Guidelines for preparation and flow cytometry analysis of human nonlymphoid tissue DC

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state‐of‐the‐art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of immunology Jg. 55; H. 1; S. e2250325 - n/a
Hauptverfasser: Dudziak, Diana, Heger, Lukas, Agace, William W, Bakker, Joyce, Gruijl, Tanja D., Dress, Regine J., Dutertre, Charles‐Antoine, Fenton, Thomas M., Fransen, Marieke F., Ginhoux, Florent, Heyman, Oded, Horev, Yael, Hornsteiner, Florian, Kandiah, Vinitha, Kles, Paz, Lubin, Ruth, Mizraji, Gabriel, Prokopi, Anastasia, Saar, Or, Sopper, Sieghart, Stoitzner, Patrizia, Strandt, Helen, Sykora, Martina M, Toffoli, Elisa C., Tripp, Christoph H., Pul, Kim, Ven, Rieneke, Wilensky, Asaf, Yona, Simon, Zelle‐Rieser, Claudia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.01.2025
John Wiley and Sons Inc
Schlagworte:
ISSN:0014-2980, 1521-4141, 1521-4141
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state‐of‐the‐art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single‐cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor‐draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single‐cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer‐reviewed by leading experts and approved by all co‐authors, making it an essential resource for basic and clinical DC immunologists. We here provide detailed protocols for isolating single cell suspension from human nonlymphoid tissues, such as gingiva, lung, intestine, skin, and different tumor tissues as well as tumor‐draining lymph nodes. Further, we provide gating strategies for flow cytometric analysis of human DC subpopulations in diverse nonlymphoid tissues.
AbstractList This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state‐of‐the‐art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single‐cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor‐draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single‐cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer‐reviewed by leading experts and approved by all co‐authors, making it an essential resource for basic and clinical DC immunologists. We here provide detailed protocols for isolating single cell suspension from human nonlymphoid tissues, such as gingiva, lung, intestine, skin, and different tumor tissues as well as tumor‐draining lymph nodes. Further, we provide gating strategies for flow cytometric analysis of human DC subpopulations in diverse nonlymphoid tissues.
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state‐of‐the‐art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single‐cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor‐draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single‐cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer‐reviewed by leading experts and approved by all co‐authors, making it an essential resource for basic and clinical DC immunologists.
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single-cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor-draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single-cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single-cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor-draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single-cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state‐of‐the‐art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single‐cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor‐draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single‐cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer‐reviewed by leading experts and approved by all co‐authors, making it an essential resource for basic and clinical DC immunologists. We here provide detailed protocols for isolating single cell suspension from human nonlymphoid tissues, such as gingiva, lung, intestine, skin, and different tumor tissues as well as tumor‐draining lymph nodes. Further, we provide gating strategies for flow cytometric analysis of human DC subpopulations in diverse nonlymphoid tissues.
Author Sykora, Martina M
Toffoli, Elisa C.
Horev, Yael
Dress, Regine J.
Saar, Or
Mizraji, Gabriel
Fransen, Marieke F.
Ginhoux, Florent
Dudziak, Diana
Yona, Simon
Agace, William W
Kles, Paz
Tripp, Christoph H.
Heyman, Oded
Hornsteiner, Florian
Ven, Rieneke
Kandiah, Vinitha
Strandt, Helen
Pul, Kim
Bakker, Joyce
Fenton, Thomas M.
Prokopi, Anastasia
Wilensky, Asaf
Gruijl, Tanja D.
Stoitzner, Patrizia
Zelle‐Rieser, Claudia
Lubin, Ruth
Sopper, Sieghart
Dutertre, Charles‐Antoine
Heger, Lukas
AuthorAffiliation 21 Tyrolean Cancer Research Center Innsbruck Austria
6 Institute for Infection and Immunology Cancer Immunology Amsterdam The Netherlands
22 Department of Otolaryngology, Head and Neck Surgery Amsterdam UMC location Vrije Universiteit Amsterdam The Netherlands
13 Singapore Immunology Network (SIgN), Agency for Science, Technology and Research Singapore Singapore
18 Department of Dermatology, Venereology & Allergology Medical University of Innsbruck Innsbruck Austria
1 Institute of Immunology Jena University Hospital Friedrich‐Schiller‐University Jena Germany
14 Department of Immunology and Microbiology Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China
16 INSERM U1015, Gustave Roussy Cancer Campus Villejuif France
19 Faculty of Dental Medicine The Institute of Biomedical and Oral Research Hebrew University of Jerusalem Israel
3 Department of Transfusion Medicine and Hemostaseology University Hospital Erlangen Erlangen Germany
20 Internal Medicine V,
AuthorAffiliation_xml – name: 22 Department of Otolaryngology, Head and Neck Surgery Amsterdam UMC location Vrije Universiteit Amsterdam The Netherlands
– name: 16 INSERM U1015, Gustave Roussy Cancer Campus Villejuif France
– name: 10 Inserm U1015, Gustave Roussy Villejuif France
– name: 5 Immunology Section Lund University Lund Sweden
– name: 9 Institute of Systems Immunology Hamburg Center for Translational Immunology (HCTI) University Medical Center Hamburg‐Eppendorf Hamburg Germany
– name: 20 Internal Medicine V, Hematology and Oncology Medical University of Innsbruck Innsbruck Austria
– name: 7 Cancer Center Amsterdam Cancer Immunology Amsterdam The Netherlands
– name: 21 Tyrolean Cancer Research Center Innsbruck Austria
– name: 11 School of Infection and Immunity University of Glasgow Glasgow UK
– name: 4 LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology University of Copenhagen Copenhagen Denmark
– name: 14 Department of Immunology and Microbiology Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China
– name: 19 Faculty of Dental Medicine The Institute of Biomedical and Oral Research Hebrew University of Jerusalem Israel
– name: 6 Institute for Infection and Immunology Cancer Immunology Amsterdam The Netherlands
– name: 2 Laboratory of Dendritic Cell Biology Department of Dermatology University Hospital Erlangen Erlangen Germany
– name: 18 Department of Dermatology, Venereology & Allergology Medical University of Innsbruck Innsbruck Austria
– name: 1 Institute of Immunology Jena University Hospital Friedrich‐Schiller‐University Jena Germany
– name: 3 Department of Transfusion Medicine and Hemostaseology University Hospital Erlangen Erlangen Germany
– name: 8 Amsterdam UMC location Vrije Universiteit Medical Oncology Amsterdam The Netherlands
– name: 17 Department of Periodontology Hadassah Medical Center Faculty of Dental Medicine Hebrew University of Jerusalem Israel
– name: 12 Department of Pulmonary Diseases Amsterdam UMC location Vrije Universiteit Amsterdam The Netherlands
– name: 13 Singapore Immunology Network (SIgN), Agency for Science, Technology and Research Singapore Singapore
– name: 15 SingHealth Duke‐NUS Academic Medical Centre Translational Immunology Institute Singapore Singapore
Author_xml – sequence: 1
  givenname: Diana
  surname: Dudziak
  fullname: Dudziak, Diana
  email: Diana.dudziak@med.uni-jena.de
  organization: University Hospital Erlangen
– sequence: 2
  givenname: Lukas
  orcidid: 0000-0001-5591-2187
  surname: Heger
  fullname: Heger, Lukas
  organization: University Hospital Erlangen
– sequence: 3
  givenname: William W
  surname: Agace
  fullname: Agace, William W
  organization: Lund University
– sequence: 4
  givenname: Joyce
  surname: Bakker
  fullname: Bakker, Joyce
  organization: Medical Oncology
– sequence: 5
  givenname: Tanja D.
  surname: Gruijl
  fullname: Gruijl, Tanja D.
  organization: Medical Oncology
– sequence: 6
  givenname: Regine J.
  surname: Dress
  fullname: Dress, Regine J.
  organization: University Medical Center Hamburg‐Eppendorf
– sequence: 7
  givenname: Charles‐Antoine
  surname: Dutertre
  fullname: Dutertre, Charles‐Antoine
  organization: Inserm U1015, Gustave Roussy
– sequence: 8
  givenname: Thomas M.
  surname: Fenton
  fullname: Fenton, Thomas M.
  organization: University of Glasgow
– sequence: 9
  givenname: Marieke F.
  surname: Fransen
  fullname: Fransen, Marieke F.
  organization: Amsterdam UMC location Vrije Universiteit
– sequence: 10
  givenname: Florent
  surname: Ginhoux
  fullname: Ginhoux, Florent
  organization: INSERM U1015, Gustave Roussy Cancer Campus
– sequence: 11
  givenname: Oded
  surname: Heyman
  fullname: Heyman, Oded
  organization: Hebrew University of Jerusalem
– sequence: 12
  givenname: Yael
  surname: Horev
  fullname: Horev, Yael
  organization: Hebrew University of Jerusalem
– sequence: 13
  givenname: Florian
  surname: Hornsteiner
  fullname: Hornsteiner, Florian
  organization: Medical University of Innsbruck
– sequence: 14
  givenname: Vinitha
  surname: Kandiah
  fullname: Kandiah, Vinitha
  organization: Medical Oncology
– sequence: 15
  givenname: Paz
  surname: Kles
  fullname: Kles, Paz
  organization: Hebrew University of Jerusalem
– sequence: 16
  givenname: Ruth
  surname: Lubin
  fullname: Lubin, Ruth
  organization: Hebrew University of Jerusalem
– sequence: 17
  givenname: Gabriel
  surname: Mizraji
  fullname: Mizraji, Gabriel
  organization: Hebrew University of Jerusalem
– sequence: 18
  givenname: Anastasia
  surname: Prokopi
  fullname: Prokopi, Anastasia
  organization: Medical Oncology
– sequence: 19
  givenname: Or
  surname: Saar
  fullname: Saar, Or
  organization: Hebrew University of Jerusalem
– sequence: 20
  givenname: Sieghart
  surname: Sopper
  fullname: Sopper, Sieghart
  organization: Tyrolean Cancer Research Center
– sequence: 21
  givenname: Patrizia
  surname: Stoitzner
  fullname: Stoitzner, Patrizia
  organization: Medical University of Innsbruck
– sequence: 22
  givenname: Helen
  surname: Strandt
  fullname: Strandt, Helen
  organization: Medical University of Innsbruck
– sequence: 23
  givenname: Martina M
  surname: Sykora
  fullname: Sykora, Martina M
  organization: Tyrolean Cancer Research Center
– sequence: 24
  givenname: Elisa C.
  surname: Toffoli
  fullname: Toffoli, Elisa C.
  organization: Medical Oncology
– sequence: 25
  givenname: Christoph H.
  surname: Tripp
  fullname: Tripp, Christoph H.
  organization: Medical University of Innsbruck
– sequence: 26
  givenname: Kim
  surname: Pul
  fullname: Pul, Kim
  organization: Medical Oncology
– sequence: 27
  givenname: Rieneke
  surname: Ven
  fullname: Ven, Rieneke
  organization: Amsterdam UMC location Vrije Universiteit
– sequence: 28
  givenname: Asaf
  surname: Wilensky
  fullname: Wilensky, Asaf
  organization: Hebrew University of Jerusalem
– sequence: 29
  givenname: Simon
  surname: Yona
  fullname: Yona, Simon
  organization: Hebrew University of Jerusalem
– sequence: 30
  givenname: Claudia
  surname: Zelle‐Rieser
  fullname: Zelle‐Rieser, Claudia
  organization: Medical University of Innsbruck
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39668411$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFv1DAUhCNURLeFI1cUiQuXlGc7dpITQkspRZW40LPl2M-sV0682ElX-fd42bKiHDhZsj_PjJ_nojgbw4hF8ZrAFQGg73HrrihQyoFR_qxYEU5JVZOanBUrAFJXtGvhvLhIaQsAneDdi-KcdUK0NSGr4v5mdga9GzGVNsRyF3GnoppcGEs1mtL6sC_1MoUBp7jkLeWX5FIZbLmZBzWWOY5fht0mOFNOLqUZy0_rl8Vzq3zCV4_rZXH_-fr7-kt19-3mdv3xrtIcOFQ15VYoDQY6q4B3BBpOG-i5qW2jdNMTyvqGWewUU6rNdC9MowzreatBWHZZqKNu2uNu7uUuukHFRQbl5C7ESXkZMaGKeiP9LBPKTHmnf78vyb63HeHcSK4pyNqYXrZcdFKRBhVnSHXDsseHo0e-OqDROE4x6z6xenIyuo38ER4kIU2ec3tQePeoEMPPGdMkB5c0eq9GDHOSjNRCiLpjbUbf_oNuwxzz0A-UyIKZqTP15u9Ipyx_vjUD1RHQMaQU0Z4QAvJQG5lrI0-1yTw98nvncfk_LK-_3vJWAPsFFjbGmg
Cites_doi 10.1038/mi.2017.22
10.1016/j.immuni.2021.03.005
10.1111/imm.12117
10.1146/annurev-immunol-051116-052215
10.1126/science.aag3009
10.1038/s41590-019-0420-3
10.1084/jem.20112583
10.1016/j.immuni.2020.10.012
10.1084/jem.20092618
10.1016/j.ccell.2017.11.019
10.1038/nature21349
10.1136/jitc-2020-001053
10.1007/BF01533516
10.1126/sciimmunol.aai7677
10.1016/j.immuni.2019.08.008
10.1177/0022034520920577
10.1158/1078-0432.CCR-19-3826
10.1016/j.cell.2019.02.005
10.1371/journal.pone.0052875
10.1152/physrev.1997.77.2.397
10.1038/nri3785
10.1016/j.immuni.2021.04.019
10.1038/nri3712
10.1038/s41591-019-0522-3
10.1111/imcb.12028
10.1126/sciimmunol.abd3774
10.1016/j.jim.2011.10.011
10.1038/nri3683
10.1007/s00262-019-02330-y
10.1038/s41586-020-2056-8
10.1038/s41577-018-0044-0
10.1016/j.immuni.2018.12.007
10.1182/blood-2011-09-382200
10.1016/j.ccell.2017.04.003
10.1007/978-1-4939-6786-5_18
10.1091/mbc.01-06-0300
10.1158/1078-0432.CCR-18-1942
10.1007/s00018-015-2005-0
10.1084/jem.137.5.1142
10.1146/annurev-immunol-100311-102839
10.1038/ncomms15820
10.1016/j.jim.2004.04.025
10.1084/jem.20121103
10.1016/j.ccell.2021.10.008
10.1189/jlb.1107750
10.1177/27.6.110874
10.1016/j.it.2020.10.002
10.4161/onci.20365
10.4161/onci.23837
10.1016/j.jdermsci.2014.08.012
10.1189/jlb.1HI0714-351R
10.4049/jimmunol.1500383
10.1158/1078-0432.CCR-17-0944
10.1084/jem.20111457
10.1016/j.immuni.2013.03.009
10.1016/j.immuni.2018.09.024
10.4049/jimmunol.1801211
10.3389/fimmu.2017.00499
10.1038/ni.1822
10.1038/s41596-020-00482-1
10.1136/jitc-2020-000832
10.1038/s41577-022-00675-7
10.1038/s43018-020-0075-x
10.1038/ni.3123
10.1084/jem.20050500
10.1111/imm.13152
10.1189/jlb.0311134
10.1002/ijc.27755
10.1182/blood-2011-03-344838
10.1016/j.ccell.2022.06.009
10.1038/mi.2017.105
10.1016/j.jim.2016.02.023
10.1016/j.immuni.2015.06.017
10.1126/scitranslmed.aav7431
10.1016/j.immuni.2020.07.003
10.1038/32588
10.1177/00220345211004864
10.1016/j.jaci.2015.04.001
10.1016/j.immuni.2017.12.014
10.1007/978-1-60761-421-0_16
10.1016/S0002-9440(10)64152-1
10.1016/j.immuni.2021.07.007
10.1080/2162402X.2019.1631119
10.3389/fimmu.2015.00534
10.1016/j.immuni.2014.08.006
10.1016/j.immuni.2020.02.001
10.3389/fimmu.2017.01254
10.1146/annurev-immunol-020711-074950
10.1016/j.immuni.2012.04.012
10.1136/jitc-2020-000588
10.1038/s41385-021-00389-4
10.1016/j.ccell.2020.09.001
10.1002/eji.201343790
10.1002/0471142956.cy0127s63
10.1016/j.immuni.2016.02.008
10.1016/j.immuni.2016.08.015
10.1038/nri2455
10.1111/imm.13320
10.1111/j.0105-2896.2009.00886.x
10.1073/pnas.1116770109
10.1158/2326-6066.CIR-14-0165
10.1080/2162402X.2019.1708066
10.3390/vaccines6030065
10.1016/j.cell.2020.08.001
10.1038/nrm1619
10.1158/2326-6066.CIR-17-0110
10.1172/jci.insight.124507
10.1038/nature14404
10.1073/pnas.1620433114
10.1186/s40425-019-0605-1
10.1136/jitc-2021-003571
10.3389/fimmu.2021.643291
10.1111/imm.12888
10.1136/jitc-2020-000761
10.1002/(SICI)1097-0320(19961201)25:4<388::AID-CYTO11>3.0.CO;2-R
10.1111/imcb.12464
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley‐VCH GmbH.
2024 The Author(s). European Journal of Immunology published by Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley‐VCH GmbH.
– notice: 2024 The Author(s). European Journal of Immunology published by Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Department of Experimental Medical Science
Faculty of Medicine
Mucosal Immunology
Slemhinnans immunologi
Lunds universitet
Institutionen för experimentell medicinsk vetenskap
Medicinska fakulteten
Lund University
CorporateAuthor_xml – name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Slemhinnans immunologi
– name: Mucosal Immunology
– name: Department of Experimental Medical Science
– name: Lund University
– name: Institutionen för experimentell medicinsk vetenskap
– name: Lunds universitet
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7TK
7TM
8FD
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1002/eji.202250325
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE
MEDLINE - Academic

Genetics Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1521-4141
EndPage n/a
ExternalDocumentID oai_portal_research_lu_se_publications_bbf9155d_5c20_4ddb_8569_a17ea53e2c73
PMC11739683
39668411
10_1002_eji_202250325
EJI5860
Genre article
Journal Article
GrantInformation_xml – fundername: Singapore National Research Foundation Senior Investigatorship (NRFI)
  funderid: NRF2016NRF‐NRFI001‐02
– fundername: Danish Research Council
  funderid: Sapere Aude III 1331‐00136B
– fundername: Austrian Academy of Sciences
  funderid: OAW DOC/26015
– fundername: Swedish Medical Research Council
  funderid: 2017‐02072
– fundername: Austrian Science Fund (FWF)
  funderid: P‐21487‐B13; P‐27001‐B13; P‐33855‐B; ESP 138‐B
– fundername: Israel Science Foundation
  funderid: 2369/18
– fundername: Lundbeck Foundation
  funderid: R155‐2014‐4184
– fundername: Austrian Research Promotion Agency
  funderid: FFG 858057
– fundername: Swedish Cancerfonden
  funderid: 18 0598
– fundername: Austrian Science Fund (FWF)
  grantid: P-21487-B13
– fundername: Swedish Medical Research Council
  grantid: 2017-02072
– fundername: Lundbeck Foundation
  grantid: R155-2014-4184
– fundername: Swedish Cancerfonden
  grantid: 18 0598
– fundername: Austrian Research Promotion Agency
  grantid: FFG 858057
– fundername: Austrian Science Fund (FWF)
  grantid: P-27001-B13
– fundername: Israel Science Foundation
  grantid: 2369/18
– fundername: Singapore National Research Foundation Senior Investigatorship (NRFI)
  grantid: NRF2016NRF-NRFI001-02
– fundername: Austrian Academy of Sciences
  grantid: OAW DOC/26015
– fundername: Danish Research Council
  grantid: Sapere Aude III 1331-00136B
– fundername: Austrian Science Fund (FWF)
  grantid: P‐21487‐B13; P‐27001‐B13; P‐33855‐B; ESP 138‐B
– fundername: Danish Research Council
  grantid: Sapere Aude III 1331‐00136B
– fundername: Singapore National Research Foundation Senior Investigatorship (NRFI)
  grantid: NRF2016NRF‐NRFI001‐02
GroupedDBID ---
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOETA
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
UPT
V2E
VH1
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
X7M
XG1
XPP
XV2
Y6R
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7TK
7TM
8FD
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c5050-425f6ac0d09fa0591075270b5d4f7ac7b123b73fe9a3aa825fb6d7ad3b58c06f3
IEDL.DBID 24P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001375789400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0014-2980
1521-4141
IngestDate Sat Nov 22 03:11:54 EST 2025
Tue Nov 04 02:04:38 EST 2025
Thu Oct 02 09:55:43 EDT 2025
Sat Nov 29 14:41:26 EST 2025
Mon Jul 21 06:04:23 EDT 2025
Sat Nov 29 08:16:52 EST 2025
Fri Jan 31 10:08:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords nonlymphoid tissues
flow cytometry
dendritic cells
tumor
tumor‐draining lymph node
Language English
License Attribution
2024 The Author(s). European Journal of Immunology published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5050-425f6ac0d09fa0591075270b5d4f7ac7b123b73fe9a3aa825fb6d7ad3b58c06f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5591-2187
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feji.202250325
PMID 39668411
PQID 3161733834
PQPubID 986365
PageCount 52
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_bbf9155d_5c20_4ddb_8569_a17ea53e2c73
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11739683
proquest_miscellaneous_3146664938
proquest_journals_3161733834
pubmed_primary_39668411
crossref_primary_10_1002_eji_202250325
wiley_primary_10_1002_eji_202250325_EJI5860
PublicationCentury 2000
PublicationDate January 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle European journal of immunology
PublicationTitleAlternate Eur J Immunol
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2013; 4
2011; 118
2013; 2
2015; 72
2002; 13
2015; 77
2020; 160
2013; 63
2019; 202
2021; 163
2020; 12
2020; 99
2022; 22
2013; 8
2018; 49
1998; 392
2018; 48
1979; 27
2018; 6
2018; 3
2012; 375
2009; 10
2019; 20
2004; 291
2015; 136
2022; 40
2010; 234
2019; 25
2016; 432
2010; 595
2014; 14
2020; 579
2018; 33
2016; 45
2016; 44
2019; 8
2019; 7
2015; 523
2020; 41
2010; 207
2020; 38
2012; 37
2014; 41
2012; 30
2012; 109
2018; 18
2021; 54
1973; 137
2016; 1
2011; 90
2013; 210
2020; 26
2005; 6
2018; 96
2022; 10
2018; 11
2017; 541
2019; 177
2012; 119
2017; 5
2017; 8
2019; 51
2008; 8
2017; 356
2017; 114
2012; 209
2020; 8
2017; 31
2020; 1
2020; 53
2020; 52
2019; 68
2021; 39
2017; 35
2015; 43
2020; 9
1994; 38
1996; 25
2016; 196
2021; 9
2015; 15
2021; 6
2015; 6
2015; 16
2015; 3
2013; 43
2015; 97
2020; 182
2017; 23
2013; 140
2021; 100
2021; 14
2021; 16
2018; 154
2002; 161
2021; 12
2021; 99
2013; 38
2012; 1
1997; 77
2022
2005; 202
2017; 10
2013; 31
2017
2013; 132
2008; 84
e_1_2_32_80_1
e_1_2_32_115_1
e_1_2_32_23_1
e_1_2_32_46_1
e_1_2_32_65_1
e_1_2_32_88_1
e_1_2_32_111_1
e_1_2_32_42_1
e_1_2_32_61_1
e_1_2_32_84_1
e_1_2_32_108_1
e_1_2_32_16_1
e_1_2_32_39_1
e_1_2_32_58_1
e_1_2_32_5_1
e_1_2_32_95_1
e_1_2_32_91_1
e_1_2_32_99_1
e_1_2_32_9_1
Ven R. (e_1_2_32_92_1) 2013; 4
e_1_2_32_11_1
e_1_2_32_57_1
e_1_2_32_104_1
e_1_2_32_34_1
e_1_2_32_76_1
e_1_2_32_53_1
e_1_2_32_100_1
e_1_2_32_30_1
e_1_2_32_72_1
e_1_2_32_27_1
e_1_2_32_69_1
e_1_2_32_60_1
e_1_2_32_116_1
e_1_2_32_22_1
e_1_2_32_68_1
e_1_2_32_87_1
e_1_2_32_112_1
e_1_2_32_64_1
e_1_2_32_41_1
e_1_2_32_83_1
e_1_2_32_19_1
e_1_2_32_15_1
e_1_2_32_38_1
e_1_2_32_6_1
e_1_2_32_2_1
e_1_2_32_71_1
e_1_2_32_94_1
e_1_2_32_90_1
Lang N. P. (e_1_2_32_45_1) 2022
e_1_2_32_98_1
e_1_2_32_10_1
e_1_2_32_33_1
e_1_2_32_56_1
e_1_2_32_79_1
e_1_2_32_105_1
e_1_2_32_52_1
e_1_2_32_75_1
e_1_2_32_101_1
e_1_2_32_26_1
e_1_2_32_49_1
Pul K. M. (e_1_2_32_109_1) 2020; 8
e_1_2_32_82_1
e_1_2_32_21_1
e_1_2_32_44_1
e_1_2_32_67_1
e_1_2_32_117_1
e_1_2_32_40_1
e_1_2_32_63_1
e_1_2_32_86_1
e_1_2_32_113_1
e_1_2_32_18_1
e_1_2_32_14_1
e_1_2_32_37_1
e_1_2_32_7_1
e_1_2_32_3_1
e_1_2_32_93_1
e_1_2_32_70_1
e_1_2_32_97_1
e_1_2_32_32_1
e_1_2_32_78_1
e_1_2_32_13_1
e_1_2_32_55_1
e_1_2_32_106_1
e_1_2_32_74_1
e_1_2_32_51_1
e_1_2_32_102_1
e_1_2_32_29_1
e_1_2_32_25_1
e_1_2_32_48_1
e_1_2_32_81_1
e_1_2_32_110_1
e_1_2_32_43_1
e_1_2_32_89_1
e_1_2_32_118_1
e_1_2_32_24_1
e_1_2_32_66_1
e_1_2_32_85_1
e_1_2_32_114_1
e_1_2_32_20_1
e_1_2_32_62_1
e_1_2_32_36_1
e_1_2_32_17_1
e_1_2_32_59_1
e_1_2_32_8_1
e_1_2_32_4_1
e_1_2_32_96_1
e_1_2_32_12_1
e_1_2_32_35_1
e_1_2_32_54_1
e_1_2_32_77_1
e_1_2_32_107_1
e_1_2_32_31_1
e_1_2_32_50_1
e_1_2_32_73_1
e_1_2_32_103_1
e_1_2_32_47_1
e_1_2_32_119_1
e_1_2_32_28_1
References_xml – volume: 18
  start-page: 635
  year: 2018
  end-page: 647
  article-title: CD4+ T cell help in cancer immunology and immunotherapy
  publication-title: Nat. Rev. Immunol.
– volume: 38
  start-page: 253
  year: 1994
  end-page: 258
  article-title: Reduced expression of distinct T‐cell CD molecules by collagenase/DNase treatment
  publication-title: Cancer Immunol. Immunother.
– volume: 4
  start-page: 403
  year: 2013
  article-title: Dendritic cell plasticity in tumor‐conditioned skin: CD14+ cells at the cross‐roads of immune activation and suppression
  publication-title: Front. Immunol.
– volume: 45
  start-page: 669
  year: 2016
  end-page: 684
  article-title: Unsupervised high‐dimensional analysis aligns dendritic cells across tissues and species
  publication-title: Immunity
– volume: 35
  start-page: 469
  year: 2017
  end-page: 499
  article-title: Antigen‐presenting cells in the skin
  publication-title: Annu. Rev. Immunol.
– volume: 140
  start-page: 22
  year: 2013
  end-page: 30
  article-title: Human dendritic cell subsets
  publication-title: Immunology
– volume: 234
  start-page: 120
  year: 2010
  end-page: 141
  article-title: Langerhans cells and more: langerin‐expressing dendritic cell subsets in the skin
  publication-title: Immunol. Rev.
– volume: 72
  start-page: 4309
  year: 2015
  end-page: 4325
  article-title: Human dendritic cell subsets and function in health and disease
  publication-title: Cell. Mol. Life Sci.
– volume: 20
  start-page: 852
  year: 2019
  end-page: 864
  article-title: Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage
  publication-title: Nat. Immunol.
– volume: 99
  start-page: 1092
  year: 2020
  end-page: 1101
  article-title: Niche specific microbiota‐dependent and independent bone loss around dental implants and teeth
  publication-title: J. Dent. Res.
– volume: 163
  start-page: 250
  year: 2021
  end-page: 261
  article-title: Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease
  publication-title: Immunology
– volume: 209
  start-page: 653
  year: 2012
  end-page: 660
  article-title: Characterization of resident and migratory dendritic cells in human lymph nodes
  publication-title: J. Exp. Med.
– volume: 96
  start-page: 463
  year: 2018
  end-page: 476
  article-title: Homeostatic control of dendritic cell numbers and differentiation
  publication-title: Immunol. Cell Biol.
– volume: 202
  start-page: 135
  year: 2005
  end-page: 143
  article-title: Plasmacytoid predendritic cells initiate psoriasis through interferon‐α production
  publication-title: J. Exp. Med.
– volume: 119
  start-page: 5182
  year: 2012
  end-page: 5190
  article-title: Human Langerhans cells use an IL‐15R‐α/IL‐15/pSTAT5‐dependent mechanism to break T‐cell tolerance against the self‐differentiation tumor antigen WT1
  publication-title: Blood
– year: 2022
– volume: 14
  start-page: 417
  year: 2014
  end-page: 428
  article-title: The origins and functions of dendritic cells and macrophages in the skin
  publication-title: Nat. Rev. Immunol.
– volume: 13
  start-page: 317
  year: 2002
  end-page: 335
  article-title: Birbeck granules are subdomains of endosomal recycling compartment in human epidermal langerhans cells, which form where langerin accumulates Pfeffer SR, ed
  publication-title: Mol. Biol. Cell.
– volume: 114
  start-page: E761
  year: 2017
  end-page: E770
  article-title: Mitochondrial activation chemicals synergize with surface receptor PD‐1 blockade for T cell‐dependent antitumor activity
  publication-title: Proc. Natl. Acad. Sci.
– volume: 39
  start-page: 1623
  year: 2021
  end-page: 1642.e20
  article-title: Myeloid antigen‐presenting cell niches sustain antitumor T cells and license PD‐1 blockade via CD28 costimulation
  publication-title: Cancer Cell
– volume: 26
  start-page: 3791
  year: 2020
  end-page: 3802
  article-title: Adenocarcinoma of the uterine cervix shows impaired recruitment of cDC1 and CD8+ T cells and elevated β‐catenin activation compared with squamous cell carcinoma
  publication-title: Clin. Cancer Res.
– volume: 375
  start-page: 189
  year: 2012
  end-page: 195
  article-title: Feasibility of flowcytometric quantitation of immune effector cell subsets in the sentinel lymph node of the breast after cryopreservation
  publication-title: J. Immunol. Methods.
– volume: 38
  start-page: 958
  year: 2013
  end-page: 969
  article-title: IRF4 transcription‐factor‐dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 Cell differentiation
  publication-title: Immunity
– volume: 27
  start-page: 1049
  year: 1979
  end-page: 1052
  article-title: Spectra of cells in flow cytometry using a vidicon detector
  publication-title: J. Histochem. Cytochem.
– volume: 7
  start-page: 133
  year: 2019
  article-title: Selectively hampered activation of lymph node‐resident dendritic cells precedes profound T cell suppression and metastatic spread in the breast cancer sentinel lymph node
  publication-title: J. Immunother. Cancer.
– volume: 10
  start-page: 845
  year: 2017
  end-page: 864
  article-title: Diversity and functions of intestinal mononuclear phagocytes
  publication-title: Mucosal Immunol.
– volume: 63
  start-page: 1.27.1
  year: 2013
  end-page: 1.27.13
  article-title: Spectral Flow Cytometry
  publication-title: Curr. Protoc. Cytom.
– volume: 14
  start-page: 793
  year: 2021
  end-page: 802
  article-title: Human gut‐associated lymphoid tissues (GALT); diversity, structure, and function
  publication-title: Mucosal Immunol.
– volume: 53
  start-page: 353
  year: 2020
  end-page: 370.e8
  article-title: Differential IRF8 transcription factor requirement defines two pathways of dendritic cell development in humans
  publication-title: Immunity
– volume: 160
  start-page: 116
  year: 2020
  end-page: 125
  article-title: Skin barrier immunity and ageing
  publication-title: Immunology
– volume: 579
  start-page: 274
  year: 2020
  end-page: 278
  article-title: Peripheral T cell expansion predicts tumour infiltration and clinical response
  publication-title: Nature
– volume: 30
  start-page: 1
  year: 2012
  end-page: 22
  article-title: Decisions about dendritic cells: past, present, and future
  publication-title: Annu. Rev. Immunol.
– volume: 392
  start-page: 245
  year: 1998
  end-page: 252
  article-title: Dendritic cells and the control of immunity
  publication-title: Nature
– volume: 3
  year: 2018
  article-title: Tumor‐draining lymph nodes are pivotal in PD‐1/PD‐L1 checkpoint therapy
  publication-title: JCI Insight
– volume: 523
  start-page: 231
  year: 2015
  end-page: 235
  article-title: Melanoma‐intrinsic β‐catenin signalling prevents anti‐tumour immunity
  publication-title: Nature
– volume: 49
  start-page: 997
  year: 2018
  end-page: 999
  article-title: The Dendritic Cell Strikes Back
  publication-title: Immunity
– volume: 33
  start-page: 60
  year: 2018
  end-page: 74.e6
  article-title: TIM‐3 regulates CD103+ dendritic cell function and response to chemotherapy in breast cancer
  publication-title: Cancer Cell
– volume: 8
  year: 2020
  article-title: Monocyte‐derived APCs are central to the response of PD1 checkpoint blockade and provide a therapeutic target for combination therapy
  publication-title: J. Immunother. Cancer.
– volume: 23
  start-page: 5679
  year: 2017
  end-page: 5686
  article-title: Local adjuvant treatment with low‐dose CpG‐B offers durable protection against disease recurrence in clinical stage I–II melanoma: data from two randomized phase II trials
  publication-title: Clin. Cancer Res.
– volume: 10
  start-page: 1237
  year: 2009
  end-page: 1244
  article-title: Dendritic cell subsets in primary and secondary T cell responses at body surfaces
  publication-title: Nat. Immunol.
– volume: 52
  start-page: 557
  year: 2020
  end-page: 570.e6
  article-title: Immune profiling of human gut‐associated lymphoid tissue identifies a role for isolated lymphoid follicles in priming of region‐specific immunity
  publication-title: Immunity
– volume: 8
  year: 2017
  article-title: Different populations of CD11b+ dendritic cells drive Th2 responses in the small intestine and colon
  publication-title: Nat. Commun.
– volume: 182
  start-page: 1419
  year: 2020
  end-page: 1440.e23
  article-title: Severe COVID‐19 is marked by a dysregulated myeloid cell compartment
  publication-title: Cell
– volume: 6
  year: 2021
  article-title: Intestinal cDC1 drive cross‐tolerance to epithelial‐derived antigen via induction of FoxP3 + CD8 + T regs
  publication-title: Sci. Immunol.
– volume: 25
  start-page: 1251
  year: 2019
  end-page: 1259
  article-title: Clonal replacement of tumor‐specific T cells following PD‐1 blockade
  publication-title: Nat. Med.
– volume: 1
  start-page: 649
  year: 2012
  end-page: 658
  article-title: Tumor‐mediated inhibition of human dendritic cell differentiation and function is consistently counteracted by combined p38 MAPK and STAT3 inhibition
  publication-title: Oncoimmunology
– volume: 8
  year: 2020
  article-title: Breast cancer‐induced immune suppression in the sentinel lymph node is effectively countered by CpG‐B in conjunction with inhibition of the JAK2/STAT3 pathway
  publication-title: J. Immunother. Cancer.
– volume: 41
  start-page: 1062
  year: 2020
  end-page: 1071
  article-title: Decoding the heterogeneity of human dendritic cell subsets
  publication-title: Trends Immunol.
– volume: 177
  start-page: 556
  year: 2019
  end-page: 571.e16
  article-title: Unleashing type‐2 dendritic cells to drive protective antitumor CD4+ T cell immunity
  publication-title: Cell
– volume: 90
  start-page: 883
  year: 2011
  end-page: 895
  article-title: Lung dendritic cells at the innate‐adaptive immune interface
  publication-title: J. Leukoc. Biol.
– volume: 44
  start-page: 860
  year: 2016
  end-page: 874
  article-title: IRF8 Transcription‐Factor‐Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis
  publication-title: Immunity
– volume: 8
  start-page: 499
  year: 2017
  article-title: Human lung mononuclear phagocytes in health and disease
  publication-title: Front. Immunol.
– volume: 161
  start-page: 19
  year: 2002
  end-page: 26
  article-title: Sampling tumor‐draining lymph nodes for phenotypic and functional analysis of dendritic cells and T cells
  publication-title: Am. J. Pathol.
– volume: 16
  start-page: 2051
  year: 2021
  end-page: 2067
  article-title: Identification, isolation and analysis of human gut‐associated lymphoid tissues
  publication-title: Nat. Protoc.
– volume: 37
  start-page: 60
  year: 2012
  end-page: 73
  article-title: Human tissues contain CD141(hi) cross‐presenting dendritic cells with functional homology to mouse CD103(+) nonlymphoid dendritic cells
  publication-title: Immunity
– volume: 53
  start-page: 1015
  year: 2020
  end-page: 1032e8
  article-title: Group 3 innate lymphoid cells program a distinct subset of IL‐22BP‐producing dendritic cells demarcating solitary intestinal lymphoid tissues
  publication-title: Immunity
– volume: 38
  start-page: 685
  year: 2020
  end-page: 700.e8
  article-title: The PD‐1/PD‐L1‐checkpoint restrains T cell Immunity in tumor‐draining lymph nodes
  publication-title: Cancer Cell
– volume: 12
  year: 2020
  article-title: Dendritic cells dictate responses to PD‐L1 blockade cancer immunotherapy
  publication-title: Sci. Transl. Med.
– volume: 40
  start-page: 798
  year: 2022
  end-page: 799
  article-title: Immune suppression in the tumor‐draining lymph node corresponds with distant disease recurrence in patients with melanoma
  publication-title: Cancer Cell
– volume: 77
  start-page: 85
  year: 2015
  end-page: 92
  article-title: Human skin dendritic cells in health and disease
  publication-title: J. Dermatol. Sci.
– volume: 9
  year: 2020
  article-title: In the mix: the potential benefits of adding GM‐CSF to CpG‐B in the local treatment of patients with early‐stage melanoma
  publication-title: Oncoimmunology
– volume: 202
  start-page: 1659
  year: 2019
  end-page: 1666
  article-title: Skin‐Associated B Cells in Health and Inflammation
  publication-title: J. Immunol.
– volume: 25
  start-page: 388
  year: 1996
  end-page: 393
  article-title: Observation of single‐cell fluorescence spectra in laser flow cytometry
  publication-title: Cytometry
– volume: 84
  start-page: 143
  year: 2008
  end-page: 151
  article-title: Transcriptional profiling of human skin‐resident Langerhans cells and CD1a+ dermal dendritic cells: differential activation states suggest distinct functions
  publication-title: J. Leukoc. Biol.
– volume: 9
  year: 2021
  article-title: Skin dendritic cells in melanoma are key for successful checkpoint blockade therapy
  publication-title: J. Immunother. Cancer.
– volume: 1
  start-page: 681
  year: 2020
  end-page: 691
  article-title: PD‐L1 expression by dendritic cells is a key regulator of T‐cell immunity in cancer
  publication-title: Nat. Cancer.
– volume: 100
  start-page: 1330
  year: 2021
  end-page: 1336
  article-title: The prevalence of gingival dendritic cell subsets in periodontal patients
  publication-title: J. Dent. Res.
– volume: 207
  start-page: 1261
  year: 2010
  end-page: 1271
  article-title: Characterization of human DNGR‐1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells
  publication-title: J. Exp. Med.
– volume: 6
  start-page: 534
  year: 2015
  article-title: Functional specialization of skin dendritic cell subsets in regulating T cell responses
  publication-title: Front. Immunol.
– start-page: 267
  year: 2017
  end-page: 278
– volume: 8
  year: 2013
  article-title: Transcriptional profiling of human dendritic cell populations and models ‐ unique profiles of in vitro dendritic cells and implications on functionality and applicability Appel S, ed
  publication-title: PLoS One
– volume: 22
  start-page: 67
  year: 2022
  end-page: 68
  article-title: Expanding dendritic cell nomenclature in the single‐cell era
  publication-title: Nat. Rev. Immunol.
– volume: 51
  start-page: 573
  year: 2019
  end-page: 589.e8
  article-title: Single‐Cell Analysis of Human Mononuclear Phagocytes Reveals Subset‐Defining Markers and Identifies Circulating Inflammatory Dendritic Cells
  publication-title: Immunity
– volume: 356
  start-page: 3009
  year: 2017
  article-title: Mapping the human DC lineage through the integration of high‐dimensional techniques
  publication-title: Science (80‐.)
– volume: 209
  start-page: 935
  year: 2012
  end-page: 945
  article-title: Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL‐10 and induce regulatory T cells that suppress skin inflammation
  publication-title: J. Exp. Med.
– volume: 2
  year: 2013
  article-title: Functional characterization of a STAT3‐dependent dendritic cell‐derived CD14 + cell population arising upon IL‐10‐driven maturation
  publication-title: Oncoimmunology
– volume: 109
  start-page: 7043
  year: 2012
  end-page: 7048
  article-title: Langerhans cells down‐regulate inflammation‐driven alveolar bone loss
  publication-title: Proc. Natl. Acad. Sci.
– volume: 15
  start-page: 30
  year: 2015
  end-page: 44
  article-title: Periodontitis: from microbial immune subversion to systemic inflammation
  publication-title: Nat. Rev. Immunol.
– volume: 5
  start-page: 969
  year: 2017
  end-page: 977
  article-title: Melanoma sequentially suppresses different DC subsets in the sentinel lymph node, affecting disease spread and recurrence
  publication-title: Cancer Immunol. Res.
– volume: 291
  start-page: 71
  year: 2004
  end-page: 78
  article-title: Successful live cell harvest from bisected sentinel lymph nodes research report
  publication-title: J. Immunol. Methods.
– volume: 41
  start-page: 465
  year: 2014
  end-page: 477
  article-title: Human dermal CD14 + cells are a transient population of monocyte‐derived macrophages
  publication-title: Immunity
– volume: 6
  start-page: 65
  year: 2018
  article-title: BDCA1+CD14+ immunosuppressive cells in cancer, a potential target?
  publication-title: Vaccines
– volume: 97
  start-page: 627
  year: 2015
  end-page: 634
  article-title: Langerin‐expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells
  publication-title: J. Leukoc. Biol.
– volume: 11
  start-page: 681
  year: 2018
  end-page: 692
  article-title: CD103+CD11b+ mucosal classical dendritic cells initiate long‐term switched antibody responses to flagellin
  publication-title: Mucosal Immunol.
– volume: 54
  start-page: 1154
  year: 2021
  end-page: 1167.e7
  article-title: The inhibitory receptor TIM‐3 limits activation of the cGAS‐STING pathway in intra‐tumoral dendritic cells by suppressing extracellular DNA uptake
  publication-title: Immunity
– volume: 14
  start-page: 571
  year: 2014
  end-page: 578
  article-title: Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny
  publication-title: Nat. Rev. Immunol.
– volume: 68
  start-page: 1681
  year: 2019
  end-page: 1688
  article-title: Unlocking the therapeutic potential of primary tumor‐draining lymph nodes
  publication-title: Cancer Immunol. Immunother.
– volume: 31
  start-page: 563
  year: 2013
  end-page: 604
  article-title: The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
  publication-title: Annu. Rev. Immunol.
– volume: 6
  start-page: 328
  year: 2005
  end-page: 340
  article-title: The cornified envelope: a model of cell death in the skin
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 541
  start-page: 321
  year: 2017
  end-page: 330
  article-title: Elements of cancer immunity and the cancer–immune set point
  publication-title: Nature
– volume: 8
  year: 2019
  article-title: Constitutively active GSK3β as a means to bolster dendritic cell functionality in the face of tumour‐mediated immune suppression
  publication-title: Oncoimmunology
– volume: 132
  start-page: 1971
  year: 2013
  end-page: 1976
  article-title: Local targets for immune therapy to cancer: tumor draining lymph nodes and tumor microenvironment
  publication-title: Int. J. Cancer.
– volume: 12
  year: 2021
  article-title: Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy
  publication-title: Front. Immunol.
– volume: 118
  start-page: 2502
  year: 2011
  end-page: 2510
  article-title: Characterization of four conventional dendritic cell subsets in human skin‐draining lymph nodes in relation to T‐cell activation
  publication-title: Blood
– volume: 31
  start-page: 711
  year: 2017
  end-page: 723.e4
  article-title: Tumor‐residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy
  publication-title: Cancer Cell
– volume: 196
  start-page: 4447
  year: 2016
  end-page: 4451
  article-title: Cutting Edge: IFN‐β expression in the spleen is restricted to a subpopulation of plasmacytoid dendritic cells exhibiting a specific immune modulatory transcriptome signature
  publication-title: J. Immunol.
– volume: 1
  start-page: eaai7677
  year: 2016
  end-page: eaai7677
  article-title: Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment
  publication-title: Sci. Immunol.
– volume: 136
  start-page: 1387
  year: 2015
  end-page: 1397.e7
  article-title: Skin dendritic cells induce follicular helper T cells and protective humoral immune responses
  publication-title: J. Allergy Clin. Immunol.
– volume: 77
  start-page: 397
  year: 1997
  end-page: 424
  article-title: The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation
  publication-title: Physiol. Rev.
– volume: 43
  start-page: 369
  year: 2015
  end-page: 381
  article-title: Distinct murine mucosal Langerhans cell subsets develop from pre‐dendritic cells and monocytes
  publication-title: Immunity
– volume: 3
  start-page: 495
  year: 2015
  end-page: 505
  article-title: Arming the melanoma sentinel lymph node through local administration of CpG‐B and GM‐CSF: recruitment and activation of BDCA3/CD141+ dendritic cells and enhanced cross‐presentation
  publication-title: Cancer Immunol. Res.
– volume: 49
  start-page: 1148
  year: 2018
  end-page: 1161.e7
  article-title: Successful anti‐PD‐1 cancer immunotherapy requires T cell‐dendritic cell crosstalk involving the cytokines IFN‐γ and IL‐12
  publication-title: Immunity
– volume: 25
  start-page: 3074
  year: 2019
  end-page: 3083
  article-title: WNT/β‐catenin pathway activation correlates with immune exclusion across human cancers
  publication-title: Clin. Cancer Res.
– volume: 8
  start-page: 1
  year: 2020
  end-page: 15
  article-title: CD163+ cytokine‐producing cDC2 stimulate intratumoral type 1 T cell responses in HPV16‐induced oropharyngeal cancer
  publication-title: J. Immunother. cancer.
– volume: 10
  year: 2022
  article-title: TIM‐3 blockade enhances IL‐12‐dependent antitumor immunity by promoting CD8 + T cell and XCR1 + dendritic cell spatial co‐localization
  publication-title: J. Immunother. Cancer.
– volume: 54
  start-page: 797
  year: 2021
  end-page: 814.e6
  article-title: Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell‐driven lung inflammation in severe COVID‐19
  publication-title: Immunity
– volume: 432
  start-page: 35
  year: 2016
  end-page: 49
  article-title: Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue‐resident and dermal XCR1(+) DCs in mouse and human and distinguishes them from Langerhans cells
  publication-title: J. Immunol. Methods
– volume: 595
  start-page: 235
  year: 2010
  end-page: 248
  article-title: Isolation of skin dendritic cells from mouse and man
  publication-title: Methods Mol Biol.
– volume: 99
  start-page: 561
  year: 2021
  end-page: 564
  article-title: Monocytes and macrophages in severe COVID‐19 – friend, foe or both?
  publication-title: Immunol. Cell Biol.
– volume: 210
  start-page: 1035
  year: 2013
  end-page: 1047
  article-title: Similar antigen cross‐presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ–resident dendritic cells
  publication-title: J. Exp. Med.
– volume: 54
  start-page: 1883
  year: 2021
  end-page: 1900.e5
  article-title: Cross‐tissue single‐cell landscape of human monocytes and macrophages in health and disease
  publication-title: Immunity
– volume: 16
  start-page: 343
  year: 2015
  end-page: 353
  article-title: Control of adaptive immunity by the innate immune system
  publication-title: Nat. Immunol.
– volume: 8
  start-page: 1254
  year: 2017
  article-title: The Peyer's patch mononuclear phagocyte system at steady state and during infection
  publication-title: Front. Immunol.
– volume: 137
  start-page: 1142
  year: 1973
  end-page: 1162
  article-title: Identification of a novel cell type in peripheral lymphoid organs of micE
  publication-title: J. Exp. Med.
– volume: 154
  start-page: 3
  year: 2018
  end-page: 20
  article-title: Human dendritic cell subsets: an update
  publication-title: Immunology
– volume: 8
  start-page: 935
  year: 2008
  end-page: 947
  article-title: Origin, homeostasis and function of Langerhans cells and other langerin‐expressing dendritic cells
  publication-title: Nat. Rev. Immunol.
– volume: 43
  start-page: 3147
  year: 2013
  end-page: 3155
  article-title: Human dendritic cells — stars in the skin
  publication-title: Eur. J. Immunol.
– volume: 48
  start-page: 91
  year: 2018
  end-page: 106.e6
  article-title: Activation of p53 in immature myeloid precursor cells controls differentiation into Ly6c+CD103+ monocytic antigen‐presenting cells in tumors
  publication-title: Immunity
– ident: e_1_2_32_59_1
  doi: 10.1038/mi.2017.22
– ident: e_1_2_32_5_1
  doi: 10.1016/j.immuni.2021.03.005
– ident: e_1_2_32_17_1
  doi: 10.1111/imm.12117
– ident: e_1_2_32_27_1
  doi: 10.1146/annurev-immunol-051116-052215
– ident: e_1_2_32_10_1
  doi: 10.1126/science.aag3009
– ident: e_1_2_32_13_1
  doi: 10.1038/s41590-019-0420-3
– ident: e_1_2_32_25_1
  doi: 10.1084/jem.20112583
– ident: e_1_2_32_65_1
  doi: 10.1016/j.immuni.2020.10.012
– ident: e_1_2_32_80_1
  doi: 10.1084/jem.20092618
– ident: e_1_2_32_117_1
  doi: 10.1016/j.ccell.2017.11.019
– ident: e_1_2_32_67_1
  doi: 10.1038/nature21349
– ident: e_1_2_32_94_1
  doi: 10.1136/jitc-2020-001053
– ident: e_1_2_32_78_1
  doi: 10.1007/BF01533516
– ident: e_1_2_32_53_1
  doi: 10.1126/sciimmunol.aai7677
– ident: e_1_2_32_11_1
  doi: 10.1016/j.immuni.2019.08.008
– ident: e_1_2_32_48_1
  doi: 10.1177/0022034520920577
– ident: e_1_2_32_86_1
  doi: 10.1158/1078-0432.CCR-19-3826
– ident: e_1_2_32_84_1
  doi: 10.1016/j.cell.2019.02.005
– ident: e_1_2_32_91_1
  doi: 10.1371/journal.pone.0052875
– ident: e_1_2_32_32_1
  doi: 10.1152/physrev.1997.77.2.397
– ident: e_1_2_32_52_1
  doi: 10.1038/nri3785
– ident: e_1_2_32_118_1
  doi: 10.1016/j.immuni.2021.04.019
– ident: e_1_2_32_16_1
  doi: 10.1038/nri3712
– ident: e_1_2_32_74_1
  doi: 10.1038/s41591-019-0522-3
– ident: e_1_2_32_9_1
  doi: 10.1111/imcb.12028
– ident: e_1_2_32_64_1
  doi: 10.1126/sciimmunol.abd3774
– ident: e_1_2_32_108_1
  doi: 10.1016/j.jim.2011.10.011
– ident: e_1_2_32_38_1
  doi: 10.1038/nri3683
– ident: e_1_2_32_114_1
  doi: 10.1007/s00262-019-02330-y
– ident: e_1_2_32_71_1
  doi: 10.1038/s41586-020-2056-8
– ident: e_1_2_32_70_1
  doi: 10.1038/s41577-018-0044-0
– ident: e_1_2_32_72_1
  doi: 10.1016/j.immuni.2018.12.007
– ident: e_1_2_32_28_1
  doi: 10.1182/blood-2011-09-382200
– ident: e_1_2_32_77_1
  doi: 10.1016/j.ccell.2017.04.003
– ident: e_1_2_32_46_1
  doi: 10.1007/978-1-4939-6786-5_18
– ident: e_1_2_32_37_1
  doi: 10.1091/mbc.01-06-0300
– ident: e_1_2_32_87_1
  doi: 10.1158/1078-0432.CCR-18-1942
– ident: e_1_2_32_18_1
  doi: 10.1007/s00018-015-2005-0
– ident: e_1_2_32_8_1
  doi: 10.1084/jem.137.5.1142
– ident: e_1_2_32_15_1
  doi: 10.1146/annurev-immunol-100311-102839
– ident: e_1_2_32_62_1
  doi: 10.1038/ncomms15820
– ident: e_1_2_32_107_1
  doi: 10.1016/j.jim.2004.04.025
– ident: e_1_2_32_81_1
  doi: 10.1084/jem.20121103
– ident: e_1_2_32_89_1
  doi: 10.1016/j.ccell.2021.10.008
– ident: e_1_2_32_90_1
  doi: 10.1189/jlb.1107750
– ident: e_1_2_32_41_1
  doi: 10.1177/27.6.110874
– ident: e_1_2_32_19_1
  doi: 10.1016/j.it.2020.10.002
– ident: e_1_2_32_96_1
  doi: 10.4161/onci.20365
– ident: e_1_2_32_93_1
  doi: 10.4161/onci.23837
– ident: e_1_2_32_20_1
  doi: 10.1016/j.jdermsci.2014.08.012
– ident: e_1_2_32_36_1
  doi: 10.1189/jlb.1HI0714-351R
– ident: e_1_2_32_14_1
  doi: 10.4049/jimmunol.1500383
– ident: e_1_2_32_112_1
  doi: 10.1158/1078-0432.CCR-17-0944
– ident: e_1_2_32_102_1
  doi: 10.1084/jem.20111457
– ident: e_1_2_32_60_1
  doi: 10.1016/j.immuni.2013.03.009
– ident: e_1_2_32_88_1
  doi: 10.1016/j.immuni.2018.09.024
– ident: e_1_2_32_40_1
  doi: 10.4049/jimmunol.1801211
– ident: e_1_2_32_2_1
  doi: 10.3389/fimmu.2017.00499
– ident: e_1_2_32_51_1
  doi: 10.1038/ni.1822
– ident: e_1_2_32_58_1
  doi: 10.1038/s41596-020-00482-1
– ident: e_1_2_32_85_1
  doi: 10.1136/jitc-2020-000832
– ident: e_1_2_32_79_1
  doi: 10.1038/s41577-022-00675-7
– volume-title: Lindhe's Clinical Periodontology and Implant Dentistry
  year: 2022
  ident: e_1_2_32_45_1
– ident: e_1_2_32_75_1
  doi: 10.1038/s43018-020-0075-x
– ident: e_1_2_32_49_1
  doi: 10.1038/ni.3123
– ident: e_1_2_32_39_1
  doi: 10.1084/jem.20050500
– ident: e_1_2_32_44_1
  doi: 10.1111/imm.13152
– ident: e_1_2_32_4_1
  doi: 10.1189/jlb.0311134
– ident: e_1_2_32_110_1
  doi: 10.1002/ijc.27755
– ident: e_1_2_32_68_1
  doi: 10.1182/blood-2011-03-344838
– ident: e_1_2_32_104_1
  doi: 10.1016/j.ccell.2022.06.009
– ident: e_1_2_32_61_1
  doi: 10.1038/mi.2017.105
– ident: e_1_2_32_29_1
  doi: 10.1016/j.jim.2016.02.023
– ident: e_1_2_32_54_1
  doi: 10.1016/j.immuni.2015.06.017
– ident: e_1_2_32_73_1
  doi: 10.1126/scitranslmed.aav7431
– ident: e_1_2_32_82_1
  doi: 10.1016/j.immuni.2020.07.003
– ident: e_1_2_32_33_1
  doi: 10.1038/32588
– ident: e_1_2_32_55_1
  doi: 10.1177/00220345211004864
– ident: e_1_2_32_34_1
  doi: 10.1016/j.jaci.2015.04.001
– ident: e_1_2_32_98_1
  doi: 10.1016/j.immuni.2017.12.014
– ident: e_1_2_32_30_1
  doi: 10.1007/978-1-60761-421-0_16
– ident: e_1_2_32_106_1
  doi: 10.1016/S0002-9440(10)64152-1
– ident: e_1_2_32_95_1
  doi: 10.1016/j.immuni.2021.07.007
– ident: e_1_2_32_97_1
  doi: 10.1080/2162402X.2019.1631119
– ident: e_1_2_32_22_1
  doi: 10.3389/fimmu.2015.00534
– ident: e_1_2_32_24_1
  doi: 10.1016/j.immuni.2014.08.006
– ident: e_1_2_32_57_1
  doi: 10.1016/j.immuni.2020.02.001
– ident: e_1_2_32_66_1
  doi: 10.3389/fimmu.2017.01254
– ident: e_1_2_32_12_1
  doi: 10.1146/annurev-immunol-020711-074950
– ident: e_1_2_32_26_1
  doi: 10.1016/j.immuni.2012.04.012
– ident: e_1_2_32_99_1
  doi: 10.1136/jitc-2020-000588
– ident: e_1_2_32_56_1
  doi: 10.1038/s41385-021-00389-4
– ident: e_1_2_32_116_1
  doi: 10.1016/j.ccell.2020.09.001
– ident: e_1_2_32_21_1
  doi: 10.1002/eji.201343790
– ident: e_1_2_32_43_1
  doi: 10.1002/0471142956.cy0127s63
– ident: e_1_2_32_63_1
  doi: 10.1016/j.immuni.2016.02.008
– ident: e_1_2_32_3_1
  doi: 10.1016/j.immuni.2016.08.015
– ident: e_1_2_32_35_1
  doi: 10.1038/nri2455
– ident: e_1_2_32_50_1
  doi: 10.1111/imm.13320
– ident: e_1_2_32_23_1
  doi: 10.1111/j.0105-2896.2009.00886.x
– ident: e_1_2_32_47_1
  doi: 10.1073/pnas.1116770109
– ident: e_1_2_32_103_1
  doi: 10.1158/2326-6066.CIR-14-0165
– volume: 4
  start-page: 403
  year: 2013
  ident: e_1_2_32_92_1
  article-title: Dendritic cell plasticity in tumor‐conditioned skin: CD14+ cells at the cross‐roads of immune activation and suppression
  publication-title: Front. Immunol.
– ident: e_1_2_32_115_1
  doi: 10.1080/2162402X.2019.1708066
– ident: e_1_2_32_100_1
  doi: 10.3390/vaccines6030065
– ident: e_1_2_32_6_1
  doi: 10.1016/j.cell.2020.08.001
– ident: e_1_2_32_31_1
  doi: 10.1038/nrm1619
– ident: e_1_2_32_83_1
  doi: 10.1158/2326-6066.CIR-17-0110
– ident: e_1_2_32_113_1
  doi: 10.1172/jci.insight.124507
– ident: e_1_2_32_76_1
  doi: 10.1038/nature14404
– ident: e_1_2_32_111_1
  doi: 10.1073/pnas.1620433114
– ident: e_1_2_32_105_1
  doi: 10.1186/s40425-019-0605-1
– ident: e_1_2_32_119_1
  doi: 10.1136/jitc-2021-003571
– ident: e_1_2_32_69_1
  doi: 10.3389/fimmu.2021.643291
– ident: e_1_2_32_101_1
  doi: 10.1111/imm.12888
– volume: 8
  year: 2020
  ident: e_1_2_32_109_1
  article-title: Breast cancer‐induced immune suppression in the sentinel lymph node is effectively countered by CpG‐B in conjunction with inhibition of the JAK2/STAT3 pathway
  publication-title: J. Immunother. Cancer.
  doi: 10.1136/jitc-2020-000761
– ident: e_1_2_32_42_1
  doi: 10.1002/(SICI)1097-0320(19961201)25:4<388::AID-CYTO11>3.0.CO;2-R
– ident: e_1_2_32_7_1
  doi: 10.1111/imcb.12464
SSID ssj0009659
Score 2.4695997
Snippet This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state‐of‐the‐art protocols for the preparation, phenotype...
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2250325
SubjectTerms Animals
Basic Medicine
Cell and Molecular Biology
Cell suspensions
Cell- och molekylärbiologi
Dendritic cells
Dendritic Cells - cytology
Dendritic Cells - immunology
Flow cytometry
Flow Cytometry - methods
Fluorescence microscopy
Guidelines|Clinical
Highlights
Humans
Immunology
Lymph nodes
Lymphatic drainage
Medical and Health Sciences
Medicin och hälsovetenskap
Medicinska och farmaceutiska grundvetenskaper
Mice
nonlymphoid tissues
Phenotypes
Single-Cell Analysis - methods
tumor
tumor‐draining lymph node
Title Guidelines for preparation and flow cytometry analysis of human nonlymphoid tissue DC
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feji.202250325
https://www.ncbi.nlm.nih.gov/pubmed/39668411
https://www.proquest.com/docview/3161733834
https://www.proquest.com/docview/3146664938
https://pubmed.ncbi.nlm.nih.gov/PMC11739683
Volume 55
WOSCitedRecordID wos001375789400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009659
  issn: 1521-4141
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaghYoLj1IgUCojIS4oquNH7BxR2-UhqCrESisulh3b6qI2We0DtP-ecZxuiSohIS45JHaceGbi77PjbxB6zWkwzlqWMxNsHvdK5sY4knMnCbCBoJQ3XbIJeXqqJpPqrM9zGvfCJH2IzYRbjIzuex0D3NjF4bVoqP8xBXoH7kgYFbfRdlEwFXM3UH52rbpbioR_C57TSpFeZBNucDioPhyUbiDNmz9M9rKiQ0TbDUmjB__9Mg_R_R6N4nfJfR6hW77ZRXdTfsr1Ltr50q-8P0bj96soiBV_kseAc_Fs7pNqeNtg0zgcLtpfuF4v20u_nK_hVNI6wW3AXRpA3MBjrsF12qnDy87a-PhoD41HJ9-OPuR9Soa8BqgEJqQilKYmjlTBADID8iioJFY4HqSppYWB0EoWfGWYMcA-gy2dNI5ZoWpSBvYEbUF7_lncLF5Yr0QEXZRb6SuobMBFonqOE7zO0Jsrm-hZUt7QSWOZauguvemuDO1fWUz3AbjQLPK2SL95hl5tLkPoxPUQ0_h2FctwIG-8YipDT5OBNy0xoIGKF0WG1MD0mwJRlnt4pZmed_LcBTRclYpl6HvykmGdjlXpXsrpXF-s9MLr2R9ztNraEFX7nRY1JZo7Z7USZaVNIb0RzNNaws3fdv70967RJ58-ClWS5_9U-gW6R2OW426iaR9tLecr_xLdqX-Cd8wPugiDo5yoA7R9_HU0_vwbRjEsQg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagnC8c5QoUMBLiBUVNfMTOIyotLbSrPrRSxYtlx7a6qCSr7S5o_z1jO00bVUJCvMZX4pnJzOfjG4TeM-K1NYbmVHuTh7uSuda2yJkVBaABL6XTMdmEmEzkyUl9eOUWf-KHGBbcgmXE_3Uw8LAgvXnJGup-TAHfgT4WlPCb6BYDTxM0nbDDS9rdiqcAuGQ5qWXRs2xCB5uj5mOvdC3UvH5isucVHYe00SftPPz_r3mEHvTxKP6UFOgxuuHadXQnZahcraO7B_3e-xN0_GUZKLHCMXkMkS6ezV3iDe9arFuL_Vn3GzerRffTLeYreJTYTnDncUwEiFt4zxUoTze1eBHljT9vPUXHO9tHW7t5n5QhbyBYAiES7ivdFLaovYbYDOAjJ6Iw3DIvdCMMuEIjqHe1ploD_vSmskJbarhsisrTZ2gNxnMvwnXx0jjJQ9hFmBGuhsYalCTw51jOmgx9uBCKmiXuDZVYlomC6VLDdGVo40JkqjfBc0UDcgsAnGXo3VAMxhN2RHTrumWowwC-sZrKDD1PEh5GogAEJSvLDMmR7IcKgZh7XNJOTyNBdwkD15WkGfqe1GTcJuIq1ZM5naqzpTp3anZllVYZ4wNvv1W8IYVi1holeVUrXQqnOXWkEdD5x6hQf58atf11j8uqePlPtd-ie7tHB_tqf2_y7RW6T0LO47jstIHWFvOle41uN79AU-Zvorn9AaC3LaU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BFioufJSvQAEjIS4oqhPbiXNE3S4UyqpCrFRxsezYVheVZLXdBe2_Z5ykaaNKSIhr7NiJZyZ-z7HfALzhqdfWGBYz7U0czkrGWlsac5tTZANeSqebZBP5dCpPTorjK6f4W32IfsEtREbzvQ4B7hbW712qhrofc-R36I-UpeImbPGQSGYEW-Ovk9nRpfBuJloInPA4LSTtdDaxib1BA8N56RrYvL5nslMWHYLaZlaa3Pv_97kPdztESt63LvQAbrhqB263OSo3O7D9pfv7_hBmH9ZBFCtslCeIdcli6Vrl8LoiurLEn9W_SblZ1T_darnBS63eCak9aVIBkgqfc4PuU88tWTUWJ-P9RzCbHHzb_xh3aRniEuESmjEVPtMltbTwGtEZEkiR5tQIy32uy9zgZGhy5l2hmdbIQL3JbK4tM0KWNPPsMYywP_c0HBhPjJMiAK-Um9wVeLNGNwkKOlbwMoK3F0ZRi1Z9Q7U6y6nC4VL9cEWwe2Ey1QXhuWKBuwUKziN43Rdj-IR_Irpy9TrU4UjgeMFkBE9aC_c9MaSCkidJBHJg-75CkOYellTz00aiO8GOi0yyCL63bjK8p2FWqpNzOlVna3Xu1OLKOq0yxgflfqtEmVLFrTVKiqxQOsmdFsylZY6Nv2sc6u9Dow4-HQqZ0Wf_VPsVbB-PJ-rocPr5OdxJQ9LjZt1pF0ar5dq9gFvlL3SU5csu3v4AYkUuuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidelines+for+preparation+and+flow+cytometry+analysis+of+human+nonlymphoid+tissue+DC&rft.jtitle=European+journal+of+immunology&rft.au=Dudziak%2C+Diana&rft.au=Heger%2C+Lukas&rft.au=Agace%2C+William+W&rft.au=Bakker%2C+Joyce&rft.date=2025-01-01&rft.eissn=1521-4141&rft.volume=55&rft.issue=1&rft.spage=e2250325&rft_id=info:doi/10.1002%2Feji.202250325&rft_id=info%3Apmid%2F39668411&rft.externalDocID=39668411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2980&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2980&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2980&client=summon