Indoor secondary organic aerosols: Towards an improved representation of their formation and composition in models
The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. Th...
Uložené v:
| Vydané v: | Atmospheric Environment: X Ročník 240; s. 117784 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Elsevier Ltd
01.11.2020
|
| Predmet: | |
| ISSN: | 1352-2310, 2590-1621, 1873-2844, 2590-1621 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28–216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO2 concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO2-to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO2-to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important.
•SOA concentration predictions are highly dependent on selected vapour pressure method used.•Highly oxygenated organic molecules form an important component of indoor SOA.•Composition of indoor SOA is highly complex and depends on indoor conditions. |
|---|---|
| AbstractList | The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28–216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO2 concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO2-to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO2-to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important. The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28-216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO -to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO -to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important. The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28–216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO₂ concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO₂-to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO₂-to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important. The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28–216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO2 concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO2-to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO2-to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important. •SOA concentration predictions are highly dependent on selected vapour pressure method used.•Highly oxygenated organic molecules form an important component of indoor SOA.•Composition of indoor SOA is highly complex and depends on indoor conditions. The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28-216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO2 concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO2-to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO2-to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important.The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given particulate matter has well documented health effects, we need to understand the mechanism for SOA formation indoors and its resulting composition. This study evaluates some uncertainties that exist in quantifying gas-to-particle partitioning of SOA-forming compounds using an indoor detailed chemical model. In particular, we investigate the impacts of using different methods to estimate compound vapour pressures as well as simulating the formation of highly oxygenated organic molecules (HOM) via auto-oxidation on SOA formation indoors. Estimation of vapour pressures for 136 α-pinene oxidation species by six investigated methods led to standard deviations of 28-216%. Inclusion of HOM formation improved model performance across three of the six assessed vapour pressure estimation methods when comparing against experimental data, particularly when the NO2 concentration was relatively high. We also explored the predicted SOA composition using two product classification methods, the first assuming the molecule is dominated by one functionality according to its name, and the second accounting for the fractional weighting of each functional group within a molecule. The SOA composition was dominated by the HOM species when the NO2-to-α-terpineol ratio was high for both product classification methods, as these conditions promoted formation of the nitrate radical and hence formation of HOM monomers. As the NO2-to-α-terpineol ratio decreased, peroxides and acids dominated the simple classification, whereas for the fractional classification, carbonyl and alcohol groups became more important. |
| ArticleNumber | 117784 |
| Author | Carslaw, N. McFiggans, G. Waring, M.S. Kruza, M. Wells, J.R. |
| AuthorAffiliation | d National Institute for Occupational Safety and Health, Morgantown, WV, USA c Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA b School of Earth and Environmental Sciences, University of Manchester, Manchester, UK a Department of Environment and Geography, University of York, Wentworth Way, York, YO10 5NG, UK |
| AuthorAffiliation_xml | – name: c Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA – name: b School of Earth and Environmental Sciences, University of Manchester, Manchester, UK – name: d National Institute for Occupational Safety and Health, Morgantown, WV, USA – name: a Department of Environment and Geography, University of York, Wentworth Way, York, YO10 5NG, UK |
| Author_xml | – sequence: 1 givenname: M. surname: Kruza fullname: Kruza, M. organization: Department of Environment and Geography, University of York, Wentworth Way, York, YO10 5NG, UK – sequence: 2 givenname: G. surname: McFiggans fullname: McFiggans, G. organization: School of Earth and Environmental Sciences, University of Manchester, Manchester, UK – sequence: 3 givenname: M.S. surname: Waring fullname: Waring, M.S. organization: Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA – sequence: 4 givenname: J.R. surname: Wells fullname: Wells, J.R. organization: National Institute for Occupational Safety and Health, Morgantown, WV, USA – sequence: 5 givenname: N. surname: Carslaw fullname: Carslaw, N. email: nicola.carslaw@york.ac.uk organization: Department of Environment and Geography, University of York, Wentworth Way, York, YO10 5NG, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33594348$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkV1vFCEUhompsR_6FxouvdkVBpgBY4ym8aNJE2_qNWHhTMtmhjPC7Br_vazTNurNXgGH9305h-ecnCRMQMglZ2vOePtmu3bziAXSft2wphZ512n5jJxx3YlVo6U8qXuhmlUjODsl56VsGWOiM90LciqEMlJIfUbydQqImRbwmILLvyjmO5eipw4yFhzKW3qLP10OhbpE4zhl3EOgGaYM9fnZzRETxZ7O9xAz7TGPS8mlQD2OE5b45xwTHTHAUF6S570bCrx6WC_I98-fbq--rm6-fbm--niz8orJeRVaMMJIowGEdEG1ClrfKN1pYBrawA1zUnQKtBG6DszbHjgHv_FMbiR34oK8X3Kn3WaE4Guz2Q12ynGsc1p00f57k-K9vcO97bSWzKga8PohIOOPHZTZjrF4GAaXAHfFNkpx0x7-_bhUGtYyzQ2v0su_23rq55FJFbSLwFcAJUP_JOHMHuDbrX2Ebw_w7QK_Gt_9Z_Rx4VPHi8Nx-4fFXhnBPkK2xUdIHkLM4GcbMB6L-A2_Y9Jx |
| CitedBy_id | crossref_primary_10_5572_ajae_2021_100 crossref_primary_10_1016_j_scitotenv_2022_156948 crossref_primary_10_1111_ina_13021 crossref_primary_10_1007_s10874_025_09476_3 crossref_primary_10_3390_su13105504 crossref_primary_10_1016_j_scitotenv_2024_177036 crossref_primary_10_1039_D4EM00340C crossref_primary_10_3390_toxics13040276 crossref_primary_10_1080_05704928_2022_2088554 crossref_primary_10_3390_app11219917 crossref_primary_10_1111_ina_12845 crossref_primary_10_1021_acsearthspacechem_4c00285 crossref_primary_10_1007_s11869_021_01067_x crossref_primary_10_1039_D4EM00410H crossref_primary_10_3390_separations9040099 crossref_primary_10_1016_j_atmosenv_2021_118625 crossref_primary_10_1016_j_jobe_2023_107615 |
| Cites_doi | 10.1039/C4CP00857J 10.1016/j.atmosenv.2014.06.062 10.1039/b905288g 10.1016/j.atmosenv.2008.04.017 10.1111/j.1600-0668.2005.00414.x 10.5194/acp-20-649-2020 10.1016/j.fluid.2004.09.001 10.5194/acp-20-515-2020 10.1111/ina.12381 10.1021/acs.chemrev.8b00395 10.1038/ncomms13677 10.1039/C9EM00228F 10.1371/journal.pmed.0040020 10.1053/ai.1994.v94.a56007 10.1016/S1352-2310(96)00105-7 10.5194/acp-10-749-2010 10.1021/es301350x 10.1016/j.atmosenv.2006.09.038 10.1016/S0048-9697(98)00110-7 10.1111/ina.12092 10.5194/acp-4-1741-2004 10.1021/acs.estlett.8b00415 10.5194/acp-10-7169-2010 10.1021/es0481676 10.1021/ci00019a016 10.5194/acp-11-7767-2011 10.5194/acp-10-10255-2010 10.1021/ie950242l 10.1080/00986448708960487 10.1038/s41586-018-0871-y 10.5194/acp-11-9431-2011 10.5194/acp-3-181-2003 10.1080/10473289.2004.10470910 10.1016/j.atmosenv.2006.05.082 10.1016/j.atmosenv.2006.09.032 10.1029/2006JD007436 10.1016/1352-2310(94)90094-9 10.1038/nature13032 10.1080/02786826.2010.517580 10.5194/acp-18-17589-2018 10.1016/j.scitotenv.2015.05.123 10.1016/j.fluid.2008.04.020 10.5194/acp-6-403-2006 10.1016/S1352-2310(01)00435-6 10.5194/acp-11-13145-2011 10.1016/j.atmosenv.2004.02.040 10.1021/acs.jpca.6b02196 10.1289/ehp.9256 10.1021/acs.estlett.9b00425 10.5194/acp-3-161-2003 10.9734/CJAST/2018/44173 10.1038/srep35038 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
| DOI | 10.1016/j.atmosenv.2020.117784 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1873-2844 2590-1621 |
| ExternalDocumentID | PMC7884095 33594348 10_1016_j_atmosenv_2020_117784 S1352231020305161 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Intramural CDC HHS grantid: CC999999 |
| GroupedDBID | --- --K --M -DZ -~X ..I .DC .~1 0R~ 0SF 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABEFU ABFNM ABFYP ABLJU ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SEN SES SPC SPCBC SSE SSJ SSZ T5K TAE ~02 ~G- .HR 186 3O- 53G 9DU AAFWJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ R2- SEP SEW T9H VH1 WUQ ~HD AEXQZ BCNDV GROUPED_DOAJ NPM OK1 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c504t-d6e939498ee34ad565e6c25878e08e6d190a4375e893828416fe11ecbc04b41a3 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000569134700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1352-2310 2590-1621 |
| IngestDate | Tue Sep 30 15:55:53 EDT 2025 Sat Sep 27 22:39:41 EDT 2025 Fri Jul 11 12:23:38 EDT 2025 Mon Jul 21 05:35:42 EDT 2025 Sat Nov 29 07:05:39 EST 2025 Tue Nov 18 22:03:38 EST 2025 Fri Feb 23 02:49:51 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Vapour pressure Indoor air chemistry Secondary organic aerosol Volatile organic compound Highly oxygenated organic molecules |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c504t-d6e939498ee34ad565e6c25878e08e6d190a4375e893828416fe11ecbc04b41a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 M. Kruza: Methodology, Software, Formal analysis, Investigation, Writing - original draft. G. McFiggans: Conceptualization, Methodology, Writing - original draft. M.S. Waring: Methodology. J.R. Wells: Methodology, Writing - original draft. N. Carslaw: Conceptualization, Methodology, Software, Investigation, Writing - original draft, Funding acquisition. CRediT authorship contribution statement |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7884095 |
| PMID | 33594348 |
| PQID | 2490608191 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7884095 proquest_miscellaneous_2551967784 proquest_miscellaneous_2490608191 pubmed_primary_33594348 crossref_primary_10_1016_j_atmosenv_2020_117784 crossref_citationtrail_10_1016_j_atmosenv_2020_117784 elsevier_sciencedirect_doi_10_1016_j_atmosenv_2020_117784 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 2020-11-00 2020-Nov 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Atmospheric Environment: X |
| PublicationTitleAlternate | Atmos Environ X |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Joback, Reid (bib23) 1987; 57 Kourtchev, Giorio, Manninen, Wilson, Mahon, Aalto, Kajos, Venables, Ruuskanen, Levula, Loponen (bib27) 2016; 6 Kurtén, Hyttinen, D'Ambro, Thornton, Prisle (bib30) 2018; 18 Cummings, Waring (bib13) 2019; 29 Singer, Destaillats, Hodgson, Nazaroff (bib49) 2006; 16 Johnson, Utembe, Jenkin, Derwent, Hayman, Alfarra, Coe, McFiggans (bib24) 2006; 6 McFiggans, Mentel, Wildt, Pullinen, Kang, Kleist, Schmitt, Springer, Tillmann, Wu, Zhao (bib35) 2019; 565 Ketenoglu (bib26) 2018 Waring, Wells (bib55) 2015; 106 Sarwar, Corsi (bib47) 2007; 41 Pathak, Stanier, Donahue, Pandis (bib43) 2007; 112 Arata, Zarzana, Misztal, Liu, Brown, Nazaroff, Goldstein (bib2) 2018; 5 Nazaroff, Weschler (bib39) 2004; 38 Barley, McFiggans (bib4) 2010; 10 Hall, Johnston (bib20) 2011; 45 Kruza, Lewis, Morrison, Carslaw (bib28) 2017; 27 McFiggans, Topping, Barley (bib34) 2010; 10 Uhde, Salthammer (bib53) 2007; 41 Carslaw (bib9) 2007; 41 The master chemical mechanism (MCM) V.3.3.1. O'Meara, Booth, Barley, Topping, McFiggans (bib40) 2014; 16 Lin, Ezzati, Murray (bib32) 2007; 4 Pagonis, Algrim, Price, Day, Handschy, Stark, Miller, de Gouw, Jimenez, Ziemann (bib41) 2019; 6 Topping, Barley, McFiggans (bib50) 2011; 11 Nannoolal, Rarey, Ramjugernath (bib38) 2008; 269 Carslaw, Mota, Jenkin, Barley, McFiggans (bib10) 2012; 46 Reid, Prausnitz, Poling (bib45) 1987 Jenkin (bib60) 2004; 4 Compernolle, Ceulemans, Müller (bib12) 2011; 11 Jenkin, Saunders, Wagner, Pilling (bib22) 2003; 3 Stein, Brown (bib59) 1994; 34 The EPI-Suite v4.11 software. Farmer, Vance, Abbatt, Abeleira, Alves, Arata, Boedicker, Bourne, Cardoso-Saldaña, Corsi, DeCarlo (bib16) 2019; 21 Barley, Topping, Lowe, Utembe, McFiggans (bib5) 2011; 11 Kurtén, Tiusanen, Roldin, Rissanen, Luy, Boy, Ehn, Donahue (bib29) 2016; A 120 Wolkoff, Schneider, Kildesø, Degerth, Jaroszewski, Schunk (bib58) 1998; 215 Saunders, Jenkin, Derwent, Pilling (bib48) 2003; 3 Topping, Barley, McFiggans (bib51) 2013; 165 Chan, Chan, Surratt, Chhabra, Loza, Crounse, Seinfeld (bib11) 2010; 10 Garmash, Rissanen, Pullinen, Schmitt, Kausiala, Tillmann, Percival, Bannan, Priestley, Hallquist, Kleist (bib17) 2020; 20 Lee, Li, Ao (bib31) 2002; 36 Weschler (bib57) 2006; 114 Sarwar, Olson, Corsi, Weschler (bib46) 2004; 54 Bianchi, Kurtén, Riva, Mohr, Rissanen, Roldin, Berndt, Crounse, Wennberg, Mentel, Wildt (bib7) 2019; 119 Berndt, Richters, Jokinen, Hyttinen, Kurtén, Otkjær, Kjaergaard, Stratmann, Herrmann, Sipilä, Kulmala (bib8) 2016; 7 Accessed July 19, 2019. Myrdal, Yalkowsky (bib36) 1997; 36 Pankow (bib42) 1994; 28 Peräkylä, Riva, Heikkinen, Quéléver, Roldin, Ehn (bib44) 2020; 20 Waring (bib54) 2014; 24 Jenkin, Saunders, Pilling (bib21) 1997; 31 Jones, Ham (bib25) 2008; 42 Alberts (bib1) 1994; 94 Bateman, Nizkorodov, Laskin, Laskin (bib6) 2009; 11 Accessed August 19, 2019. Ehn, Thornton, Kleist, Sipilä, Junninen, Pullinen, Springer, Rubach, Tillmann, Lee, Lopez-Hilfiker (bib14) 2014; 506 Nannoolal, Rarey, Ramjugernath, Cordes (bib37) 2004; 226 Trantallidi, Dimitroulopoulou, Wolkoff, Kephalopoulos, Carrer (bib52) 2015; 536 Wells (bib56) 2005; 39 Waring (10.1016/j.atmosenv.2020.117784_bib54) 2014; 24 Barley (10.1016/j.atmosenv.2020.117784_bib4) 2010; 10 Berndt (10.1016/j.atmosenv.2020.117784_bib8) 2016; 7 10.1016/j.atmosenv.2020.117784_bib15 Lee (10.1016/j.atmosenv.2020.117784_bib31) 2002; 36 Nannoolal (10.1016/j.atmosenv.2020.117784_bib37) 2004; 226 Carslaw (10.1016/j.atmosenv.2020.117784_bib9) 2007; 41 Sarwar (10.1016/j.atmosenv.2020.117784_bib46) 2004; 54 Topping (10.1016/j.atmosenv.2020.117784_bib51) 2013; 165 Kourtchev (10.1016/j.atmosenv.2020.117784_bib27) 2016; 6 Singer (10.1016/j.atmosenv.2020.117784_bib49) 2006; 16 Jones (10.1016/j.atmosenv.2020.117784_bib25) 2008; 42 Myrdal (10.1016/j.atmosenv.2020.117784_bib36) 1997; 36 Topping (10.1016/j.atmosenv.2020.117784_bib50) 2011; 11 Ehn (10.1016/j.atmosenv.2020.117784_bib14) 2014; 506 Carslaw (10.1016/j.atmosenv.2020.117784_bib10) 2012; 46 Joback (10.1016/j.atmosenv.2020.117784_bib23) 1987; 57 Pathak (10.1016/j.atmosenv.2020.117784_bib43) 2007; 112 Stein (10.1016/j.atmosenv.2020.117784_bib59) 1994; 34 Cummings (10.1016/j.atmosenv.2020.117784_bib13) 2019; 29 Nannoolal (10.1016/j.atmosenv.2020.117784_bib38) 2008; 269 Peräkylä (10.1016/j.atmosenv.2020.117784_bib44) 2020; 20 Alberts (10.1016/j.atmosenv.2020.117784_bib1) 1994; 94 Trantallidi (10.1016/j.atmosenv.2020.117784_bib52) 2015; 536 Reid (10.1016/j.atmosenv.2020.117784_bib45) 1987 Johnson (10.1016/j.atmosenv.2020.117784_bib24) 2006; 6 McFiggans (10.1016/j.atmosenv.2020.117784_bib34) 2010; 10 Arata (10.1016/j.atmosenv.2020.117784_bib2) 2018; 5 Bateman (10.1016/j.atmosenv.2020.117784_bib6) 2009; 11 Jenkin (10.1016/j.atmosenv.2020.117784_bib60) 2004; 4 Kurtén (10.1016/j.atmosenv.2020.117784_bib29) 2016; A 120 Ketenoglu (10.1016/j.atmosenv.2020.117784_bib26) 2018 Saunders (10.1016/j.atmosenv.2020.117784_bib48) 2003; 3 Pagonis (10.1016/j.atmosenv.2020.117784_bib41) 2019; 6 Weschler (10.1016/j.atmosenv.2020.117784_bib57) 2006; 114 10.1016/j.atmosenv.2020.117784_bib33 Pankow (10.1016/j.atmosenv.2020.117784_bib42) 1994; 28 Kurtén (10.1016/j.atmosenv.2020.117784_bib30) 2018; 18 Jenkin (10.1016/j.atmosenv.2020.117784_bib22) 2003; 3 Waring (10.1016/j.atmosenv.2020.117784_bib55) 2015; 106 Kruza (10.1016/j.atmosenv.2020.117784_bib28) 2017; 27 Chan (10.1016/j.atmosenv.2020.117784_bib11) 2010; 10 Garmash (10.1016/j.atmosenv.2020.117784_bib17) 2020; 20 Wolkoff (10.1016/j.atmosenv.2020.117784_bib58) 1998; 215 Farmer (10.1016/j.atmosenv.2020.117784_bib16) 2019; 21 Compernolle (10.1016/j.atmosenv.2020.117784_bib12) 2011; 11 Lin (10.1016/j.atmosenv.2020.117784_bib32) 2007; 4 Nazaroff (10.1016/j.atmosenv.2020.117784_bib39) 2004; 38 Sarwar (10.1016/j.atmosenv.2020.117784_bib47) 2007; 41 Barley (10.1016/j.atmosenv.2020.117784_bib5) 2011; 11 O'Meara (10.1016/j.atmosenv.2020.117784_bib40) 2014; 16 Wells (10.1016/j.atmosenv.2020.117784_bib56) 2005; 39 Bianchi (10.1016/j.atmosenv.2020.117784_bib7) 2019; 119 Jenkin (10.1016/j.atmosenv.2020.117784_bib21) 1997; 31 Hall (10.1016/j.atmosenv.2020.117784_bib20) 2011; 45 McFiggans (10.1016/j.atmosenv.2020.117784_bib35) 2019; 565 Uhde (10.1016/j.atmosenv.2020.117784_bib53) 2007; 41 |
| References_xml | – volume: 11 start-page: 7767 year: 2011 end-page: 7779 ident: bib50 article-title: The sensitivity of Secondary Organic Aerosol component partitioning to the predictions of component properties–Part 2: determination of particle hygroscopicity and its dependence on" apparent" volatility publication-title: Atmos. Chem. Phys. – volume: 215 start-page: 135 year: 1998 end-page: 156 ident: bib58 article-title: Risk in cleaning: chemical and physical exposure publication-title: Sci. Total Environ. – volume: 119 start-page: 3472 year: 2019 end-page: 3509 ident: bib7 article-title: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol publication-title: Chem. Rev. – volume: 7 start-page: 1 year: 2016 end-page: 8 ident: bib8 article-title: Hydroxyl radical-induced formation of highly oxidized organic compounds publication-title: Nat. Commun. – volume: 11 start-page: 9431 year: 2011 end-page: 9450 ident: bib12 article-title: EVAPORATION: a new vapour pressure estimation method for organic molecules including non-additivity and intramolecular interactions publication-title: Atmos. Chem. Phys. – volume: 165 start-page: 273 year: 2013 end-page: 288 ident: bib51 article-title: Including phase separation in a unified model to calculate partitioning of vapours to mixed inorganic–organic aerosol particles – volume: 4 start-page: 173 year: 2007 end-page: 189 ident: bib32 article-title: Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis publication-title: PLoS Med. – volume: 41 start-page: 3111 year: 2007 end-page: 3128 ident: bib53 article-title: Impact of reaction products from building materials and furnishings on indoor air quality—a review of recent advances in indoor chemistry publication-title: Atmos. Environ. – volume: 6 start-page: 403 year: 2006 end-page: 418 ident: bib24 article-title: Simulating regional scale secondary organic aerosol formation during the TORCH 2003 campaign in the southern UK publication-title: Atmos. Chem. Phys. – volume: 18 start-page: 17589 year: 2018 end-page: 17600 ident: bib30 article-title: Estimating the saturation vapor pressures of isoprene oxidation products C 5 H 12 O 6 and C 5 H 10 O 6 using COSMO-RS publication-title: Atmos. Chem. Phys. – reference: . Accessed August 19, 2019. – year: 1987 ident: bib45 article-title: Properties of Gases and Liquids – volume: 536 start-page: 903 year: 2015 end-page: 913 ident: bib52 article-title: EPHECT III: health risk assessment of exposure to household consumer products publication-title: Sci. Total Environ. – volume: 24 start-page: 376 year: 2014 end-page: 389 ident: bib54 article-title: Secondary organic aerosol in residences: predicting its fraction of fine particle mass and determinants of formation strength publication-title: Indoor Air – volume: 6 start-page: 520 year: 2019 end-page: 524 ident: bib41 article-title: Autoxidation of limonene emitted in a university art museum publication-title: Environ. Sci. Technol. Lett. – volume: 114 start-page: 1489 year: 2006 end-page: 1496 ident: bib57 article-title: Ozone's impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry publication-title: Environ. Health Perspect. – volume: 10 start-page: 749 year: 2010 end-page: 767 ident: bib4 article-title: The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol publication-title: Atmos. Chem. Phys. – volume: 45 start-page: 37 year: 2011 end-page: 45 ident: bib20 article-title: Oligomer content of α-pinene secondary organic aerosol publication-title: Aerosol Sci. Technol. – volume: 506 year: 2014 ident: bib14 article-title: A large source of low-volatility secondary organic aerosol publication-title: Nature – volume: 54 start-page: 367 year: 2004 end-page: 377 ident: bib46 article-title: Indoor fine particles: the role of terpene emissions from consumer products publication-title: J. Air Waste Manag. Assoc. – volume: 42 start-page: 6689 year: 2008 end-page: 6698 ident: bib25 article-title: Ɑ-terpineol reaction with nitrate radical: rate constant and gas-phase products publication-title: Atmos. Environ. – volume: 10 year: 2010 ident: bib34 article-title: The sensitivity of secondary organic aerosol component partitioning to the predictions of component properties-Part 1: a systematic evaluation of some available estimation techniques publication-title: Atmos. Chem. Phys. – volume: 226 start-page: 45 year: 2004 end-page: 63 ident: bib37 article-title: Estimation of pure component properties: Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions publication-title: Fluid Phase Equil. – volume: 41 start-page: 959 year: 2007 end-page: 973 ident: bib47 article-title: The effects of ozone/limonene reactions on indoor secondary organic aerosols publication-title: Atmos. Environ. – volume: A 120 start-page: 2569 year: 2016 end-page: 2582 ident: bib29 article-title: α-Pinene autoxidation products may not have extremely low saturation vapor pressures despite high O: C ratios publication-title: J. Phys. Chem. – volume: 11 year: 2011 ident: bib5 article-title: The sensitivity of secondary organic aerosol (SOA) component partitioning to the predictions of component properties-Part 3: investigation of condensed compounds generated by a near-explicit model of VOC oxidation publication-title: Atmos. Chem. Phys. – volume: 11 start-page: 7931 year: 2009 end-page: 7942 ident: bib6 article-title: Time resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 1 year: 2016 end-page: 9 ident: bib27 article-title: Enhanced volatile organic compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols publication-title: Sci. Rep. – volume: 16 start-page: 19453 year: 2014 end-page: 19469 ident: bib40 article-title: An assessment of vapour pressure estimation methods publication-title: Phys. Chem. Chem. Phys. – volume: 57 start-page: 233 year: 1987 end-page: 243 ident: bib23 article-title: Estimation of pure-component properties from group-contributions publication-title: Chem. Eng. Commun. – volume: 5 start-page: 595 year: 2018 end-page: 599 ident: bib2 article-title: Measurement of NO publication-title: Environ. Sci. Technol. Lett. – volume: 31 start-page: 81 year: 1997 end-page: 104 ident: bib21 article-title: The tropospheric degradation of volatile organic compounds: a protocol for mechanism development publication-title: Atmos. Environ. – volume: 3 start-page: 161 year: 2003 end-page: 180 ident: bib48 article-title: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds publication-title: Atmos. Chem. Phys. – volume: 29 start-page: 616 year: 2019 end-page: 629 ident: bib13 article-title: Predicting the importance of oxidative aging on indoor organic aerosol concentrations using the two-dimensional volatility basis set (2D-VBS) publication-title: Indoor Air – volume: 94 start-page: 289 year: 1994 end-page: 295 ident: bib1 article-title: Indoor air pollution: NO, NO2, CO, and CO2 publication-title: J. Allergy Clin. Immun. – volume: 39 start-page: 6937 year: 2005 end-page: 6943 ident: bib56 article-title: Gas-phase chemistry of α-terpineol with ozone and OH radical: rate constants and products publication-title: Environ. Sci. Technol. – volume: 269 start-page: 117 year: 2008 end-page: 133 ident: bib38 article-title: Estimation of pure component properties: Part 3. Estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions publication-title: Fluid Phase Equil. – volume: 3 start-page: 181 year: 2003 end-page: 193 ident: bib22 article-title: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds publication-title: Atmos. Chem. Phys. – reference: The EPI-Suite v4.11 software. – volume: 38 start-page: 2841 year: 2004 end-page: 2865 ident: bib39 article-title: Cleaning products and air fresheners: exposure to primary and secondary air pollutants publication-title: Atmos. Environ. – volume: 106 start-page: 382 year: 2015 end-page: 391 ident: bib55 article-title: Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: magnitudes and impacts of oxidant sources publication-title: Atmos. Environ. – volume: 20 start-page: 649 year: 2020 end-page: 669 ident: bib44 article-title: Experimental investigation into the volatilities of highly oxygenated organic molecules (HOM) publication-title: Atmos. Chem. Phys. – reference: . Accessed July 19, 2019. – volume: 21 start-page: 1280 year: 2019 end-page: 1300 ident: bib16 article-title: Overview of HOMEChem: house observations of microbial and environmental chemistry publication-title: Environ. Sci. Process. Impacts – volume: 36 start-page: 225 year: 2002 end-page: 237 ident: bib31 article-title: Investigation of indoor air quality at residential homes in Hong Kong - case study publication-title: Atmos. Environ. – volume: 4 start-page: 1741 year: 2004 end-page: 1757 ident: bib60 article-title: Modelling the formation and composition of secondary organic aerosol from α-and β-pinene ozonolysis using MCM v3 publication-title: Atmos. Chem. Phys. – volume: 28 start-page: 189 year: 1994 end-page: 193 ident: bib42 article-title: An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol publication-title: Atmos. Environ. – volume: 36 start-page: 2494 year: 1997 end-page: 2499 ident: bib36 article-title: Estimating pure component vapor pressures of complex organic molecules publication-title: Ind. Eng. Chem. Res. – volume: 10 start-page: 7169 year: 2010 end-page: 7188 ident: bib11 article-title: Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation publication-title: Atmos. Chem. Phys. – start-page: 1 year: 2018 end-page: 11 ident: bib26 article-title: Determination of antoine constants from estimated vapor pressures of selected food contaminants publication-title: Curr. J. Appl. Sci. Technol. – volume: 41 start-page: 1164 year: 2007 end-page: 1179 ident: bib9 article-title: A new detailed chemical model for indoor air pollution publication-title: Atmos. Environ – volume: 46 start-page: 9290 year: 2012 end-page: 9298 ident: bib10 article-title: A significant role for nitrate and peroxide groups on indoor secondary organic aerosol publication-title: Environ. Sci. Technol. – reference: The master chemical mechanism (MCM) V.3.3.1. – volume: 34 start-page: 581 year: 1994 end-page: 587 ident: bib59 article-title: Estimation of normal boiling points from group contributions publication-title: J. Chem. Inf. Comput. Sci. – volume: 20 start-page: 515 year: 2020 end-page: 537 ident: bib17 article-title: Multi-generation OH oxidation as a source for highly oxygenated organic molecules from aromatics publication-title: Atmos. Chem. Phys. – volume: 16 start-page: 179 year: 2006 end-page: 191 ident: bib49 article-title: Cleaning products and air fresheners: emissions and resulting concentrations of glycol esthersand terpenoids publication-title: Indoor Air – volume: 112 year: 2007 ident: bib43 article-title: Ozonolysis of α-pinene at atmospherically relevant concentrations: temperature dependence of aerosol mass fractions (yields) publication-title: J. Geophys. Res. Atmos. – volume: 565 year: 2019 ident: bib35 article-title: Secondary organic aerosol reduced by mixture of atmospheric vapours publication-title: Nature – volume: 27 start-page: 1001 year: 2017 end-page: 1011 ident: bib28 article-title: Impact of surface ozone interactions on indoor air chemistry: a modeling study publication-title: Indoor Air – volume: 16 start-page: 19453 issue: 36 year: 2014 ident: 10.1016/j.atmosenv.2020.117784_bib40 article-title: An assessment of vapour pressure estimation methods publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00857J – volume: 106 start-page: 382 year: 2015 ident: 10.1016/j.atmosenv.2020.117784_bib55 article-title: Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: magnitudes and impacts of oxidant sources publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.06.062 – volume: 11 start-page: 7931 issue: 36 year: 2009 ident: 10.1016/j.atmosenv.2020.117784_bib6 article-title: Time resolved molecular characterization of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b905288g – volume: 42 start-page: 6689 issue: 27 year: 2008 ident: 10.1016/j.atmosenv.2020.117784_bib25 article-title: Ɑ-terpineol reaction with nitrate radical: rate constant and gas-phase products publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.04.017 – volume: 16 start-page: 179 issue: 3 year: 2006 ident: 10.1016/j.atmosenv.2020.117784_bib49 article-title: Cleaning products and air fresheners: emissions and resulting concentrations of glycol esthersand terpenoids publication-title: Indoor Air doi: 10.1111/j.1600-0668.2005.00414.x – volume: 20 start-page: 649 year: 2020 ident: 10.1016/j.atmosenv.2020.117784_bib44 article-title: Experimental investigation into the volatilities of highly oxygenated organic molecules (HOM) publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-649-2020 – volume: 226 start-page: 45 year: 2004 ident: 10.1016/j.atmosenv.2020.117784_bib37 article-title: Estimation of pure component properties: Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions publication-title: Fluid Phase Equil. doi: 10.1016/j.fluid.2004.09.001 – volume: 20 start-page: 515 year: 2020 ident: 10.1016/j.atmosenv.2020.117784_bib17 article-title: Multi-generation OH oxidation as a source for highly oxygenated organic molecules from aromatics publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-515-2020 – volume: 27 start-page: 1001 issue: 5 year: 2017 ident: 10.1016/j.atmosenv.2020.117784_bib28 article-title: Impact of surface ozone interactions on indoor air chemistry: a modeling study publication-title: Indoor Air doi: 10.1111/ina.12381 – volume: 119 start-page: 3472 issue: 6 year: 2019 ident: 10.1016/j.atmosenv.2020.117784_bib7 article-title: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00395 – volume: 7 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.atmosenv.2020.117784_bib8 article-title: Hydroxyl radical-induced formation of highly oxidized organic compounds publication-title: Nat. Commun. doi: 10.1038/ncomms13677 – volume: 21 start-page: 1280 issue: 8 year: 2019 ident: 10.1016/j.atmosenv.2020.117784_bib16 article-title: Overview of HOMEChem: house observations of microbial and environmental chemistry publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C9EM00228F – volume: 4 start-page: 173 issue: 1 year: 2007 ident: 10.1016/j.atmosenv.2020.117784_bib32 article-title: Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis publication-title: PLoS Med. doi: 10.1371/journal.pmed.0040020 – volume: 94 start-page: 289 issue: 2 year: 1994 ident: 10.1016/j.atmosenv.2020.117784_bib1 article-title: Indoor air pollution: NO, NO2, CO, and CO2 publication-title: J. Allergy Clin. Immun. doi: 10.1053/ai.1994.v94.a56007 – volume: 31 start-page: 81 issue: 1 year: 1997 ident: 10.1016/j.atmosenv.2020.117784_bib21 article-title: The tropospheric degradation of volatile organic compounds: a protocol for mechanism development publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(96)00105-7 – volume: 10 start-page: 749 issue: 2 year: 2010 ident: 10.1016/j.atmosenv.2020.117784_bib4 article-title: The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-749-2010 – volume: 46 start-page: 9290 issue: 17 year: 2012 ident: 10.1016/j.atmosenv.2020.117784_bib10 article-title: A significant role for nitrate and peroxide groups on indoor secondary organic aerosol publication-title: Environ. Sci. Technol. doi: 10.1021/es301350x – year: 1987 ident: 10.1016/j.atmosenv.2020.117784_bib45 – volume: 29 start-page: 616 issue: 4 year: 2019 ident: 10.1016/j.atmosenv.2020.117784_bib13 article-title: Predicting the importance of oxidative aging on indoor organic aerosol concentrations using the two-dimensional volatility basis set (2D-VBS) publication-title: Indoor Air – volume: 41 start-page: 1164 issue: 6 year: 2007 ident: 10.1016/j.atmosenv.2020.117784_bib9 article-title: A new detailed chemical model for indoor air pollution publication-title: Atmos. Environ doi: 10.1016/j.atmosenv.2006.09.038 – volume: 215 start-page: 135 issue: 1 year: 1998 ident: 10.1016/j.atmosenv.2020.117784_bib58 article-title: Risk in cleaning: chemical and physical exposure publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(98)00110-7 – volume: 24 start-page: 376 issue: 4 year: 2014 ident: 10.1016/j.atmosenv.2020.117784_bib54 article-title: Secondary organic aerosol in residences: predicting its fraction of fine particle mass and determinants of formation strength publication-title: Indoor Air doi: 10.1111/ina.12092 – volume: 4 start-page: 1741 year: 2004 ident: 10.1016/j.atmosenv.2020.117784_bib60 article-title: Modelling the formation and composition of secondary organic aerosol from α-and β-pinene ozonolysis using MCM v3 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-4-1741-2004 – volume: 5 start-page: 595 issue: 10 year: 2018 ident: 10.1016/j.atmosenv.2020.117784_bib2 article-title: Measurement of NO3 and N2O5 in a residential kitchen publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.8b00415 – volume: 10 start-page: 7169 issue: 15 year: 2010 ident: 10.1016/j.atmosenv.2020.117784_bib11 article-title: Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-7169-2010 – volume: 39 start-page: 6937 issue: 18 year: 2005 ident: 10.1016/j.atmosenv.2020.117784_bib56 article-title: Gas-phase chemistry of α-terpineol with ozone and OH radical: rate constants and products publication-title: Environ. Sci. Technol. doi: 10.1021/es0481676 – volume: 34 start-page: 581 issue: 3 year: 1994 ident: 10.1016/j.atmosenv.2020.117784_bib59 article-title: Estimation of normal boiling points from group contributions publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00019a016 – volume: 11 start-page: 7767 issue: 15 year: 2011 ident: 10.1016/j.atmosenv.2020.117784_bib50 article-title: The sensitivity of Secondary Organic Aerosol component partitioning to the predictions of component properties–Part 2: determination of particle hygroscopicity and its dependence on" apparent" volatility publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-7767-2011 – volume: 10 issue: 21 year: 2010 ident: 10.1016/j.atmosenv.2020.117784_bib34 article-title: The sensitivity of secondary organic aerosol component partitioning to the predictions of component properties-Part 1: a systematic evaluation of some available estimation techniques publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-10255-2010 – volume: 36 start-page: 2494 issue: 6 year: 1997 ident: 10.1016/j.atmosenv.2020.117784_bib36 article-title: Estimating pure component vapor pressures of complex organic molecules publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie950242l – volume: 165 start-page: 273 year: 2013 ident: 10.1016/j.atmosenv.2020.117784_bib51 article-title: Including phase separation in a unified model to calculate partitioning of vapours to mixed inorganic–organic aerosol particles – volume: 57 start-page: 233 year: 1987 ident: 10.1016/j.atmosenv.2020.117784_bib23 article-title: Estimation of pure-component properties from group-contributions publication-title: Chem. Eng. Commun. doi: 10.1080/00986448708960487 – volume: 565 issue: 7741 year: 2019 ident: 10.1016/j.atmosenv.2020.117784_bib35 article-title: Secondary organic aerosol reduced by mixture of atmospheric vapours publication-title: Nature doi: 10.1038/s41586-018-0871-y – volume: 11 start-page: 9431 issue: 18 year: 2011 ident: 10.1016/j.atmosenv.2020.117784_bib12 article-title: EVAPORATION: a new vapour pressure estimation method for organic molecules including non-additivity and intramolecular interactions publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-9431-2011 – volume: 3 start-page: 181 issue: 1 year: 2003 ident: 10.1016/j.atmosenv.2020.117784_bib22 article-title: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-3-181-2003 – volume: 54 start-page: 367 issue: 3 year: 2004 ident: 10.1016/j.atmosenv.2020.117784_bib46 article-title: Indoor fine particles: the role of terpene emissions from consumer products publication-title: J. Air Waste Manag. Assoc. doi: 10.1080/10473289.2004.10470910 – volume: 41 start-page: 3111 issue: 15 year: 2007 ident: 10.1016/j.atmosenv.2020.117784_bib53 article-title: Impact of reaction products from building materials and furnishings on indoor air quality—a review of recent advances in indoor chemistry publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2006.05.082 – volume: 41 start-page: 959 issue: 5 year: 2007 ident: 10.1016/j.atmosenv.2020.117784_bib47 article-title: The effects of ozone/limonene reactions on indoor secondary organic aerosols publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2006.09.032 – volume: 112 issue: D3 year: 2007 ident: 10.1016/j.atmosenv.2020.117784_bib43 article-title: Ozonolysis of α-pinene at atmospherically relevant concentrations: temperature dependence of aerosol mass fractions (yields) publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2006JD007436 – volume: 28 start-page: 189 issue: 2 year: 1994 ident: 10.1016/j.atmosenv.2020.117784_bib42 article-title: An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol publication-title: Atmos. Environ. doi: 10.1016/1352-2310(94)90094-9 – volume: 506 issue: 7489 year: 2014 ident: 10.1016/j.atmosenv.2020.117784_bib14 article-title: A large source of low-volatility secondary organic aerosol publication-title: Nature doi: 10.1038/nature13032 – volume: 45 start-page: 37 issue: 1 year: 2011 ident: 10.1016/j.atmosenv.2020.117784_bib20 article-title: Oligomer content of α-pinene secondary organic aerosol publication-title: Aerosol Sci. Technol. doi: 10.1080/02786826.2010.517580 – volume: 18 start-page: 17589 issue: 23 year: 2018 ident: 10.1016/j.atmosenv.2020.117784_bib30 article-title: Estimating the saturation vapor pressures of isoprene oxidation products C 5 H 12 O 6 and C 5 H 10 O 6 using COSMO-RS publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-17589-2018 – volume: 536 start-page: 903 year: 2015 ident: 10.1016/j.atmosenv.2020.117784_bib52 article-title: EPHECT III: health risk assessment of exposure to household consumer products publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.05.123 – volume: 269 start-page: 117 issue: 1–2 year: 2008 ident: 10.1016/j.atmosenv.2020.117784_bib38 article-title: Estimation of pure component properties: Part 3. Estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions publication-title: Fluid Phase Equil. doi: 10.1016/j.fluid.2008.04.020 – volume: 6 start-page: 403 issue: 2 year: 2006 ident: 10.1016/j.atmosenv.2020.117784_bib24 article-title: Simulating regional scale secondary organic aerosol formation during the TORCH 2003 campaign in the southern UK publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-6-403-2006 – ident: 10.1016/j.atmosenv.2020.117784_bib33 – volume: 36 start-page: 225 issue: 2 year: 2002 ident: 10.1016/j.atmosenv.2020.117784_bib31 article-title: Investigation of indoor air quality at residential homes in Hong Kong - case study publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(01)00435-6 – ident: 10.1016/j.atmosenv.2020.117784_bib15 – volume: 11 issue: 24 year: 2011 ident: 10.1016/j.atmosenv.2020.117784_bib5 article-title: The sensitivity of secondary organic aerosol (SOA) component partitioning to the predictions of component properties-Part 3: investigation of condensed compounds generated by a near-explicit model of VOC oxidation publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-13145-2011 – volume: 38 start-page: 2841 issue: 18 year: 2004 ident: 10.1016/j.atmosenv.2020.117784_bib39 article-title: Cleaning products and air fresheners: exposure to primary and secondary air pollutants publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2004.02.040 – volume: A 120 start-page: 2569 issue: 16 year: 2016 ident: 10.1016/j.atmosenv.2020.117784_bib29 article-title: α-Pinene autoxidation products may not have extremely low saturation vapor pressures despite high O: C ratios publication-title: J. Phys. Chem. doi: 10.1021/acs.jpca.6b02196 – volume: 114 start-page: 1489 issue: 10 year: 2006 ident: 10.1016/j.atmosenv.2020.117784_bib57 article-title: Ozone's impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry publication-title: Environ. Health Perspect. doi: 10.1289/ehp.9256 – volume: 6 start-page: 520 issue: 9 year: 2019 ident: 10.1016/j.atmosenv.2020.117784_bib41 article-title: Autoxidation of limonene emitted in a university art museum publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.9b00425 – volume: 3 start-page: 161 issue: 1 year: 2003 ident: 10.1016/j.atmosenv.2020.117784_bib48 article-title: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-3-161-2003 – start-page: 1 year: 2018 ident: 10.1016/j.atmosenv.2020.117784_bib26 article-title: Determination of antoine constants from estimated vapor pressures of selected food contaminants publication-title: Curr. J. Appl. Sci. Technol. doi: 10.9734/CJAST/2018/44173 – volume: 6 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.atmosenv.2020.117784_bib27 article-title: Enhanced volatile organic compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols publication-title: Sci. Rep. doi: 10.1038/srep35038 |
| SSID | ssj0003797 ssj0002244601 |
| Score | 2.445274 |
| Snippet | The formation of secondary organic aerosol (SOA) indoors is one of the many consequences of the rich and complex chemistry that occurs therein. Given... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 117784 |
| SubjectTerms | aerosols alcohols autoxidation environment Highly oxygenated organic molecules Indoor air chemistry model validation nitrates particulates Secondary organic aerosol vapor pressure vapors Vapour pressure Volatile organic compound |
| Title | Indoor secondary organic aerosols: Towards an improved representation of their formation and composition in models |
| URI | https://dx.doi.org/10.1016/j.atmosenv.2020.117784 https://www.ncbi.nlm.nih.gov/pubmed/33594348 https://www.proquest.com/docview/2490608191 https://www.proquest.com/docview/2551967784 https://pubmed.ncbi.nlm.nih.gov/PMC7884095 |
| Volume | 240 |
| WOSCitedRecordID | wos000569134700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002244601 issn: 1352-2310 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003797 issn: 1352-2310 databaseCode: AIEXJ dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6jQMcEAwG5aMyEuIyBZrESWxuFWrFYCscOq23yHHc0akkJWmrwV_Pc2wnKQw2DlyiKrXjJO8X-_ee3wdCL9OIBSIU0vE9kTjEpaHDPM6dlAlP9kMOOsWsKjYRjcd0OmWfO53vNhZms4iyjF5esuV_FTWcA2Gr0Nl_EHd9UTgBv0HocASxw_FGgj_K0jwvDkul6abKJ04XbhKHXMKKmC8qH7hJ5S2r8jOrOMki30gVxbJsYpEy4zwwL5r4RhsDZx29lK2kqqRTtinuYPU1L1WyAhiyFUZXZYRijLRMDx-L9Q--ZZE9EaP5-bnh9nXVrzNemMorJ42l9kwuFhqDxufRmC5AT3Vr04WebYH9OYpgtqdjoBiHy2ovmRLnykle2xsu4LXC88CDvFbXNj2aZc1u5Y8_xaPT4-N4MpxOXi2_OargmNqYN9VXdtCeFwUMJsS9wdFw-qFexv1IV-ax99gKL7966D8xm981l18dcFuMZnIP3TWqCB5oCN1HHZntozutBJX76GDYCBCamoWgfIAKjTJcowwblGGLsrfYYAzzDFuM4W2M4XyGK4zhGmPQOsUtjOF5hjXGHqLT0XDy7r1jync4IuiTlZOGkvmMMCqlT3gKmoMMhRfQiMo-lWEKVJQTPwokUGbQ-0EzmEnXlSIRfZIQl_sHaDfLM_kYYearzISMiZC6RLCAz1IPxJOEXkKThMkuCuyrj4XJba9KrCxi68R4EVuRxUpksRZZF72p-y11dpdrezAr2dhwVM09Y0DntX1fWCjEMImrnTmeyXxdxh5h_VCRc_cvbUC3YaG-ziMNn_qefT9QeR5pF0VbwKobqCTy2_9k8y9VMvmIKhNP8OQG4z5Ft5uv-BnaXRVr-RzdEpvVvCx6aCea0p75inqVbesnXx_uOg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indoor+secondary+organic+aerosols%3A+Towards+an+improved+representation+of+their+formation+and+composition+in+models&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Kruza%2C+M&rft.au=McFiggans%2C+G&rft.au=Waring%2C+M+S&rft.au=Wells%2C+J+R&rft.date=2020-11-01&rft.issn=1352-2310&rft.volume=240+p.117784-&rft_id=info:doi/10.1016%2Fj.atmosenv.2020.117784&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon |