“NAD‐display”: Ultrahigh‐Throughput in Vitro Screening of NAD(H) Dehydrogenases Using Bead Display and Flow Cytometry

NAD(H)‐utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space, we demonstrate the utility of a cell‐free, ultrahigh‐throughput directed evolution platform for dehydrogenases. Microbeads (1.5 million per s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Angewandte Chemie International Edition Ročník 60; číslo 16; s. 9015 - 9021
Hlavní autoři: Lindenburg, Laurens, Hollfelder, Florian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 12.04.2021
John Wiley and Sons Inc
Vydání:International ed. in English
Témata:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract NAD(H)‐utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space, we demonstrate the utility of a cell‐free, ultrahigh‐throughput directed evolution platform for dehydrogenases. Microbeads (1.5 million per sample) carrying both variant DNA and an immobilised analogue of NAD+ were compartmentalised in water‐in‐oil emulsion droplets, together with cell‐free expression mixture and enzyme substrate, resulting in the recording of the phenotype on each bead. The beads’ phenotype could be read out and sorted for on a flow cytometer by using a highly sensitive fluorescent protein‐based sensor of the NAD+:NADH ratio. Integration of this “NAD‐display” approach with our previously described Split & Mix (SpliMLiB) method for generating large site‐saturation libraries allowed straightforward screening of fully balanced site saturation libraries of formate dehydrogenase, with diversities of 2×104. Based on modular design principles of synthetic biology NAD‐display offers access to sophisticated in vitro selections, avoiding complex technology platforms. A detection system was devised to screen dehydrogenase enzymes (DH) at ultrahigh‐throughput in in vitro droplet compartments. An NAD(H) analogue and a DH DNA library were co‐immobilised on beads. Water‐in‐oil emulsion droplets containing cell‐free expression mix and substrate allow compartmentalised protein production and catalysis. A fluorescent sensor of NAD(H) redox state was loaded onto beads, allowing bulk sorting of 2×104 DH variants in a day by flow cytometry.
AbstractList NAD(H)-utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space, we demonstrate the utility of a cell-free, ultrahigh-throughput directed evolution platform for dehydrogenases. Microbeads (1.5 million per sample) carrying both variant DNA and an immobilised analogue of NAD+ were compartmentalised in water-in-oil emulsion droplets, together with cell-free expression mixture and enzyme substrate, resulting in the recording of the phenotype on each bead. The beads' phenotype could be read out and sorted for on a flow cytometer by using a highly sensitive fluorescent protein-based sensor of the NAD+ :NADH ratio. Integration of this "NAD-display" approach with our previously described Split & Mix (SpliMLiB) method for generating large site-saturation libraries allowed straightforward screening of fully balanced site saturation libraries of formate dehydrogenase, with diversities of 2×104 . Based on modular design principles of synthetic biology NAD-display offers access to sophisticated in vitro selections, avoiding complex technology platforms.NAD(H)-utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space, we demonstrate the utility of a cell-free, ultrahigh-throughput directed evolution platform for dehydrogenases. Microbeads (1.5 million per sample) carrying both variant DNA and an immobilised analogue of NAD+ were compartmentalised in water-in-oil emulsion droplets, together with cell-free expression mixture and enzyme substrate, resulting in the recording of the phenotype on each bead. The beads' phenotype could be read out and sorted for on a flow cytometer by using a highly sensitive fluorescent protein-based sensor of the NAD+ :NADH ratio. Integration of this "NAD-display" approach with our previously described Split & Mix (SpliMLiB) method for generating large site-saturation libraries allowed straightforward screening of fully balanced site saturation libraries of formate dehydrogenase, with diversities of 2×104 . Based on modular design principles of synthetic biology NAD-display offers access to sophisticated in vitro selections, avoiding complex technology platforms.
NAD(H)‐utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space, we demonstrate the utility of a cell‐free, ultrahigh‐throughput directed evolution platform for dehydrogenases. Microbeads (1.5 million per sample) carrying both variant DNA and an immobilised analogue of NAD + were compartmentalised in water‐in‐oil emulsion droplets, together with cell‐free expression mixture and enzyme substrate, resulting in the recording of the phenotype on each bead. The beads’ phenotype could be read out and sorted for on a flow cytometer by using a highly sensitive fluorescent protein‐based sensor of the NAD + :NADH ratio. Integration of this “NAD‐display” approach with our previously described Split & Mix (SpliMLiB) method for generating large site‐saturation libraries allowed straightforward screening of fully balanced site saturation libraries of formate dehydrogenase, with diversities of 2×10 4 . Based on modular design principles of synthetic biology NAD‐display offers access to sophisticated in vitro selections, avoiding complex technology platforms.
NAD(H)‐utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space, we demonstrate the utility of a cell‐free, ultrahigh‐throughput directed evolution platform for dehydrogenases. Microbeads (1.5 million per sample) carrying both variant DNA and an immobilised analogue of NAD+ were compartmentalised in water‐in‐oil emulsion droplets, together with cell‐free expression mixture and enzyme substrate, resulting in the recording of the phenotype on each bead. The beads’ phenotype could be read out and sorted for on a flow cytometer by using a highly sensitive fluorescent protein‐based sensor of the NAD+:NADH ratio. Integration of this “NAD‐display” approach with our previously described Split & Mix (SpliMLiB) method for generating large site‐saturation libraries allowed straightforward screening of fully balanced site saturation libraries of formate dehydrogenase, with diversities of 2×104. Based on modular design principles of synthetic biology NAD‐display offers access to sophisticated in vitro selections, avoiding complex technology platforms. A detection system was devised to screen dehydrogenase enzymes (DH) at ultrahigh‐throughput in in vitro droplet compartments. An NAD(H) analogue and a DH DNA library were co‐immobilised on beads. Water‐in‐oil emulsion droplets containing cell‐free expression mix and substrate allow compartmentalised protein production and catalysis. A fluorescent sensor of NAD(H) redox state was loaded onto beads, allowing bulk sorting of 2×104 DH variants in a day by flow cytometry.
NAD(H)‐utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space, we demonstrate the utility of a cell‐free, ultrahigh‐throughput directed evolution platform for dehydrogenases. Microbeads (1.5 million per sample) carrying both variant DNA and an immobilised analogue of NAD+ were compartmentalised in water‐in‐oil emulsion droplets, together with cell‐free expression mixture and enzyme substrate, resulting in the recording of the phenotype on each bead. The beads’ phenotype could be read out and sorted for on a flow cytometer by using a highly sensitive fluorescent protein‐based sensor of the NAD+:NADH ratio. Integration of this “NAD‐display” approach with our previously described Split & Mix (SpliMLiB) method for generating large site‐saturation libraries allowed straightforward screening of fully balanced site saturation libraries of formate dehydrogenase, with diversities of 2×104. Based on modular design principles of synthetic biology NAD‐display offers access to sophisticated in vitro selections, avoiding complex technology platforms. A detection system was devised to screen dehydrogenase enzymes (DH) at ultrahigh‐throughput in in vitro droplet compartments. An NAD(H) analogue and a DH DNA library were co‐immobilised on beads. Water‐in‐oil emulsion droplets containing cell‐free expression mix and substrate allow compartmentalised protein production and catalysis. A fluorescent sensor of NAD(H) redox state was loaded onto beads, allowing bulk sorting of 2×104 DH variants in a day by flow cytometry.
NAD(H)-utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space, we demonstrate the utility of a cell-free, ultrahigh-throughput directed evolution platform for dehydrogenases. Microbeads (1.5 million per sample) carrying both variant DNA and an immobilised analogue of NAD were compartmentalised in water-in-oil emulsion droplets, together with cell-free expression mixture and enzyme substrate, resulting in the recording of the phenotype on each bead. The beads' phenotype could be read out and sorted for on a flow cytometer by using a highly sensitive fluorescent protein-based sensor of the NAD :NADH ratio. Integration of this "NAD-display" approach with our previously described Split & Mix (SpliMLiB) method for generating large site-saturation libraries allowed straightforward screening of fully balanced site saturation libraries of formate dehydrogenase, with diversities of 2×10 . Based on modular design principles of synthetic biology NAD-display offers access to sophisticated in vitro selections, avoiding complex technology platforms.
NAD(H)‐utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space, we demonstrate the utility of a cell‐free, ultrahigh‐throughput directed evolution platform for dehydrogenases. Microbeads (1.5 million per sample) carrying both variant DNA and an immobilised analogue of NAD+ were compartmentalised in water‐in‐oil emulsion droplets, together with cell‐free expression mixture and enzyme substrate, resulting in the recording of the phenotype on each bead. The beads’ phenotype could be read out and sorted for on a flow cytometer by using a highly sensitive fluorescent protein‐based sensor of the NAD+:NADH ratio. Integration of this “NAD‐display” approach with our previously described Split & Mix (SpliMLiB) method for generating large site‐saturation libraries allowed straightforward screening of fully balanced site saturation libraries of formate dehydrogenase, with diversities of 2×104. Based on modular design principles of synthetic biology NAD‐display offers access to sophisticated in vitro selections, avoiding complex technology platforms.
Author Lindenburg, Laurens
Hollfelder, Florian
AuthorAffiliation 1 Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
2 Current address: Genmab Uppsalalaan 15 3584 CT Utrecht The Netherlands
AuthorAffiliation_xml – name: 2 Current address: Genmab Uppsalalaan 15 3584 CT Utrecht The Netherlands
– name: 1 Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
Author_xml – sequence: 1
  givenname: Laurens
  surname: Lindenburg
  fullname: Lindenburg, Laurens
  organization: Current address: Genmab
– sequence: 2
  givenname: Florian
  orcidid: 0000-0002-1367-6312
  surname: Hollfelder
  fullname: Hollfelder, Florian
  email: fh111@cam.ac.uk
  organization: University of Cambridge
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33470025$$D View this record in MEDLINE/PubMed
BookMark eNqFUs1uEzEYtFARbQNXjsgSl_awwb-7DgekkLS0UlUONFwts_ZmXW3sYO9S7aFSHoEHgJfLk-BV2gKVECf_fDOjGX1zCPacdwaAlxiNMULkjXLWjAkiCFMm8ifgAHOCM1oUdC_dGaVZITjeB4cxXie8ECh_BvYpZUV68QNwu938uJzOt5vv2sZ1o_rt5udbuGjaoGq7rNP_VR18t6zXXQutg59tGzz8VAZjnHVL6CuY6Ednx3Bu6l4HvzRORRPhIg7j90ZpON8pQ-U0PG38DZz1rV-ZNvTPwdNKNdG8uDtHYHF6cjU7yy4-fjifTS-ykiOeZznlXBCFMU0BNMtLlOMCFTQvck4JM1RTirSujKZaVUoYoatSlajQSNBCKToC73a66-7LyujSuJSvketgVyr00isr_544W8ul_yYFYoJPcBI4uhMI_mtnYitXNpamaZQzvouSsGLCsEBigL5-BL32XXApniQcTQhhLG1nBF796ejByv1mEoDtAGXwMQZTydK2qrV-MGgbiZEcCiCHAsiHAiTa-BHtXvmfhMmOcGMb0_8HLaeX5ye_ub8Ae8zHJg
CitedBy_id crossref_primary_10_1007_s12257_024_00016_6
crossref_primary_10_1002_admi_202400403
crossref_primary_10_1038_s43586_021_00046_x
crossref_primary_10_1002_nadc_20214106651
crossref_primary_10_1016_j_tibtech_2021_04_009
crossref_primary_10_1096_fba_2022_00073
crossref_primary_10_3389_fbioe_2025_1568027
crossref_primary_10_1002_chem_202400880
Cites_doi 10.1016/j.tibs.2018.01.003
10.1016/j.chembiol.2012.06.009
10.1021/acssynbio.6b00188
10.1006/jmbi.1994.1244
10.1111/j.1432-1033.1980.tb04329.x
10.1111/j.1742-4658.2008.06533.x
10.1021/acs.analchem.8b01759
10.1021/ja00543a038
10.1021/acs.chemrev.8b00333
10.1016/j.jbiotec.2013.10.034
10.1007/978-1-4939-1053-3_7
10.1093/nar/gkaa270
10.1073/pnas.1700269114
10.1038/s41467-019-08441-5
10.1021/sb400110j
10.1016/j.ymben.2012.07.002
10.1002/anie.201001607
10.1021/acssynbio.8b00179
10.1073/pnas.1606927113
10.1073/pnas.0904764106
10.1016/j.cmet.2011.09.004
10.1073/pnas.102577799
10.1016/j.cmet.2011.08.012
10.1016/j.bbagen.2013.11.018
10.1007/s00253-012-4142-9
10.1038/nchembio.1385
10.1016/j.cbpa.2009.12.003
10.1002/cbic.201600484
10.1007/s10529-013-1156-z
10.1038/s41377-020-00358-9
10.1002/cbic.201402501
10.1038/nbt.4201
10.1021/acssynbio.9b00274
10.1039/C7CC05377K
10.1016/j.copbio.2016.04.023
10.1016/j.cmet.2015.04.009
10.1038/ncomms10008
10.1021/ac802613w
10.1016/j.sbi.2015.06.001
10.1016/j.cbpa.2017.02.018
10.1016/j.chembiol.2010.02.011
10.1002/ange.201001607
10.1016/j.sbi.2005.07.006
10.1042/bj3540455
10.1073/pnas.1115485109
10.1080/21655979.2014.1004020
10.1038/nmeth.4306
ContentType Journal Article
Copyright 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7TM
K9.
7X8
5PM
DOI 10.1002/anie.202013486
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


PubMed
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 9021
ExternalDocumentID PMC8048591
33470025
10_1002_anie_202013486
ANIE202013486
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: H2020 Marie Skłodowska-Curie Actions
  funderid: 659029
– fundername: Engineering and Physical Sciences Research Council
  funderid: EP/H046593/1; EP/C013174/1
– fundername: H2020 European Research Council
  funderid: 695669
– fundername: ;
  grantid: 695669
– fundername: ;
  grantid: 659029
– fundername: ;
  grantid: EP/H046593/1; EP/C013174/1
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
7TM
K9.
7X8
5PM
ID FETCH-LOGICAL-c5056-635582a113288d46c06170736765324e3d330ddfed3dafa8e8dfcac07d0837aa3
IEDL.DBID 24P
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626274900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Tue Nov 04 01:59:17 EST 2025
Thu Oct 02 06:48:17 EDT 2025
Tue Oct 07 06:57:21 EDT 2025
Mon Jul 21 05:56:00 EDT 2025
Tue Nov 18 20:52:55 EST 2025
Sat Nov 29 02:36:11 EST 2025
Wed Jan 22 16:31:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords cell-free expression
formate dehydrogenase
water-in-oil emulsion droplets
saturation library
directed evolution
Language English
License Attribution
2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5056-635582a113288d46c06170736765324e3d330ddfed3dafa8e8dfcac07d0837aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1367-6312
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202013486
PMID 33470025
PQID 2509224477
PQPubID 946352
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048591
proquest_miscellaneous_2479418081
proquest_journals_2509224477
pubmed_primary_33470025
crossref_citationtrail_10_1002_anie_202013486
crossref_primary_10_1002_anie_202013486
wiley_primary_10_1002_anie_202013486_ANIE202013486
PublicationCentury 2000
PublicationDate April 12, 2021
PublicationDateYYYYMMDD 2021-04-12
PublicationDate_xml – month: 04
  year: 2021
  text: April 12, 2021
  day: 12
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2019; 8
2017; 6
2015; 6
1994; 237
2010; 14
2009; 81
2010; 17
2019; 10
2015; 33
2002; 99
2012; 19
2010 2010; 49 122
2011; 14
2012; 14
2016; 17
2018; 43
2014; 1840
2017; 114
2012; 109
2018; 7
2017; 53
2001; 354
2014; 3
2017; 37
2013; 10
2017; 14
2013; 35
2018; 118
2013; 97
2015; 21
2020; 9
2016; 113
2016; 42
2014; 15
2020; 48
2018; 90
2005; 15
2016; 29
2008; 275
2014; 1179
2014; 169
1980; 102
2018; 36
1980; 103
2009; 106
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
Cahn J. K. B. (e_1_2_6_32_1) 2016; 29
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_37_2
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 113
  start-page: E7383
  year: 2016
  end-page: E7389
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 102
  start-page: 7104
  year: 1980
  end-page: 7105
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: E2624
  year: 2017
  end-page: E2633
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 36
  start-page: 880
  year: 2018
  end-page: 898
  publication-title: Nat. Biotechnol.
– volume: 3
  start-page: 41
  year: 2014
  end-page: 47
  publication-title: ACS Synth. Biol.
– volume: 14
  start-page: 122
  year: 2010
  end-page: 129
  publication-title: Curr. Opin. Chem. Biol.
– volume: 10
  start-page: 711
  year: 2019
  publication-title: Nat. Commun.
– volume: 169
  start-page: 1
  year: 2014
  end-page: 8
  publication-title: J. Biotechnol.
– volume: 10
  start-page: 50
  year: 2013
  end-page: 55
  publication-title: Nat. Chem. Biol.
– volume: 275
  start-page: 3859
  year: 2008
  end-page: 3869
  publication-title: FEBS J.
– volume: 106
  start-page: 15651
  year: 2009
  end-page: 15656
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 777
  year: 2015
  end-page: 789
  publication-title: Cell Metab.
– volume: 118
  start-page: 11707
  year: 2018
  end-page: 11794
  publication-title: Chem. Rev.
– volume: 37
  start-page: 137
  year: 2017
  end-page: 144
  publication-title: Curr. Opin. Chem. Biol.
– volume: 97
  start-page: 2473
  year: 2013
  end-page: 2481
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 9
  start-page: 118
  year: 2020
  publication-title: Light Sci. Appl.
– volume: 99
  start-page: 6597
  year: 2002
  end-page: 6602
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 2710
  year: 2014
  end-page: 2718
  publication-title: ChemBioChem
– volume: 53
  start-page: 9454
  year: 2017
  end-page: 9457
  publication-title: Chem. Commun.
– volume: 354
  start-page: 455
  year: 2001
  end-page: 463
  publication-title: Biochem. J.
– volume: 237
  start-page: 415
  year: 1994
  end-page: 422
  publication-title: J. Mol. Biol.
– volume: 42
  start-page: 152
  year: 2016
  end-page: 158
  publication-title: Curr. Opin. Biotechnol.
– volume: 29
  start-page: 31
  year: 2016
  end-page: 38
  publication-title: Protein Eng. Des. Sel.
– volume: 19
  start-page: 1001
  year: 2012
  end-page: 1009
  publication-title: Chem. Biol.
– volume: 6
  start-page: 106
  year: 2015
  end-page: 110
  publication-title: Bioengineered
– volume: 49 122
  start-page: 5921 6057
  year: 2010 2010
  end-page: 5924 6060
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 103
  start-page: 421
  year: 1980
  end-page: 430
  publication-title: Eur. J. Biochem.
– volume: 7
  start-page: 1715
  year: 2018
  end-page: 1721
  publication-title: ACS Synth. Biol.
– volume: 90
  start-page: 9813
  year: 2018
  end-page: 9820
  publication-title: Anal. Chem.
– volume: 48
  year: 2020
  publication-title: Nucleic Acids Res.
– volume: 14
  start-page: 555
  year: 2011
  end-page: 566
  publication-title: Cell Metab.
– volume: 14
  start-page: 720
  year: 2017
  end-page: 728
  publication-title: Nat. Methods
– volume: 17
  start-page: 229
  year: 2010
  end-page: 235
  publication-title: Chem. Biol.
– volume: 1179
  start-page: 103
  year: 2014
  end-page: 128
  publication-title: Methods Mol. Biol.
– volume: 33
  start-page: 42
  year: 2015
  end-page: 51
  publication-title: Curr. Opin. Struct. Biol.
– volume: 109
  start-page: E690
  year: 2012
  end-page: E697
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 43
  start-page: 180
  year: 2018
  end-page: 198
  publication-title: Trends Biochem. Sci.
– volume: 35
  start-page: 915
  year: 2013
  end-page: 919
  publication-title: Biotechnol. Lett.
– volume: 81
  start-page: 5972
  year: 2009
  end-page: 5979
  publication-title: Anal. Chem.
– volume: 17
  start-page: 2312
  year: 2016
  end-page: 2315
  publication-title: ChemBioChem
– volume: 1840
  start-page: 951
  year: 2014
  end-page: 957
  publication-title: Biochim. Biophys. Acta Gen. Subj.
– volume: 8
  start-page: 2690
  year: 2019
  end-page: 2700
  publication-title: ACS Synth. Biol.
– volume: 6
  start-page: 326
  year: 2017
  end-page: 333
  publication-title: ACS Synth. Biol.
– volume: 15
  start-page: 472
  year: 2005
  end-page: 478
  publication-title: Curr. Opin. Struct. Biol.
– volume: 14
  start-page: 545
  year: 2011
  end-page: 554
  publication-title: Cell Metab.
– volume: 6
  start-page: 10008
  year: 2015
  publication-title: Nat. Commun.
– volume: 14
  start-page: 504
  year: 2012
  end-page: 511
  publication-title: Metab. Eng.
– ident: e_1_2_6_1_1
  doi: 10.1016/j.tibs.2018.01.003
– ident: e_1_2_6_4_1
  doi: 10.1016/j.chembiol.2012.06.009
– ident: e_1_2_6_10_1
  doi: 10.1021/acssynbio.6b00188
– ident: e_1_2_6_35_1
  doi: 10.1006/jmbi.1994.1244
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1432-1033.1980.tb04329.x
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1742-4658.2008.06533.x
– ident: e_1_2_6_42_1
  doi: 10.1021/acs.analchem.8b01759
– ident: e_1_2_6_24_1
  doi: 10.1021/ja00543a038
– ident: e_1_2_6_6_1
  doi: 10.1021/acs.chemrev.8b00333
– ident: e_1_2_6_18_1
  doi: 10.1016/j.jbiotec.2013.10.034
– ident: e_1_2_6_43_1
  doi: 10.1007/978-1-4939-1053-3_7
– ident: e_1_2_6_16_1
  doi: 10.1093/nar/gkaa270
– ident: e_1_2_6_44_1
  doi: 10.1073/pnas.1700269114
– ident: e_1_2_6_47_1
  doi: 10.1038/s41467-019-08441-5
– ident: e_1_2_6_41_1
  doi: 10.1021/sb400110j
– ident: e_1_2_6_39_1
  doi: 10.1016/j.ymben.2012.07.002
– ident: e_1_2_6_37_1
  doi: 10.1002/anie.201001607
– ident: e_1_2_6_40_1
  doi: 10.1021/acssynbio.8b00179
– ident: e_1_2_6_11_1
  doi: 10.1073/pnas.1606927113
– ident: e_1_2_6_46_1
  doi: 10.1073/pnas.0904764106
– ident: e_1_2_6_19_1
  doi: 10.1016/j.cmet.2011.09.004
– ident: e_1_2_6_36_1
  doi: 10.1073/pnas.102577799
– ident: e_1_2_6_20_1
  doi: 10.1016/j.cmet.2011.08.012
– ident: e_1_2_6_21_1
  doi: 10.1016/j.bbagen.2013.11.018
– ident: e_1_2_6_31_1
  doi: 10.1007/s00253-012-4142-9
– ident: e_1_2_6_7_1
  doi: 10.1038/nchembio.1385
– ident: e_1_2_6_8_1
  doi: 10.1016/j.cbpa.2009.12.003
– ident: e_1_2_6_13_1
  doi: 10.1002/cbic.201600484
– ident: e_1_2_6_26_1
  doi: 10.1007/s10529-013-1156-z
– ident: e_1_2_6_28_1
  doi: 10.1038/s41377-020-00358-9
– ident: e_1_2_6_29_1
  doi: 10.1002/cbic.201402501
– ident: e_1_2_6_33_1
  doi: 10.1038/nbt.4201
– ident: e_1_2_6_34_1
  doi: 10.1021/acssynbio.9b00274
– ident: e_1_2_6_12_1
  doi: 10.1039/C7CC05377K
– ident: e_1_2_6_9_1
  doi: 10.1016/j.copbio.2016.04.023
– ident: e_1_2_6_14_1
  doi: 10.1016/j.cmet.2015.04.009
– volume: 29
  start-page: 31
  year: 2016
  ident: e_1_2_6_32_1
  publication-title: Protein Eng. Des. Sel.
– ident: e_1_2_6_5_1
  doi: 10.1038/ncomms10008
– ident: e_1_2_6_22_1
  doi: 10.1021/ac802613w
– ident: e_1_2_6_2_1
  doi: 10.1016/j.sbi.2015.06.001
– ident: e_1_2_6_3_1
  doi: 10.1016/j.cbpa.2017.02.018
– ident: e_1_2_6_38_1
  doi: 10.1016/j.chembiol.2010.02.011
– ident: e_1_2_6_37_2
  doi: 10.1002/ange.201001607
– ident: e_1_2_6_15_1
  doi: 10.1016/j.sbi.2005.07.006
– ident: e_1_2_6_23_1
  doi: 10.1042/bj3540455
– ident: e_1_2_6_17_1
  doi: 10.1073/pnas.1115485109
– ident: e_1_2_6_27_1
  doi: 10.1080/21655979.2014.1004020
– ident: e_1_2_6_45_1
  doi: 10.1038/nmeth.4306
SSID ssj0028806
Score 2.41949
Snippet NAD(H)‐utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space,...
NAD(H)-utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9015
SubjectTerms Beads
Biological evolution
cell-free expression
Dehydrogenases
Directed evolution
Flow cytometry
Fluorescence
Formate dehydrogenase
Libraries
Microspheres
Modular design
NAD
NADH
Nanoparticles
Nicotinamide adenine dinucleotide
Phenotypes
Saturation
saturation library
Screening
Substrates
water-in-oil emulsion droplets
Title “NAD‐display”: Ultrahigh‐Throughput in Vitro Screening of NAD(H) Dehydrogenases Using Bead Display and Flow Cytometry
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202013486
https://www.ncbi.nlm.nih.gov/pubmed/33470025
https://www.proquest.com/docview/2509224477
https://www.proquest.com/docview/2479418081
https://pubmed.ncbi.nlm.nih.gov/PMC8048591
Volume 60
WOSCitedRecordID wos000626274900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD6CDQluxu8gMCYjIQEX1tI4ix3uSrtqSKiaYEW9i5zY0SKVpGrSoV4g9RF4AHi5PgnnJG1YNSEkuImU-Df2sc_nxP4-gJe-DQ32s-V-ELgc8W3MdWgSrmxgBeHpOE1rsQk5HKrxODy7coq_4YdoP7jRyKjnaxrgOi6PfpOG0glsXN-hAxO-Cm7CbqcjFIk3eP5Zu-RC62zOFwnBSYZ-Q9voekfb6bfd0jWseX3L5FUoW_uiwd3_f4t7sLfGoazbGM59uGHzB3C7t5F_ewjfVssfw25_tfxusnI60YvV8udbNppgvYjiGJ-fNxI_03nFspx9zqpZwT4ltI8H3SErUobJX5--YX17sTCzAi0VPWbJ6k0K7B3aFus3OTOdGzaYFF9Zb1EVXyyW_whGg5Pz3ilfazXwhDAUJ9yiPE269UoZP0gIGuH0EcjgGDGbFUYI15jUGmF0qpVVJk104kqDGFBqLfZhJy9y-wRYKlRsiOivg0s55Xq4fEeQis0jYum72jrAN10VJWsic9LTmEQNBbMXUaNGbaM68KqNP20oPP4Y82DT89F6KJcRYsQQcY4vpQMv2mDsDPqzonNbzDEO8fR3SMTEgceNobRFCeFLQpYOyC0TaiMQwfd2SJ5d1ETfCqfX4xDz9GoT-kvto-7w_Ul79_RfEj2DOx7t2am5LA9gp5rN7XO4lVxWWTk7rIcWXuVYHcJu_-Ng9OEXeTMpKg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFD6CgTRuxu8gMMBISMBFtCz2Yoe70q7qxIgm0aHdRW7saJFKUrXpUC-Q-gg8ALxcn4RzkjRQTQgJcZn4N_axz3ec4-8AvBQ2NDjP1hVB4LmIb0euDk3iKhtYTnh6lKZVsAkZRer8PDxtvAnpLkzND9EeuNHKqPZrWuB0IL3_izWUrmCjgYcajAsVXIcbAlUNibovTlubC8WzvmDEuUtx6Ne8jZ6_v1l-Uy9dAZtXfSZ_x7KVMurf_g-fcQd2GiTKOrXo3IVrNr8H2911ALj78HW1_B51eqvlN5PNJmO9WC1_vGVnY-wYkRzj-2Ed5GcyL1mWs09ZOS3Yx4Q8eVAhsiJlWPz14A3r2YuFmRYoq6gzZ6xyU2DvULpYr66Z6dyw_rj4wrqLsvhssf0HcNY_GnYHbhOtwU0IRbmEXJSvKXK9UkYECYEj3EACGRwiarPccO4Zk1rDjU61ssqkiU48aRAFSq35LmzlRW4fAUu5Ghmi-jtAY055PhrwCFNxePhICk9bB9z1XMVJQ2VOETXGcU3C7Mc0qHE7qA68avNPahKPP-bcW0993CzmWYwoMUSkI6R04EWbjJNB_1Z0bos55iGm_gMKY-LAw1pS2qY4F5KwpQNyQ4baDETxvZmSZxcV1bfCDfYwxDr9Sob-0vu4Ex0ftU-P_6XQc9geDD-cxCfH0fsncMsnD56K2XIPtsrp3D6Fm8llmc2mz6p19hPUjiqN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFD6CDgE3_DMCA4yEBFxEy-IsdrgrzaJNTNEEK9pd5MaOFqlLqjYF9QKpj8ADwMv1STgnSQPVhJAQl0n8F_vY53Ny_H0ALz0TaBxnY3u-79iIb0e2CnRqS-MbTnh6lGW12ISIY3l2Fpy00YR0Fqbhh-g-uNHMqNdrmuBmorPdX6yhdAQbN3jowbgn_auw5ZGSTA-2wg_R8LjbdaGBNkeMOLdJiX7N3Oi4u5slbHqmS3DzctTk72i2dkfR7f_wInfgVotFWb8xnrtwxRT34MZgLQF3H76ult_jfrhaftP5bDJWi9Xyx1s2HGPDiOYY7582Mj-TecXygn3Kq2nJPqYUy4MukZUZw-yvD9-w0Jwv9LREa0WvOWN1oAJ7h_bFwqZkpgrNonH5hQ0WVXlhsP4HMIwOTgeHdqvXYKeEo2zCLtJVpF0vpfb8lOARLiG-8PcRtxmuOXe0zozmWmVKGqmzVKWO0IgDhVL8IfSKsjCPgGVcjjSR_e3hdk46Lm7hEahi9_CR8BxlLLDXY5WkLZk5aWqMk4aG2U2oU5OuUy141aWfNDQef0y5sx76pJ3OswRxYoBYxxPCghfdYxwM-ruiClPOMQ1x9e-RkIkF242ldFVx7glClxaIDRvqEhDJ9-aTIj-vyb4lLrH7AZbp1jb0l9Yn_fjooLt6_C-ZnsP1kzBKjo_i90_gpkshPDW15Q70quncPIVr6ecqn02ftRPtJ42eK6M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E2%80%9CNAD%E2%80%90display%E2%80%9D%3A+Ultrahigh%E2%80%90Throughput+in+Vitro+Screening+of+NAD%28H%29+Dehydrogenases+Using+Bead+Display+and+Flow+Cytometry&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lindenburg%2C+Laurens&rft.au=Hollfelder%2C+Florian&rft.date=2021-04-12&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=16&rft.spage=9015&rft.epage=9021&rft_id=info:doi/10.1002%2Fanie.202013486&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202013486
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon