016.81.030817
10.1046/j.1432-0436.2002.700907.x
10.15252/embr.201540107
10.1186/s13058-015-0592-1
10.1016/j.ceb.2010.08.015
10.1038/nprot.2006.430
10.1038/ki.1991.310
10.1038/ncb2756
10.1038/s41568-018-0006-7
10.1158/1078-0432.CCR-13-1059
10.1083/jcb.201210152
10.1529/biophysj.106.097998
10.1038/nrc1877
10.1038/s41467-018-05220-6
10.1126/scitranslmed.aai8504
10.3389/fphar.2014.00118
10.1039/c5ib00040h
10.1038/onc.2017.49
10.1038/ncb1658
10.1016/j.trecan.2016.04.005
10.1038/nmeth.2019
10.1083/jcb.201704053
10.1177/1087057104265040
10.1158/1541-7786.MCR-15-0307
10.1242/dmm.029447
10.1093/carcin/bgu108
10.1016/j.pan.2015.02.004
10.1038/ncb3478
10.1007/978-1-4939-7021-6_15
10.1016/j.trecan.2016.05.004
10.1016/j.ccr.2014.05.026
10.1016/j.ceb.2016.05.002
10.1172/JCI115821
10.1053/j.gastro.2017.11.280
10.1038/nrc3319
10.2478/tumor-2012-0002
10.1016/0165-022X(95)00046-T
10.1172/JCI116631
10.1016/j.cell.2017.11.010
10.1136/gutjnl-2017-315144
10.1111/bph.14195
10.1038/nrm3459
10.1007/BF01002772
10.1038/s41598-017-17204-5
10.1016/j.ccr.2009.12.041
10.1038/nrc.2016.73
10.1016/j.ccr.2005.04.023
10.1369/0022155414545787
10.1016/j.biomaterials.2010.03.039
10.1111/iep.12269
10.1039/C0AN00609B
10.1002/jbio.200910062
10.1016/j.tcb.2016.08.008
10.1038/s41598-018-31138-6
10.1038/sj.bjc.6605469
10.1056/NEJM200005043421807
10.12688/f1000research.15064.2
10.1016/j.tibtech.2015.01.004
10.1038/nrm3873
10.1016/j.semcdb.2009.10.002
10.4155/fmc.11.169
10.1073/pnas.0908428107
10.1111/j.1365-2133.1995.tb02619.x
10.1091/mbc.e17-05-0320
10.1126/scitranslmed.aau7377
10.1016/j.tcb.2016.08.007
10.1242/dmm.004077
10.1038/s41598-017-17177-5
ContentType Journal Article
Copyright 2019 The Authors Cancer Reports Published by Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 The Authors Cancer Reports Published by Wiley Periodicals, Inc.
CorporateAuthor LUCC: Lunds universitets cancercentrum
Avdelningen för translationell cancerforskning
Övriga starka forskningsmiljöer
Division of Translational Cancer Research
Profile areas and other strong research environments
Lunds universitet
Department of Laboratory Medicine
Lund University
Institutionen för laboratoriemedicin
Other Strong Research Environments
Faculty of Medicine
LUCC: Lund University Cancer Centre
Medicinska fakulteten
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Övriga starka forskningsmiljöer
– name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Other Strong Research Environments
– name: LUCC: Lund University Cancer Centre
– name: Department of Laboratory Medicine
– name: Division of Translational Cancer Research
– name: Lunds universitet
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Avdelningen för translationell cancerforskning
– name: Institutionen för laboratoriemedicin
– name: Profile areas and other strong research environments
– name: LUCC: Lunds universitets cancercentrum
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1002/cnr2.1209
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Chitty et al
EISSN 2573-8348
EndPage n/a
ExternalDocumentID oai_portal_research_lu_se_publications_f1d61acb_1fbd_415b_911b_47ecd1da802d
PMC7941459
32671954
10_1002_cnr2_1209
CNR21209
Genre caseStudy
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Åke Wiberg foundation
  funderid: M17‐0235
– fundername: BioCARE
– fundername: National Health and Medical Research Council (NHMRC)
  funderid: 1129766; 1140125; 1158590
– fundername: Susan G Komen
  funderid: 1748329
– fundername: Swedish Research Council
  funderid: 2017‐03389
– fundername: Cancerfonden
  funderid: CAN 2016/783
– fundername: Human Frontier Science Program
  funderid: CV
– fundername: Avner Pancreatic Cancer Foundation
  funderid: R3‐PT
– fundername: Crafoord Foundation
  funderid: 20171049
– fundername: Cancer Institute NSW
  funderid: 171105
– fundername: ;
  grantid: N91/15
– fundername: ;
  grantid: 171105
– fundername: ;
  grantid: 20171049
– fundername: ;
  grantid: RG 19‐09
– fundername: ;
  grantid: CV
– fundername: ;
  grantid: 2017‐03389
– fundername: ;
  grantid: 1129766; 1140125; 1158590
– fundername: ;
  grantid: 1748329
– fundername: ;
  grantid: M17‐0235
GroupedDBID 0R~
1OC
24P
53G
7X7
88E
8FI
8FJ
AAMMB
AAZKR
ABCUV
ABUWG
ACCMX
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADPDF
ADXAS
ADZMN
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
AMYDB
AVUZU
BENPR
BFHJK
CCPQU
DCZOG
EBS
EJD
FYUFA
GROUPED_DOAJ
HMCUK
IAO
IHR
INH
ITC
LATKE
LEEKS
LUTES
LYRES
M1P
M~E
O9-
OK1
OVD
OVEED
P2W
PHGZM
PHGZT
PIMPY
PSQYO
ROL
RPM
SUPJJ
TEORI
UKHRP
ZZTAW
AAYXX
AFFHD
ALUQN
CITATION
PJZUB
PPXIY
WIN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c5059-b9921be7f7de7cc044de11e6bbf56350567a0d110c82e36ba3847daa503ac98f3
IEDL.DBID 24P
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588169600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2573-8348
IngestDate Sat Nov 01 14:37:39 EDT 2025
Tue Nov 04 01:47:22 EST 2025
Thu Sep 04 18:34:38 EDT 2025
Mon Jul 21 06:01:44 EDT 2025
Sat Nov 29 06:40:31 EST 2025
Tue Nov 18 21:02:50 EST 2025
Sun Jul 06 04:45:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords cancer-associated fibroblast
3D model
coculture
organotypic
drug screening
extracellular matrix
Language English
License Attribution-NonCommercial
2019 The Authors Cancer Reports Published by Wiley Periodicals, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5059-b9921be7f7de7cc044de11e6bbf56350567a0d110c82e36ba3847daa503ac98f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The copyright line for this article was changed on 2 August 2019 after original online publication.
ORCID 0000-0001-6838-2103
0000-0003-1956-0852
0000-0002-5514-7080
0000-0003-1776-1618
0000-0003-3611-2496
0000-0001-8797-8228
0000-0001-9088-4177
0000-0001-9294-1745
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnr2.1209
PMID 32671954
PQID 2424447658
PQPubID 23479
PageCount 15
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_f1d61acb_1fbd_415b_911b_47ecd1da802d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7941459
proquest_miscellaneous_2424447658
pubmed_primary_32671954
crossref_citationtrail_10_1002_cnr2_1209
crossref_primary_10_1002_cnr2_1209
wiley_primary_10_1002_cnr2_1209_CNR21209
PublicationCentury 2000
PublicationDate February 2020
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Cancer reports
PublicationTitleAlternate Cancer Rep (Hoboken)
PublicationYear 2020
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2017; 7
2005; 294
2010; 107
2010; 17
2015; 33
2004; 9
2010; 102
2014; 25
2013; 201
2011; 13
1995; 133
2012; 13
2014; 62
2012; 12
1996; 32
2017; 9
2014; 20
2018; 7
2010; 22
1992; 90
2010; 21
2018; 9
2018; 176
2018; 8
2014; 5
2013; 15
2018; 172
2017; 36
1991; 40
2016; 42
2014; 15
2007; 9
2016; 81
2010; 3
2011; 136
2015; 15
2010; 31
2015; 17
2015; 16
2017; 28
2017; 23
2007; 92
2006; 6
2006; 1
2011; 4
2018; 67
2016; 16
1979; 11
2015; 7
2016; 14
2017; 216
2018; 18
2018; 154
2016; 2
2012; 1
2017; 1612
1993; 92
2005; 7
2014; 35
2002; 70
2017; 19
2018; 51
2000; 342
2018; 11
2018; 99
2018; 10
2012; 4
2016; 26
2016; 8
2012; 9
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
Cukierman E (e_1_2_10_66_1) 2005; 294
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
Timpson P (e_1_2_10_43_1) 2011; 13
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 16
  start-page: 582
  issue: 9
  year: 2016
  end-page: 598
  article-title: The biology and function of fibroblasts in cancer
  publication-title: Nat Rev Cancer
– volume: 9
  start-page: 1392
  issue: 12
  year: 2007
  end-page: 1400
  article-title: Fibroblast‐led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells
  publication-title: Nat Cell Biol
– volume: 9
  start-page: 2897
  issue: 1
  year: 2018
  article-title: Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer
  publication-title: Nat Commun
– volume: 2
  start-page: 279
  issue: 6
  year: 2016
  end-page: 282
  article-title: Fibrosis and cancer: partners in crime or opposing forces?
  publication-title: Trends Cancer
– volume: 11
  start-page: 447
  issue: 4
  year: 1979
  end-page: 455
  article-title: Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections
  publication-title: Histochem J
– volume: 1
  start-page: 2753
  issue: 6
  year: 2006
  end-page: 2758
  article-title: Preparation of ready‐to‐use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications
  publication-title: Nat Protoc
– volume: 92
  start-page: 2212
  issue: 6
  year: 2007
  end-page: 2222
  article-title: Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy
  publication-title: Biophys J
– volume: 7
  start-page: 469
  issue: 5
  year: 2005
  end-page: 483
  article-title: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice
  publication-title: Cancer Cell
– volume: 294
  start-page: 79
  year: 2005
  end-page: 93
  article-title: Cell migration analyses within fibroblast‐derived 3‐D matrices
  publication-title: Methods Mol Biol
– volume: 21
  start-page: 19
  issue: 1
  year: 2010
  end-page: 25
  article-title: Carcinoma‐associated fibroblasts are a rate‐limiting determinant for tumour progression
  publication-title: Semin Cell Dev Biol
– volume: 67
  start-page: 2142
  issue: 12
  year: 2018
  end-page: 2155
  article-title: Tailored first‐line and second‐line CDK4‐targeting treatment combinations in mouse models of pancreatic cancer
  publication-title: Gut
– volume: 201
  start-page: 1069
  issue: 7
  year: 2013
  end-page: 1084
  article-title: Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force
  publication-title: J Cell Biol
– volume: 23
  start-page: 890
  issue: 7
  year: 2017
  end-page: 898
  article-title: ISDoT: in situ decellularization of tissues for high‐resolution imaging and proteomic analysis of native extracellular matrix
  publication-title: Nat Med
– volume: 51
  start-page: 83
  year: 2018
  end-page: 94
  article-title: High‐throughput toxicity testing of chemicals and mixtures in organotypic multi‐cellular cultures of primary human hepatic cells
  publication-title: Toxicol In Vitro
– volume: 15
  start-page: 647
  issue: 10
  year: 2014
  end-page: 664
  article-title: Three‐dimensional organotypic culture: experimental models of mammalian biology and disease
  publication-title: Nat Rev Mol Cell Biol
– volume: 9
  start-page: 273
  issue: 4
  year: 2004
  end-page: 285
  article-title: The use of 3‐D cultures for high‐throughput screening: the multicellular spheroid model
  publication-title: J Biomol Screen
– volume: 133
  start-page: 223
  issue: 2
  year: 1995
  end-page: 230
  article-title: Effects of retinoids on glycosaminoglycan synthesis by human skin fibroblasts grown as monolayers and within contracted collagen lattices
  publication-title: Br J Dermatol
– volume: 90
  start-page: 1
  issue: 1
  year: 1992
  end-page: 7
  article-title: Transforming growth factor‐beta in disease: the dark side of tissue repair
  publication-title: J Clin Invest
– volume: 26
  start-page: 794
  year: 2016
  end-page: 795
  article-title: Ingber: engineering the culture microenvironment
  publication-title: Trends Cell Biol
– volume: 17
  start-page: 79
  issue: 1
  year: 2015
  article-title: High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium
  publication-title: Breast Cancer Res
– volume: 42
  start-page: 80
  year: 2016
  end-page: 93
  article-title: Stromal dynamic reciprocity in cancer: intricacies of fibroblastic‐ECM interactions
  publication-title: Curr Opin Cell Biol
– volume: 18
  start-page: 359
  issue: 6
  year: 2018
  end-page: 376
  article-title: A history of exploring cancer in context
  publication-title: Nat Rev Cancer
– volume: 107
  start-page: 246
  issue: 1
  year: 2010
  end-page: 251
  article-title: Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer
  publication-title: Proc Natl Acad Sci U S A
– volume: 70
  start-page: 537
  issue: 9‐10
  year: 2002
  end-page: 546
  article-title: The organizing principle: microenvironmental influences in the normal and malignant breast
  publication-title: Differentiation
– volume: 102
  start-page: 392
  issue: 2
  year: 2010
  end-page: 402
  article-title: A chemical biology screen reveals a role for Rab21‐mediated control of actomyosin contractility in fibroblast‐driven cancer invasion
  publication-title: Br J Cancer
– volume: 342
  start-page: 1350
  issue: 18
  year: 2000
  end-page: 1358
  article-title: Role of transforming growth factor beta in human disease
  publication-title: N Engl J Med
– volume: 40
  start-page: 1020
  issue: 6
  year: 1991
  end-page: 1031
  article-title: Pathogenesis of interstitial fibrosis in chronic purine aminonucleoside nephrosis
  publication-title: Kidney Int
– volume: 2
  start-page: 277
  issue: 6
  year: 2016
  end-page: 279
  article-title: Cancer‐associated fibroblasts: perspectives in cancer therapy
  publication-title: Trends Cancer
– volume: 14
  start-page: 287
  issue: 3
  year: 2016
  end-page: 295
  article-title: Cancer‐associated fibroblasts induce a collagen cross‐link switch in tumor stroma
  publication-title: Mol Cancer Res
– volume: 7
  start-page: 1120
  issue: 10
  year: 2015
  end-page: 1134
  article-title: Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration
  publication-title: Integr Biol (Camb)
– volume: 7
  start-page: 16887
  issue: 1
  year: 2017
  article-title: Three‐dimensional organotypic matrices from alternative collagen sources as pre‐clinical models for cell biology
  publication-title: Sci Rep
– volume: 4
  start-page: 87
  issue: 1
  year: 2012
  end-page: 105
  article-title: Advancing cancer drug discovery towards more agile development of targeted combination therapies
  publication-title: Future Med Chem
– volume: 7
  start-page: pii: F1000 Faculty Rev‐1169
  year: 2018
  article-title: Recent advances in understanding the complexities of metastasis. [version 2; peer review: 3 approved]
  publication-title: F1000Res
– volume: 172
  start-page: 373
  issue: 1‐2
  year: 2018
  end-page: 386
  article-title: A living biobank of breast cancer organoids captures disease heterogeneity
  publication-title: Cell
– volume: 136
  start-page: 473
  issue: 3
  year: 2011
  end-page: 478
  article-title: High‐throughput 3D spheroid culture and drug testing using a 384 hanging drop array
  publication-title: Analyst
– volume: 176
  start-page: 82
  year: 2018
  end-page: 92
  article-title: The extracellular matrix as a key regulator of intracellular signalling networks
  publication-title: Br J Pharmacol
– volume: 33
  start-page: 230
  issue: 4
  year: 2015
  end-page: 236
  article-title: Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer
  publication-title: Trends Biotechnol
– volume: 216
  start-page: 3799
  issue: 11
  year: 2017
  end-page: 3816
  article-title: Cancer‐associated fibroblasts promote directional cancer cell migration by aligning fibronectin
  publication-title: J Cell Biol
– volume: 28
  start-page: 1815
  issue: 14
  year: 2017
  end-page: 1818
  article-title: Cell and tissue mechanics: the new cell biology frontier
  publication-title: Mol Biol Cell
– volume: 16
  start-page: 1394
  issue: 10
  year: 2015
  end-page: 1408
  article-title: Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis
  publication-title: EMBO Rep
– volume: 15
  start-page: 200
  issue: 2
  year: 2015
  end-page: 201
  article-title: Imaging fibrosis in pancreatic cancer using second harmonic generation
  publication-title: Pancreatology
– volume: 1612
  start-page: 199
  year: 2017
  end-page: 212
  article-title: Analysis of breast cancer cell invasion using an organotypic culture system
  publication-title: Methods Mol Biol
– volume: 22
  start-page: 697
  issue: 5
  year: 2010
  end-page: 706
  article-title: Dynamic interplay between the collagen scaffold and tumor evolution
  publication-title: Curr Opin Cell Biol
– volume: 26
  start-page: 798
  issue: 11
  year: 2016
  end-page: 800
  article-title: 3D biomimetic cultures: the next platform for cell biology
  publication-title: Trends Cell Biol
– volume: 15
  start-page: 637
  issue: 6
  year: 2013
  end-page: 646
  article-title: Mechanotransduction and YAP‐dependent matrix remodelling is required for the generation and maintenance of cancer‐associated fibroblasts
  publication-title: Nat Cell Biol
– volume: 3
  start-page: 34
  issue: 1‐2
  year: 2010
  end-page: 43
  article-title: Scoring of collagen organization in healthy and diseased human dermis by multiphoton microscopy
  publication-title: J Biophotonics
– volume: 35
  start-page: 1671
  issue: 8
  year: 2014
  end-page: 1679
  article-title: Three‐dimensional cancer models mimic cell‐matrix interactions in the tumour microenvironment
  publication-title: Carcinogenesis
– volume: 32
  start-page: 33
  issue: 1
  year: 1996
  end-page: 43
  article-title: Modification of Lowry's method for collagen concentration measurement
  publication-title: J Biochem Biophys Methods
– volume: 8
  start-page: 13039
  year: 2018
  article-title: Development of a novel 3D tumor‐tissue invasion model for high‐throughput, High‐Content Phenotypic Drug Screening
  publication-title: Sci Rep
– volume: 13
  issue: 56
  year: 2011
  article-title: Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3‐dimensional context
  publication-title: J Vis Exp
– volume: 7
  start-page: 16878
  issue: 1
  year: 2017
  article-title: QuPath: open source software for digital pathology image analysis
  publication-title: Sci Rep
– volume: 11
  start-page: dmm029447
  issue: 4
  year: 2018
  article-title: A peek into cancer‐associated fibroblasts: origins, functions and translational impact
  publication-title: Dis Model Mech
– volume: 1
  start-page: 14
  year: 2012
  end-page: 18
  article-title: Network biology and the 3‐dimensional tumor microenvironment: personalizing medicine for the future: tumor microenvironment and therapy
  publication-title: Tumor Microenviron Ther
– volume: 5
  start-page: 118
  year: 2014
  article-title: Quantitative phenotypic and pathway profiling guides rational drug combination strategies
  publication-title: Front Pharmacol
– volume: 10
  start-page: eaau7377
  issue: 451
  year: 2018
  article-title: Patient‐derived organoids: are PDOs the new PDX?
  publication-title: Sci Transl Med
– volume: 8
  start-page: 1331
  issue: 11
  year: 2016
  end-page: 1347
  article-title: Next‐generation phenotypic screening
  publication-title: Future Med Chem
– volume: 31
  start-page: 5678
  issue: 21
  year: 2010
  end-page: 5688
  article-title: Pore size variable type I collagen gels and their interaction with glioma cells
  publication-title: Biomaterials
– volume: 12
  start-page: 540
  issue: 8
  year: 2012
  end-page: 552
  article-title: The rationale for targeting the LOX family in cancer
  publication-title: Nat Rev Cancer
– volume: 81
  start-page: 189
  year: 2016
  end-page: 205
  article-title: Physical and chemical gradients in the tumor microenvironment regulate tumor cell invasion, migration, and metastasis
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 20
  start-page: 3637
  issue: 14
  year: 2014
  end-page: 3643
  article-title: Molecular pathways: connecting fibrosis and solid tumor metastasis
  publication-title: Clin Cancer Res
– volume: 9
  start-page: eaai8504
  issue: 384
  year: 2017
  article-title: Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis
  publication-title: Sci Transl Med
– volume: 13
  start-page: 743
  issue: 11
  year: 2012
  end-page: 747
  article-title: New dimensions in cell migration
  publication-title: Nat Rev Mol Cell Biol
– volume: 99
  start-page: 58
  issue: 2
  year: 2018
  end-page: 76
  article-title: Charting the unexplored extracellular matrix in cancer
  publication-title: Int J Exp Pathol
– volume: 92
  start-page: 632
  issue: 2
  year: 1993
  end-page: 637
  article-title: Altered expression of small proteoglycans, collagen, and transforming growth factor‐beta 1 in developing bleomycin‐induced pulmonary fibrosis in rats
  publication-title: J Clin Invest
– volume: 25
  start-page: 711
  issue: 6
  year: 2014
  end-page: 712
  article-title: Pancreatic cancer stroma: friend or foe?
  publication-title: Cancer Cell
– volume: 19
  start-page: 224
  issue: 3
  year: 2017
  end-page: 237
  article-title: A mechanically active heterotypic E‐cadherin/N‐cadherin adhesion enables fibroblasts to drive cancer cell invasion
  publication-title: Nat Cell Biol
– volume: 4
  start-page: 165
  issue: 2
  year: 2011
  end-page: 178
  article-title: Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer
  publication-title: Dis Model Mech
– volume: 62
  start-page: 751
  issue: 10
  year: 2014
  end-page: 758
  article-title: Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues
  publication-title: J Histochem Cytochem
– volume: 6
  start-page: 392
  issue: 5
  year: 2006
  end-page: 401
  article-title: Fibroblasts in cancer
  publication-title: Nat Rev Cancer
– volume: 154
  start-page: 820
  issue: 4
  year: 2018
  end-page: 838
  article-title: Reshaping the tumor stroma for treatment of pancreatic cancer
  publication-title: Gastroenterology
– volume: 36
  start-page: 4434
  issue: 31
  year: 2017
  end-page: 4444
  article-title: Cancer‐associated fibroblasts induce cancer cell apoptosis that regulates invasion mode of tumours
  publication-title: Oncogene
– volume: 9
  start-page: 676
  issue: 7
  year: 2012
  end-page: 682
  article-title: Fiji: an open‐source platform for biological‐image analysis
  publication-title: Nat Methods
– volume: 17
  start-page: 135
  issue: 2
  year: 2010
  end-page: 147
  article-title: Cancer‐associated fibroblasts are activated in incipient neoplasia to orchestrate tumor‐promoting inflammation in an NF‐kappaB‐dependent manner
  publication-title: Cancer Cell
– ident: e_1_2_10_61_1
  doi: 10.1038/nm.4352
– ident: e_1_2_10_22_1
  doi: 10.4155/fmc-2016-0025
– ident: e_1_2_10_17_1
  doi: 10.1016/j.tiv.2018.05.006
– ident: e_1_2_10_29_1
  doi: 10.1101/sqb.2016.81.030817
– ident: e_1_2_10_31_1
  doi: 10.1046/j.1432-0436.2002.700907.x
– ident: e_1_2_10_52_1
  doi: 10.15252/embr.201540107
– ident: e_1_2_10_64_1
  doi: 10.1186/s13058-015-0592-1
– ident: e_1_2_10_32_1
  doi: 10.1016/j.ceb.2010.08.015
– ident: e_1_2_10_46_1
  doi: 10.1038/nprot.2006.430
– ident: e_1_2_10_73_1
  doi: 10.1038/ki.1991.310
– ident: e_1_2_10_51_1
  doi: 10.1038/ncb2756
– ident: e_1_2_10_27_1
  doi: 10.1038/s41568-018-0006-7
– ident: e_1_2_10_41_1
  doi: 10.1158/1078-0432.CCR-13-1059
– ident: e_1_2_10_54_1
  doi: 10.1083/jcb.201210152
– ident: e_1_2_10_56_1
  doi: 10.1529/biophysj.106.097998
– ident: e_1_2_10_70_1
  doi: 10.1038/nrc1877
– ident: e_1_2_10_62_1
  doi: 10.1038/s41467-018-05220-6
– ident: e_1_2_10_59_1
  doi: 10.1126/scitranslmed.aai8504
– ident: e_1_2_10_21_1
  doi: 10.3389/fphar.2014.00118
– ident: e_1_2_10_30_1
  doi: 10.1039/c5ib00040h
– ident: e_1_2_10_33_1
  doi: 10.1038/onc.2017.49
– ident: e_1_2_10_49_1
  doi: 10.1038/ncb1658
– volume: 13
  start-page: e3089
  issue: 56
  year: 2011
  ident: e_1_2_10_43_1
  article-title: Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3‐dimensional context
  publication-title: J Vis Exp
– ident: e_1_2_10_39_1
  doi: 10.1016/j.trecan.2016.04.005
– ident: e_1_2_10_68_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_10_35_1
  doi: 10.1083/jcb.201704053
– ident: e_1_2_10_18_1
  doi: 10.1177/1087057104265040
– ident: e_1_2_10_34_1
  doi: 10.1158/1541-7786.MCR-15-0307
– ident: e_1_2_10_3_1
  doi: 10.1242/dmm.029447
– ident: e_1_2_10_7_1
  doi: 10.1093/carcin/bgu108
– ident: e_1_2_10_63_1
  doi: 10.1016/j.pan.2015.02.004
– ident: e_1_2_10_36_1
  doi: 10.1038/ncb3478
– ident: e_1_2_10_45_1
  doi: 10.1007/978-1-4939-7021-6_15
– volume: 294
  start-page: 79
  year: 2005
  ident: e_1_2_10_66_1
  article-title: Cell migration analyses within fibroblast‐derived 3‐D matrices
  publication-title: Methods Mol Biol
– ident: e_1_2_10_26_1
  doi: 10.1016/j.trecan.2016.05.004
– ident: e_1_2_10_24_1
  doi: 10.1016/j.ccr.2014.05.026
– ident: e_1_2_10_2_1
  doi: 10.1016/j.ceb.2016.05.002
– ident: e_1_2_10_72_1
  doi: 10.1172/JCI115821
– ident: e_1_2_10_23_1
  doi: 10.1053/j.gastro.2017.11.280
– ident: e_1_2_10_69_1
  doi: 10.1038/nrc3319
– ident: e_1_2_10_8_1
  doi: 10.2478/tumor-2012-0002
– ident: e_1_2_10_53_1
  doi: 10.1016/0165-022X(95)00046-T
– ident: e_1_2_10_74_1
  doi: 10.1172/JCI116631
– ident: e_1_2_10_12_1
  doi: 10.1016/j.cell.2017.11.010
– ident: e_1_2_10_60_1
  doi: 10.1136/gutjnl-2017-315144
– ident: e_1_2_10_9_1
  doi: 10.1111/bph.14195
– ident: e_1_2_10_10_1
  doi: 10.1038/nrm3459
– ident: e_1_2_10_58_1
  doi: 10.1007/BF01002772
– ident: e_1_2_10_67_1
  doi: 10.1038/s41598-017-17204-5
– ident: e_1_2_10_37_1
  doi: 10.1016/j.ccr.2009.12.041
– ident: e_1_2_10_38_1
  doi: 10.1038/nrc.2016.73
– ident: e_1_2_10_47_1
  doi: 10.1016/j.ccr.2005.04.023
– ident: e_1_2_10_57_1
  doi: 10.1369/0022155414545787
– ident: e_1_2_10_55_1
  doi: 10.1016/j.biomaterials.2010.03.039
– ident: e_1_2_10_4_1
  doi: 10.1111/iep.12269
– ident: e_1_2_10_19_1
  doi: 10.1039/C0AN00609B
– ident: e_1_2_10_65_1
  doi: 10.1002/jbio.200910062
– ident: e_1_2_10_15_1
  doi: 10.1016/j.tcb.2016.08.008
– ident: e_1_2_10_16_1
  doi: 10.1038/s41598-018-31138-6
– ident: e_1_2_10_50_1
  doi: 10.1038/sj.bjc.6605469
– ident: e_1_2_10_71_1
  doi: 10.1056/NEJM200005043421807
– ident: e_1_2_10_5_1
  doi: 10.12688/f1000research.15064.2
– ident: e_1_2_10_25_1
  doi: 10.1016/j.tibtech.2015.01.004
– ident: e_1_2_10_6_1
  doi: 10.1038/nrm3873
– ident: e_1_2_10_40_1
  doi: 10.1016/j.semcdb.2009.10.002
– ident: e_1_2_10_20_1
  doi: 10.4155/fmc.11.169
– ident: e_1_2_10_48_1
  doi: 10.1073/pnas.0908428107
– ident: e_1_2_10_44_1
  doi: 10.1111/j.1365-2133.1995.tb02619.x
– ident: e_1_2_10_28_1
  doi: 10.1091/mbc.e17-05-0320
– ident: e_1_2_10_13_1
  doi: 10.1126/scitranslmed.aau7377
– ident: e_1_2_10_14_1
  doi: 10.1016/j.tcb.2016.08.007
– ident: e_1_2_10_42_1
  doi: 10.1242/dmm.004077
– ident: e_1_2_10_11_1
  doi: 10.1038/s41598-017-17177-5
SSID ssj0001863293
Score 2.1704266
Snippet Background The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal...
The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease...
Background: The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1209
SubjectTerms 3D model
Animals
Basic Medicine
Cancer-Associated Fibroblasts - physiology
cancer‐associated fibroblast
Cell and Molecular Biology
Cell- och molekylärbiologi
coculture
Coculture Techniques - methods
Drug Development - methods
drug screening
Drug Screening Assays, Antitumor - methods
extracellular matrix
High-Throughput Screening Assays
Humans
Medical and Health Sciences
Medicin och hälsovetenskap
Medicinska och farmaceutiska grundvetenskaper
Method Report
Mice
Neoplasm Invasiveness
organotypic
Rats
Title The Mini‐Organo: A rapid high‐throughput 3D coculture organotypic assay for oncology screening and drug development
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnr2.1209
https://www.ncbi.nlm.nih.gov/pubmed/32671954
https://www.proquest.com/docview/2424447658
https://pubmed.ncbi.nlm.nih.gov/PMC7941459
Volume 3
WOSCitedRecordID wos000588169600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2573-8348
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001863293
  issn: 2573-8348
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley - Free Content
  customDbUrl:
  eissn: 2573-8348
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001863293
  issn: 2573-8348
  databaseCode: WIN
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVKYcGGh3gNLxnEgk1obCexA6uqtIJFRxUCMWJj-RUaqUqizKTVbBCfwDfyJVw7mQxRQUJiY0WJkyj2ub7nOva5CL3gNKU25y6KqYUABQKGKOcpjfwqNgcMPU-MDckm-HwuFov8ZAe92eyF6fUhxgk3bxlhvPYGrvRybysaaqqWvvI7P6-gq4Qw7iFNk5PtBIvIGA2iu4BKFgmWiI2yUEz3xrun_ugSyby8VnJQFJ2S2eCNjm7-13fcQjcGEor3e9TcRjuuuoMuADH4uKzKn99_hB2a9Wu8j1vVlBZ7UWM4PST1aboVZm8xDKVBtsPhkBqqXq2b0mAg42qNgQrjugqK2GsMIxNEy-Ajsaostm33FdvtWqW76NPR4ceDd9GQliEyQJfySOc5JdrxglvHjYmTxDpCXKZ1kQJ9AUbFVWyBVhhBHcu0YuABrVJpzJTJRcHuod2qrtwDhCFW0SmLnQA8J87wPBWcaRarrEhpLPIZernpHGkGzXKfOuNM9mrLVPrWk771Zuj5WLXphTr-VOnZpoclmJH_N6IqV3dL6XfJJAkHPjZD9_seHx8DDJd7YbwZ4hMsjBW8RPf0SlWeBqluwDpJUnjvlx4101tCgCUHVadTedbJpZPNb9O1siA2I8poSQptJZAtLcE7aZlwZyyxSoCJQSMFfP39s-XB_AP1Bw__veojdJ36qYWwQP0x2l21nXuCrpnzVblsnwZTg5IvBJTH3w6h_Px-_gvsHjSq
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKQYILD_FangZx4BKa2E7sIC5VoSqiXVWoSBUXy6_QSFUSZTegvfET-I38EsZONktUkJC4RYmdyPaM55vJ-BuEXnCSEptzF8XEgoMCDkOU85REPovNAULPmbGh2ASfz8XpaX68hd6sz8L0_BBjwM1rRtivvYL7gPTOhjXUVC155Y9-XkKXGVgZX7-AsONNhEVklATWXRBLGgnKxJpaKCY7Y--pQbqAMi8mSw6UolM0G8zR_o3_G8hNdH2AoXi3l5tbaMtVt9E3kBl8VFblz-8_whnN-jXexa1qSos9rTHcHsr6NN0S07cYNtNA3OFwKA5VL1dNaTDAcbXCAIZxXQVO7BWGvQn8ZbCSWFUW27b7gu0mW-kO-rT_7mTvIBoKM0QGAFMe6TwniXa84NZxY2LGrEsSl2ldpABgAFNxFVsAFkYQRzOtKNhAq1QaU2VyUdC7aLuqK3cfYfBWdEpjJ0CimTM8TwWnmsYqK1ISi3yGXq5XR5qBtdwXzziXPd8ykX72pJ-9GXo-Nm16qo4_NXq2XmIJiuT_jqjK1d1C-nMyjHFAZDN0r1_y8TWAcbmnxpshPhGGsYEn6Z4-qcqzQNYN0p6wFL77uRebaZfgYsmB1-lMnndy4WTzW8BWFonNEmW0TAptJcAtLcE-acm4MzaxSoCSwSQFAfv7sOXe_CPxFw_-velTdPXg5OhQHr6ff3iIrhEfaAjp6o_Q9rLt3GN0xXxdlov2SdC7X0poNWQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fi9QwEA_nKeLLqajn-jeKD77Ua5O0acSX485FUZdFFA5fQv7VKxxt2d2e7Jsfwc_oJ3GSdruWUxB8K23SkmQm85tp5jcIPeMkJVZwF8XEgoMCDkMkeEoif4rNAUIXzNhQbILPZvnJiZjvoFebXJiOH2IIuHnNCPu1V3DX2OJgyxpqqgV54VM_L6HLLIU91vM6s_k2wpJnlATWXRBLGuWU5RtqoZgcDL3HBukCyrx4WLKnFB2j2WCOptf_byA30F4PQ_FhJzc30Y6rbqFvIDP4Q1mVP7__CDma9Ut8iBeqKS32tMZwuy_r07QrTI8xbKaBuMPhUByqXq2b0mCA42qNAQzjugqc2GsMexP4y2Alsaostov2K7bb00q30efp609Hb6K-MENkADCJSAtBEu14wa3jxsSMWZckLtO6SAHAAKbiKrYALExOHM20omADrVJpTJUReUHvoN2qrtxdhMFb0SmNXQ4SzZzhIs051TRWWZGSOBcT9HyzOtL0rOW-eMaZ7PiWifSzJ_3sTdDToWnTUXX8qdGTzRJLUCT_d0RVrm6X0ufJMMYBkU3Qfrfkw2sA43JPjTdBfCQMQwNP0j1-UpWngawbpD1hKXz3Syc24y7BxZI9r9OpPGvl0snmt4CtLBKbJcpomRTaSoBbWoJ90pJxZ2xiVQ5KBpMUBOzvw5ZHs4_EX9z796aP0dX58VS-fzt7dx9dIz7OEE6rP0C7q0XrHqIr5nxVLhePgtr9Aqr6NOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Mini-Organo%3A+A+rapid+high-throughput+3D+coculture+organotypic+assay+for+oncology+screening+and+drug+development&rft.jtitle=Cancer+reports&rft.au=Chitty%2C+Jessica+L&rft.au=Skhinas%2C+Joanna+N&rft.au=Filipe%2C+Elysse+C&rft.au=Wang%2C+Shan&rft.date=2020-02-01&rft.issn=2573-8348&rft.eissn=2573-8348&rft.volume=3&rft.issue=1&rft.spage=e1209&rft_id=info:doi/10.1002%2Fcnr2.1209&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2573-8348&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2573-8348&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2573-8348&client=summon