Parsimonious mixtures of multivariate contaminated normal distributions

A mixture of multivariate contaminated normal distributions is developed for model‐based clustering. In addition to the parameters of the classical normal mixture, our contaminated mixture has, for each cluster, a parameter controlling the proportion of mild outliers and one specifying the degree of...

Full description

Saved in:
Bibliographic Details
Published in:Biometrical journal Vol. 58; no. 6; pp. 1506 - 1537
Main Authors: Punzo, Antonio, McNicholas, Paul D.
Format: Journal Article
Language:English
Published: Germany Blackwell Publishing Ltd 01.11.2016
Wiley - VCH Verlag GmbH & Co. KGaA
Subjects:
ISSN:0323-3847, 1521-4036, 1521-4036
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A mixture of multivariate contaminated normal distributions is developed for model‐based clustering. In addition to the parameters of the classical normal mixture, our contaminated mixture has, for each cluster, a parameter controlling the proportion of mild outliers and one specifying the degree of contamination. Crucially, these parameters do not have to be specified a priori, adding a flexibility to our approach. Parsimony is introduced via eigen‐decomposition of the component covariance matrices, and sufficient conditions for the identifiability of all the members of the resulting family are provided. An expectation‐conditional maximization algorithm is outlined for parameter estimation and various implementation issues are discussed. Using a large‐scale simulation study, the behavior of the proposed approach is investigated and comparison with well‐established finite mixtures is provided. The performance of this novel family of models is also illustrated on artificial and real data.
AbstractList A mixture of multivariate contaminated normal distributions is developed for model-based clustering. In addition to the parameters of the classical normal mixture, our contaminated mixture has, for each cluster, a parameter controlling the proportion of mild outliers and one specifying the degree of contamination. Crucially, these parameters do not have to be specified a priori, adding a flexibility to our approach. Parsimony is introduced via eigen-decomposition of the component covariance matrices, and sufficient conditions for the identifiability of all the members of the resulting family are provided. An expectation-conditional maximization algorithm is outlined for parameter estimation and various implementation issues are discussed. Using a large-scale simulation study, the behavior of the proposed approach is investigated and comparison with well-established finite mixtures is provided. The performance of this novel family of models is also illustrated on artificial and real data.
A mixture of multivariate contaminated normal distributions is developed for model‐based clustering. In addition to the parameters of the classical normal mixture, our contaminated mixture has, for each cluster, a parameter controlling the proportion of mild outliers and one specifying the degree of contamination. Crucially, these parameters do not have to be specified a priori, adding a flexibility to our approach. Parsimony is introduced via eigen‐decomposition of the component covariance matrices, and sufficient conditions for the identifiability of all the members of the resulting family are provided. An expectation‐conditional maximization algorithm is outlined for parameter estimation and various implementation issues are discussed. Using a large‐scale simulation study, the behavior of the proposed approach is investigated and comparison with well‐established finite mixtures is provided. The performance of this novel family of models is also illustrated on artificial and real data.
A mixture of multivariate contaminated normal distributions is developed for model‐based clustering. In addition to the parameters of the classical normal mixture, our contaminated mixture has, for each cluster, a parameter controlling the proportion of mild outliers and one specifying the degree of contamination. Crucially, these parameters do not have to be specified a priori , adding a flexibility to our approach. Parsimony is introduced via eigen‐decomposition of the component covariance matrices, and sufficient conditions for the identifiability of all the members of the resulting family are provided. An expectation‐conditional maximization algorithm is outlined for parameter estimation and various implementation issues are discussed. Using a large‐scale simulation study, the behavior of the proposed approach is investigated and comparison with well‐established finite mixtures is provided. The performance of this novel family of models is also illustrated on artificial and real data.
A mixture of multivariate contaminated normal distributions is developed for model-based clustering. In addition to the parameters of the classical normal mixture, our contaminated mixture has, for each cluster, a parameter controlling the proportion of mild outliers and one specifying the degree of contamination. Crucially, these parameters do not have to be specified a priori, adding a flexibility to our approach. Parsimony is introduced via eigen-decomposition of the component covariance matrices, and sufficient conditions for the identifiability of all the members of the resulting family are provided. An expectation-conditional maximization algorithm is outlined for parameter estimation and various implementation issues are discussed. Using a large-scale simulation study, the behavior of the proposed approach is investigated and comparison with well-established finite mixtures is provided. The performance of this novel family of models is also illustrated on artificial and real data.A mixture of multivariate contaminated normal distributions is developed for model-based clustering. In addition to the parameters of the classical normal mixture, our contaminated mixture has, for each cluster, a parameter controlling the proportion of mild outliers and one specifying the degree of contamination. Crucially, these parameters do not have to be specified a priori, adding a flexibility to our approach. Parsimony is introduced via eigen-decomposition of the component covariance matrices, and sufficient conditions for the identifiability of all the members of the resulting family are provided. An expectation-conditional maximization algorithm is outlined for parameter estimation and various implementation issues are discussed. Using a large-scale simulation study, the behavior of the proposed approach is investigated and comparison with well-established finite mixtures is provided. The performance of this novel family of models is also illustrated on artificial and real data.
Author Punzo, Antonio
McNicholas, Paul D.
Author_xml – sequence: 1
  givenname: Antonio
  surname: Punzo
  fullname: Punzo, Antonio
  email: antonio.punzo@unict.it, antonio.punzo@unict.it
  organization: Department of Economics and Business, University of Catania, Catania, Italy
– sequence: 2
  givenname: Paul D.
  surname: McNicholas
  fullname: McNicholas, Paul D.
  organization: Department of Mathematics and Statistics, McMaster University, Hamilton, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27510372$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtvFDEURi0URDaBlhKNREMzi1_Xni0hgk1CHkTaiNLyeDySl7EdbA8k_54ZbdgiTajs4px7db_vCB2EGCxCbwleEozpx9b57ZJiAhgTzl-gBQFKao6ZOEALzCirWcPlITrKeYsxXmFOX6FDKoFgJukCrb_rlJ2PwcUxV97dlzHZXMW-8uNQ3G-dnC62MjEU7V2Y_l0VYvJ6qDqXS3LtWFwM-TV62esh2zeP7zG6_fplc3JaX1yvz04-XdQGMLC664wxjeTAQUiDsbAAUvTWtoZRqvsWgEvTCQKyM1SYnoFtLZjVSnMuoGHH6MNu7l2Kv0abi_IuGzsMOtjpAkUaLthKArD_QNmECU7FhL5_gm7jmMJ0yExx2UjZzLvfPVJj622n7pLzOj2of2lOwHIHmBRzTrbfIwSruS4116X2dU0CfyIYV_QcaEnaDc9qf9xgH55Zoj6fXZ4TSeZA6p02FWfv95pOP5WQTIL6cbVW385P4eZqg9WG_QWfZbex
CitedBy_id crossref_primary_10_1007_s00362_019_01146_3
crossref_primary_10_1007_s00357_024_09480_4
crossref_primary_10_1080_10618600_2025_2495257
crossref_primary_10_1007_s00357_017_9234_x
crossref_primary_10_1007_s11634_021_00476_1
crossref_primary_10_1007_s11634_023_00550_w
crossref_primary_10_1080_10618600_2025_2554675
crossref_primary_10_1007_s00285_023_01961_1
crossref_primary_10_1007_s10182_021_00430_8
crossref_primary_10_1002_sim_7687
crossref_primary_10_1016_j_ecosta_2023_10_004
crossref_primary_10_1177_09622802241309349
crossref_primary_10_1016_j_physa_2020_125354
crossref_primary_10_1016_j_spl_2025_110510
crossref_primary_10_1002_sam_11653
crossref_primary_10_1002_env_2793
crossref_primary_10_1007_s00357_025_09518_1
crossref_primary_10_1002_bimj_201900248
crossref_primary_10_1038_s41598_023_44608_3
crossref_primary_10_1080_10618600_2021_1999825
crossref_primary_10_1007_s00357_023_09460_0
crossref_primary_10_1080_09524622_2024_2354479
crossref_primary_10_1007_s42979_020_0067_z
crossref_primary_10_1080_10618600_2023_2184375
crossref_primary_10_1016_j_ecosta_2021_08_010
crossref_primary_10_1002_sta4_608
crossref_primary_10_1007_s11749_019_00693_z
crossref_primary_10_1016_j_csda_2016_05_024
crossref_primary_10_1007_s00357_024_09470_6
crossref_primary_10_1080_02664763_2018_1542668
crossref_primary_10_1515_ijb_2020_0059
crossref_primary_10_1007_s00357_024_09479_x
crossref_primary_10_1016_j_jmva_2022_105020
crossref_primary_10_1080_03610926_2024_2311795
crossref_primary_10_1007_s11634_023_00542_w
crossref_primary_10_1080_00949655_2020_1805451
crossref_primary_10_1109_TSP_2021_3092373
crossref_primary_10_1016_j_csda_2018_08_004
crossref_primary_10_1111_2041_210X_13644
crossref_primary_10_1007_s11634_024_00606_5
crossref_primary_10_1016_j_insmatheco_2020_06_004
crossref_primary_10_1007_s00362_017_0964_y
crossref_primary_10_1002_dys_70013
crossref_primary_10_1002_wics_1658
crossref_primary_10_1007_s00357_023_09450_2
crossref_primary_10_1016_j_csda_2018_12_001
crossref_primary_10_1080_00949655_2016_1245305
crossref_primary_10_1016_j_csda_2025_108198
crossref_primary_10_1007_s00357_016_9211_9
crossref_primary_10_1007_s11749_024_00920_2
crossref_primary_10_1007_s11634_022_00532_4
crossref_primary_10_1080_03610918_2019_1698745
crossref_primary_10_1080_00401706_2025_2497822
crossref_primary_10_1080_02664763_2018_1428288
crossref_primary_10_1007_s00357_023_09438_y
crossref_primary_10_1007_s11634_023_00558_2
crossref_primary_10_1016_j_cam_2023_115433
crossref_primary_10_1016_j_csda_2020_106961
crossref_primary_10_1007_s00357_023_09445_z
crossref_primary_10_1016_j_spl_2024_110058
crossref_primary_10_1155_2020_9673623
crossref_primary_10_1080_10618600_2015_1089776
crossref_primary_10_1007_s00180_020_01009_8
crossref_primary_10_1002_bimj_201800095
crossref_primary_10_1016_j_csda_2022_107496
crossref_primary_10_1007_s00180_020_01041_8
crossref_primary_10_1002_sam_70011
crossref_primary_10_1002_cjs_11308
crossref_primary_10_1007_s00357_024_09473_3
crossref_primary_10_1007_s10260_021_00578_2
crossref_primary_10_1007_s11634_019_00373_8
crossref_primary_10_1016_j_csda_2023_107909
crossref_primary_10_1016_j_patcog_2019_107031
crossref_primary_10_1007_s00362_025_01723_9
crossref_primary_10_1177_1471082X19890935
crossref_primary_10_1016_j_patcog_2024_110846
crossref_primary_10_1007_s40995_018_0526_8
crossref_primary_10_1007_s00357_017_9221_2
crossref_primary_10_1016_j_csda_2022_107526
crossref_primary_10_1007_s11222_020_09950_w
crossref_primary_10_1080_00949655_2018_1554659
crossref_primary_10_1177_09622802241307613
crossref_primary_10_1080_02664763_2020_1789076
crossref_primary_10_3390_a16040195
Cites_doi 10.1016/0167-7152(90)90104-F
10.1080/01621459.2000.10474285
10.1002/0471721182
10.1016/j.spl.2004.11.007
10.1111/1467-9868.00265
10.1007/s11222-011-9272-x
10.1201/9781315373577
10.1080/00949655.2015.1131282
10.1071/ZO9740417
10.1007/s00180-012-0367-4
10.1080/00949658608810872
10.1007/s00357-001-0045-7
10.1214/009053604000000571
10.1016/j.csda.2006.01.001
10.1016/j.csda.2006.10.011
10.1007/s11634-010-0064-5
10.1016/j.csda.2012.01.016
10.1007/s11749-012-0312-4
10.1016/j.jspi.2009.11.006
10.1016/0031-3203(94)00125-6
10.2307/271063
10.1198/106186005X59586
10.1080/01621459.1994.10476467
10.1111/j.2517-6161.1977.tb01600.x
10.1093/comjnl/41.8.578
10.1007/s001840100138
10.1093/biomet/88.3.767
10.1007/BF01889985
10.1016/j.jspi.2010.06.024
10.1080/10618600.2000.10474865
10.1111/j.1467-9469.2006.00505.x
10.1016/j.csda.2010.10.026
10.1007/s11222-008-9052-4
10.1023/A:1008981510081
10.1007/978-1-4614-6396-2
10.1007/BF01720593
10.1214/009053604000000940
10.1214/aoms/1177703862
10.1080/00401706.2000.10485740
10.1007/BF01886327
10.2307/2532201
10.21236/AD0620026
10.1111/j.0006-341X.2000.00483.x
10.1093/biomet/80.2.267
10.2307/2347491
10.1080/00401706.1980.10486163
10.1007/s10260-004-0092-4
10.1214/07-AOS515
10.1017/S0370164600024871
10.1016/j.csda.2009.02.011
10.1080/01621459.1998.10473711
10.1214/aos/1031833664
10.1007/s11222-010-9226-8
10.1016/S0167-7152(02)00396-6
10.1198/1061860031806
10.1080/01621459.1999.10474199
10.1016/S0167-9473(02)00163-9
10.1007/s11634-013-0139-1
10.1080/01621459.1993.10476339
10.1177/0049124188017001003
10.1109/TPAMI.2011.199
10.1137/0907013
10.1016/S0167-9473(02)00177-9
10.1214/aos/1176344136
10.1016/j.csda.2013.07.019
10.1198/106186004X12425
10.1016/j.imavis.2008.11.013
10.1111/j.2517-6161.1996.tb02073.x
10.1007/BF01908064
10.1214/aoms/1177698520
10.1007/s11634-012-0107-1
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/bimj.201500144
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE
Engineering Research Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-4036
EndPage 1537
ExternalDocumentID 4235533701
27510372
10_1002_bimj_201500144
BIMJ1713
ark_67375_WNG_KJH5QNT0_T
Genre article
Journal Article
GrantInformation_xml – fundername: Canada Research Chairs program
– fundername: Italian Government
  funderid: RBFR12SHVV
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AI.
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
YHZ
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
WRC
WUP
WWH
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c5053-ddccc87454567c006e5576feebc322afb5547cd6157dc26cf35ebe5c99a446583
IEDL.DBID DRFUL
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387148100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0323-3847
1521-4036
IngestDate Tue Oct 07 09:46:47 EDT 2025
Thu Oct 02 05:47:31 EDT 2025
Tue Oct 07 05:41:12 EDT 2025
Tue Apr 08 05:56:57 EDT 2025
Tue Nov 18 21:03:25 EST 2025
Sat Nov 29 06:28:47 EST 2025
Wed Jan 22 17:04:46 EST 2025
Tue Nov 11 03:32:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Contaminated normal distribution
EM algorithm
Contamination
Mixture models
Model-based clustering
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5053-ddccc87454567c006e5576feebc322afb5547cd6157dc26cf35ebe5c99a446583
Notes istex:F803EB533857CE9AC12ADC40DE9A62BAB05C1F5C
ark:/67375/WNG-KJH5QNT0-T
ArticleID:BIMJ1713
Supporting Information
Italian Government - No. RBFR12SHVV
Canada Research Chairs program
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27510372
PQID 1834787788
PQPubID 105592
PageCount 32
ParticipantIDs proquest_miscellaneous_1846397553
proquest_miscellaneous_1835536426
proquest_journals_1834787788
pubmed_primary_27510372
crossref_primary_10_1002_bimj_201500144
crossref_citationtrail_10_1002_bimj_201500144
wiley_primary_10_1002_bimj_201500144_BIMJ1713
istex_primary_ark_67375_WNG_KJH5QNT0_T
PublicationCentury 2000
PublicationDate November 2016
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Biometrical journal
PublicationTitleAlternate Biom. J
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley - VCH Verlag GmbH & Co. KGaA
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley - VCH Verlag GmbH & Co. KGaA
References Berkane, M. and Bentler, P. M. (1988). Estimation of contamination parameters and identification of outliers in multivariate data. Sociological Methods and Research 17, 55-64.
Browne, R. P. and McNicholas, P. D. (2014). Estimating common principal components in high dimensions. Advances in Data Analysis and Classification 8, 217-226.
Fraley, C. and Raftery, A. E. (1998). How many clusters? Which clustering method? Answers via model-based cluster analysis. Computer Journal 41, 578-588.
Ingrassia, S. and Rocci, R. (2011). Degeneracy of the EM algorithm for the mle of multivariate Gaussian mixtures and dynamic constraints. Computational Statistics and Data Analysis 55, 1715-1725.
Lo, Y., Mendell, N. R. and Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika 88, 767-778.
Yao, W. (2012). Model based labeling for mixture models. Statistics and Computing 22, 337-347.
Hartigan, J. A. (1985). Statistical theory in clustering. Journal of Classification 2, 63-76.
Aitken, A. (1926). A series formula for the roots of algebraic and transcendental equations. Proceedings of the Royal Society of Edinburgh. 45 14-22.
Markatou, M. (2000). Mixture models, robustness, and the weighted likelihood methodology. Biometrics 56, 483-486.
Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267-278.
McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models. John Wiley & Sons, New York, NY.
Hennig, C. (2004). Breakdown points for maximum likelihood estimators of location-scale mixtures. The Annals of Statistics 32, 1313-1340.
Biernacki, C., Celeux, G. and Govaert, G. (2003). Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Computational Statistics and Data Analysis 41, 561-575.
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B 39, 1-38.
Bai, X., Yao, W. and Boyer, J. E. (2012). Robust fitting of mixture regression models. Computational Statistics and Data Analysis 56, 2347-2359.
Byers, S. and Raftery, A. E. (1998). Nearest-neighbor clutter removal for estimating features in spatial point processes. Journal of the American Statistical Association 93, 577-584.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461-464.
Hawkins, D. (2013). Identification of Outliers. Monographs on Statistics and Applied Probability. Springer, The Netherlands.
Ingrassia, S. and Rocci, R. (2007). Constrained monotone em algorithms for finite mixture of multivariate Gaussians. Computational Statistics and Data Analysis 51, 5339-5351.
McNicholas, P. D. (2016). Mixture Model-Based Classification. Chapman & Hall/CRC Press, Boca Raton, FL.
Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology 25, 111-164.
Bock, H. H. (2002). Clustering methods: from classical models to new approaches. Statistics in Transition 5, 725-758.
Ruwet, C., García-Escudero, L. A., Gordaliza, A. and Mayo-Iscar, A. (2013). On the breakdown behavior of the tclust clustering procedure. Test 22, 466-487.
Hennig, C. (2002). Fixed point clusters for linear regression: computation and comparison. Journal of Classification 19, 249-276.
Li, J. (2005). Clustering based on a multi-layer mixture model. Journal of Computational and Graphical Statistics 14, 547-568.
Punzo, A., Browne, R. P. and McNicholas, P. D. (2016). Hypothesis testing for mixture model selection. Journal of Statistical Computation and Simulation. 86, 2797-2818
Aitkin, M. and Wilson, G. T. (1980). Mixture models, outliers, and the EM algorithm. Technometrics 22, 325-331.
Holzmann, H., Munk, A. and Gneiting, T. (2006). Identifiability of finite mixtures of elliptical distributions. Scandinavian Journal of Statistics 33, 753-763.
Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803-821.
Celeux, G., Hurn, M. and Robert, C. P. (2000). Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association 95, 957-970.
Yao, W., Wei, Y. and Yu, C. (2014). Robust mixture regression using the t-distribution. Computational Statistics and Data Analysis 71, 116-127.
García-Escudero, L. A., Gordaliza, A., Matrán, C. and Mayo-Iscar, A. (2008). A general trimming approach to robust cluster analysis. The Annals of Statistics 36, 1324-1345.
Ruwet, C., García-Escudero, L. A., Gordaliza, A. and Mayo-Iscar, A. (2012). The influence function of the tclust robust clustering procedure. Advances in Data Analysis and Classification 6, 107-130.
Crawford, S. L. (1994). An application of the laplace method to finite mixture distributions. Journal of the American Statistical Association 89, 259-267.
Campbell, N. A. and Mahon, R. J. (1974). A multivariate study of variation in two species of rock crab of genus Leptograpsus. Australian Journal of Zoology 22, 417-425.
De Veaux, R. D. and Krieger, A. M. (1990). Robust estimation of a normal mixture. Statistics and Probability Letters 10, 1-7.
Di Zio, M., Guarnera, U. and Rocci, R. (2007). A mixture of mixture models for a classification problem: the unity measure error. Computational Statistics and Data Analysis 51, 2573-2585.
Flury, B. N. and Gautschi, W. (1986). An algorithm for simultaneous orthogonal transformation of several positive definite matrices to nearly diagonal form. SIAM Journal on Scientific and Statistical Computing 7, 169-184.
Little, R. J. A. (1988). Robust estimation of the mean and covariance matrix from data with missing values. Applied Statistics 37, 23-38.
Böhning, D. and Ruangroj, R. (2002). A note on the maximum deviation of the scale-contaminated normal to the best normal distribution. Metrika 55, 177-182.
García-Escudero, L. A., Gordaliza, A. and Matrán, C. (2003). Trimming tools in exploratory data analysis. Journal of Computational and Graphical Statistics 12, 434-449.
Hurley, C. (2004). Clustering visualizations of multivariate data. Journal of Computational and Graphical Statistics 13, 788-806.
Bagnato, L. and Punzo, A. (2013). Finite mixtures of unimodal beta and gamma densities and the k-bumps algorithm. Computational Statistics 28, 1571-1597.
Lo, Y. (2008). A likelihood ratio test of a homoscedastic normal mixture against a heteroscedastic normal mixture. Statistics and Computing 18, 233-240.
McLachlan, G. J. and Basford, K. E. (1988). Mixture Models: Inference and Applications to Clustering. Marcel Dekker, New York, NY.
Aggarwal, C. C. (2013). Outlier Analysis. Springer, New York, NY.
Ingrassia, S. (2004). A likelihood-based constrained algorithm for multivariate normal mixture models. Statistical Methods and Applications 13, 151-166.
García-Escudero, L. A. and Gordaliza, A. (1999). Robustness properties of k means and trimmed k means. Journal of the American Statistical Association 94, 956-969.
Gallegos, M. T. and Ritter, G. (2009). Trimmed ML estimation of contaminated mixtures. Sankhyā: The Indian Journal of Statistics, Series A 71, 164-220.
Davies, L. and Gather, U. (1993). The identification of multiple outliers. Journal of the American Statistical Association 88, 782-792.
Karlis, D. and Xekalaki, E. (2003). Choosing initial values for the EM algorithm for finite mixtures. Computational Statistics and Data Analysis 41, 577-590.
Campbell, N. A. (1984). Mixture models and atypical values. Mathematical Geology 16, 465-477.
Peel, D. and McLachlan, G. J. (2000). Robust mixture modelling using the t distribution. Statistics and Computing 10, 339-348.
Gerogiannis, D., Nikou, C. and Likas, A. (2009). The mixtures of Student's t-distributions as a robust framework for rigid registration. Image and Vision Computing 27, 1285-1294.
García-Escudero, L. A., Gordaliza, A., Matrán, C. and Mayo-Iscar, A. (2010). A review of robust clustering methods. Advances in Data Analysis and Classification 4, 89-109.
Coretto, P. and Hennig, C. (2011). Maximum likelihood estimation of heterogeneous mixtures of Gaussian and uniform distributions. Journal of Statistical Planning and Inference 141, 462-473.
Verdinelli, I. and Wasserman, L. (1991). Bayesian analysis of outlier problems using the Gibbs sampler. Statistics and Computing 1, 105-117.
Böhning, D. (2000). Computer-assisted analysis of mixtures and applications: meta-analysis, disease mapping and others. Vol. 81 of Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, London, UK.
McNicholas, P. D., Murphy, T. B., McDaid, A. F. and Frost, D. (2010). Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models. Computational Statistics and Data Analysis 54, 711-723.
Teicher, H. (1963). Identifiability of finite mixtures. Annals of Mathematical Statistics 34, 1265-1269.
Yakowitz, S. J. and Spragins, J. D. (1968). On the identifiability of finite mixtures. The Annals of Mathematical Statistics 39, 209-214.
Browne, R. P., McNicholas, P. D. and Sparling, M. D. (2012). Model-based learning using a mixture of mixtures of Gaussian and uniform distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 814-817.
Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. Wiley Series in Probability & Statistics. Chichester, UK: John Wiley & Sons.
Böhning, D., Dietz, E., Schaub, R., Schlattmann, P. and Lindsay, B. (1994). The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family. Annals of the Institute of Statistical Mathematics 46, 373-388.
Ritter, G. (2015). Robust Cluster Analysis and Variable Selection. Vol. 137 of Chapman & Hall/CRC Monographs on Statistics & Applied Probability. CRC Press: Boca Raton, FL.
Andrews, J. L. and McNicholas, P. D. (2012). Model-based clustering, classification, and discriminant analysis with the multivariate t-distribution: the tEIGEN family. Statistics and Computing 22, 1021-10
2010; 54
1990; 10
2013; 28
2002; 19
2013; 22
2006; 33
2000; 9
1988; 37
2002; 55
2008; 36
2000; 95
2011; 55
2010; 140
1998; 41
2001; 88
2012; 56
1978; 6
2003; 12
2004; 32
1963; 34
1995; 28
1986; 7
2000
1984; 16
1977; 39
2000; 56
1995; 25
2000; 10
1926; 45
2016; 86
2000; 62
1993; 80
2005; 71
1999; 94
1998; 93
2014; 8
2012; 22
2003; 41
2010; 4
2005; 33
1988
1991; 1
1993; 49
2012
1985; 2
2002; 5
1993; 88
2008; 18
1997; 25
1980; 22
1988; 17
1994; 89
1998
2008
2007
1994; 46
1994
2004
2007; 51
1996; 58
2012; 34
2009; 27
1974; 22
1968; 39
2009; 71
1986; 23
2004; 13
1965
2016
2015
1960
2013
2011; 141
2012; 6
2003; 61
2014; 71
2005; 14
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_91_1
McLachlan G. J. (e_1_2_11_72_1) 1988
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_74_1
e_1_2_11_13_1
Hawkins D. (e_1_2_11_53_1) 2013
e_1_2_11_34_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Bock H. H. (e_1_2_11_17_1) 2002; 5
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_81_1
García‐Escudero L. A. (e_1_2_11_45_1) 1999; 94
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_87_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_85_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
McLachlan G. J. (e_1_2_11_73_1) 1998
e_1_2_11_94_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
Ritter G. (e_1_2_11_84_1) 2015
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
McLachlan G. (e_1_2_11_71_1) 2007
e_1_2_11_75_1
e_1_2_11_7_1
Gallegos M. T. (e_1_2_11_44_1) 2009; 71
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Dempster A. P. (e_1_2_11_36_1) 1977; 39
e_1_2_11_82_1
e_1_2_11_61_1
e_1_2_11_80_1
Tukey J. W. (e_1_2_11_90_1) 1960
Böhning D. (e_1_2_11_18_1) 2000
e_1_2_11_21_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
Hastie T. (e_1_2_11_51_1) 1996; 58
e_1_2_11_16_1
e_1_2_11_37_1
Barnett V. (e_1_2_11_10_1) 1994
e_1_2_11_39_1
References_xml – reference: Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology 25, 111-164.
– reference: García-Escudero, L. A., Gordaliza, A., Matrán, C. and Mayo-Iscar, A. (2010). A review of robust clustering methods. Advances in Data Analysis and Classification 4, 89-109.
– reference: Browne, R. P., McNicholas, P. D. and Sparling, M. D. (2012). Model-based learning using a mixture of mixtures of Gaussian and uniform distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 814-817.
– reference: Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B 39, 1-38.
– reference: Lo, Y. (2008). A likelihood ratio test of a homoscedastic normal mixture against a heteroscedastic normal mixture. Statistics and Computing 18, 233-240.
– reference: Aitkin, M. and Wilson, G. T. (1980). Mixture models, outliers, and the EM algorithm. Technometrics 22, 325-331.
– reference: Böhning, D. and Ruangroj, R. (2002). A note on the maximum deviation of the scale-contaminated normal to the best normal distribution. Metrika 55, 177-182.
– reference: Ingrassia, S. and Rocci, R. (2011). Degeneracy of the EM algorithm for the mle of multivariate Gaussian mixtures and dynamic constraints. Computational Statistics and Data Analysis 55, 1715-1725.
– reference: Cuesta-Albertos, J. A., Gordaliza, A. and Matrán, C. (1997). Trimmed k-means: An attempt to robustify quantizers. The Annals of Statistics 25, 553-576.
– reference: Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803-821.
– reference: Flury, B. N. and Gautschi, W. (1986). An algorithm for simultaneous orthogonal transformation of several positive definite matrices to nearly diagonal form. SIAM Journal on Scientific and Statistical Computing 7, 169-184.
– reference: Di Zio, M., Guarnera, U. and Rocci, R. (2007). A mixture of mixture models for a classification problem: the unity measure error. Computational Statistics and Data Analysis 51, 2573-2585.
– reference: Hartigan, J. A. (1985). Statistical theory in clustering. Journal of Classification 2, 63-76.
– reference: García-Escudero, L. A. and Gordaliza, A. (1999). Robustness properties of k means and trimmed k means. Journal of the American Statistical Association 94, 956-969.
– reference: Hurley, C. (2004). Clustering visualizations of multivariate data. Journal of Computational and Graphical Statistics 13, 788-806.
– reference: Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267-278.
– reference: McNicholas, P. D., Murphy, T. B., McDaid, A. F. and Frost, D. (2010). Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models. Computational Statistics and Data Analysis 54, 711-723.
– reference: Ritter, G. (2015). Robust Cluster Analysis and Variable Selection. Vol. 137 of Chapman & Hall/CRC Monographs on Statistics & Applied Probability. CRC Press: Boca Raton, FL.
– reference: Hawkins, D. (2013). Identification of Outliers. Monographs on Statistics and Applied Probability. Springer, The Netherlands.
– reference: Gallegos, M. T. and Ritter, G. (2005). A robust method for cluster analysis. The Annals of Statistics 33, 347-380.
– reference: Coretto, P. and Hennig, C. (2011). Maximum likelihood estimation of heterogeneous mixtures of Gaussian and uniform distributions. Journal of Statistical Planning and Inference 141, 462-473.
– reference: Ruwet, C., García-Escudero, L. A., Gordaliza, A. and Mayo-Iscar, A. (2012). The influence function of the tclust robust clustering procedure. Advances in Data Analysis and Classification 6, 107-130.
– reference: Böhning, D. (2000). Computer-assisted analysis of mixtures and applications: meta-analysis, disease mapping and others. Vol. 81 of Monographs on Statistics and Applied Probability. Chapman & Hall/CRC, London, UK.
– reference: Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461-464.
– reference: Stephens, M. (2000). Dealing with label switching in mixture models. Journal of the Royal Statistical Society. Series B: Statistical Methodology 62, 795-809.
– reference: Ruwet, C., García-Escudero, L. A., Gordaliza, A. and Mayo-Iscar, A. (2013). On the breakdown behavior of the tclust clustering procedure. Test 22, 466-487.
– reference: Gerogiannis, D., Nikou, C. and Likas, A. (2009). The mixtures of Student's t-distributions as a robust framework for rigid registration. Image and Vision Computing 27, 1285-1294.
– reference: Aitken, A. (1926). A series formula for the roots of algebraic and transcendental equations. Proceedings of the Royal Society of Edinburgh. 45 14-22.
– reference: Bagnato, L. and Punzo, A. (2013). Finite mixtures of unimodal beta and gamma densities and the k-bumps algorithm. Computational Statistics 28, 1571-1597.
– reference: Teicher, H. (1963). Identifiability of finite mixtures. Annals of Mathematical Statistics 34, 1265-1269.
– reference: Fraley, C. and Raftery, A. E. (1998). How many clusters? Which clustering method? Answers via model-based cluster analysis. Computer Journal 41, 578-588.
– reference: Crawford, S. L. (1994). An application of the laplace method to finite mixture distributions. Journal of the American Statistical Association 89, 259-267.
– reference: McLachlan, G. J. and Basford, K. E. (1988). Mixture Models: Inference and Applications to Clustering. Marcel Dekker, New York, NY.
– reference: Peel, D. and McLachlan, G. J. (2000). Robust mixture modelling using the t distribution. Statistics and Computing 10, 339-348.
– reference: Andrews, J. L. and McNicholas, P. D. (2012). Model-based clustering, classification, and discriminant analysis with the multivariate t-distribution: the tEIGEN family. Statistics and Computing 22, 1021-1029.
– reference: Bai, X., Yao, W. and Boyer, J. E. (2012). Robust fitting of mixture regression models. Computational Statistics and Data Analysis 56, 2347-2359.
– reference: Yao, W. (2012). Model based labeling for mixture models. Statistics and Computing 22, 337-347.
– reference: García-Escudero, L. A., Gordaliza, A., Matrán, C. and Mayo-Iscar, A. (2008). A general trimming approach to robust cluster analysis. The Annals of Statistics 36, 1324-1345.
– reference: Karlis, D. and Xekalaki, E. (2003). Choosing initial values for the EM algorithm for finite mixtures. Computational Statistics and Data Analysis 41, 577-590.
– reference: Markatou, M. (2000). Mixture models, robustness, and the weighted likelihood methodology. Biometrics 56, 483-486.
– reference: Yao, W., Wei, Y. and Yu, C. (2014). Robust mixture regression using the t-distribution. Computational Statistics and Data Analysis 71, 116-127.
– reference: Yakowitz, S. J. and Spragins, J. D. (1968). On the identifiability of finite mixtures. The Annals of Mathematical Statistics 39, 209-214.
– reference: Gallegos, M. T. and Ritter, G. (2009). Trimmed ML estimation of contaminated mixtures. Sankhyā: The Indian Journal of Statistics, Series A 71, 164-220.
– reference: McNicholas, P. D. (2016). Mixture Model-Based Classification. Chapman & Hall/CRC Press, Boca Raton, FL.
– reference: Becker, C. and Gather, U. (1999). The masking breakdown point of multivariate outlier identification rules. Journal of the American Statistical Association 94, 947-955.
– reference: Hennig, C. (2002). Fixed point clusters for linear regression: computation and comparison. Journal of Classification 19, 249-276.
– reference: Byers, S. and Raftery, A. E. (1998). Nearest-neighbor clutter removal for estimating features in spatial point processes. Journal of the American Statistical Association 93, 577-584.
– reference: Campbell, N. A. and Mahon, R. J. (1974). A multivariate study of variation in two species of rock crab of genus Leptograpsus. Australian Journal of Zoology 22, 417-425.
– reference: Campbell, N. A. (1984). Mixture models and atypical values. Mathematical Geology 16, 465-477.
– reference: Li, J. (2005). Clustering based on a multi-layer mixture model. Journal of Computational and Graphical Statistics 14, 547-568.
– reference: Holzmann, H., Munk, A. and Gneiting, T. (2006). Identifiability of finite mixtures of elliptical distributions. Scandinavian Journal of Statistics 33, 753-763.
– reference: Lo, Y. (2005). Likelihood ratio tests of the number of components in a normal mixture with unequal variances. Statistics and Probability Letters 71, 225-235.
– reference: Aggarwal, C. C. (2013). Outlier Analysis. Springer, New York, NY.
– reference: McNicholas, P. D. (2010). Model-based classification using latent Gaussian mixture models. Journal of Statistical Planning and Inference 140, 1175-1181.
– reference: Ingrassia, S. (2004). A likelihood-based constrained algorithm for multivariate normal mixture models. Statistical Methods and Applications 13, 151-166.
– reference: García-Escudero, L. A., Gordaliza, A. and Matrán, C. (2003). Trimming tools in exploratory data analysis. Journal of Computational and Graphical Statistics 12, 434-449.
– reference: Böhning, D., Dietz, E., Schaub, R., Schlattmann, P. and Lindsay, B. (1994). The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family. Annals of the Institute of Statistical Mathematics 46, 373-388.
– reference: Bock, H. H. (2002). Clustering methods: from classical models to new approaches. Statistics in Transition 5, 725-758.
– reference: De Veaux, R. D. and Krieger, A. M. (1990). Robust estimation of a normal mixture. Statistics and Probability Letters 10, 1-7.
– reference: Hastie, T. and Tibshirani, R. (1996). Discriminant analysis by Gaussian mixtures. Journal of the Royal Statistical Society: Series B 58, 155-176.
– reference: Celeux, G., Hurn, M. and Robert, C. P. (2000). Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association 95, 957-970.
– reference: Lo, Y., Mendell, N. R. and Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika 88, 767-778.
– reference: Punzo, A., Browne, R. P. and McNicholas, P. D. (2016). Hypothesis testing for mixture model selection. Journal of Statistical Computation and Simulation. 86, 2797-2818
– reference: Little, R. J. A. (1988). Robust estimation of the mean and covariance matrix from data with missing values. Applied Statistics 37, 23-38.
– reference: Biernacki, C. and Chrétien, S. (2003). Degeneracy in the maximum likelihood estimation of univariate Gaussian mixtures with EM. Statistics and Probability Letters 61, 373-382.
– reference: Davies, L. and Gather, U. (1993). The identification of multiple outliers. Journal of the American Statistical Association 88, 782-792.
– reference: McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models. John Wiley & Sons, New York, NY.
– reference: Berkane, M. and Bentler, P. M. (1988). Estimation of contamination parameters and identification of outliers in multivariate data. Sociological Methods and Research 17, 55-64.
– reference: Verdinelli, I. and Wasserman, L. (1991). Bayesian analysis of outlier problems using the Gibbs sampler. Statistics and Computing 1, 105-117.
– reference: Browne, R. P. and McNicholas, P. D. (2014). Estimating common principal components in high dimensions. Advances in Data Analysis and Classification 8, 217-226.
– reference: Hathaway, R. J. (1986). A constrained EM algorithm for univariate normal mixtures. Journal of Statistical Computation and Simulation 23, 211-230.
– reference: Ingrassia, S. and Rocci, R. (2007). Constrained monotone em algorithms for finite mixture of multivariate Gaussians. Computational Statistics and Data Analysis 51, 5339-5351.
– reference: Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. Wiley Series in Probability & Statistics. Chichester, UK: John Wiley & Sons.
– reference: Hennig, C. (2004). Breakdown points for maximum likelihood estimators of location-scale mixtures. The Annals of Statistics 32, 1313-1340.
– reference: Hunter, D. R. and Lange, K. (2000). Rejoinder to discussion of "optimization transfer using surrogate objective functions. Journal of Computational and Graphical Statistics 9, 52-59.
– reference: Biernacki, C., Celeux, G. and Govaert, G. (2003). Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Computational Statistics and Data Analysis 41, 561-575.
– reference: Celeux, G. and Govaert, G. (1995). Gaussian parsimonious clustering models. Pattern Recognition 28, 781-793.
– volume: 16
  start-page: 465
  year: 1984
  end-page: 477
  article-title: Mixture models and atypical values
  publication-title: Mathematical Geology
– volume: 51
  start-page: 5339
  year: 2007
  end-page: 5351
  article-title: Constrained monotone em algorithms for finite mixture of multivariate Gaussians
  publication-title: Computational Statistics and Data Analysis
– volume: 28
  start-page: 781
  year: 1995
  end-page: 793
  article-title: Gaussian parsimonious clustering models
  publication-title: Pattern Recognition
– volume: 37
  start-page: 23
  year: 1988
  end-page: 38
  article-title: Robust estimation of the mean and covariance matrix from data with missing values
  publication-title: Applied Statistics
– volume: 93
  start-page: 577
  year: 1998
  end-page: 584
  article-title: Nearest‐neighbor clutter removal for estimating features in spatial point processes
  publication-title: Journal of the American Statistical Association
– volume: 8
  start-page: 217
  year: 2014
  end-page: 226
  article-title: Estimating common principal components in high dimensions
  publication-title: Advances in Data Analysis and Classification
– volume: 25
  start-page: 111
  year: 1995
  end-page: 164
  article-title: Bayesian model selection in social research
  publication-title: Sociological Methodology
– volume: 28
  start-page: 1571
  year: 2013
  end-page: 1597
  article-title: Finite mixtures of unimodal beta and gamma densities and the ‐bumps algorithm
  publication-title: Computational Statistics
– volume: 45
  start-page: 14
  year: 1926
  end-page: 22
  article-title: A series formula for the roots of algebraic and transcendental equations
  publication-title: Proceedings of the Royal Society of Edinburgh
– year: 1994
– volume: 10
  start-page: 339
  year: 2000
  end-page: 348
  article-title: Robust mixture modelling using the distribution
  publication-title: Statistics and Computing
– year: 1998
– volume: 56
  start-page: 483
  year: 2000
  end-page: 486
  article-title: Mixture models, robustness, and the weighted likelihood methodology
  publication-title: Biometrics
– volume: 1
  start-page: 105
  year: 1991
  end-page: 117
  article-title: Bayesian analysis of outlier problems using the Gibbs sampler
  publication-title: Statistics and Computing
– volume: 80
  start-page: 267
  year: 1993
  end-page: 278
  article-title: Maximum likelihood estimation via the ECM algorithm: a general framework
  publication-title: Biometrika
– volume: 22
  start-page: 417
  year: 1974
  end-page: 425
  article-title: A multivariate study of variation in two species of rock crab of genus Leptograpsus
  publication-title: Australian Journal of Zoology
– volume: 95
  start-page: 957
  year: 2000
  end-page: 970
  article-title: Computational and inferential difficulties with mixture posterior distributions
  publication-title: Journal of the American Statistical Association
– volume: 2
  start-page: 63
  year: 1985
  end-page: 76
  article-title: Statistical theory in clustering
  publication-title: Journal of Classification
– volume: 56
  start-page: 2347
  year: 2012
  end-page: 2359
  article-title: Robust fitting of mixture regression models
  publication-title: Computational Statistics and Data Analysis
– volume: 25
  start-page: 553
  year: 1997
  end-page: 576
  article-title: Trimmed ‐means: An attempt to robustify quantizers
  publication-title: The Annals of Statistics
– volume: 62
  start-page: 795
  year: 2000
  end-page: 809
  article-title: Dealing with label switching in mixture models
  publication-title: Journal of the Royal Statistical Society. Series B: Statistical Methodology
– year: 1965
– volume: 88
  start-page: 767
  year: 2001
  end-page: 778
  article-title: Testing the number of components in a normal mixture
  publication-title: Biometrika
– year: 2008
– volume: 13
  start-page: 151
  year: 2004
  end-page: 166
  article-title: A likelihood‐based constrained algorithm for multivariate normal mixture models
  publication-title: Statistical Methods and Applications
– year: 2004
– volume: 34
  start-page: 814
  year: 2012
  end-page: 817
  article-title: Model‐based learning using a mixture of mixtures of Gaussian and uniform distributions
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 41
  start-page: 577
  year: 2003
  end-page: 590
  article-title: Choosing initial values for the EM algorithm for finite mixtures
  publication-title: Computational Statistics and Data Analysis
– volume: 49
  start-page: 803
  year: 1993
  end-page: 821
  article-title: Model‐based Gaussian and non‐Gaussian clustering
  publication-title: Biometrics
– volume: 51
  start-page: 2573
  year: 2007
  end-page: 2585
  article-title: A mixture of mixture models for a classification problem: the unity measure error
  publication-title: Computational Statistics and Data Analysis
– start-page: 448
  year: 1960
  end-page: 485
– volume: 22
  start-page: 1021
  year: 2012
  end-page: 1029
  article-title: Model‐based clustering, classification, and discriminant analysis with the multivariate ‐distribution: the EIGEN family
  publication-title: Statistics and Computing
– volume: 27
  start-page: 1285
  year: 2009
  end-page: 1294
  article-title: The mixtures of Student's t‐distributions as a robust framework for rigid registration
  publication-title: Image and Vision Computing
– volume: 86
  start-page: 2797
  year: 2016
  end-page: 2818
  article-title: Hypothesis testing for mixture model selection
  publication-title: Journal of Statistical Computation and Simulation
– volume: 23
  start-page: 211
  year: 1986
  end-page: 230
  article-title: A constrained EM algorithm for univariate normal mixtures
  publication-title: Journal of Statistical Computation and Simulation
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 18
  start-page: 233
  year: 2008
  end-page: 240
  article-title: A likelihood ratio test of a homoscedastic normal mixture against a heteroscedastic normal mixture
  publication-title: Statistics and Computing
– year: 2015
– volume: 5
  start-page: 725
  year: 2002
  end-page: 758
  article-title: Clustering methods: from classical models to new approaches
  publication-title: Statistics in Transition
– volume: 10
  start-page: 1
  year: 1990
  end-page: 7
  article-title: Robust estimation of a normal mixture
  publication-title: Statistics and Probability Letters
– volume: 71
  start-page: 225
  year: 2005
  end-page: 235
  article-title: Likelihood ratio tests of the number of components in a normal mixture with unequal variances
  publication-title: Statistics and Probability Letters
– volume: 12
  start-page: 434
  year: 2003
  end-page: 449
  article-title: Trimming tools in exploratory data analysis
  publication-title: Journal of Computational and Graphical Statistics
– volume: 94
  start-page: 947
  year: 1999
  end-page: 955
  article-title: The masking breakdown point of multivariate outlier identification rules
  publication-title: Journal of the American Statistical Association
– volume: 13
  start-page: 788
  year: 2004
  end-page: 806
  article-title: Clustering visualizations of multivariate data
  publication-title: Journal of Computational and Graphical Statistics
– volume: 17
  start-page: 55
  year: 1988
  end-page: 64
  article-title: Estimation of contamination parameters and identification of outliers in multivariate data
  publication-title: Sociological Methods and Research
– volume: 71
  start-page: 164
  year: 2009
  end-page: 220
  article-title: Trimmed ML estimation of contaminated mixtures
  publication-title: Sankhyā: The Indian Journal of Statistics, Series A
– volume: 71
  start-page: 116
  year: 2014
  end-page: 127
  article-title: Robust mixture regression using the ‐distribution
  publication-title: Computational Statistics and Data Analysis
– volume: 41
  start-page: 561
  year: 2003
  end-page: 575
  article-title: Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models
  publication-title: Computational Statistics and Data Analysis
– volume: 141
  start-page: 462
  year: 2011
  end-page: 473
  article-title: Maximum likelihood estimation of heterogeneous mixtures of Gaussian and uniform distributions
  publication-title: Journal of Statistical Planning and Inference
– volume: 58
  start-page: 155
  year: 1996
  end-page: 176
  article-title: Discriminant analysis by Gaussian mixtures
  publication-title: Journal of the Royal Statistical Society: Series B
– year: 2007
– start-page: 658
  year: 1998
  end-page: 666
– year: 2000
– volume: 36
  start-page: 1324
  year: 2008
  end-page: 1345
  article-title: A general trimming approach to robust cluster analysis
  publication-title: The Annals of Statistics
– volume: 33
  start-page: 347
  year: 2005
  end-page: 380
  article-title: A robust method for cluster analysis
  publication-title: The Annals of Statistics
– year: 2016
– volume: 4
  start-page: 89
  year: 2010
  end-page: 109
  article-title: A review of robust clustering methods
  publication-title: Advances in Data Analysis and Classification
– volume: 6
  start-page: 107
  year: 2012
  end-page: 130
  article-title: The influence function of the tclust robust clustering procedure
  publication-title: Advances in Data Analysis and Classification
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
– year: 2012
– volume: 89
  start-page: 259
  year: 1994
  end-page: 267
  article-title: An application of the laplace method to finite mixture distributions
  publication-title: Journal of the American Statistical Association
– volume: 22
  start-page: 325
  year: 1980
  end-page: 331
  article-title: Mixture models, outliers, and the EM algorithm
  publication-title: Technometrics
– volume: 7
  start-page: 169
  year: 1986
  end-page: 184
  article-title: An algorithm for simultaneous orthogonal transformation of several positive definite matrices to nearly diagonal form
  publication-title: SIAM Journal on Scientific and Statistical Computing
– volume: 55
  start-page: 177
  year: 2002
  end-page: 182
  article-title: A note on the maximum deviation of the scale‐contaminated normal to the best normal distribution
  publication-title: Metrika
– volume: 33
  start-page: 753
  year: 2006
  end-page: 763
  article-title: Identifiability of finite mixtures of elliptical distributions
  publication-title: Scandinavian Journal of Statistics
– volume: 34
  start-page: 1265
  year: 1963
  end-page: 1269
  article-title: Identifiability of finite mixtures
  publication-title: Annals of Mathematical Statistics
– volume: 55
  start-page: 1715
  year: 2011
  end-page: 1725
  article-title: Degeneracy of the EM algorithm for the mle of multivariate Gaussian mixtures and dynamic constraints
  publication-title: Computational Statistics and Data Analysis
– year: 1988
– volume: 140
  start-page: 1175
  year: 2010
  end-page: 1181
  article-title: Model‐based classification using latent Gaussian mixture models
  publication-title: Journal of Statistical Planning and Inference
– volume: 61
  start-page: 373
  year: 2003
  end-page: 382
  article-title: Degeneracy in the maximum likelihood estimation of univariate Gaussian mixtures with EM
  publication-title: Statistics and Probability Letters
– volume: 39
  start-page: 209
  year: 1968
  end-page: 214
  article-title: On the identifiability of finite mixtures
  publication-title: The Annals of Mathematical Statistics
– volume: 19
  start-page: 249
  year: 2002
  end-page: 276
  article-title: Fixed point clusters for linear regression: computation and comparison
  publication-title: Journal of Classification
– volume: 88
  start-page: 782
  year: 1993
  end-page: 792
  article-title: The identification of multiple outliers
  publication-title: Journal of the American Statistical Association
– volume: 9
  start-page: 52
  year: 2000
  end-page: 59
  article-title: Rejoinder to discussion of “optimization transfer using surrogate objective functions
  publication-title: Journal of Computational and Graphical Statistics
– volume: 54
  start-page: 711
  year: 2010
  end-page: 723
  article-title: Serial and parallel implementations of model‐based clustering via parsimonious Gaussian mixture models
  publication-title: Computational Statistics and Data Analysis
– volume: 22
  start-page: 337
  year: 2012
  end-page: 347
  article-title: Model based labeling for mixture models
  publication-title: Statistics and Computing
– volume: 22
  start-page: 466
  year: 2013
  end-page: 487
  article-title: On the breakdown behavior of the tclust clustering procedure
  publication-title: Test
– volume: 46
  start-page: 373
  year: 1994
  end-page: 388
  article-title: The distribution of the likelihood ratio for mixtures of densities from the one‐parameter exponential family
  publication-title: Annals of the Institute of Statistical Mathematics
– volume: 32
  start-page: 1313
  year: 2004
  end-page: 1340
  article-title: Breakdown points for maximum likelihood estimators of location‐scale mixtures
  publication-title: The Annals of Statistics
– volume: 41
  start-page: 578
  year: 1998
  end-page: 588
  article-title: How many clusters? Which clustering method? Answers via model‐based cluster analysis
  publication-title: Computer Journal
– volume: 14
  start-page: 547
  year: 2005
  end-page: 568
  article-title: Clustering based on a multi‐layer mixture model
  publication-title: Journal of Computational and Graphical Statistics
– year: 2013
– volume: 94
  start-page: 956
  year: 1999
  end-page: 969
  article-title: Robustness properties of means and trimmed means
  publication-title: Journal of the American Statistical Association
– ident: e_1_2_11_35_1
  doi: 10.1016/0167-7152(90)90104-F
– ident: e_1_2_11_29_1
  doi: 10.1080/01621459.2000.10474285
– ident: e_1_2_11_41_1
– ident: e_1_2_11_74_1
  doi: 10.1002/0471721182
– ident: e_1_2_11_24_1
– ident: e_1_2_11_67_1
  doi: 10.1016/j.spl.2004.11.007
– ident: e_1_2_11_88_1
  doi: 10.1111/1467-9868.00265
– ident: e_1_2_11_5_1
  doi: 10.1007/s11222-011-9272-x
– volume: 94
  start-page: 956
  year: 1999
  ident: e_1_2_11_45_1
  article-title: Robustness properties of k means and trimmed k means
  publication-title: Journal of the American Statistical Association
– ident: e_1_2_11_39_1
– ident: e_1_2_11_76_1
  doi: 10.1201/9781315373577
– ident: e_1_2_11_80_1
  doi: 10.1080/00949655.2015.1131282
– ident: e_1_2_11_27_1
  doi: 10.1071/ZO9740417
– ident: e_1_2_11_7_1
  doi: 10.1007/s00180-012-0367-4
– ident: e_1_2_11_52_1
  doi: 10.1080/00949658608810872
– ident: e_1_2_11_54_1
  doi: 10.1007/s00357-001-0045-7
– volume-title: Identification of Outliers. Monographs on Statistics and Applied Probability
  year: 2013
  ident: e_1_2_11_53_1
– ident: e_1_2_11_55_1
  doi: 10.1214/009053604000000571
– ident: e_1_2_11_81_1
– ident: e_1_2_11_37_1
  doi: 10.1016/j.csda.2006.01.001
– ident: e_1_2_11_61_1
  doi: 10.1016/j.csda.2006.10.011
– ident: e_1_2_11_48_1
  doi: 10.1007/s11634-010-0064-5
– ident: e_1_2_11_8_1
  doi: 10.1016/j.csda.2012.01.016
– ident: e_1_2_11_86_1
  doi: 10.1007/s11749-012-0312-4
– ident: e_1_2_11_75_1
  doi: 10.1016/j.jspi.2009.11.006
– volume: 5
  start-page: 725
  year: 2002
  ident: e_1_2_11_17_1
  article-title: Clustering methods: from classical models to new approaches
  publication-title: Statistics in Transition
– ident: e_1_2_11_28_1
  doi: 10.1016/0031-3203(94)00125-6
– ident: e_1_2_11_6_1
– ident: e_1_2_11_83_1
  doi: 10.2307/271063
– ident: e_1_2_11_65_1
  doi: 10.1198/106186005X59586
– ident: e_1_2_11_32_1
  doi: 10.1080/01621459.1994.10476467
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_2_11_36_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_11_40_1
  doi: 10.1093/comjnl/41.8.578
– ident: e_1_2_11_20_1
  doi: 10.1007/s001840100138
– ident: e_1_2_11_69_1
  doi: 10.1093/biomet/88.3.767
– volume-title: Vol. 382 of Wiley Series in Probability and Statistics
  year: 2007
  ident: e_1_2_11_71_1
– ident: e_1_2_11_91_1
  doi: 10.1007/BF01889985
– ident: e_1_2_11_30_1
  doi: 10.1016/j.jspi.2010.06.024
– ident: e_1_2_11_58_1
  doi: 10.1080/10618600.2000.10474865
– ident: e_1_2_11_57_1
  doi: 10.1111/j.1467-9469.2006.00505.x
– ident: e_1_2_11_62_1
  doi: 10.1016/j.csda.2010.10.026
– ident: e_1_2_11_68_1
  doi: 10.1007/s11222-008-9052-4
– ident: e_1_2_11_79_1
  doi: 10.1023/A:1008981510081
– ident: e_1_2_11_22_1
– ident: e_1_2_11_2_1
  doi: 10.1007/978-1-4614-6396-2
– ident: e_1_2_11_13_1
– ident: e_1_2_11_19_1
  doi: 10.1007/BF01720593
– ident: e_1_2_11_43_1
  doi: 10.1214/009053604000000940
– ident: e_1_2_11_89_1
  doi: 10.1214/aoms/1177703862
– volume-title: Computer‐assisted analysis of mixtures and applications: meta‐analysis, disease mapping and others. Vol. 81 of Monographs on Statistics and Applied Probability
  year: 2000
  ident: e_1_2_11_18_1
  doi: 10.1080/00401706.2000.10485740
– ident: e_1_2_11_26_1
  doi: 10.1007/BF01886327
– ident: e_1_2_11_9_1
  doi: 10.2307/2532201
– ident: e_1_2_11_82_1
– ident: e_1_2_11_92_1
  doi: 10.21236/AD0620026
– ident: e_1_2_11_70_1
  doi: 10.1111/j.0006-341X.2000.00483.x
– ident: e_1_2_11_78_1
  doi: 10.1093/biomet/80.2.267
– ident: e_1_2_11_66_1
  doi: 10.2307/2347491
– volume-title: Robust Cluster Analysis and Variable Selection. Vol. 137 of Chapman & Hall/CRC Monographs on Statistics & Applied Probability
  year: 2015
  ident: e_1_2_11_84_1
– start-page: 448
  volume-title: Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford Studies in Mathematics and Statistics
  year: 1960
  ident: e_1_2_11_90_1
– ident: e_1_2_11_4_1
  doi: 10.1080/00401706.1980.10486163
– ident: e_1_2_11_60_1
  doi: 10.1007/s10260-004-0092-4
– ident: e_1_2_11_47_1
  doi: 10.1214/07-AOS515
– ident: e_1_2_11_3_1
  doi: 10.1017/S0370164600024871
– ident: e_1_2_11_77_1
  doi: 10.1016/j.csda.2009.02.011
– ident: e_1_2_11_25_1
  doi: 10.1080/01621459.1998.10473711
– ident: e_1_2_11_33_1
  doi: 10.1214/aos/1031833664
– volume-title: Mixture Models: Inference and Applications to Clustering
  year: 1988
  ident: e_1_2_11_72_1
– ident: e_1_2_11_94_1
  doi: 10.1007/s11222-010-9226-8
– ident: e_1_2_11_42_1
– ident: e_1_2_11_16_1
  doi: 10.1016/S0167-7152(02)00396-6
– ident: e_1_2_11_46_1
  doi: 10.1198/1061860031806
– ident: e_1_2_11_15_1
– ident: e_1_2_11_11_1
  doi: 10.1080/01621459.1999.10474199
– ident: e_1_2_11_14_1
  doi: 10.1016/S0167-9473(02)00163-9
– ident: e_1_2_11_21_1
  doi: 10.1007/s11634-013-0139-1
– ident: e_1_2_11_31_1
– ident: e_1_2_11_34_1
  doi: 10.1080/01621459.1993.10476339
– ident: e_1_2_11_12_1
  doi: 10.1177/0049124188017001003
– ident: e_1_2_11_23_1
  doi: 10.1109/TPAMI.2011.199
– ident: e_1_2_11_38_1
  doi: 10.1137/0907013
– ident: e_1_2_11_63_1
  doi: 10.1016/S0167-9473(02)00177-9
– ident: e_1_2_11_87_1
  doi: 10.1214/aos/1176344136
– ident: e_1_2_11_95_1
  doi: 10.1016/j.csda.2013.07.019
– volume-title: Outliers in Statistical Data
  year: 1994
  ident: e_1_2_11_10_1
– ident: e_1_2_11_59_1
  doi: 10.1198/106186004X12425
– ident: e_1_2_11_64_1
– start-page: 658
  volume-title: Advances in Pattern Recognition. Vol. 1451 of Lecture Notes in Computer Science
  year: 1998
  ident: e_1_2_11_73_1
– ident: e_1_2_11_56_1
– ident: e_1_2_11_49_1
  doi: 10.1016/j.imavis.2008.11.013
– volume: 71
  start-page: 164
  year: 2009
  ident: e_1_2_11_44_1
  article-title: Trimmed ML estimation of contaminated mixtures
  publication-title: Sankhyā: The Indian Journal of Statistics, Series A
– volume: 58
  start-page: 155
  year: 1996
  ident: e_1_2_11_51_1
  article-title: Discriminant analysis by Gaussian mixtures
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.2517-6161.1996.tb02073.x
– ident: e_1_2_11_50_1
  doi: 10.1007/BF01908064
– ident: e_1_2_11_93_1
  doi: 10.1214/aoms/1177698520
– ident: e_1_2_11_85_1
  doi: 10.1007/s11634-012-0107-1
SSID ssj0009042
Score 2.4706352
Snippet A mixture of multivariate contaminated normal distributions is developed for model‐based clustering. In addition to the parameters of the classical normal...
A mixture of multivariate contaminated normal distributions is developed for model-based clustering. In addition to the parameters of the classical normal...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1506
SubjectTerms Algorithms
Cluster Analysis
Contaminated normal distribution
Contamination
EM algorithm
Mixture models
Model-based clustering
Models, Statistical
Normal Distribution
Title Parsimonious mixtures of multivariate contaminated normal distributions
URI https://api.istex.fr/ark:/67375/WNG-KJH5QNT0-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.201500144
https://www.ncbi.nlm.nih.gov/pubmed/27510372
https://www.proquest.com/docview/1834787788
https://www.proquest.com/docview/1835536426
https://www.proquest.com/docview/1846397553
Volume 58
WOSCitedRecordID wos000387148100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009042
  issn: 0323-3847
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_AnSa-KPhZBVITo08Nvf3oto_4cSDgBc2h97bZ3W6T06OYKxL4751pe8VLAGN8bSdNOzu_3d92Zn8D8MryXJpE-EgYE0fCI9KtY3kU5wPvKXHj67NVXw_VaJROJtnRH6f4G32I7ocbIaOerwngxlbbV6KhdnrynUqzJLF8sQp9hsEre9B__2V4fHglvBuLJpPAeMRxKl4IN8Zse_kJSwtTn3x8cR3rXCax9So0fPD_778G91sGGu40IbMOK758CHebnpSXj2D3CLe6OIAlFceGJ9MLSjFU4WkR1rWH57i3RnoaUom7oTIaZKxhScR3FuYkwtv2z6oew_Hww_jdXtR2W4gcsiAe5blzjsTvkVIph2D0EvcihffWIehNYZF4KJcjA1K5Y4kruMQAkC7LDImupfwJ9MrT0j-DkCUMl14lFbdOZGmRCpEJboVFuhcnzAUQLVytXStFTh0xZroRUWaanKM75wTwprP_2Yhw3Gj5uh65zszMf1DpmpL622hXH-zvyc-jcazHAWwshla3qK00Tm-kVaTSNICX3W3EGyVRTOnR72QjJcddW3KbjaB8KdoF8LQJm-6FmCINQ8XQB3V0_OWD9NuPn_YHasCf_6P9C7iHF5Pm2OQG9M7mv_wm3HHnZ9NqvgWrapJutVj5DXfSE48
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VFgQXWii0odAGqYJTRNaPODnSx7LAEgFaHjcrcRxpeQS0SxH998wk2aCVWlClnvMpiscz9ufM-BuArynPZBII64kk8T1hMdJTwzLPz9rWUuLGlnerznoqjsOLi-ioriakuzCVPkTzw40io1yvKcDph_T2s2poOri5pNosSTRfTEFLoC-hk7d-nHROe8_Ku76oUgmMexzX4rFyo8-2J98wsTO1yMiPf6Kdkyy23IY6b__DAN7BQs1B3Z3KaRbhjS2WYLbqSvn7Pewe4WEXp7Cg8lj3ZvBISYaRe5u7ZfXhA56ukaC6VOSeUCENcla3IOp77WYkw1t30Botw2nnZ_9716v7LXgGeRD3sswYQ_L3SKqUwXC0Ek8jubWpwbBP8hSphzIZciCVGRaYnEt0AWmiKCHZtZCvwHRxW9iP4LKA4earpOKpEVGYh0JEgqciRcLnB8w44I1trU0tRk49Ma51JaPMNBlHN8ZxYKvB31UyHH9FbpZT18CS4RUVrympz-NdfbDflcdx39d9B9bGc6vruB1pXOBIrUiFoQMbzWOMOEqjJIVFuxNGSo7ntuAljKCMKeIc-FD5TfNBTJGKoWJog9I9XhmQ_rZ3uN9Wbb76j_gvMNftH_Z0by8--ATzCAiqS5RrMH0__GXXYcY83A9Gw891yDwBec8Wlw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9RAEJ_onRpeAJWPImJNjD419Paj2z4qeHydzWkO4W3T7m6TEyjkDgj89860vZJL_IiJz5003dn57f62M_sbgHc5tzKLhAtEloWBcIj03DAbhLbnHCVuXHW36vtApWl8epoMm2pCugtT60O0P9wIGdV6TQB3V7bYflANzccXP6g2SxLNF4-hK6iTTAe6u9_6x4MH5d1Q1KkExgOOa_FMuTFk2_NvmNuZuuTku1_RznkWW21D_aX_MIBlWGw4qP-xDprn8MiVL-Bp3ZXy_iXsDfGwi1NYUnmsfzG-oyTD1L8s_Kr68BZP10hQfSpyz6iQBjmrXxL1PfctyfA2HbSmK3Dc_zza2Q-afguBQR7EA2uNMSR_j6RKGYSjk3gaKZzLDcI-K3KkHspY5EDKGhaZgksMAWmSJCPZtZivQqe8LN06-CxiuPkqqXhuRBIXsRCJ4LnIkfCFETMeBDNfa9OIkVNPjHNdyygzTc7RrXM8-NDaX9UyHL-1fF9NXWuWTc6oeE1JfZLu6aPDffk1HYV65MHmbG51g9upxgWO1IpUHHvwtn2MiKM0SlY69DvZSMnx3Bb9yUZQxhTtPFir46b9IKZIxVAx9EEVHn8ZkP508OWwp3p84x_t38Cz4W5fDw7So1ewgM-j-g7lJnSuJzfuNTwxt9fj6WSrQcxP4yoWEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parsimonious+mixtures+of+multivariate+contaminated+normal+distributions&rft.jtitle=Biometrical+journal&rft.au=Punzo%2C+Antonio&rft.au=McNicholas%2C+Paul+D&rft.date=2016-11-01&rft.issn=1521-4036&rft.eissn=1521-4036&rft.volume=58&rft.issue=6&rft.spage=1506&rft_id=info:doi/10.1002%2Fbimj.201500144&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon