Guidelines for preparation and flow cytometry analysis of human nonlymphoid tissue DC
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state‐of‐the‐art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from...
Gespeichert in:
| Veröffentlicht in: | European journal of immunology Jg. 55; H. 1; S. e2250325 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.01.2025
John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 0014-2980, 1521-4141, 1521-4141 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state‐of‐the‐art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single‐cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor‐draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single‐cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer‐reviewed by leading experts and approved by all co‐authors, making it an essential resource for basic and clinical DC immunologists.
We here provide detailed protocols for isolating single cell suspension from human nonlymphoid tissues, such as gingiva, lung, intestine, skin, and different tumor tissues as well as tumor‐draining lymph nodes. Further, we provide gating strategies for flow cytometric analysis of human DC subpopulations in diverse nonlymphoid tissues. |
|---|---|
| AbstractList | This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state‐of‐the‐art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single‐cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor‐draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single‐cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer‐reviewed by leading experts and approved by all co‐authors, making it an essential resource for basic and clinical DC immunologists. We here provide detailed protocols for isolating single cell suspension from human nonlymphoid tissues, such as gingiva, lung, intestine, skin, and different tumor tissues as well as tumor‐draining lymph nodes. Further, we provide gating strategies for flow cytometric analysis of human DC subpopulations in diverse nonlymphoid tissues. This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state‐of‐the‐art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single‐cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor‐draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single‐cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer‐reviewed by leading experts and approved by all co‐authors, making it an essential resource for basic and clinical DC immunologists. This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single-cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor-draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single-cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single-cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor-draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single-cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists. This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state‐of‐the‐art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single‐cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor‐draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single‐cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer‐reviewed by leading experts and approved by all co‐authors, making it an essential resource for basic and clinical DC immunologists. We here provide detailed protocols for isolating single cell suspension from human nonlymphoid tissues, such as gingiva, lung, intestine, skin, and different tumor tissues as well as tumor‐draining lymph nodes. Further, we provide gating strategies for flow cytometric analysis of human DC subpopulations in diverse nonlymphoid tissues. |
| Author | Sykora, Martina M Toffoli, Elisa C. Horev, Yael Dress, Regine J. Saar, Or Mizraji, Gabriel Fransen, Marieke F. Ginhoux, Florent Dudziak, Diana Yona, Simon Agace, William W Kles, Paz Tripp, Christoph H. Heyman, Oded Hornsteiner, Florian Ven, Rieneke Kandiah, Vinitha Strandt, Helen Pul, Kim Bakker, Joyce Fenton, Thomas M. Prokopi, Anastasia Wilensky, Asaf Gruijl, Tanja D. Stoitzner, Patrizia Zelle‐Rieser, Claudia Lubin, Ruth Sopper, Sieghart Dutertre, Charles‐Antoine Heger, Lukas |
| AuthorAffiliation | 21 Tyrolean Cancer Research Center Innsbruck Austria 6 Institute for Infection and Immunology Cancer Immunology Amsterdam The Netherlands 22 Department of Otolaryngology, Head and Neck Surgery Amsterdam UMC location Vrije Universiteit Amsterdam The Netherlands 13 Singapore Immunology Network (SIgN), Agency for Science, Technology and Research Singapore Singapore 18 Department of Dermatology, Venereology & Allergology Medical University of Innsbruck Innsbruck Austria 1 Institute of Immunology Jena University Hospital Friedrich‐Schiller‐University Jena Germany 14 Department of Immunology and Microbiology Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China 16 INSERM U1015, Gustave Roussy Cancer Campus Villejuif France 19 Faculty of Dental Medicine The Institute of Biomedical and Oral Research Hebrew University of Jerusalem Israel 3 Department of Transfusion Medicine and Hemostaseology University Hospital Erlangen Erlangen Germany 20 Internal Medicine V, |
| AuthorAffiliation_xml | – name: 22 Department of Otolaryngology, Head and Neck Surgery Amsterdam UMC location Vrije Universiteit Amsterdam The Netherlands – name: 16 INSERM U1015, Gustave Roussy Cancer Campus Villejuif France – name: 10 Inserm U1015, Gustave Roussy Villejuif France – name: 5 Immunology Section Lund University Lund Sweden – name: 9 Institute of Systems Immunology Hamburg Center for Translational Immunology (HCTI) University Medical Center Hamburg‐Eppendorf Hamburg Germany – name: 20 Internal Medicine V, Hematology and Oncology Medical University of Innsbruck Innsbruck Austria – name: 7 Cancer Center Amsterdam Cancer Immunology Amsterdam The Netherlands – name: 21 Tyrolean Cancer Research Center Innsbruck Austria – name: 11 School of Infection and Immunity University of Glasgow Glasgow UK – name: 4 LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology University of Copenhagen Copenhagen Denmark – name: 14 Department of Immunology and Microbiology Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China – name: 19 Faculty of Dental Medicine The Institute of Biomedical and Oral Research Hebrew University of Jerusalem Israel – name: 6 Institute for Infection and Immunology Cancer Immunology Amsterdam The Netherlands – name: 2 Laboratory of Dendritic Cell Biology Department of Dermatology University Hospital Erlangen Erlangen Germany – name: 18 Department of Dermatology, Venereology & Allergology Medical University of Innsbruck Innsbruck Austria – name: 1 Institute of Immunology Jena University Hospital Friedrich‐Schiller‐University Jena Germany – name: 3 Department of Transfusion Medicine and Hemostaseology University Hospital Erlangen Erlangen Germany – name: 8 Amsterdam UMC location Vrije Universiteit Medical Oncology Amsterdam The Netherlands – name: 17 Department of Periodontology Hadassah Medical Center Faculty of Dental Medicine Hebrew University of Jerusalem Israel – name: 12 Department of Pulmonary Diseases Amsterdam UMC location Vrije Universiteit Amsterdam The Netherlands – name: 13 Singapore Immunology Network (SIgN), Agency for Science, Technology and Research Singapore Singapore – name: 15 SingHealth Duke‐NUS Academic Medical Centre Translational Immunology Institute Singapore Singapore |
| Author_xml | – sequence: 1 givenname: Diana surname: Dudziak fullname: Dudziak, Diana email: Diana.dudziak@med.uni-jena.de organization: University Hospital Erlangen – sequence: 2 givenname: Lukas orcidid: 0000-0001-5591-2187 surname: Heger fullname: Heger, Lukas organization: University Hospital Erlangen – sequence: 3 givenname: William W surname: Agace fullname: Agace, William W organization: Lund University – sequence: 4 givenname: Joyce surname: Bakker fullname: Bakker, Joyce organization: Medical Oncology – sequence: 5 givenname: Tanja D. surname: Gruijl fullname: Gruijl, Tanja D. organization: Medical Oncology – sequence: 6 givenname: Regine J. surname: Dress fullname: Dress, Regine J. organization: University Medical Center Hamburg‐Eppendorf – sequence: 7 givenname: Charles‐Antoine surname: Dutertre fullname: Dutertre, Charles‐Antoine organization: Inserm U1015, Gustave Roussy – sequence: 8 givenname: Thomas M. surname: Fenton fullname: Fenton, Thomas M. organization: University of Glasgow – sequence: 9 givenname: Marieke F. surname: Fransen fullname: Fransen, Marieke F. organization: Amsterdam UMC location Vrije Universiteit – sequence: 10 givenname: Florent surname: Ginhoux fullname: Ginhoux, Florent organization: INSERM U1015, Gustave Roussy Cancer Campus – sequence: 11 givenname: Oded surname: Heyman fullname: Heyman, Oded organization: Hebrew University of Jerusalem – sequence: 12 givenname: Yael surname: Horev fullname: Horev, Yael organization: Hebrew University of Jerusalem – sequence: 13 givenname: Florian surname: Hornsteiner fullname: Hornsteiner, Florian organization: Medical University of Innsbruck – sequence: 14 givenname: Vinitha surname: Kandiah fullname: Kandiah, Vinitha organization: Medical Oncology – sequence: 15 givenname: Paz surname: Kles fullname: Kles, Paz organization: Hebrew University of Jerusalem – sequence: 16 givenname: Ruth surname: Lubin fullname: Lubin, Ruth organization: Hebrew University of Jerusalem – sequence: 17 givenname: Gabriel surname: Mizraji fullname: Mizraji, Gabriel organization: Hebrew University of Jerusalem – sequence: 18 givenname: Anastasia surname: Prokopi fullname: Prokopi, Anastasia organization: Medical Oncology – sequence: 19 givenname: Or surname: Saar fullname: Saar, Or organization: Hebrew University of Jerusalem – sequence: 20 givenname: Sieghart surname: Sopper fullname: Sopper, Sieghart organization: Tyrolean Cancer Research Center – sequence: 21 givenname: Patrizia surname: Stoitzner fullname: Stoitzner, Patrizia organization: Medical University of Innsbruck – sequence: 22 givenname: Helen surname: Strandt fullname: Strandt, Helen organization: Medical University of Innsbruck – sequence: 23 givenname: Martina M surname: Sykora fullname: Sykora, Martina M organization: Tyrolean Cancer Research Center – sequence: 24 givenname: Elisa C. surname: Toffoli fullname: Toffoli, Elisa C. organization: Medical Oncology – sequence: 25 givenname: Christoph H. surname: Tripp fullname: Tripp, Christoph H. organization: Medical University of Innsbruck – sequence: 26 givenname: Kim surname: Pul fullname: Pul, Kim organization: Medical Oncology – sequence: 27 givenname: Rieneke surname: Ven fullname: Ven, Rieneke organization: Amsterdam UMC location Vrije Universiteit – sequence: 28 givenname: Asaf surname: Wilensky fullname: Wilensky, Asaf organization: Hebrew University of Jerusalem – sequence: 29 givenname: Simon surname: Yona fullname: Yona, Simon organization: Hebrew University of Jerusalem – sequence: 30 givenname: Claudia surname: Zelle‐Rieser fullname: Zelle‐Rieser, Claudia organization: Medical University of Innsbruck |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39668411$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kkFv1DAUhCNURLeFI1cUiQuXlGc7dpITQkspRZW40LPl2M-sV0682ElX-fd42bKiHDhZsj_PjJ_nojgbw4hF8ZrAFQGg73HrrihQyoFR_qxYEU5JVZOanBUrAFJXtGvhvLhIaQsAneDdi-KcdUK0NSGr4v5mdga9GzGVNsRyF3GnoppcGEs1mtL6sC_1MoUBp7jkLeWX5FIZbLmZBzWWOY5fht0mOFNOLqUZy0_rl8Vzq3zCV4_rZXH_-fr7-kt19-3mdv3xrtIcOFQ15VYoDQY6q4B3BBpOG-i5qW2jdNMTyvqGWewUU6rNdC9MowzreatBWHZZqKNu2uNu7uUuukHFRQbl5C7ESXkZMaGKeiP9LBPKTHmnf78vyb63HeHcSK4pyNqYXrZcdFKRBhVnSHXDsseHo0e-OqDROE4x6z6xenIyuo38ER4kIU2ec3tQePeoEMPPGdMkB5c0eq9GDHOSjNRCiLpjbUbf_oNuwxzz0A-UyIKZqTP15u9Ipyx_vjUD1RHQMaQU0Z4QAvJQG5lrI0-1yTw98nvncfk_LK-_3vJWAPsFFjbGmg |
| Cites_doi | 10.1038/mi.2017.22 10.1016/j.immuni.2021.03.005 10.1111/imm.12117 10.1146/annurev-immunol-051116-052215 10.1126/science.aag3009 10.1038/s41590-019-0420-3 10.1084/jem.20112583 10.1016/j.immuni.2020.10.012 10.1084/jem.20092618 10.1016/j.ccell.2017.11.019 10.1038/nature21349 10.1136/jitc-2020-001053 10.1007/BF01533516 10.1126/sciimmunol.aai7677 10.1016/j.immuni.2019.08.008 10.1177/0022034520920577 10.1158/1078-0432.CCR-19-3826 10.1016/j.cell.2019.02.005 10.1371/journal.pone.0052875 10.1152/physrev.1997.77.2.397 10.1038/nri3785 10.1016/j.immuni.2021.04.019 10.1038/nri3712 10.1038/s41591-019-0522-3 10.1111/imcb.12028 10.1126/sciimmunol.abd3774 10.1016/j.jim.2011.10.011 10.1038/nri3683 10.1007/s00262-019-02330-y 10.1038/s41586-020-2056-8 10.1038/s41577-018-0044-0 10.1016/j.immuni.2018.12.007 10.1182/blood-2011-09-382200 10.1016/j.ccell.2017.04.003 10.1007/978-1-4939-6786-5_18 10.1091/mbc.01-06-0300 10.1158/1078-0432.CCR-18-1942 10.1007/s00018-015-2005-0 10.1084/jem.137.5.1142 10.1146/annurev-immunol-100311-102839 10.1038/ncomms15820 10.1016/j.jim.2004.04.025 10.1084/jem.20121103 10.1016/j.ccell.2021.10.008 10.1189/jlb.1107750 10.1177/27.6.110874 10.1016/j.it.2020.10.002 10.4161/onci.20365 10.4161/onci.23837 10.1016/j.jdermsci.2014.08.012 10.1189/jlb.1HI0714-351R 10.4049/jimmunol.1500383 10.1158/1078-0432.CCR-17-0944 10.1084/jem.20111457 10.1016/j.immuni.2013.03.009 10.1016/j.immuni.2018.09.024 10.4049/jimmunol.1801211 10.3389/fimmu.2017.00499 10.1038/ni.1822 10.1038/s41596-020-00482-1 10.1136/jitc-2020-000832 10.1038/s41577-022-00675-7 10.1038/s43018-020-0075-x 10.1038/ni.3123 10.1084/jem.20050500 10.1111/imm.13152 10.1189/jlb.0311134 10.1002/ijc.27755 10.1182/blood-2011-03-344838 10.1016/j.ccell.2022.06.009 10.1038/mi.2017.105 10.1016/j.jim.2016.02.023 10.1016/j.immuni.2015.06.017 10.1126/scitranslmed.aav7431 10.1016/j.immuni.2020.07.003 10.1038/32588 10.1177/00220345211004864 10.1016/j.jaci.2015.04.001 10.1016/j.immuni.2017.12.014 10.1007/978-1-60761-421-0_16 10.1016/S0002-9440(10)64152-1 10.1016/j.immuni.2021.07.007 10.1080/2162402X.2019.1631119 10.3389/fimmu.2015.00534 10.1016/j.immuni.2014.08.006 10.1016/j.immuni.2020.02.001 10.3389/fimmu.2017.01254 10.1146/annurev-immunol-020711-074950 10.1016/j.immuni.2012.04.012 10.1136/jitc-2020-000588 10.1038/s41385-021-00389-4 10.1016/j.ccell.2020.09.001 10.1002/eji.201343790 10.1002/0471142956.cy0127s63 10.1016/j.immuni.2016.02.008 10.1016/j.immuni.2016.08.015 10.1038/nri2455 10.1111/imm.13320 10.1111/j.0105-2896.2009.00886.x 10.1073/pnas.1116770109 10.1158/2326-6066.CIR-14-0165 10.1080/2162402X.2019.1708066 10.3390/vaccines6030065 10.1016/j.cell.2020.08.001 10.1038/nrm1619 10.1158/2326-6066.CIR-17-0110 10.1172/jci.insight.124507 10.1038/nature14404 10.1073/pnas.1620433114 10.1186/s40425-019-0605-1 10.1136/jitc-2021-003571 10.3389/fimmu.2021.643291 10.1111/imm.12888 10.1136/jitc-2020-000761 10.1002/(SICI)1097-0320(19961201)25:4<388::AID-CYTO11>3.0.CO;2-R 10.1111/imcb.12464 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by Wiley‐VCH GmbH. 2024 The Author(s). European Journal of Immunology published by Wiley‐VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). published by Wiley‐VCH GmbH. – notice: 2024 The Author(s). European Journal of Immunology published by Wiley‐VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | Department of Experimental Medical Science Faculty of Medicine Mucosal Immunology Slemhinnans immunologi Lunds universitet Institutionen för experimentell medicinsk vetenskap Medicinska fakulteten Lund University |
| CorporateAuthor_xml | – name: Faculty of Medicine – name: Medicinska fakulteten – name: Slemhinnans immunologi – name: Mucosal Immunology – name: Department of Experimental Medical Science – name: Lund University – name: Institutionen för experimentell medicinsk vetenskap – name: Lunds universitet |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7T5 7TK 7TM 8FD FR3 H94 K9. M7N P64 RC3 7X8 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC |
| DOI | 10.1002/eji.202250325 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1521-4141 |
| EndPage | n/a |
| ExternalDocumentID | oai_portal_research_lu_se_publications_bbf9155d_5c20_4ddb_8569_a17ea53e2c73 PMC11739683 39668411 10_1002_eji_202250325 EJI5860 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Singapore National Research Foundation Senior Investigatorship (NRFI) funderid: NRF2016NRF‐NRFI001‐02 – fundername: Danish Research Council funderid: Sapere Aude III 1331‐00136B – fundername: Austrian Academy of Sciences funderid: OAW DOC/26015 – fundername: Swedish Medical Research Council funderid: 2017‐02072 – fundername: Austrian Science Fund (FWF) funderid: P‐21487‐B13; P‐27001‐B13; P‐33855‐B; ESP 138‐B – fundername: Israel Science Foundation funderid: 2369/18 – fundername: Lundbeck Foundation funderid: R155‐2014‐4184 – fundername: Austrian Research Promotion Agency funderid: FFG 858057 – fundername: Swedish Cancerfonden funderid: 18 0598 – fundername: Austrian Science Fund (FWF) grantid: P-21487-B13 – fundername: Swedish Medical Research Council grantid: 2017-02072 – fundername: Lundbeck Foundation grantid: R155-2014-4184 – fundername: Swedish Cancerfonden grantid: 18 0598 – fundername: Austrian Research Promotion Agency grantid: FFG 858057 – fundername: Austrian Science Fund (FWF) grantid: P-27001-B13 – fundername: Israel Science Foundation grantid: 2369/18 – fundername: Singapore National Research Foundation Senior Investigatorship (NRFI) grantid: NRF2016NRF-NRFI001-02 – fundername: Austrian Academy of Sciences grantid: OAW DOC/26015 – fundername: Danish Research Council grantid: Sapere Aude III 1331-00136B – fundername: Austrian Science Fund (FWF) grantid: P‐21487‐B13; P‐27001‐B13; P‐33855‐B; ESP 138‐B – fundername: Danish Research Council grantid: Sapere Aude III 1331‐00136B – fundername: Singapore National Research Foundation Senior Investigatorship (NRFI) grantid: NRF2016NRF‐NRFI001‐02 |
| GroupedDBID | --- .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOETA ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 TEORI UB1 UPT V2E VH1 W8V W99 WBKPD WHWMO WIB WIH WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXSBR X7M XG1 XPP XV2 Y6R ZGI ZXP ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QP 7T5 7TK 7TM 8FD FR3 H94 K9. M7N P64 RC3 7X8 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC |
| ID | FETCH-LOGICAL-c5050-425f6ac0d09fa0591075270b5d4f7ac7b123b73fe9a3aa825fb6d7ad3b58c06f3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001375789400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0014-2980 1521-4141 |
| IngestDate | Sat Nov 22 03:11:54 EST 2025 Tue Nov 04 02:04:38 EST 2025 Thu Oct 02 09:55:43 EDT 2025 Sat Nov 29 14:41:26 EST 2025 Mon Jul 21 06:04:23 EDT 2025 Sat Nov 29 08:16:52 EST 2025 Fri Jan 31 10:08:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | nonlymphoid tissues flow cytometry dendritic cells tumor tumor‐draining lymph node |
| Language | English |
| License | Attribution 2024 The Author(s). European Journal of Immunology published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5050-425f6ac0d09fa0591075270b5d4f7ac7b123b73fe9a3aa825fb6d7ad3b58c06f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5591-2187 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feji.202250325 |
| PMID | 39668411 |
| PQID | 3161733834 |
| PQPubID | 986365 |
| PageCount | 52 |
| ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_bbf9155d_5c20_4ddb_8569_a17ea53e2c73 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11739683 proquest_miscellaneous_3146664938 proquest_journals_3161733834 pubmed_primary_39668411 crossref_primary_10_1002_eji_202250325 wiley_primary_10_1002_eji_202250325_EJI5860 |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | European journal of immunology |
| PublicationTitleAlternate | Eur J Immunol |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2013; 4 2011; 118 2013; 2 2015; 72 2002; 13 2015; 77 2020; 160 2013; 63 2019; 202 2021; 163 2020; 12 2020; 99 2022; 22 2013; 8 2018; 49 1998; 392 2018; 48 1979; 27 2018; 6 2018; 3 2012; 375 2009; 10 2019; 20 2004; 291 2015; 136 2022; 40 2010; 234 2019; 25 2016; 432 2010; 595 2014; 14 2020; 579 2018; 33 2016; 45 2016; 44 2019; 8 2019; 7 2015; 523 2020; 41 2010; 207 2020; 38 2012; 37 2014; 41 2012; 30 2012; 109 2018; 18 2021; 54 1973; 137 2016; 1 2011; 90 2013; 210 2020; 26 2005; 6 2018; 96 2022; 10 2018; 11 2017; 541 2019; 177 2012; 119 2017; 5 2017; 8 2019; 51 2008; 8 2017; 356 2017; 114 2012; 209 2020; 8 2017; 31 2020; 1 2020; 53 2020; 52 2019; 68 2021; 39 2017; 35 2015; 43 2020; 9 1994; 38 1996; 25 2016; 196 2021; 9 2015; 15 2021; 6 2015; 6 2015; 16 2015; 3 2013; 43 2015; 97 2020; 182 2017; 23 2013; 140 2021; 100 2021; 14 2021; 16 2018; 154 2002; 161 2021; 12 2021; 99 2013; 38 2012; 1 1997; 77 2022 2005; 202 2017; 10 2013; 31 2017 2013; 132 2008; 84 e_1_2_32_80_1 e_1_2_32_115_1 e_1_2_32_23_1 e_1_2_32_46_1 e_1_2_32_65_1 e_1_2_32_88_1 e_1_2_32_111_1 e_1_2_32_42_1 e_1_2_32_61_1 e_1_2_32_84_1 e_1_2_32_108_1 e_1_2_32_16_1 e_1_2_32_39_1 e_1_2_32_58_1 e_1_2_32_5_1 e_1_2_32_95_1 e_1_2_32_91_1 e_1_2_32_99_1 e_1_2_32_9_1 Ven R. (e_1_2_32_92_1) 2013; 4 e_1_2_32_11_1 e_1_2_32_57_1 e_1_2_32_104_1 e_1_2_32_34_1 e_1_2_32_76_1 e_1_2_32_53_1 e_1_2_32_100_1 e_1_2_32_30_1 e_1_2_32_72_1 e_1_2_32_27_1 e_1_2_32_69_1 e_1_2_32_60_1 e_1_2_32_116_1 e_1_2_32_22_1 e_1_2_32_68_1 e_1_2_32_87_1 e_1_2_32_112_1 e_1_2_32_64_1 e_1_2_32_41_1 e_1_2_32_83_1 e_1_2_32_19_1 e_1_2_32_15_1 e_1_2_32_38_1 e_1_2_32_6_1 e_1_2_32_2_1 e_1_2_32_71_1 e_1_2_32_94_1 e_1_2_32_90_1 Lang N. P. (e_1_2_32_45_1) 2022 e_1_2_32_98_1 e_1_2_32_10_1 e_1_2_32_33_1 e_1_2_32_56_1 e_1_2_32_79_1 e_1_2_32_105_1 e_1_2_32_52_1 e_1_2_32_75_1 e_1_2_32_101_1 e_1_2_32_26_1 e_1_2_32_49_1 Pul K. M. (e_1_2_32_109_1) 2020; 8 e_1_2_32_82_1 e_1_2_32_21_1 e_1_2_32_44_1 e_1_2_32_67_1 e_1_2_32_117_1 e_1_2_32_40_1 e_1_2_32_63_1 e_1_2_32_86_1 e_1_2_32_113_1 e_1_2_32_18_1 e_1_2_32_14_1 e_1_2_32_37_1 e_1_2_32_7_1 e_1_2_32_3_1 e_1_2_32_93_1 e_1_2_32_70_1 e_1_2_32_97_1 e_1_2_32_32_1 e_1_2_32_78_1 e_1_2_32_13_1 e_1_2_32_55_1 e_1_2_32_106_1 e_1_2_32_74_1 e_1_2_32_51_1 e_1_2_32_102_1 e_1_2_32_29_1 e_1_2_32_25_1 e_1_2_32_48_1 e_1_2_32_81_1 e_1_2_32_110_1 e_1_2_32_43_1 e_1_2_32_89_1 e_1_2_32_118_1 e_1_2_32_24_1 e_1_2_32_66_1 e_1_2_32_85_1 e_1_2_32_114_1 e_1_2_32_20_1 e_1_2_32_62_1 e_1_2_32_36_1 e_1_2_32_17_1 e_1_2_32_59_1 e_1_2_32_8_1 e_1_2_32_4_1 e_1_2_32_96_1 e_1_2_32_12_1 e_1_2_32_35_1 e_1_2_32_54_1 e_1_2_32_77_1 e_1_2_32_107_1 e_1_2_32_31_1 e_1_2_32_50_1 e_1_2_32_73_1 e_1_2_32_103_1 e_1_2_32_47_1 e_1_2_32_119_1 e_1_2_32_28_1 |
| References_xml | – volume: 18 start-page: 635 year: 2018 end-page: 647 article-title: CD4+ T cell help in cancer immunology and immunotherapy publication-title: Nat. Rev. Immunol. – volume: 38 start-page: 253 year: 1994 end-page: 258 article-title: Reduced expression of distinct T‐cell CD molecules by collagenase/DNase treatment publication-title: Cancer Immunol. Immunother. – volume: 4 start-page: 403 year: 2013 article-title: Dendritic cell plasticity in tumor‐conditioned skin: CD14+ cells at the cross‐roads of immune activation and suppression publication-title: Front. Immunol. – volume: 45 start-page: 669 year: 2016 end-page: 684 article-title: Unsupervised high‐dimensional analysis aligns dendritic cells across tissues and species publication-title: Immunity – volume: 35 start-page: 469 year: 2017 end-page: 499 article-title: Antigen‐presenting cells in the skin publication-title: Annu. Rev. Immunol. – volume: 140 start-page: 22 year: 2013 end-page: 30 article-title: Human dendritic cell subsets publication-title: Immunology – volume: 234 start-page: 120 year: 2010 end-page: 141 article-title: Langerhans cells and more: langerin‐expressing dendritic cell subsets in the skin publication-title: Immunol. Rev. – volume: 72 start-page: 4309 year: 2015 end-page: 4325 article-title: Human dendritic cell subsets and function in health and disease publication-title: Cell. Mol. Life Sci. – volume: 20 start-page: 852 year: 2019 end-page: 864 article-title: Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage publication-title: Nat. Immunol. – volume: 99 start-page: 1092 year: 2020 end-page: 1101 article-title: Niche specific microbiota‐dependent and independent bone loss around dental implants and teeth publication-title: J. Dent. Res. – volume: 163 start-page: 250 year: 2021 end-page: 261 article-title: Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease publication-title: Immunology – volume: 209 start-page: 653 year: 2012 end-page: 660 article-title: Characterization of resident and migratory dendritic cells in human lymph nodes publication-title: J. Exp. Med. – volume: 96 start-page: 463 year: 2018 end-page: 476 article-title: Homeostatic control of dendritic cell numbers and differentiation publication-title: Immunol. Cell Biol. – volume: 202 start-page: 135 year: 2005 end-page: 143 article-title: Plasmacytoid predendritic cells initiate psoriasis through interferon‐α production publication-title: J. Exp. Med. – volume: 119 start-page: 5182 year: 2012 end-page: 5190 article-title: Human Langerhans cells use an IL‐15R‐α/IL‐15/pSTAT5‐dependent mechanism to break T‐cell tolerance against the self‐differentiation tumor antigen WT1 publication-title: Blood – year: 2022 – volume: 14 start-page: 417 year: 2014 end-page: 428 article-title: The origins and functions of dendritic cells and macrophages in the skin publication-title: Nat. Rev. Immunol. – volume: 13 start-page: 317 year: 2002 end-page: 335 article-title: Birbeck granules are subdomains of endosomal recycling compartment in human epidermal langerhans cells, which form where langerin accumulates Pfeffer SR, ed publication-title: Mol. Biol. Cell. – volume: 114 start-page: E761 year: 2017 end-page: E770 article-title: Mitochondrial activation chemicals synergize with surface receptor PD‐1 blockade for T cell‐dependent antitumor activity publication-title: Proc. Natl. Acad. Sci. – volume: 39 start-page: 1623 year: 2021 end-page: 1642.e20 article-title: Myeloid antigen‐presenting cell niches sustain antitumor T cells and license PD‐1 blockade via CD28 costimulation publication-title: Cancer Cell – volume: 26 start-page: 3791 year: 2020 end-page: 3802 article-title: Adenocarcinoma of the uterine cervix shows impaired recruitment of cDC1 and CD8+ T cells and elevated β‐catenin activation compared with squamous cell carcinoma publication-title: Clin. Cancer Res. – volume: 375 start-page: 189 year: 2012 end-page: 195 article-title: Feasibility of flowcytometric quantitation of immune effector cell subsets in the sentinel lymph node of the breast after cryopreservation publication-title: J. Immunol. Methods. – volume: 38 start-page: 958 year: 2013 end-page: 969 article-title: IRF4 transcription‐factor‐dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 Cell differentiation publication-title: Immunity – volume: 27 start-page: 1049 year: 1979 end-page: 1052 article-title: Spectra of cells in flow cytometry using a vidicon detector publication-title: J. Histochem. Cytochem. – volume: 7 start-page: 133 year: 2019 article-title: Selectively hampered activation of lymph node‐resident dendritic cells precedes profound T cell suppression and metastatic spread in the breast cancer sentinel lymph node publication-title: J. Immunother. Cancer. – volume: 10 start-page: 845 year: 2017 end-page: 864 article-title: Diversity and functions of intestinal mononuclear phagocytes publication-title: Mucosal Immunol. – volume: 63 start-page: 1.27.1 year: 2013 end-page: 1.27.13 article-title: Spectral Flow Cytometry publication-title: Curr. Protoc. Cytom. – volume: 14 start-page: 793 year: 2021 end-page: 802 article-title: Human gut‐associated lymphoid tissues (GALT); diversity, structure, and function publication-title: Mucosal Immunol. – volume: 53 start-page: 353 year: 2020 end-page: 370.e8 article-title: Differential IRF8 transcription factor requirement defines two pathways of dendritic cell development in humans publication-title: Immunity – volume: 160 start-page: 116 year: 2020 end-page: 125 article-title: Skin barrier immunity and ageing publication-title: Immunology – volume: 579 start-page: 274 year: 2020 end-page: 278 article-title: Peripheral T cell expansion predicts tumour infiltration and clinical response publication-title: Nature – volume: 30 start-page: 1 year: 2012 end-page: 22 article-title: Decisions about dendritic cells: past, present, and future publication-title: Annu. Rev. Immunol. – volume: 392 start-page: 245 year: 1998 end-page: 252 article-title: Dendritic cells and the control of immunity publication-title: Nature – volume: 3 year: 2018 article-title: Tumor‐draining lymph nodes are pivotal in PD‐1/PD‐L1 checkpoint therapy publication-title: JCI Insight – volume: 523 start-page: 231 year: 2015 end-page: 235 article-title: Melanoma‐intrinsic β‐catenin signalling prevents anti‐tumour immunity publication-title: Nature – volume: 49 start-page: 997 year: 2018 end-page: 999 article-title: The Dendritic Cell Strikes Back publication-title: Immunity – volume: 33 start-page: 60 year: 2018 end-page: 74.e6 article-title: TIM‐3 regulates CD103+ dendritic cell function and response to chemotherapy in breast cancer publication-title: Cancer Cell – volume: 8 year: 2020 article-title: Monocyte‐derived APCs are central to the response of PD1 checkpoint blockade and provide a therapeutic target for combination therapy publication-title: J. Immunother. Cancer. – volume: 23 start-page: 5679 year: 2017 end-page: 5686 article-title: Local adjuvant treatment with low‐dose CpG‐B offers durable protection against disease recurrence in clinical stage I–II melanoma: data from two randomized phase II trials publication-title: Clin. Cancer Res. – volume: 10 start-page: 1237 year: 2009 end-page: 1244 article-title: Dendritic cell subsets in primary and secondary T cell responses at body surfaces publication-title: Nat. Immunol. – volume: 52 start-page: 557 year: 2020 end-page: 570.e6 article-title: Immune profiling of human gut‐associated lymphoid tissue identifies a role for isolated lymphoid follicles in priming of region‐specific immunity publication-title: Immunity – volume: 8 year: 2017 article-title: Different populations of CD11b+ dendritic cells drive Th2 responses in the small intestine and colon publication-title: Nat. Commun. – volume: 182 start-page: 1419 year: 2020 end-page: 1440.e23 article-title: Severe COVID‐19 is marked by a dysregulated myeloid cell compartment publication-title: Cell – volume: 6 year: 2021 article-title: Intestinal cDC1 drive cross‐tolerance to epithelial‐derived antigen via induction of FoxP3 + CD8 + T regs publication-title: Sci. Immunol. – volume: 25 start-page: 1251 year: 2019 end-page: 1259 article-title: Clonal replacement of tumor‐specific T cells following PD‐1 blockade publication-title: Nat. Med. – volume: 1 start-page: 649 year: 2012 end-page: 658 article-title: Tumor‐mediated inhibition of human dendritic cell differentiation and function is consistently counteracted by combined p38 MAPK and STAT3 inhibition publication-title: Oncoimmunology – volume: 8 year: 2020 article-title: Breast cancer‐induced immune suppression in the sentinel lymph node is effectively countered by CpG‐B in conjunction with inhibition of the JAK2/STAT3 pathway publication-title: J. Immunother. Cancer. – volume: 41 start-page: 1062 year: 2020 end-page: 1071 article-title: Decoding the heterogeneity of human dendritic cell subsets publication-title: Trends Immunol. – volume: 177 start-page: 556 year: 2019 end-page: 571.e16 article-title: Unleashing type‐2 dendritic cells to drive protective antitumor CD4+ T cell immunity publication-title: Cell – volume: 90 start-page: 883 year: 2011 end-page: 895 article-title: Lung dendritic cells at the innate‐adaptive immune interface publication-title: J. Leukoc. Biol. – volume: 44 start-page: 860 year: 2016 end-page: 874 article-title: IRF8 Transcription‐Factor‐Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis publication-title: Immunity – volume: 8 start-page: 499 year: 2017 article-title: Human lung mononuclear phagocytes in health and disease publication-title: Front. Immunol. – volume: 161 start-page: 19 year: 2002 end-page: 26 article-title: Sampling tumor‐draining lymph nodes for phenotypic and functional analysis of dendritic cells and T cells publication-title: Am. J. Pathol. – volume: 16 start-page: 2051 year: 2021 end-page: 2067 article-title: Identification, isolation and analysis of human gut‐associated lymphoid tissues publication-title: Nat. Protoc. – volume: 37 start-page: 60 year: 2012 end-page: 73 article-title: Human tissues contain CD141(hi) cross‐presenting dendritic cells with functional homology to mouse CD103(+) nonlymphoid dendritic cells publication-title: Immunity – volume: 53 start-page: 1015 year: 2020 end-page: 1032e8 article-title: Group 3 innate lymphoid cells program a distinct subset of IL‐22BP‐producing dendritic cells demarcating solitary intestinal lymphoid tissues publication-title: Immunity – volume: 38 start-page: 685 year: 2020 end-page: 700.e8 article-title: The PD‐1/PD‐L1‐checkpoint restrains T cell Immunity in tumor‐draining lymph nodes publication-title: Cancer Cell – volume: 12 year: 2020 article-title: Dendritic cells dictate responses to PD‐L1 blockade cancer immunotherapy publication-title: Sci. Transl. Med. – volume: 40 start-page: 798 year: 2022 end-page: 799 article-title: Immune suppression in the tumor‐draining lymph node corresponds with distant disease recurrence in patients with melanoma publication-title: Cancer Cell – volume: 77 start-page: 85 year: 2015 end-page: 92 article-title: Human skin dendritic cells in health and disease publication-title: J. Dermatol. Sci. – volume: 9 year: 2020 article-title: In the mix: the potential benefits of adding GM‐CSF to CpG‐B in the local treatment of patients with early‐stage melanoma publication-title: Oncoimmunology – volume: 202 start-page: 1659 year: 2019 end-page: 1666 article-title: Skin‐Associated B Cells in Health and Inflammation publication-title: J. Immunol. – volume: 25 start-page: 388 year: 1996 end-page: 393 article-title: Observation of single‐cell fluorescence spectra in laser flow cytometry publication-title: Cytometry – volume: 84 start-page: 143 year: 2008 end-page: 151 article-title: Transcriptional profiling of human skin‐resident Langerhans cells and CD1a+ dermal dendritic cells: differential activation states suggest distinct functions publication-title: J. Leukoc. Biol. – volume: 9 year: 2021 article-title: Skin dendritic cells in melanoma are key for successful checkpoint blockade therapy publication-title: J. Immunother. Cancer. – volume: 1 start-page: 681 year: 2020 end-page: 691 article-title: PD‐L1 expression by dendritic cells is a key regulator of T‐cell immunity in cancer publication-title: Nat. Cancer. – volume: 100 start-page: 1330 year: 2021 end-page: 1336 article-title: The prevalence of gingival dendritic cell subsets in periodontal patients publication-title: J. Dent. Res. – volume: 207 start-page: 1261 year: 2010 end-page: 1271 article-title: Characterization of human DNGR‐1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells publication-title: J. Exp. Med. – volume: 6 start-page: 534 year: 2015 article-title: Functional specialization of skin dendritic cell subsets in regulating T cell responses publication-title: Front. Immunol. – start-page: 267 year: 2017 end-page: 278 – volume: 8 year: 2013 article-title: Transcriptional profiling of human dendritic cell populations and models ‐ unique profiles of in vitro dendritic cells and implications on functionality and applicability Appel S, ed publication-title: PLoS One – volume: 22 start-page: 67 year: 2022 end-page: 68 article-title: Expanding dendritic cell nomenclature in the single‐cell era publication-title: Nat. Rev. Immunol. – volume: 51 start-page: 573 year: 2019 end-page: 589.e8 article-title: Single‐Cell Analysis of Human Mononuclear Phagocytes Reveals Subset‐Defining Markers and Identifies Circulating Inflammatory Dendritic Cells publication-title: Immunity – volume: 356 start-page: 3009 year: 2017 article-title: Mapping the human DC lineage through the integration of high‐dimensional techniques publication-title: Science (80‐.) – volume: 209 start-page: 935 year: 2012 end-page: 945 article-title: Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL‐10 and induce regulatory T cells that suppress skin inflammation publication-title: J. Exp. Med. – volume: 2 year: 2013 article-title: Functional characterization of a STAT3‐dependent dendritic cell‐derived CD14 + cell population arising upon IL‐10‐driven maturation publication-title: Oncoimmunology – volume: 109 start-page: 7043 year: 2012 end-page: 7048 article-title: Langerhans cells down‐regulate inflammation‐driven alveolar bone loss publication-title: Proc. Natl. Acad. Sci. – volume: 15 start-page: 30 year: 2015 end-page: 44 article-title: Periodontitis: from microbial immune subversion to systemic inflammation publication-title: Nat. Rev. Immunol. – volume: 5 start-page: 969 year: 2017 end-page: 977 article-title: Melanoma sequentially suppresses different DC subsets in the sentinel lymph node, affecting disease spread and recurrence publication-title: Cancer Immunol. Res. – volume: 291 start-page: 71 year: 2004 end-page: 78 article-title: Successful live cell harvest from bisected sentinel lymph nodes research report publication-title: J. Immunol. Methods. – volume: 41 start-page: 465 year: 2014 end-page: 477 article-title: Human dermal CD14 + cells are a transient population of monocyte‐derived macrophages publication-title: Immunity – volume: 6 start-page: 65 year: 2018 article-title: BDCA1+CD14+ immunosuppressive cells in cancer, a potential target? publication-title: Vaccines – volume: 97 start-page: 627 year: 2015 end-page: 634 article-title: Langerin‐expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells publication-title: J. Leukoc. Biol. – volume: 11 start-page: 681 year: 2018 end-page: 692 article-title: CD103+CD11b+ mucosal classical dendritic cells initiate long‐term switched antibody responses to flagellin publication-title: Mucosal Immunol. – volume: 54 start-page: 1154 year: 2021 end-page: 1167.e7 article-title: The inhibitory receptor TIM‐3 limits activation of the cGAS‐STING pathway in intra‐tumoral dendritic cells by suppressing extracellular DNA uptake publication-title: Immunity – volume: 14 start-page: 571 year: 2014 end-page: 578 article-title: Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny publication-title: Nat. Rev. Immunol. – volume: 68 start-page: 1681 year: 2019 end-page: 1688 article-title: Unlocking the therapeutic potential of primary tumor‐draining lymph nodes publication-title: Cancer Immunol. Immunother. – volume: 31 start-page: 563 year: 2013 end-page: 604 article-title: The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting publication-title: Annu. Rev. Immunol. – volume: 6 start-page: 328 year: 2005 end-page: 340 article-title: The cornified envelope: a model of cell death in the skin publication-title: Nat. Rev. Mol. Cell Biol. – volume: 541 start-page: 321 year: 2017 end-page: 330 article-title: Elements of cancer immunity and the cancer–immune set point publication-title: Nature – volume: 8 year: 2019 article-title: Constitutively active GSK3β as a means to bolster dendritic cell functionality in the face of tumour‐mediated immune suppression publication-title: Oncoimmunology – volume: 132 start-page: 1971 year: 2013 end-page: 1976 article-title: Local targets for immune therapy to cancer: tumor draining lymph nodes and tumor microenvironment publication-title: Int. J. Cancer. – volume: 12 year: 2021 article-title: Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy publication-title: Front. Immunol. – volume: 118 start-page: 2502 year: 2011 end-page: 2510 article-title: Characterization of four conventional dendritic cell subsets in human skin‐draining lymph nodes in relation to T‐cell activation publication-title: Blood – volume: 31 start-page: 711 year: 2017 end-page: 723.e4 article-title: Tumor‐residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy publication-title: Cancer Cell – volume: 196 start-page: 4447 year: 2016 end-page: 4451 article-title: Cutting Edge: IFN‐β expression in the spleen is restricted to a subpopulation of plasmacytoid dendritic cells exhibiting a specific immune modulatory transcriptome signature publication-title: J. Immunol. – volume: 1 start-page: eaai7677 year: 2016 end-page: eaai7677 article-title: Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment publication-title: Sci. Immunol. – volume: 136 start-page: 1387 year: 2015 end-page: 1397.e7 article-title: Skin dendritic cells induce follicular helper T cells and protective humoral immune responses publication-title: J. Allergy Clin. Immunol. – volume: 77 start-page: 397 year: 1997 end-page: 424 article-title: The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation publication-title: Physiol. Rev. – volume: 43 start-page: 369 year: 2015 end-page: 381 article-title: Distinct murine mucosal Langerhans cell subsets develop from pre‐dendritic cells and monocytes publication-title: Immunity – volume: 3 start-page: 495 year: 2015 end-page: 505 article-title: Arming the melanoma sentinel lymph node through local administration of CpG‐B and GM‐CSF: recruitment and activation of BDCA3/CD141+ dendritic cells and enhanced cross‐presentation publication-title: Cancer Immunol. Res. – volume: 49 start-page: 1148 year: 2018 end-page: 1161.e7 article-title: Successful anti‐PD‐1 cancer immunotherapy requires T cell‐dendritic cell crosstalk involving the cytokines IFN‐γ and IL‐12 publication-title: Immunity – volume: 25 start-page: 3074 year: 2019 end-page: 3083 article-title: WNT/β‐catenin pathway activation correlates with immune exclusion across human cancers publication-title: Clin. Cancer Res. – volume: 8 start-page: 1 year: 2020 end-page: 15 article-title: CD163+ cytokine‐producing cDC2 stimulate intratumoral type 1 T cell responses in HPV16‐induced oropharyngeal cancer publication-title: J. Immunother. cancer. – volume: 10 year: 2022 article-title: TIM‐3 blockade enhances IL‐12‐dependent antitumor immunity by promoting CD8 + T cell and XCR1 + dendritic cell spatial co‐localization publication-title: J. Immunother. Cancer. – volume: 54 start-page: 797 year: 2021 end-page: 814.e6 article-title: Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell‐driven lung inflammation in severe COVID‐19 publication-title: Immunity – volume: 432 start-page: 35 year: 2016 end-page: 49 article-title: Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue‐resident and dermal XCR1(+) DCs in mouse and human and distinguishes them from Langerhans cells publication-title: J. Immunol. Methods – volume: 595 start-page: 235 year: 2010 end-page: 248 article-title: Isolation of skin dendritic cells from mouse and man publication-title: Methods Mol Biol. – volume: 99 start-page: 561 year: 2021 end-page: 564 article-title: Monocytes and macrophages in severe COVID‐19 – friend, foe or both? publication-title: Immunol. Cell Biol. – volume: 210 start-page: 1035 year: 2013 end-page: 1047 article-title: Similar antigen cross‐presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ–resident dendritic cells publication-title: J. Exp. Med. – volume: 54 start-page: 1883 year: 2021 end-page: 1900.e5 article-title: Cross‐tissue single‐cell landscape of human monocytes and macrophages in health and disease publication-title: Immunity – volume: 16 start-page: 343 year: 2015 end-page: 353 article-title: Control of adaptive immunity by the innate immune system publication-title: Nat. Immunol. – volume: 8 start-page: 1254 year: 2017 article-title: The Peyer's patch mononuclear phagocyte system at steady state and during infection publication-title: Front. Immunol. – volume: 137 start-page: 1142 year: 1973 end-page: 1162 article-title: Identification of a novel cell type in peripheral lymphoid organs of micE publication-title: J. Exp. Med. – volume: 154 start-page: 3 year: 2018 end-page: 20 article-title: Human dendritic cell subsets: an update publication-title: Immunology – volume: 8 start-page: 935 year: 2008 end-page: 947 article-title: Origin, homeostasis and function of Langerhans cells and other langerin‐expressing dendritic cells publication-title: Nat. Rev. Immunol. – volume: 43 start-page: 3147 year: 2013 end-page: 3155 article-title: Human dendritic cells — stars in the skin publication-title: Eur. J. Immunol. – volume: 48 start-page: 91 year: 2018 end-page: 106.e6 article-title: Activation of p53 in immature myeloid precursor cells controls differentiation into Ly6c+CD103+ monocytic antigen‐presenting cells in tumors publication-title: Immunity – ident: e_1_2_32_59_1 doi: 10.1038/mi.2017.22 – ident: e_1_2_32_5_1 doi: 10.1016/j.immuni.2021.03.005 – ident: e_1_2_32_17_1 doi: 10.1111/imm.12117 – ident: e_1_2_32_27_1 doi: 10.1146/annurev-immunol-051116-052215 – ident: e_1_2_32_10_1 doi: 10.1126/science.aag3009 – ident: e_1_2_32_13_1 doi: 10.1038/s41590-019-0420-3 – ident: e_1_2_32_25_1 doi: 10.1084/jem.20112583 – ident: e_1_2_32_65_1 doi: 10.1016/j.immuni.2020.10.012 – ident: e_1_2_32_80_1 doi: 10.1084/jem.20092618 – ident: e_1_2_32_117_1 doi: 10.1016/j.ccell.2017.11.019 – ident: e_1_2_32_67_1 doi: 10.1038/nature21349 – ident: e_1_2_32_94_1 doi: 10.1136/jitc-2020-001053 – ident: e_1_2_32_78_1 doi: 10.1007/BF01533516 – ident: e_1_2_32_53_1 doi: 10.1126/sciimmunol.aai7677 – ident: e_1_2_32_11_1 doi: 10.1016/j.immuni.2019.08.008 – ident: e_1_2_32_48_1 doi: 10.1177/0022034520920577 – ident: e_1_2_32_86_1 doi: 10.1158/1078-0432.CCR-19-3826 – ident: e_1_2_32_84_1 doi: 10.1016/j.cell.2019.02.005 – ident: e_1_2_32_91_1 doi: 10.1371/journal.pone.0052875 – ident: e_1_2_32_32_1 doi: 10.1152/physrev.1997.77.2.397 – ident: e_1_2_32_52_1 doi: 10.1038/nri3785 – ident: e_1_2_32_118_1 doi: 10.1016/j.immuni.2021.04.019 – ident: e_1_2_32_16_1 doi: 10.1038/nri3712 – ident: e_1_2_32_74_1 doi: 10.1038/s41591-019-0522-3 – ident: e_1_2_32_9_1 doi: 10.1111/imcb.12028 – ident: e_1_2_32_64_1 doi: 10.1126/sciimmunol.abd3774 – ident: e_1_2_32_108_1 doi: 10.1016/j.jim.2011.10.011 – ident: e_1_2_32_38_1 doi: 10.1038/nri3683 – ident: e_1_2_32_114_1 doi: 10.1007/s00262-019-02330-y – ident: e_1_2_32_71_1 doi: 10.1038/s41586-020-2056-8 – ident: e_1_2_32_70_1 doi: 10.1038/s41577-018-0044-0 – ident: e_1_2_32_72_1 doi: 10.1016/j.immuni.2018.12.007 – ident: e_1_2_32_28_1 doi: 10.1182/blood-2011-09-382200 – ident: e_1_2_32_77_1 doi: 10.1016/j.ccell.2017.04.003 – ident: e_1_2_32_46_1 doi: 10.1007/978-1-4939-6786-5_18 – ident: e_1_2_32_37_1 doi: 10.1091/mbc.01-06-0300 – ident: e_1_2_32_87_1 doi: 10.1158/1078-0432.CCR-18-1942 – ident: e_1_2_32_18_1 doi: 10.1007/s00018-015-2005-0 – ident: e_1_2_32_8_1 doi: 10.1084/jem.137.5.1142 – ident: e_1_2_32_15_1 doi: 10.1146/annurev-immunol-100311-102839 – ident: e_1_2_32_62_1 doi: 10.1038/ncomms15820 – ident: e_1_2_32_107_1 doi: 10.1016/j.jim.2004.04.025 – ident: e_1_2_32_81_1 doi: 10.1084/jem.20121103 – ident: e_1_2_32_89_1 doi: 10.1016/j.ccell.2021.10.008 – ident: e_1_2_32_90_1 doi: 10.1189/jlb.1107750 – ident: e_1_2_32_41_1 doi: 10.1177/27.6.110874 – ident: e_1_2_32_19_1 doi: 10.1016/j.it.2020.10.002 – ident: e_1_2_32_96_1 doi: 10.4161/onci.20365 – ident: e_1_2_32_93_1 doi: 10.4161/onci.23837 – ident: e_1_2_32_20_1 doi: 10.1016/j.jdermsci.2014.08.012 – ident: e_1_2_32_36_1 doi: 10.1189/jlb.1HI0714-351R – ident: e_1_2_32_14_1 doi: 10.4049/jimmunol.1500383 – ident: e_1_2_32_112_1 doi: 10.1158/1078-0432.CCR-17-0944 – ident: e_1_2_32_102_1 doi: 10.1084/jem.20111457 – ident: e_1_2_32_60_1 doi: 10.1016/j.immuni.2013.03.009 – ident: e_1_2_32_88_1 doi: 10.1016/j.immuni.2018.09.024 – ident: e_1_2_32_40_1 doi: 10.4049/jimmunol.1801211 – ident: e_1_2_32_2_1 doi: 10.3389/fimmu.2017.00499 – ident: e_1_2_32_51_1 doi: 10.1038/ni.1822 – ident: e_1_2_32_58_1 doi: 10.1038/s41596-020-00482-1 – ident: e_1_2_32_85_1 doi: 10.1136/jitc-2020-000832 – ident: e_1_2_32_79_1 doi: 10.1038/s41577-022-00675-7 – volume-title: Lindhe's Clinical Periodontology and Implant Dentistry year: 2022 ident: e_1_2_32_45_1 – ident: e_1_2_32_75_1 doi: 10.1038/s43018-020-0075-x – ident: e_1_2_32_49_1 doi: 10.1038/ni.3123 – ident: e_1_2_32_39_1 doi: 10.1084/jem.20050500 – ident: e_1_2_32_44_1 doi: 10.1111/imm.13152 – ident: e_1_2_32_4_1 doi: 10.1189/jlb.0311134 – ident: e_1_2_32_110_1 doi: 10.1002/ijc.27755 – ident: e_1_2_32_68_1 doi: 10.1182/blood-2011-03-344838 – ident: e_1_2_32_104_1 doi: 10.1016/j.ccell.2022.06.009 – ident: e_1_2_32_61_1 doi: 10.1038/mi.2017.105 – ident: e_1_2_32_29_1 doi: 10.1016/j.jim.2016.02.023 – ident: e_1_2_32_54_1 doi: 10.1016/j.immuni.2015.06.017 – ident: e_1_2_32_73_1 doi: 10.1126/scitranslmed.aav7431 – ident: e_1_2_32_82_1 doi: 10.1016/j.immuni.2020.07.003 – ident: e_1_2_32_33_1 doi: 10.1038/32588 – ident: e_1_2_32_55_1 doi: 10.1177/00220345211004864 – ident: e_1_2_32_34_1 doi: 10.1016/j.jaci.2015.04.001 – ident: e_1_2_32_98_1 doi: 10.1016/j.immuni.2017.12.014 – ident: e_1_2_32_30_1 doi: 10.1007/978-1-60761-421-0_16 – ident: e_1_2_32_106_1 doi: 10.1016/S0002-9440(10)64152-1 – ident: e_1_2_32_95_1 doi: 10.1016/j.immuni.2021.07.007 – ident: e_1_2_32_97_1 doi: 10.1080/2162402X.2019.1631119 – ident: e_1_2_32_22_1 doi: 10.3389/fimmu.2015.00534 – ident: e_1_2_32_24_1 doi: 10.1016/j.immuni.2014.08.006 – ident: e_1_2_32_57_1 doi: 10.1016/j.immuni.2020.02.001 – ident: e_1_2_32_66_1 doi: 10.3389/fimmu.2017.01254 – ident: e_1_2_32_12_1 doi: 10.1146/annurev-immunol-020711-074950 – ident: e_1_2_32_26_1 doi: 10.1016/j.immuni.2012.04.012 – ident: e_1_2_32_99_1 doi: 10.1136/jitc-2020-000588 – ident: e_1_2_32_56_1 doi: 10.1038/s41385-021-00389-4 – ident: e_1_2_32_116_1 doi: 10.1016/j.ccell.2020.09.001 – ident: e_1_2_32_21_1 doi: 10.1002/eji.201343790 – ident: e_1_2_32_43_1 doi: 10.1002/0471142956.cy0127s63 – ident: e_1_2_32_63_1 doi: 10.1016/j.immuni.2016.02.008 – ident: e_1_2_32_3_1 doi: 10.1016/j.immuni.2016.08.015 – ident: e_1_2_32_35_1 doi: 10.1038/nri2455 – ident: e_1_2_32_50_1 doi: 10.1111/imm.13320 – ident: e_1_2_32_23_1 doi: 10.1111/j.0105-2896.2009.00886.x – ident: e_1_2_32_47_1 doi: 10.1073/pnas.1116770109 – ident: e_1_2_32_103_1 doi: 10.1158/2326-6066.CIR-14-0165 – volume: 4 start-page: 403 year: 2013 ident: e_1_2_32_92_1 article-title: Dendritic cell plasticity in tumor‐conditioned skin: CD14+ cells at the cross‐roads of immune activation and suppression publication-title: Front. Immunol. – ident: e_1_2_32_115_1 doi: 10.1080/2162402X.2019.1708066 – ident: e_1_2_32_100_1 doi: 10.3390/vaccines6030065 – ident: e_1_2_32_6_1 doi: 10.1016/j.cell.2020.08.001 – ident: e_1_2_32_31_1 doi: 10.1038/nrm1619 – ident: e_1_2_32_83_1 doi: 10.1158/2326-6066.CIR-17-0110 – ident: e_1_2_32_113_1 doi: 10.1172/jci.insight.124507 – ident: e_1_2_32_76_1 doi: 10.1038/nature14404 – ident: e_1_2_32_111_1 doi: 10.1073/pnas.1620433114 – ident: e_1_2_32_105_1 doi: 10.1186/s40425-019-0605-1 – ident: e_1_2_32_119_1 doi: 10.1136/jitc-2021-003571 – ident: e_1_2_32_69_1 doi: 10.3389/fimmu.2021.643291 – ident: e_1_2_32_101_1 doi: 10.1111/imm.12888 – volume: 8 year: 2020 ident: e_1_2_32_109_1 article-title: Breast cancer‐induced immune suppression in the sentinel lymph node is effectively countered by CpG‐B in conjunction with inhibition of the JAK2/STAT3 pathway publication-title: J. Immunother. Cancer. doi: 10.1136/jitc-2020-000761 – ident: e_1_2_32_42_1 doi: 10.1002/(SICI)1097-0320(19961201)25:4<388::AID-CYTO11>3.0.CO;2-R – ident: e_1_2_32_7_1 doi: 10.1111/imcb.12464 |
| SSID | ssj0009659 |
| Score | 2.4695997 |
| Snippet | This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state‐of‐the‐art protocols for the preparation, phenotype... This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype... |
| SourceID | swepub pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | e2250325 |
| SubjectTerms | Animals Basic Medicine Cell and Molecular Biology Cell suspensions Cell- och molekylärbiologi Dendritic cells Dendritic Cells - cytology Dendritic Cells - immunology Flow cytometry Flow Cytometry - methods Fluorescence microscopy Guidelines|Clinical Highlights Humans Immunology Lymph nodes Lymphatic drainage Medical and Health Sciences Medicin och hälsovetenskap Medicinska och farmaceutiska grundvetenskaper Mice nonlymphoid tissues Phenotypes Single-Cell Analysis - methods tumor tumor‐draining lymph node |
| Title | Guidelines for preparation and flow cytometry analysis of human nonlymphoid tissue DC |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feji.202250325 https://www.ncbi.nlm.nih.gov/pubmed/39668411 https://www.proquest.com/docview/3161733834 https://www.proquest.com/docview/3146664938 https://pubmed.ncbi.nlm.nih.gov/PMC11739683 |
| Volume | 55 |
| WOSCitedRecordID | wos001375789400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4141 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009659 issn: 1521-4141 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaghYoLj1IgUCojIS4oquNH7BxR2-UhqCrESisulh3b6qI2We0DtP-ecZxuiSohIS45JHaceGbi77PjbxB6zWkwzlqWMxNsHvdK5sY4knMnCbCBoJQ3XbIJeXqqJpPqrM9zGvfCJH2IzYRbjIzuex0D3NjF4bVoqP8xBXoH7kgYFbfRdlEwFXM3UH52rbpbioR_C57TSpFeZBNucDioPhyUbiDNmz9M9rKiQ0TbDUmjB__9Mg_R_R6N4nfJfR6hW77ZRXdTfsr1Ltr50q-8P0bj96soiBV_kseAc_Fs7pNqeNtg0zgcLtpfuF4v20u_nK_hVNI6wW3AXRpA3MBjrsF12qnDy87a-PhoD41HJ9-OPuR9Soa8BqgEJqQilKYmjlTBADID8iioJFY4HqSppYWB0EoWfGWYMcA-gy2dNI5ZoWpSBvYEbUF7_lncLF5Yr0QEXZRb6SuobMBFonqOE7zO0Jsrm-hZUt7QSWOZauguvemuDO1fWUz3AbjQLPK2SL95hl5tLkPoxPUQ0_h2FctwIG-8YipDT5OBNy0xoIGKF0WG1MD0mwJRlnt4pZmed_LcBTRclYpl6HvykmGdjlXpXsrpXF-s9MLr2R9ztNraEFX7nRY1JZo7Z7USZaVNIb0RzNNaws3fdv70967RJ58-ClWS5_9U-gW6R2OW426iaR9tLecr_xLdqX-Cd8wPugiDo5yoA7R9_HU0_vwbRjEsQg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagnC8c5QoUMBLiBUVNfMTOIyotLbSrPrRSxYtlx7a6qCSr7S5o_z1jO00bVUJCvMZX4pnJzOfjG4TeM-K1NYbmVHuTh7uSuda2yJkVBaABL6XTMdmEmEzkyUl9eOUWf-KHGBbcgmXE_3Uw8LAgvXnJGup-TAHfgT4WlPCb6BYDTxM0nbDDS9rdiqcAuGQ5qWXRs2xCB5uj5mOvdC3UvH5isucVHYe00SftPPz_r3mEHvTxKP6UFOgxuuHadXQnZahcraO7B_3e-xN0_GUZKLHCMXkMkS6ezV3iDe9arFuL_Vn3GzerRffTLeYreJTYTnDncUwEiFt4zxUoTze1eBHljT9vPUXHO9tHW7t5n5QhbyBYAiES7ivdFLaovYbYDOAjJ6Iw3DIvdCMMuEIjqHe1ploD_vSmskJbarhsisrTZ2gNxnMvwnXx0jjJQ9hFmBGuhsYalCTw51jOmgx9uBCKmiXuDZVYlomC6VLDdGVo40JkqjfBc0UDcgsAnGXo3VAMxhN2RHTrumWowwC-sZrKDD1PEh5GogAEJSvLDMmR7IcKgZh7XNJOTyNBdwkD15WkGfqe1GTcJuIq1ZM5naqzpTp3anZllVYZ4wNvv1W8IYVi1holeVUrXQqnOXWkEdD5x6hQf58atf11j8uqePlPtd-ie7tHB_tqf2_y7RW6T0LO47jstIHWFvOle41uN79AU-Zvorn9AaC3LaU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BFioufJSvQAEjIS4oqhPbiXNE3S4UyqpCrFRxsezYVheVZLXdBe2_Z5ykaaNKSIhr7NiJZyZ-z7HfALzhqdfWGBYz7U0czkrGWlsac5tTZANeSqebZBP5dCpPTorjK6f4W32IfsEtREbzvQ4B7hbW712qhrofc-R36I-UpeImbPGQSGYEW-Ovk9nRpfBuJloInPA4LSTtdDaxib1BA8N56RrYvL5nslMWHYLaZlaa3Pv_97kPdztESt63LvQAbrhqB263OSo3O7D9pfv7_hBmH9ZBFCtslCeIdcli6Vrl8LoiurLEn9W_SblZ1T_darnBS63eCak9aVIBkgqfc4PuU88tWTUWJ-P9RzCbHHzb_xh3aRniEuESmjEVPtMltbTwGtEZEkiR5tQIy32uy9zgZGhy5l2hmdbIQL3JbK4tM0KWNPPsMYywP_c0HBhPjJMiAK-Um9wVeLNGNwkKOlbwMoK3F0ZRi1Z9Q7U6y6nC4VL9cEWwe2Ey1QXhuWKBuwUKziN43Rdj-IR_Irpy9TrU4UjgeMFkBE9aC_c9MaSCkidJBHJg-75CkOYellTz00aiO8GOi0yyCL63bjK8p2FWqpNzOlVna3Xu1OLKOq0yxgflfqtEmVLFrTVKiqxQOsmdFsylZY6Nv2sc6u9Dow4-HQqZ0Wf_VPsVbB-PJ-rocPr5OdxJQ9LjZt1pF0ar5dq9gFvlL3SU5csu3v4AYkUuuw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidelines+for+preparation+and+flow+cytometry+analysis+of+human+nonlymphoid+tissue+DC&rft.jtitle=European+journal+of+immunology&rft.au=Dudziak%2C+Diana&rft.au=Heger%2C+Lukas&rft.au=Agace%2C+William+W&rft.au=Bakker%2C+Joyce&rft.date=2025-01-01&rft.eissn=1521-4141&rft.volume=55&rft.issue=1&rft.spage=e2250325&rft_id=info:doi/10.1002%2Feji.202250325&rft_id=info%3Apmid%2F39668411&rft.externalDocID=39668411 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2980&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2980&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2980&client=summon |