Indoor secondary organic aerosols: Towards an improved representation of their formation and composition in models

The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. Th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Atmospheric Environment: X Ročník 240; s. 117784
Hlavní autori: Kruza, M., McFiggans, G., Waring, M.S., Wells, J.R., Carslaw, N.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Elsevier Ltd 01.11.2020
Predmet:
ISSN:1352-2310, 2590-1621, 1873-2844, 2590-1621
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28–216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO2 concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO2-to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO2-to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important. •SOA concentration predictions are highly dependent on selected vapour pressure method used.•Highly oxygenated organic molecules form an important component of indoor SOA.•Composition of indoor SOA is highly complex and depends on indoor conditions.
AbstractList The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28–216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO2 concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO2-to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO2-to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important.
The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28-216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO -to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO -to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important.
The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28–216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO₂ concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO₂-to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO₂-to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important.
The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28–216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO2 concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO2-to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO2-to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important. •SOA concentration predictions are highly dependent on selected vapour pressure method used.•Highly oxygenated organic molecules form an important component of indoor SOA.•Composition of indoor SOA is highly complex and depends on indoor conditions.
The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28-216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO2 concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO2-to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO2-to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important.The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28-216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO2 concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO2-to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO2-to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important.
ArticleNumber 117784
Author Carslaw, N.
McFiggans, G.
Waring, M.S.
Kruza, M.
Wells, J.R.
AuthorAffiliation d National Institute for Occupational Safety and Health, Morgantown, WV, USA
c Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
b School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
a Department of Environment and Geography, University of York, Wentworth Way, York, YO10 5NG, UK
AuthorAffiliation_xml – name: c Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
– name: b School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
– name: d National Institute for Occupational Safety and Health, Morgantown, WV, USA
– name: a Department of Environment and Geography, University of York, Wentworth Way, York, YO10 5NG, UK
Author_xml – sequence: 1
  givenname: M.
  surname: Kruza
  fullname: Kruza, M.
  organization: Department of Environment and Geography, University of York, Wentworth Way, York, YO10 5NG, UK
– sequence: 2
  givenname: G.
  surname: McFiggans
  fullname: McFiggans, G.
  organization: School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
– sequence: 3
  givenname: M.S.
  surname: Waring
  fullname: Waring, M.S.
  organization: Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
– sequence: 4
  givenname: J.R.
  surname: Wells
  fullname: Wells, J.R.
  organization: National Institute for Occupational Safety and Health, Morgantown, WV, USA
– sequence: 5
  givenname: N.
  surname: Carslaw
  fullname: Carslaw, N.
  email: nicola.carslaw@york.ac.uk
  organization: Department of Environment and Geography, University of York, Wentworth Way, York, YO10 5NG, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33594348$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1vFCEUhompsR_6FxouvdkVBpgBY4ym8aNJE2_qNWHhTMtmhjPC7Br_vazTNurNXgGH9305h-ecnCRMQMglZ2vOePtmu3bziAXSft2wphZ512n5jJxx3YlVo6U8qXuhmlUjODsl56VsGWOiM90LciqEMlJIfUbydQqImRbwmILLvyjmO5eipw4yFhzKW3qLP10OhbpE4zhl3EOgGaYM9fnZzRETxZ7O9xAz7TGPS8mlQD2OE5b45xwTHTHAUF6S570bCrx6WC_I98-fbq--rm6-fbm--niz8orJeRVaMMJIowGEdEG1ClrfKN1pYBrawA1zUnQKtBG6DszbHjgHv_FMbiR34oK8X3Kn3WaE4Guz2Q12ynGsc1p00f57k-K9vcO97bSWzKga8PohIOOPHZTZjrF4GAaXAHfFNkpx0x7-_bhUGtYyzQ2v0su_23rq55FJFbSLwFcAJUP_JOHMHuDbrX2Ebw_w7QK_Gt_9Z_Rx4VPHi8Nx-4fFXhnBPkK2xUdIHkLM4GcbMB6L-A2_Y9Jx
CitedBy_id crossref_primary_10_5572_ajae_2021_100
crossref_primary_10_1016_j_scitotenv_2022_156948
crossref_primary_10_1111_ina_13021
crossref_primary_10_1007_s10874_025_09476_3
crossref_primary_10_3390_su13105504
crossref_primary_10_1016_j_scitotenv_2024_177036
crossref_primary_10_1039_D4EM00340C
crossref_primary_10_3390_toxics13040276
crossref_primary_10_1080_05704928_2022_2088554
crossref_primary_10_3390_app11219917
crossref_primary_10_1111_ina_12845
crossref_primary_10_1021_acsearthspacechem_4c00285
crossref_primary_10_1007_s11869_021_01067_x
crossref_primary_10_1039_D4EM00410H
crossref_primary_10_3390_separations9040099
crossref_primary_10_1016_j_atmosenv_2021_118625
crossref_primary_10_1016_j_jobe_2023_107615
Cites_doi 10.1039/C4CP00857J
10.1016/j.atmosenv.2014.06.062
10.1039/b905288g
10.1016/j.atmosenv.2008.04.017
10.1111/j.1600-0668.2005.00414.x
10.5194/acp-20-649-2020
10.1016/j.fluid.2004.09.001
10.5194/acp-20-515-2020
10.1111/ina.12381
10.1021/acs.chemrev.8b00395
10.1038/ncomms13677
10.1039/C9EM00228F
10.1371/journal.pmed.0040020
10.1053/ai.1994.v94.a56007
10.1016/S1352-2310(96)00105-7
10.5194/acp-10-749-2010
10.1021/es301350x
10.1016/j.atmosenv.2006.09.038
10.1016/S0048-9697(98)00110-7
10.1111/ina.12092
10.5194/acp-4-1741-2004
10.1021/acs.estlett.8b00415
10.5194/acp-10-7169-2010
10.1021/es0481676
10.1021/ci00019a016
10.5194/acp-11-7767-2011
10.5194/acp-10-10255-2010
10.1021/ie950242l
10.1080/00986448708960487
10.1038/s41586-018-0871-y
10.5194/acp-11-9431-2011
10.5194/acp-3-181-2003
10.1080/10473289.2004.10470910
10.1016/j.atmosenv.2006.05.082
10.1016/j.atmosenv.2006.09.032
10.1029/2006JD007436
10.1016/1352-2310(94)90094-9
10.1038/nature13032
10.1080/02786826.2010.517580
10.5194/acp-18-17589-2018
10.1016/j.scitotenv.2015.05.123
10.1016/j.fluid.2008.04.020
10.5194/acp-6-403-2006
10.1016/S1352-2310(01)00435-6
10.5194/acp-11-13145-2011
10.1016/j.atmosenv.2004.02.040
10.1021/acs.jpca.6b02196
10.1289/ehp.9256
10.1021/acs.estlett.9b00425
10.5194/acp-3-161-2003
10.9734/CJAST/2018/44173
10.1038/srep35038
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.atmosenv.2020.117784
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-2844
2590-1621
ExternalDocumentID PMC7884095
33594348
10_1016_j_atmosenv_2020_117784
S1352231020305161
Genre Journal Article
GrantInformation_xml – fundername: Intramural CDC HHS
  grantid: CC999999
GroupedDBID ---
--K
--M
-DZ
-~X
..I
.DC
.~1
0R~
0SF
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABEFU
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
~02
~G-
.HR
186
3O-
53G
9DU
AAFWJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
R2-
SEP
SEW
T9H
VH1
WUQ
~HD
AEXQZ
BCNDV
GROUPED_DOAJ
NPM
OK1
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c504t-d6e939498ee34ad565e6c25878e08e6d190a4375e893828416fe11ecbc04b41a3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000569134700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1352-2310
2590-1621
IngestDate Tue Sep 30 15:55:53 EDT 2025
Sat Sep 27 22:39:41 EDT 2025
Fri Jul 11 12:23:38 EDT 2025
Mon Jul 21 05:35:42 EDT 2025
Sat Nov 29 07:05:39 EST 2025
Tue Nov 18 22:03:38 EST 2025
Fri Feb 23 02:49:51 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Vapour pressure
Indoor air chemistry
Secondary organic aerosol
Volatile organic compound
Highly oxygenated organic molecules
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c504t-d6e939498ee34ad565e6c25878e08e6d190a4375e893828416fe11ecbc04b41a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
M. Kruza: Methodology, Software, Formal analysis, Investigation, Writing - original draft. G. McFiggans: Conceptualization, Methodology, Writing - original draft. M.S. Waring: Methodology. J.R. Wells: Methodology, Writing - original draft. N. Carslaw: Conceptualization, Methodology, Software, Investigation, Writing - original draft, Funding acquisition.
CRediT authorship contribution statement
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7884095
PMID 33594348
PQID 2490608191
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7884095
proquest_miscellaneous_2551967784
proquest_miscellaneous_2490608191
pubmed_primary_33594348
crossref_primary_10_1016_j_atmosenv_2020_117784
crossref_citationtrail_10_1016_j_atmosenv_2020_117784
elsevier_sciencedirect_doi_10_1016_j_atmosenv_2020_117784
PublicationCentury 2000
PublicationDate 2020-11-01
2020-11-00
2020-Nov
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Atmospheric Environment: X
PublicationTitleAlternate Atmos Environ X
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Joback, Reid (bib23) 1987; 57
Kourtchev, Giorio, Manninen, Wilson, Mahon, Aalto, Kajos, Venables, Ruuskanen, Levula, Loponen (bib27) 2016; 6
Kurtén, Hyttinen, D'Ambro, Thornton, Prisle (bib30) 2018; 18
Cummings, Waring (bib13) 2019; 29
Singer, Destaillats, Hodgson, Nazaroff (bib49) 2006; 16
Johnson, Utembe, Jenkin, Derwent, Hayman, Alfarra, Coe, McFiggans (bib24) 2006; 6
McFiggans, Mentel, Wildt, Pullinen, Kang, Kleist, Schmitt, Springer, Tillmann, Wu, Zhao (bib35) 2019; 565
Ketenoglu (bib26) 2018
Waring, Wells (bib55) 2015; 106
Sarwar, Corsi (bib47) 2007; 41
Pathak, Stanier, Donahue, Pandis (bib43) 2007; 112
Arata, Zarzana, Misztal, Liu, Brown, Nazaroff, Goldstein (bib2) 2018; 5
Nazaroff, Weschler (bib39) 2004; 38
Barley, McFiggans (bib4) 2010; 10
Hall, Johnston (bib20) 2011; 45
Kruza, Lewis, Morrison, Carslaw (bib28) 2017; 27
McFiggans, Topping, Barley (bib34) 2010; 10
Uhde, Salthammer (bib53) 2007; 41
Carslaw (bib9) 2007; 41
The master chemical mechanism (MCM) V.3.3.1.
O'Meara, Booth, Barley, Topping, McFiggans (bib40) 2014; 16
Lin, Ezzati, Murray (bib32) 2007; 4
Pagonis, Algrim, Price, Day, Handschy, Stark, Miller, de Gouw, Jimenez, Ziemann (bib41) 2019; 6
Topping, Barley, McFiggans (bib50) 2011; 11
Nannoolal, Rarey, Ramjugernath (bib38) 2008; 269
Carslaw, Mota, Jenkin, Barley, McFiggans (bib10) 2012; 46
Reid, Prausnitz, Poling (bib45) 1987
Jenkin (bib60) 2004; 4
Compernolle, Ceulemans, Müller (bib12) 2011; 11
Jenkin, Saunders, Wagner, Pilling (bib22) 2003; 3
Stein, Brown (bib59) 1994; 34
The EPI-Suite v4.11 software.
Farmer, Vance, Abbatt, Abeleira, Alves, Arata, Boedicker, Bourne, Cardoso-Saldaña, Corsi, DeCarlo (bib16) 2019; 21
Barley, Topping, Lowe, Utembe, McFiggans (bib5) 2011; 11
Kurtén, Tiusanen, Roldin, Rissanen, Luy, Boy, Ehn, Donahue (bib29) 2016; A 120
Wolkoff, Schneider, Kildesø, Degerth, Jaroszewski, Schunk (bib58) 1998; 215
Saunders, Jenkin, Derwent, Pilling (bib48) 2003; 3
Topping, Barley, McFiggans (bib51) 2013; 165
Chan, Chan, Surratt, Chhabra, Loza, Crounse, Seinfeld (bib11) 2010; 10
Garmash, Rissanen, Pullinen, Schmitt, Kausiala, Tillmann, Percival, Bannan, Priestley, Hallquist, Kleist (bib17) 2020; 20
Lee, Li, Ao (bib31) 2002; 36
Weschler (bib57) 2006; 114
Sarwar, Olson, Corsi, Weschler (bib46) 2004; 54
Bianchi, Kurtén, Riva, Mohr, Rissanen, Roldin, Berndt, Crounse, Wennberg, Mentel, Wildt (bib7) 2019; 119
Berndt, Richters, Jokinen, Hyttinen, Kurtén, Otkjær, Kjaergaard, Stratmann, Herrmann, Sipilä, Kulmala (bib8) 2016; 7
Accessed July 19, 2019.
Myrdal, Yalkowsky (bib36) 1997; 36
Pankow (bib42) 1994; 28
Peräkylä, Riva, Heikkinen, Quéléver, Roldin, Ehn (bib44) 2020; 20
Waring (bib54) 2014; 24
Jenkin, Saunders, Pilling (bib21) 1997; 31
Jones, Ham (bib25) 2008; 42
Alberts (bib1) 1994; 94
Bateman, Nizkorodov, Laskin, Laskin (bib6) 2009; 11
Accessed August 19, 2019.
Ehn, Thornton, Kleist, Sipilä, Junninen, Pullinen, Springer, Rubach, Tillmann, Lee, Lopez-Hilfiker (bib14) 2014; 506
Nannoolal, Rarey, Ramjugernath, Cordes (bib37) 2004; 226
Trantallidi, Dimitroulopoulou, Wolkoff, Kephalopoulos, Carrer (bib52) 2015; 536
Wells (bib56) 2005; 39
Waring (10.1016/j.atmosenv.2020.117784_bib54) 2014; 24
Barley (10.1016/j.atmosenv.2020.117784_bib4) 2010; 10
Berndt (10.1016/j.atmosenv.2020.117784_bib8) 2016; 7
10.1016/j.atmosenv.2020.117784_bib15
Lee (10.1016/j.atmosenv.2020.117784_bib31) 2002; 36
Nannoolal (10.1016/j.atmosenv.2020.117784_bib37) 2004; 226
Carslaw (10.1016/j.atmosenv.2020.117784_bib9) 2007; 41
Sarwar (10.1016/j.atmosenv.2020.117784_bib46) 2004; 54
Topping (10.1016/j.atmosenv.2020.117784_bib51) 2013; 165
Kourtchev (10.1016/j.atmosenv.2020.117784_bib27) 2016; 6
Singer (10.1016/j.atmosenv.2020.117784_bib49) 2006; 16
Jones (10.1016/j.atmosenv.2020.117784_bib25) 2008; 42
Myrdal (10.1016/j.atmosenv.2020.117784_bib36) 1997; 36
Topping (10.1016/j.atmosenv.2020.117784_bib50) 2011; 11
Ehn (10.1016/j.atmosenv.2020.117784_bib14) 2014; 506
Carslaw (10.1016/j.atmosenv.2020.117784_bib10) 2012; 46
Joback (10.1016/j.atmosenv.2020.117784_bib23) 1987; 57
Pathak (10.1016/j.atmosenv.2020.117784_bib43) 2007; 112
Stein (10.1016/j.atmosenv.2020.117784_bib59) 1994; 34
Cummings (10.1016/j.atmosenv.2020.117784_bib13) 2019; 29
Nannoolal (10.1016/j.atmosenv.2020.117784_bib38) 2008; 269
Peräkylä (10.1016/j.atmosenv.2020.117784_bib44) 2020; 20
Alberts (10.1016/j.atmosenv.2020.117784_bib1) 1994; 94
Trantallidi (10.1016/j.atmosenv.2020.117784_bib52) 2015; 536
Reid (10.1016/j.atmosenv.2020.117784_bib45) 1987
Johnson (10.1016/j.atmosenv.2020.117784_bib24) 2006; 6
McFiggans (10.1016/j.atmosenv.2020.117784_bib34) 2010; 10
Arata (10.1016/j.atmosenv.2020.117784_bib2) 2018; 5
Bateman (10.1016/j.atmosenv.2020.117784_bib6) 2009; 11
Jenkin (10.1016/j.atmosenv.2020.117784_bib60) 2004; 4
Kurtén (10.1016/j.atmosenv.2020.117784_bib29) 2016; A 120
Ketenoglu (10.1016/j.atmosenv.2020.117784_bib26) 2018
Saunders (10.1016/j.atmosenv.2020.117784_bib48) 2003; 3
Pagonis (10.1016/j.atmosenv.2020.117784_bib41) 2019; 6
Weschler (10.1016/j.atmosenv.2020.117784_bib57) 2006; 114
10.1016/j.atmosenv.2020.117784_bib33
Pankow (10.1016/j.atmosenv.2020.117784_bib42) 1994; 28
Kurtén (10.1016/j.atmosenv.2020.117784_bib30) 2018; 18
Jenkin (10.1016/j.atmosenv.2020.117784_bib22) 2003; 3
Waring (10.1016/j.atmosenv.2020.117784_bib55) 2015; 106
Kruza (10.1016/j.atmosenv.2020.117784_bib28) 2017; 27
Chan (10.1016/j.atmosenv.2020.117784_bib11) 2010; 10
Garmash (10.1016/j.atmosenv.2020.117784_bib17) 2020; 20
Wolkoff (10.1016/j.atmosenv.2020.117784_bib58) 1998; 215
Farmer (10.1016/j.atmosenv.2020.117784_bib16) 2019; 21
Compernolle (10.1016/j.atmosenv.2020.117784_bib12) 2011; 11
Lin (10.1016/j.atmosenv.2020.117784_bib32) 2007; 4
Nazaroff (10.1016/j.atmosenv.2020.117784_bib39) 2004; 38
Sarwar (10.1016/j.atmosenv.2020.117784_bib47) 2007; 41
Barley (10.1016/j.atmosenv.2020.117784_bib5) 2011; 11
O'Meara (10.1016/j.atmosenv.2020.117784_bib40) 2014; 16
Wells (10.1016/j.atmosenv.2020.117784_bib56) 2005; 39
Bianchi (10.1016/j.atmosenv.2020.117784_bib7) 2019; 119
Jenkin (10.1016/j.atmosenv.2020.117784_bib21) 1997; 31
Hall (10.1016/j.atmosenv.2020.117784_bib20) 2011; 45
McFiggans (10.1016/j.atmosenv.2020.117784_bib35) 2019; 565
Uhde (10.1016/j.atmosenv.2020.117784_bib53) 2007; 41
References_xml – volume: 11
  start-page: 7767
  year: 2011
  end-page: 7779
  ident: bib50
  article-title: The sensitivity of Secondary Organic Aerosol component partitioning to the predictions of component properties–Part 2: determination of particle hygroscopicity and its dependence on" apparent" volatility
  publication-title: Atmos. Chem. Phys.
– volume: 215
  start-page: 135
  year: 1998
  end-page: 156
  ident: bib58
  article-title: Risk in cleaning: chemical and physical exposure
  publication-title: Sci. Total Environ.
– volume: 119
  start-page: 3472
  year: 2019
  end-page: 3509
  ident: bib7
  article-title: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol
  publication-title: Chem. Rev.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib8
  article-title: Hydroxyl radical-induced formation of highly oxidized organic compounds
  publication-title: Nat. Commun.
– volume: 11
  start-page: 9431
  year: 2011
  end-page: 9450
  ident: bib12
  article-title: EVAPORATION: a new vapour pressure estimation method for organic molecules including non-additivity and intramolecular interactions
  publication-title: Atmos. Chem. Phys.
– volume: 165
  start-page: 273
  year: 2013
  end-page: 288
  ident: bib51
  article-title: Including phase separation in a unified model to calculate partitioning of vapours to mixed inorganic–organic aerosol particles
– volume: 4
  start-page: 173
  year: 2007
  end-page: 189
  ident: bib32
  article-title: Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis
  publication-title: PLoS Med.
– volume: 41
  start-page: 3111
  year: 2007
  end-page: 3128
  ident: bib53
  article-title: Impact of reaction products from building materials and furnishings on indoor air quality—a review of recent advances in indoor chemistry
  publication-title: Atmos. Environ.
– volume: 6
  start-page: 403
  year: 2006
  end-page: 418
  ident: bib24
  article-title: Simulating regional scale secondary organic aerosol formation during the TORCH 2003 campaign in the southern UK
  publication-title: Atmos. Chem. Phys.
– volume: 18
  start-page: 17589
  year: 2018
  end-page: 17600
  ident: bib30
  article-title: Estimating the saturation vapor pressures of isoprene oxidation products C 5 H 12 O 6 and C 5 H 10 O 6 using COSMO-RS
  publication-title: Atmos. Chem. Phys.
– reference: . Accessed August 19, 2019.
– year: 1987
  ident: bib45
  article-title: Properties of Gases and Liquids
– volume: 536
  start-page: 903
  year: 2015
  end-page: 913
  ident: bib52
  article-title: EPHECT III: health risk assessment of exposure to household consumer products
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 376
  year: 2014
  end-page: 389
  ident: bib54
  article-title: Secondary organic aerosol in residences: predicting its fraction of fine particle mass and determinants of formation strength
  publication-title: Indoor Air
– volume: 6
  start-page: 520
  year: 2019
  end-page: 524
  ident: bib41
  article-title: Autoxidation of limonene emitted in a university art museum
  publication-title: Environ. Sci. Technol. Lett.
– volume: 114
  start-page: 1489
  year: 2006
  end-page: 1496
  ident: bib57
  article-title: Ozone's impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry
  publication-title: Environ. Health Perspect.
– volume: 10
  start-page: 749
  year: 2010
  end-page: 767
  ident: bib4
  article-title: The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol
  publication-title: Atmos. Chem. Phys.
– volume: 45
  start-page: 37
  year: 2011
  end-page: 45
  ident: bib20
  article-title: Oligomer content of α-pinene secondary organic aerosol
  publication-title: Aerosol Sci. Technol.
– volume: 506
  year: 2014
  ident: bib14
  article-title: A large source of low-volatility secondary organic aerosol
  publication-title: Nature
– volume: 54
  start-page: 367
  year: 2004
  end-page: 377
  ident: bib46
  article-title: Indoor fine particles: the role of terpene emissions from consumer products
  publication-title: J. Air Waste Manag. Assoc.
– volume: 42
  start-page: 6689
  year: 2008
  end-page: 6698
  ident: bib25
  article-title: Ɑ-terpineol reaction with nitrate radical: rate constant and gas-phase products
  publication-title: Atmos. Environ.
– volume: 10
  year: 2010
  ident: bib34
  article-title: The sensitivity of secondary organic aerosol component partitioning to the predictions of component properties-Part 1: a systematic evaluation of some available estimation techniques
  publication-title: Atmos. Chem. Phys.
– volume: 226
  start-page: 45
  year: 2004
  end-page: 63
  ident: bib37
  article-title: Estimation of pure component properties: Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions
  publication-title: Fluid Phase Equil.
– volume: 41
  start-page: 959
  year: 2007
  end-page: 973
  ident: bib47
  article-title: The effects of ozone/limonene reactions on indoor secondary organic aerosols
  publication-title: Atmos. Environ.
– volume: A 120
  start-page: 2569
  year: 2016
  end-page: 2582
  ident: bib29
  article-title: α-Pinene autoxidation products may not have extremely low saturation vapor pressures despite high O: C ratios
  publication-title: J. Phys. Chem.
– volume: 11
  year: 2011
  ident: bib5
  article-title: The sensitivity of secondary organic aerosol (SOA) component partitioning to the predictions of component properties-Part 3: investigation of condensed compounds generated by a near-explicit model of VOC oxidation
  publication-title: Atmos. Chem. Phys.
– volume: 11
  start-page: 7931
  year: 2009
  end-page: 7942
  ident: bib6
  article-title: Time resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib27
  article-title: Enhanced volatile organic compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols
  publication-title: Sci. Rep.
– volume: 16
  start-page: 19453
  year: 2014
  end-page: 19469
  ident: bib40
  article-title: An assessment of vapour pressure estimation methods
  publication-title: Phys. Chem. Chem. Phys.
– volume: 57
  start-page: 233
  year: 1987
  end-page: 243
  ident: bib23
  article-title: Estimation of pure-component properties from group-contributions
  publication-title: Chem. Eng. Commun.
– volume: 5
  start-page: 595
  year: 2018
  end-page: 599
  ident: bib2
  article-title: Measurement of NO
  publication-title: Environ. Sci. Technol. Lett.
– volume: 31
  start-page: 81
  year: 1997
  end-page: 104
  ident: bib21
  article-title: The tropospheric degradation of volatile organic compounds: a protocol for mechanism development
  publication-title: Atmos. Environ.
– volume: 3
  start-page: 161
  year: 2003
  end-page: 180
  ident: bib48
  article-title: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds
  publication-title: Atmos. Chem. Phys.
– volume: 29
  start-page: 616
  year: 2019
  end-page: 629
  ident: bib13
  article-title: Predicting the importance of oxidative aging on indoor organic aerosol concentrations using the two-dimensional volatility basis set (2D-VBS)
  publication-title: Indoor Air
– volume: 94
  start-page: 289
  year: 1994
  end-page: 295
  ident: bib1
  article-title: Indoor air pollution: NO, NO2, CO, and CO2
  publication-title: J. Allergy Clin. Immun.
– volume: 39
  start-page: 6937
  year: 2005
  end-page: 6943
  ident: bib56
  article-title: Gas-phase chemistry of α-terpineol with ozone and OH radical: rate constants and products
  publication-title: Environ. Sci. Technol.
– volume: 269
  start-page: 117
  year: 2008
  end-page: 133
  ident: bib38
  article-title: Estimation of pure component properties: Part 3. Estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions
  publication-title: Fluid Phase Equil.
– volume: 3
  start-page: 181
  year: 2003
  end-page: 193
  ident: bib22
  article-title: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds
  publication-title: Atmos. Chem. Phys.
– reference: The EPI-Suite v4.11 software.
– volume: 38
  start-page: 2841
  year: 2004
  end-page: 2865
  ident: bib39
  article-title: Cleaning products and air fresheners: exposure to primary and secondary air pollutants
  publication-title: Atmos. Environ.
– volume: 106
  start-page: 382
  year: 2015
  end-page: 391
  ident: bib55
  article-title: Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: magnitudes and impacts of oxidant sources
  publication-title: Atmos. Environ.
– volume: 20
  start-page: 649
  year: 2020
  end-page: 669
  ident: bib44
  article-title: Experimental investigation into the volatilities of highly oxygenated organic molecules (HOM)
  publication-title: Atmos. Chem. Phys.
– reference: . Accessed July 19, 2019.
– volume: 21
  start-page: 1280
  year: 2019
  end-page: 1300
  ident: bib16
  article-title: Overview of HOMEChem: house observations of microbial and environmental chemistry
  publication-title: Environ. Sci. Process. Impacts
– volume: 36
  start-page: 225
  year: 2002
  end-page: 237
  ident: bib31
  article-title: Investigation of indoor air quality at residential homes in Hong Kong - case study
  publication-title: Atmos. Environ.
– volume: 4
  start-page: 1741
  year: 2004
  end-page: 1757
  ident: bib60
  article-title: Modelling the formation and composition of secondary organic aerosol from α-and β-pinene ozonolysis using MCM v3
  publication-title: Atmos. Chem. Phys.
– volume: 28
  start-page: 189
  year: 1994
  end-page: 193
  ident: bib42
  article-title: An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol
  publication-title: Atmos. Environ.
– volume: 36
  start-page: 2494
  year: 1997
  end-page: 2499
  ident: bib36
  article-title: Estimating pure component vapor pressures of complex organic molecules
  publication-title: Ind. Eng. Chem. Res.
– volume: 10
  start-page: 7169
  year: 2010
  end-page: 7188
  ident: bib11
  article-title: Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation
  publication-title: Atmos. Chem. Phys.
– start-page: 1
  year: 2018
  end-page: 11
  ident: bib26
  article-title: Determination of antoine constants from estimated vapor pressures of selected food contaminants
  publication-title: Curr. J. Appl. Sci. Technol.
– volume: 41
  start-page: 1164
  year: 2007
  end-page: 1179
  ident: bib9
  article-title: A new detailed chemical model for indoor air pollution
  publication-title: Atmos. Environ
– volume: 46
  start-page: 9290
  year: 2012
  end-page: 9298
  ident: bib10
  article-title: A significant role for nitrate and peroxide groups on indoor secondary organic aerosol
  publication-title: Environ. Sci. Technol.
– reference: The master chemical mechanism (MCM) V.3.3.1.
– volume: 34
  start-page: 581
  year: 1994
  end-page: 587
  ident: bib59
  article-title: Estimation of normal boiling points from group contributions
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 20
  start-page: 515
  year: 2020
  end-page: 537
  ident: bib17
  article-title: Multi-generation OH oxidation as a source for highly oxygenated organic molecules from aromatics
  publication-title: Atmos. Chem. Phys.
– volume: 16
  start-page: 179
  year: 2006
  end-page: 191
  ident: bib49
  article-title: Cleaning products and air fresheners: emissions and resulting concentrations of glycol esthersand terpenoids
  publication-title: Indoor Air
– volume: 112
  year: 2007
  ident: bib43
  article-title: Ozonolysis of α-pinene at atmospherically relevant concentrations: temperature dependence of aerosol mass fractions (yields)
  publication-title: J. Geophys. Res. Atmos.
– volume: 565
  year: 2019
  ident: bib35
  article-title: Secondary organic aerosol reduced by mixture of atmospheric vapours
  publication-title: Nature
– volume: 27
  start-page: 1001
  year: 2017
  end-page: 1011
  ident: bib28
  article-title: Impact of surface ozone interactions on indoor air chemistry: a modeling study
  publication-title: Indoor Air
– volume: 16
  start-page: 19453
  issue: 36
  year: 2014
  ident: 10.1016/j.atmosenv.2020.117784_bib40
  article-title: An assessment of vapour pressure estimation methods
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00857J
– volume: 106
  start-page: 382
  year: 2015
  ident: 10.1016/j.atmosenv.2020.117784_bib55
  article-title: Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: magnitudes and impacts of oxidant sources
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.06.062
– volume: 11
  start-page: 7931
  issue: 36
  year: 2009
  ident: 10.1016/j.atmosenv.2020.117784_bib6
  article-title: Time resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b905288g
– volume: 42
  start-page: 6689
  issue: 27
  year: 2008
  ident: 10.1016/j.atmosenv.2020.117784_bib25
  article-title: Ɑ-terpineol reaction with nitrate radical: rate constant and gas-phase products
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.04.017
– volume: 16
  start-page: 179
  issue: 3
  year: 2006
  ident: 10.1016/j.atmosenv.2020.117784_bib49
  article-title: Cleaning products and air fresheners: emissions and resulting concentrations of glycol esthersand terpenoids
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.2005.00414.x
– volume: 20
  start-page: 649
  year: 2020
  ident: 10.1016/j.atmosenv.2020.117784_bib44
  article-title: Experimental investigation into the volatilities of highly oxygenated organic molecules (HOM)
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-649-2020
– volume: 226
  start-page: 45
  year: 2004
  ident: 10.1016/j.atmosenv.2020.117784_bib37
  article-title: Estimation of pure component properties: Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions
  publication-title: Fluid Phase Equil.
  doi: 10.1016/j.fluid.2004.09.001
– volume: 20
  start-page: 515
  year: 2020
  ident: 10.1016/j.atmosenv.2020.117784_bib17
  article-title: Multi-generation OH oxidation as a source for highly oxygenated organic molecules from aromatics
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-515-2020
– volume: 27
  start-page: 1001
  issue: 5
  year: 2017
  ident: 10.1016/j.atmosenv.2020.117784_bib28
  article-title: Impact of surface ozone interactions on indoor air chemistry: a modeling study
  publication-title: Indoor Air
  doi: 10.1111/ina.12381
– volume: 119
  start-page: 3472
  issue: 6
  year: 2019
  ident: 10.1016/j.atmosenv.2020.117784_bib7
  article-title: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00395
– volume: 7
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.atmosenv.2020.117784_bib8
  article-title: Hydroxyl radical-induced formation of highly oxidized organic compounds
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13677
– volume: 21
  start-page: 1280
  issue: 8
  year: 2019
  ident: 10.1016/j.atmosenv.2020.117784_bib16
  article-title: Overview of HOMEChem: house observations of microbial and environmental chemistry
  publication-title: Environ. Sci. Process. Impacts
  doi: 10.1039/C9EM00228F
– volume: 4
  start-page: 173
  issue: 1
  year: 2007
  ident: 10.1016/j.atmosenv.2020.117784_bib32
  article-title: Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0040020
– volume: 94
  start-page: 289
  issue: 2
  year: 1994
  ident: 10.1016/j.atmosenv.2020.117784_bib1
  article-title: Indoor air pollution: NO, NO2, CO, and CO2
  publication-title: J. Allergy Clin. Immun.
  doi: 10.1053/ai.1994.v94.a56007
– volume: 31
  start-page: 81
  issue: 1
  year: 1997
  ident: 10.1016/j.atmosenv.2020.117784_bib21
  article-title: The tropospheric degradation of volatile organic compounds: a protocol for mechanism development
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(96)00105-7
– volume: 10
  start-page: 749
  issue: 2
  year: 2010
  ident: 10.1016/j.atmosenv.2020.117784_bib4
  article-title: The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-749-2010
– volume: 46
  start-page: 9290
  issue: 17
  year: 2012
  ident: 10.1016/j.atmosenv.2020.117784_bib10
  article-title: A significant role for nitrate and peroxide groups on indoor secondary organic aerosol
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301350x
– year: 1987
  ident: 10.1016/j.atmosenv.2020.117784_bib45
– volume: 29
  start-page: 616
  issue: 4
  year: 2019
  ident: 10.1016/j.atmosenv.2020.117784_bib13
  article-title: Predicting the importance of oxidative aging on indoor organic aerosol concentrations using the two-dimensional volatility basis set (2D-VBS)
  publication-title: Indoor Air
– volume: 41
  start-page: 1164
  issue: 6
  year: 2007
  ident: 10.1016/j.atmosenv.2020.117784_bib9
  article-title: A new detailed chemical model for indoor air pollution
  publication-title: Atmos. Environ
  doi: 10.1016/j.atmosenv.2006.09.038
– volume: 215
  start-page: 135
  issue: 1
  year: 1998
  ident: 10.1016/j.atmosenv.2020.117784_bib58
  article-title: Risk in cleaning: chemical and physical exposure
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(98)00110-7
– volume: 24
  start-page: 376
  issue: 4
  year: 2014
  ident: 10.1016/j.atmosenv.2020.117784_bib54
  article-title: Secondary organic aerosol in residences: predicting its fraction of fine particle mass and determinants of formation strength
  publication-title: Indoor Air
  doi: 10.1111/ina.12092
– volume: 4
  start-page: 1741
  year: 2004
  ident: 10.1016/j.atmosenv.2020.117784_bib60
  article-title: Modelling the formation and composition of secondary organic aerosol from α-and β-pinene ozonolysis using MCM v3
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-4-1741-2004
– volume: 5
  start-page: 595
  issue: 10
  year: 2018
  ident: 10.1016/j.atmosenv.2020.117784_bib2
  article-title: Measurement of NO3 and N2O5 in a residential kitchen
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.8b00415
– volume: 10
  start-page: 7169
  issue: 15
  year: 2010
  ident: 10.1016/j.atmosenv.2020.117784_bib11
  article-title: Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-7169-2010
– volume: 39
  start-page: 6937
  issue: 18
  year: 2005
  ident: 10.1016/j.atmosenv.2020.117784_bib56
  article-title: Gas-phase chemistry of α-terpineol with ozone and OH radical: rate constants and products
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0481676
– volume: 34
  start-page: 581
  issue: 3
  year: 1994
  ident: 10.1016/j.atmosenv.2020.117784_bib59
  article-title: Estimation of normal boiling points from group contributions
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00019a016
– volume: 11
  start-page: 7767
  issue: 15
  year: 2011
  ident: 10.1016/j.atmosenv.2020.117784_bib50
  article-title: The sensitivity of Secondary Organic Aerosol component partitioning to the predictions of component properties–Part 2: determination of particle hygroscopicity and its dependence on" apparent" volatility
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-7767-2011
– volume: 10
  issue: 21
  year: 2010
  ident: 10.1016/j.atmosenv.2020.117784_bib34
  article-title: The sensitivity of secondary organic aerosol component partitioning to the predictions of component properties-Part 1: a systematic evaluation of some available estimation techniques
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-10255-2010
– volume: 36
  start-page: 2494
  issue: 6
  year: 1997
  ident: 10.1016/j.atmosenv.2020.117784_bib36
  article-title: Estimating pure component vapor pressures of complex organic molecules
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie950242l
– volume: 165
  start-page: 273
  year: 2013
  ident: 10.1016/j.atmosenv.2020.117784_bib51
  article-title: Including phase separation in a unified model to calculate partitioning of vapours to mixed inorganic–organic aerosol particles
– volume: 57
  start-page: 233
  year: 1987
  ident: 10.1016/j.atmosenv.2020.117784_bib23
  article-title: Estimation of pure-component properties from group-contributions
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986448708960487
– volume: 565
  issue: 7741
  year: 2019
  ident: 10.1016/j.atmosenv.2020.117784_bib35
  article-title: Secondary organic aerosol reduced by mixture of atmospheric vapours
  publication-title: Nature
  doi: 10.1038/s41586-018-0871-y
– volume: 11
  start-page: 9431
  issue: 18
  year: 2011
  ident: 10.1016/j.atmosenv.2020.117784_bib12
  article-title: EVAPORATION: a new vapour pressure estimation method for organic molecules including non-additivity and intramolecular interactions
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-9431-2011
– volume: 3
  start-page: 181
  issue: 1
  year: 2003
  ident: 10.1016/j.atmosenv.2020.117784_bib22
  article-title: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-3-181-2003
– volume: 54
  start-page: 367
  issue: 3
  year: 2004
  ident: 10.1016/j.atmosenv.2020.117784_bib46
  article-title: Indoor fine particles: the role of terpene emissions from consumer products
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10473289.2004.10470910
– volume: 41
  start-page: 3111
  issue: 15
  year: 2007
  ident: 10.1016/j.atmosenv.2020.117784_bib53
  article-title: Impact of reaction products from building materials and furnishings on indoor air quality—a review of recent advances in indoor chemistry
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.05.082
– volume: 41
  start-page: 959
  issue: 5
  year: 2007
  ident: 10.1016/j.atmosenv.2020.117784_bib47
  article-title: The effects of ozone/limonene reactions on indoor secondary organic aerosols
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.09.032
– volume: 112
  issue: D3
  year: 2007
  ident: 10.1016/j.atmosenv.2020.117784_bib43
  article-title: Ozonolysis of α-pinene at atmospherically relevant concentrations: temperature dependence of aerosol mass fractions (yields)
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2006JD007436
– volume: 28
  start-page: 189
  issue: 2
  year: 1994
  ident: 10.1016/j.atmosenv.2020.117784_bib42
  article-title: An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol
  publication-title: Atmos. Environ.
  doi: 10.1016/1352-2310(94)90094-9
– volume: 506
  issue: 7489
  year: 2014
  ident: 10.1016/j.atmosenv.2020.117784_bib14
  article-title: A large source of low-volatility secondary organic aerosol
  publication-title: Nature
  doi: 10.1038/nature13032
– volume: 45
  start-page: 37
  issue: 1
  year: 2011
  ident: 10.1016/j.atmosenv.2020.117784_bib20
  article-title: Oligomer content of α-pinene secondary organic aerosol
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786826.2010.517580
– volume: 18
  start-page: 17589
  issue: 23
  year: 2018
  ident: 10.1016/j.atmosenv.2020.117784_bib30
  article-title: Estimating the saturation vapor pressures of isoprene oxidation products C 5 H 12 O 6 and C 5 H 10 O 6 using COSMO-RS
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-17589-2018
– volume: 536
  start-page: 903
  year: 2015
  ident: 10.1016/j.atmosenv.2020.117784_bib52
  article-title: EPHECT III: health risk assessment of exposure to household consumer products
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.05.123
– volume: 269
  start-page: 117
  issue: 1–2
  year: 2008
  ident: 10.1016/j.atmosenv.2020.117784_bib38
  article-title: Estimation of pure component properties: Part 3. Estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions
  publication-title: Fluid Phase Equil.
  doi: 10.1016/j.fluid.2008.04.020
– volume: 6
  start-page: 403
  issue: 2
  year: 2006
  ident: 10.1016/j.atmosenv.2020.117784_bib24
  article-title: Simulating regional scale secondary organic aerosol formation during the TORCH 2003 campaign in the southern UK
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-6-403-2006
– ident: 10.1016/j.atmosenv.2020.117784_bib33
– volume: 36
  start-page: 225
  issue: 2
  year: 2002
  ident: 10.1016/j.atmosenv.2020.117784_bib31
  article-title: Investigation of indoor air quality at residential homes in Hong Kong - case study
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(01)00435-6
– ident: 10.1016/j.atmosenv.2020.117784_bib15
– volume: 11
  issue: 24
  year: 2011
  ident: 10.1016/j.atmosenv.2020.117784_bib5
  article-title: The sensitivity of secondary organic aerosol (SOA) component partitioning to the predictions of component properties-Part 3: investigation of condensed compounds generated by a near-explicit model of VOC oxidation
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-13145-2011
– volume: 38
  start-page: 2841
  issue: 18
  year: 2004
  ident: 10.1016/j.atmosenv.2020.117784_bib39
  article-title: Cleaning products and air fresheners: exposure to primary and secondary air pollutants
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.02.040
– volume: A 120
  start-page: 2569
  issue: 16
  year: 2016
  ident: 10.1016/j.atmosenv.2020.117784_bib29
  article-title: α-Pinene autoxidation products may not have extremely low saturation vapor pressures despite high O: C ratios
  publication-title: J. Phys. Chem.
  doi: 10.1021/acs.jpca.6b02196
– volume: 114
  start-page: 1489
  issue: 10
  year: 2006
  ident: 10.1016/j.atmosenv.2020.117784_bib57
  article-title: Ozone's impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.9256
– volume: 6
  start-page: 520
  issue: 9
  year: 2019
  ident: 10.1016/j.atmosenv.2020.117784_bib41
  article-title: Autoxidation of limonene emitted in a university art museum
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.9b00425
– volume: 3
  start-page: 161
  issue: 1
  year: 2003
  ident: 10.1016/j.atmosenv.2020.117784_bib48
  article-title: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-3-161-2003
– start-page: 1
  year: 2018
  ident: 10.1016/j.atmosenv.2020.117784_bib26
  article-title: Determination of antoine constants from estimated vapor pressures of selected food contaminants
  publication-title: Curr. J. Appl. Sci. Technol.
  doi: 10.9734/CJAST/2018/44173
– volume: 6
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.atmosenv.2020.117784_bib27
  article-title: Enhanced volatile organic compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols
  publication-title: Sci. Rep.
  doi: 10.1038/srep35038
SSID ssj0003797
ssj0002244601
Score 2.445274
Snippet The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117784
SubjectTerms aerosols
alcohols
autoxidation
environment
Highly oxygenated organic molecules
Indoor air chemistry
model validation
nitrates
particulates
Secondary organic aerosol
vapor pressure
vapors
Vapour pressure
Volatile organic compound
Title Indoor secondary organic aerosols: Towards an improved representation of their formation and composition in models
URI https://dx.doi.org/10.1016/j.atmosenv.2020.117784
https://www.ncbi.nlm.nih.gov/pubmed/33594348
https://www.proquest.com/docview/2490608191
https://www.proquest.com/docview/2551967784
https://pubmed.ncbi.nlm.nih.gov/PMC7884095
Volume 240
WOSCitedRecordID wos000569134700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002244601
  issn: 1352-2310
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003797
  issn: 1352-2310
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6jQMcEAwG5aMyEuIyBZrESWxuFWrFYCscOq23yHHc0akkJWmrwV_Pc2wnKQw2DlyiKrXjJO8X-_ee3wdCL9OIBSIU0vE9kTjEpaHDPM6dlAlP9kMOOsWsKjYRjcd0OmWfO53vNhZms4iyjF5esuV_FTWcA2Gr0Nl_EHd9UTgBv0HocASxw_FGgj_K0jwvDkul6abKJ04XbhKHXMKKmC8qH7hJ5S2r8jOrOMki30gVxbJsYpEy4zwwL5r4RhsDZx29lK2kqqRTtinuYPU1L1WyAhiyFUZXZYRijLRMDx-L9Q--ZZE9EaP5-bnh9nXVrzNemMorJ42l9kwuFhqDxufRmC5AT3Vr04WebYH9OYpgtqdjoBiHy2ovmRLnykle2xsu4LXC88CDvFbXNj2aZc1u5Y8_xaPT4-N4MpxOXi2_OargmNqYN9VXdtCeFwUMJsS9wdFw-qFexv1IV-ax99gKL7966D8xm981l18dcFuMZnIP3TWqCB5oCN1HHZntozutBJX76GDYCBCamoWgfIAKjTJcowwblGGLsrfYYAzzDFuM4W2M4XyGK4zhGmPQOsUtjOF5hjXGHqLT0XDy7r1jync4IuiTlZOGkvmMMCqlT3gKmoMMhRfQiMo-lWEKVJQTPwokUGbQ-0EzmEnXlSIRfZIQl_sHaDfLM_kYYearzISMiZC6RLCAz1IPxJOEXkKThMkuCuyrj4XJba9KrCxi68R4EVuRxUpksRZZF72p-y11dpdrezAr2dhwVM09Y0DntX1fWCjEMImrnTmeyXxdxh5h_VCRc_cvbUC3YaG-ziMNn_qefT9QeR5pF0VbwKobqCTy2_9k8y9VMvmIKhNP8OQG4z5Ft5uv-BnaXRVr-RzdEpvVvCx6aCea0p75inqVbesnXx_uOg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indoor+secondary+organic+aerosols%3A+Towards+an+improved+representation+of+their+formation+and+composition+in+models&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Kruza%2C+M&rft.au=McFiggans%2C+G&rft.au=Waring%2C+M+S&rft.au=Wells%2C+J+R&rft.date=2020-11-01&rft.issn=1352-2310&rft.volume=240+p.117784-&rft_id=info:doi/10.1016%2Fj.atmosenv.2020.117784&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon