The Most Probable Curve method - A robust approach to estimate kinetic models from low plate count data resulting in reduced uncertainty

A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model that makes a separation between the “true” microbial concentration according to the model, the “actual” concentration in the media considering...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of food microbiology Ročník 380; s. 109871
Hlavní autori: Garre, Alberto, Zwietering, Marcel H., van Boekel, Martinus A.J.S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 02.11.2022
Predmet:
ISSN:0168-1605, 1879-3460, 1879-3460
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model that makes a separation between the “true” microbial concentration according to the model, the “actual” concentration in the media considering chance, and the actual counts on the plate. It is based on the assumptions that stress resistance is homogeneous within a microbial population, and that there is no aggregation of microbial cells. Under these assumptions, the number of colonies in/on a plate follows a Poisson distribution with expected value depending on the proposed kinetic model, the number of dilutions and the plated volume. The novel method is compared against (non)linear regression based on a normal likelihood distribution (traditional method), Poisson regression and gamma-Poisson regression using data on the inactivation of Listeria monocytogenes. The conclusion is that the traditional method has limitations when the data includes plates with low (or zero) cell counts, which can be mitigated using more complex (discrete) likelihoods. However, Poisson regression uses an unrealistic likelihood function, making it unsuitable for survivor curves with several log-reductions. Gamma-Poisson regression uses a more realistic likelihood function, even though it is based mostly on empirical hypotheses. We conclude that the MPC method can be used reliably, especially when the data includes plates with low or zero counts. Furthermore, it generates a more realistic description of uncertainty, integrating the contribution of the plating error and reducing the uncertainty of the primary model parameters. Consequently, although it increases modelling complexity, the MPC method can be of great interest in predictive microbiology, especially in studies focused on variability analysis. •Models fitted using normal likelihood functions have limitations for low plate counts.•Poisson regression is unsuitable to describe survivor curves with multiple log-reductions.•Gamma-Poisson provides a suitable empirical extension of Poisson regression.•The Most Probable Curve (MPC) method estimates kinetic parameters from low plate counts reliably.•The MPC method can integrate the uncertainty resulting from serial dilutions and plating.
AbstractList A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model that makes a separation between the “true” microbial concentration according to the model, the “actual” concentration in the media considering chance, and the actual counts on the plate. It is based on the assumptions that stress resistance is homogeneous within a microbial population, and that there is no aggregation of microbial cells. Under these assumptions, the number of colonies in/on a plate follows a Poisson distribution with expected value depending on the proposed kinetic model, the number of dilutions and the plated volume. The novel method is compared against (non)linear regression based on a normal likelihood distribution (traditional method), Poisson regression and gamma-Poisson regression using data on the inactivation of Listeria monocytogenes. The conclusion is that the traditional method has limitations when the data includes plates with low (or zero) cell counts, which can be mitigated using more complex (discrete) likelihoods. However, Poisson regression uses an unrealistic likelihood function, making it unsuitable for survivor curves with several log-reductions. Gamma-Poisson regression uses a more realistic likelihood function, even though it is based mostly on empirical hypotheses. We conclude that the MPC method can be used reliably, especially when the data includes plates with low or zero counts. Furthermore, it generates a more realistic description of uncertainty, integrating the contribution of the plating error and reducing the uncertainty of the primary model parameters. Consequently, although it increases modelling complexity, the MPC method can be of great interest in predictive microbiology, especially in studies focused on variability analysis. •Models fitted using normal likelihood functions have limitations for low plate counts.•Poisson regression is unsuitable to describe survivor curves with multiple log-reductions.•Gamma-Poisson provides a suitable empirical extension of Poisson regression.•The Most Probable Curve (MPC) method estimates kinetic parameters from low plate counts reliably.•The MPC method can integrate the uncertainty resulting from serial dilutions and plating.
A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model that makes a separation between the “true” microbial concentration according to the model, the “actual” concentration in the media considering chance, and the actual counts on the plate. It is based on the assumptions that stress resistance is homogeneous within a microbial population, and that there is no aggregation of microbial cells. Under these assumptions, the number of colonies in/on a plate follows a Poisson distribution with expected value depending on the proposed kinetic model, the number of dilutions and the plated volume. The novel method is compared against (non)linear regression based on a normal likelihood distribution (traditional method), Poisson regression and gamma-Poisson regression using data on the inactivation of Listeria monocytogenes. The conclusion is that the traditional method has limitations when the data includes plates with low (or zero) cell counts, which can be mitigated using more complex (discrete) likelihoods. However, Poisson regression uses an unrealistic likelihood function, making it unsuitable for survivor curves with several log-reductions. Gamma-Poisson regression uses a more realistic likelihood function, even though it is based mostly on empirical hypotheses. We conclude that the MPC method can be used reliably, especially when the data includes plates with low or zero counts. Furthermore, it generates a more realistic description of uncertainty, integrating the contribution of the plating error and reducing the uncertainty of the primary model parameters. Consequently, although it increases modelling complexity, the MPC method can be of great interest in predictive microbiology, especially in studies focused on variability analysis.
A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model that makes a separation between the "true" microbial concentration according to the model, the "actual" concentration in the media considering chance, and the actual counts on the plate. It is based on the assumptions that stress resistance is homogeneous within a microbial population, and that there is no aggregation of microbial cells. Under these assumptions, the number of colonies in/on a plate follows a Poisson distribution with expected value depending on the proposed kinetic model, the number of dilutions and the plated volume. The novel method is compared against (non)linear regression based on a normal likelihood distribution (traditional method), Poisson regression and gamma-Poisson regression using data on the inactivation of Listeria monocytogenes. The conclusion is that the traditional method has limitations when the data includes plates with low (or zero) cell counts, which can be mitigated using more complex (discrete) likelihoods. However, Poisson regression uses an unrealistic likelihood function, making it unsuitable for survivor curves with several log-reductions. Gamma-Poisson regression uses a more realistic likelihood function, even though it is based mostly on empirical hypotheses. We conclude that the MPC method can be used reliably, especially when the data includes plates with low or zero counts. Furthermore, it generates a more realistic description of uncertainty, integrating the contribution of the plating error and reducing the uncertainty of the primary model parameters. Consequently, although it increases modelling complexity, the MPC method can be of great interest in predictive microbiology, especially in studies focused on variability analysis.A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model that makes a separation between the "true" microbial concentration according to the model, the "actual" concentration in the media considering chance, and the actual counts on the plate. It is based on the assumptions that stress resistance is homogeneous within a microbial population, and that there is no aggregation of microbial cells. Under these assumptions, the number of colonies in/on a plate follows a Poisson distribution with expected value depending on the proposed kinetic model, the number of dilutions and the plated volume. The novel method is compared against (non)linear regression based on a normal likelihood distribution (traditional method), Poisson regression and gamma-Poisson regression using data on the inactivation of Listeria monocytogenes. The conclusion is that the traditional method has limitations when the data includes plates with low (or zero) cell counts, which can be mitigated using more complex (discrete) likelihoods. However, Poisson regression uses an unrealistic likelihood function, making it unsuitable for survivor curves with several log-reductions. Gamma-Poisson regression uses a more realistic likelihood function, even though it is based mostly on empirical hypotheses. We conclude that the MPC method can be used reliably, especially when the data includes plates with low or zero counts. Furthermore, it generates a more realistic description of uncertainty, integrating the contribution of the plating error and reducing the uncertainty of the primary model parameters. Consequently, although it increases modelling complexity, the MPC method can be of great interest in predictive microbiology, especially in studies focused on variability analysis.
ArticleNumber 109871
Author van Boekel, Martinus A.J.S.
Zwietering, Marcel H.
Garre, Alberto
Author_xml – sequence: 1
  givenname: Alberto
  surname: Garre
  fullname: Garre, Alberto
  organization: Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
– sequence: 2
  givenname: Marcel H.
  surname: Zwietering
  fullname: Zwietering, Marcel H.
  organization: Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
– sequence: 3
  givenname: Martinus A.J.S.
  surname: van Boekel
  fullname: van Boekel, Martinus A.J.S.
  email: tiny.vanboekel@wur.nl
  organization: Food Quality & Design, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
BookMark eNqNkc9u1DAQhy3USmxL32G4ccliO4mTnFC1goJUBIf2bDn2hPXi2IvtFPUNeOw6Wg6I0578Z775STPfFbnwwSMhbxndMsrE-8PWHqYQzGx1DFtOOS__Q9-xV2TD-m6o6kbQC7IpbF8xQdvX5CqlA6W0rWu6IX8e9ghfQ8rwPYZRjQ5ht8QnhBnzPhio4BZKYSmAOh5jUHoPOQCmbGeVEX5aj9lqmINBl2CKYQYXfsPRrVUdFp_BqKwgYlpctv4HWF8eZtFoYPEaY1bW5-c35HJSLuHN3_OaPH76-LD7XN1_u_uyu72vdEubXGnRNEK1vKemFWKkqFE3KGqmR5yGDkcqhna98rbBSdQj5UI0HAetGQ69qq_Ju1NuGebXUuaQs00anVMew5Ik71hfC86YOAOlTd81LV3R4YQWCylFnOQxlgXFZ8moXEXJg_xHlFxFyZOo0vvhv15ts8o2-ByVdWcl7E4JRQE-WYwyaYtlt8ZG1FmaYM9IeQGRVLvP
CitedBy_id crossref_primary_10_1016_j_ijfoodmicro_2025_111446
crossref_primary_10_1093_jaoacint_qsae044
crossref_primary_10_1016_j_mimet_2023_106723
crossref_primary_10_1016_j_ijfoodmicro_2024_110618
crossref_primary_10_1111_1750_3841_70357
crossref_primary_10_1016_j_foodres_2025_117288
crossref_primary_10_3390_biology12081148
Cites_doi 10.18637/jss.v076.i01
10.1016/j.tifs.2020.02.027
10.1016/j.tifs.2021.10.033
10.1016/j.foodres.2020.109374
10.4315/0362-028X-73.1.140
10.1146/annurev-food-030117-012808
10.1016/S0168-1605(01)00624-9
10.1080/10408699891274246
10.1080/10408398.2015.1082126
10.1016/j.foodres.2018.02.040
10.1016/j.jfoodeng.2012.03.018
10.1016/j.foodres.2019.108714
10.1007/s11222-016-9696-4
10.3389/fmicb.2019.02239
10.1016/j.ijfoodmicro.2011.12.013
10.18637/jss.v080.i01
10.1016/j.cofs.2020.12.017
10.1016/S0168-1605(00)00225-7
10.3390/foods10030617
10.1016/j.foodres.2019.01.059
10.1080/10408398.2011.637645
10.1016/j.ijfoodmicro.2014.11.023
10.1016/j.ijfoodmicro.2021.109283
10.3389/fmicb.2021.674364
10.1016/j.cofs.2020.02.001
10.4315/0362-028X.JFP-13-462
10.1016/j.ces.2012.05.002
10.3389/fmicb.2018.02304
10.1016/j.foodcont.2004.10.020
10.1016/j.foodres.2020.109579
10.1016/j.ijfoodmicro.2014.10.021
10.1007/s11222-013-9416-2
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.ijfoodmicro.2022.109871
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Biology
EISSN 1879-3460
ExternalDocumentID 10_1016_j_ijfoodmicro_2022_109871
S0168160522003439
GroupedDBID ---
--K
--M
.1-
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABMAC
ABYKQ
ACDAQ
ACGFO
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFCTW
AFKWA
AFRAH
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CJTIS
CNWQP
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LUGTX
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPCBC
SSA
SSI
SSZ
T5K
UBH
Z5R
~G-
~KM
29J
3EH
53G
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AJUYK
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLV
HMG
HVGLF
HZ~
R2-
SEW
SIN
VH1
WUQ
XPP
Y6R
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c504t-c6446a5280d566b0ecec4e631cbef97eb0695bef9254ef63b026642e9cc1e98a3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000863215500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1605
1879-3460
IngestDate Sat Sep 27 22:14:08 EDT 2025
Sat Sep 27 21:39:04 EDT 2025
Sat Nov 29 07:25:38 EST 2025
Tue Nov 18 21:02:52 EST 2025
Fri Feb 23 02:38:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Robust statistics
Bayesian statistics
Predictive microbiology
Kinetic modelling
Pasteurization
Gamma-Poisson regression
Microbial inactivation
Poisson regression
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c504t-c6446a5280d566b0ecec4e631cbef97eb0695bef9254ef63b026642e9cc1e98a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.ijfoodmicro.2022.109871
PQID 2704874506
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2718362116
proquest_miscellaneous_2704874506
crossref_primary_10_1016_j_ijfoodmicro_2022_109871
crossref_citationtrail_10_1016_j_ijfoodmicro_2022_109871
elsevier_sciencedirect_doi_10_1016_j_ijfoodmicro_2022_109871
PublicationCentury 2000
PublicationDate 2022-11-02
PublicationDateYYYYMMDD 2022-11-02
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-02
  day: 02
PublicationDecade 2020
PublicationTitle International journal of food microbiology
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nauta (bb0140) 2000; 57
Peng, Tang, Barrett, Sablani, Anderson, Powers (bb0160) 2017; 57
Duarte, Stockmarr, Nauta (bb0060) 2015; 196
Vehtari, Gelman, Gabry (bb0215) 2017; 27
Possas, Valero, Pérez-Rodríguez (bb0170) 2022; 44
Gelman, Hwang, Vehtari (bb0090) 2014; 24
van Boekel (bb0200) 2021; 354
Bürkner (bb0035) 2017; 80
Jaloustre, Guillier, Morelli, Noël, Delignette-Muller (bb0110) 2012; 154
Vose (bb0225) 2008
Garcés-Vega, Marks (bb0065) 2014; 77
Garre, Zwietering, den Besten (bb0085) 2020; 137
Gorris (bb0095) 2005; 16
Peñalver-Soto, Garre, Esnoz, Fernández, Egea (bb0155) 2019; 126
Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, Riddell (bb0040) 2017; 76
Peleg, Cole (bb0150) 1998; 38
Perez-Rodriguez, Valero (bb0165) 2012
McElreath (bb0130) 2016
Koyama, Aspridou, Koseki, Koutsoumanis (bb0120) 2019; 10
Dayal (bb0050) 2015
Aspridou, Koutsoumanis (bb0020) 2020; 137
Garre, den Besten, Fernandez, Zwietering (bb0070) 2021; 118
R Core Team (bb0175) 2016
Aryani, den Besten, Hazeleger, Zwietering (bb0015) 2015; 193
Mertens, Van, Van Impe (bb0135) 2012; 112
Smelt, Brul (bb0180) 2014; 54
Vilas, Arias-Mendez, Garcia, Alonso, Balsa-Canto (bb0220) 2018; 58
Chik, Schmidt, Emelko (bb0045) 2018; 9
National Advisory Committee on microbiological criteria for foods (bb0145) 2010; 73
Telen, Logist, Van Derlinden, Tack, Van Impe (bb0190) 2012; 78
Brooks (bb0030) 2011
Bates, Watts (bb0025) 2007
Hiura, Abe, Koyama, Koseki (bb0105) 2021; 12
den Besten, Wells-Bennik, Zwietering (bb0055) 2018; 9
Garre, Egea, Esnoz, Palop, Fernandez (bb0075) 2019; 119
Garre, González-Tejedor, Peñalver-Soto, Fernández, Egea (bb0080) 2018; 107
Alexander (bb0005) 1965
van Boekel (bb0195) 2020; 99
van Boekel, ter Steeg, Dahoe (bb0205) 2020; 35
Guillén, Nadal, Álvarez, Mañas, Cebrián (bb0100) 2021; 10
Stan Development Team (bb0185) 2019
Allende, Bover-Cid, Fernández (bb0010) 2022; 100839
Jarvis (bb0115) 2008
Zwietering, Garre, Wiedmann, Buchanan (bb0230) 2021; 39
Mafart, Couvert, Gaillard, Leguerinel (bb0125) 2002; 72
van Derlinden, Balsa-Canto, Impe (bb0210) 2010
Dayal (10.1016/j.ijfoodmicro.2022.109871_bb0050) 2015
Aspridou (10.1016/j.ijfoodmicro.2022.109871_bb0020) 2020; 137
Garcés-Vega (10.1016/j.ijfoodmicro.2022.109871_bb0065) 2014; 77
Garre (10.1016/j.ijfoodmicro.2022.109871_bb0075) 2019; 119
Garre (10.1016/j.ijfoodmicro.2022.109871_bb0080) 2018; 107
National Advisory Committee on microbiological criteria for foods (10.1016/j.ijfoodmicro.2022.109871_bb0145) 2010; 73
van Derlinden (10.1016/j.ijfoodmicro.2022.109871_bb0210) 2010
Guillén (10.1016/j.ijfoodmicro.2022.109871_bb0100) 2021; 10
Peleg (10.1016/j.ijfoodmicro.2022.109871_bb0150) 1998; 38
Mafart (10.1016/j.ijfoodmicro.2022.109871_bb0125) 2002; 72
R Core Team (10.1016/j.ijfoodmicro.2022.109871_bb0175) 2016
Gelman (10.1016/j.ijfoodmicro.2022.109871_bb0090) 2014; 24
Vilas (10.1016/j.ijfoodmicro.2022.109871_bb0220) 2018; 58
Bates (10.1016/j.ijfoodmicro.2022.109871_bb0025) 2007
Mertens (10.1016/j.ijfoodmicro.2022.109871_bb0135) 2012; 112
Zwietering (10.1016/j.ijfoodmicro.2022.109871_bb0230) 2021; 39
Hiura (10.1016/j.ijfoodmicro.2022.109871_bb0105) 2021; 12
Brooks (10.1016/j.ijfoodmicro.2022.109871_bb0030) 2011
Jarvis (10.1016/j.ijfoodmicro.2022.109871_bb0115) 2008
Aryani (10.1016/j.ijfoodmicro.2022.109871_bb0015) 2015; 193
Garre (10.1016/j.ijfoodmicro.2022.109871_bb0070) 2021; 118
Chik (10.1016/j.ijfoodmicro.2022.109871_bb0045) 2018; 9
den Besten (10.1016/j.ijfoodmicro.2022.109871_bb0055) 2018; 9
Vose (10.1016/j.ijfoodmicro.2022.109871_bb0225) 2008
Perez-Rodriguez (10.1016/j.ijfoodmicro.2022.109871_bb0165) 2012
van Boekel (10.1016/j.ijfoodmicro.2022.109871_bb0205) 2020; 35
Telen (10.1016/j.ijfoodmicro.2022.109871_bb0190) 2012; 78
Vehtari (10.1016/j.ijfoodmicro.2022.109871_bb0215) 2017; 27
Allende (10.1016/j.ijfoodmicro.2022.109871_bb0010) 2022; 100839
Koyama (10.1016/j.ijfoodmicro.2022.109871_bb0120) 2019; 10
Garre (10.1016/j.ijfoodmicro.2022.109871_bb0085) 2020; 137
van Boekel (10.1016/j.ijfoodmicro.2022.109871_bb0195) 2020; 99
Alexander (10.1016/j.ijfoodmicro.2022.109871_bb0005) 1965
Jaloustre (10.1016/j.ijfoodmicro.2022.109871_bb0110) 2012; 154
McElreath (10.1016/j.ijfoodmicro.2022.109871_bb0130) 2016
Carpenter (10.1016/j.ijfoodmicro.2022.109871_bb0040) 2017; 76
Peñalver-Soto (10.1016/j.ijfoodmicro.2022.109871_bb0155) 2019; 126
Duarte (10.1016/j.ijfoodmicro.2022.109871_bb0060) 2015; 196
Peng (10.1016/j.ijfoodmicro.2022.109871_bb0160) 2017; 57
Bürkner (10.1016/j.ijfoodmicro.2022.109871_bb0035) 2017; 80
Smelt (10.1016/j.ijfoodmicro.2022.109871_bb0180) 2014; 54
Nauta (10.1016/j.ijfoodmicro.2022.109871_bb0140) 2000; 57
Stan Development Team (10.1016/j.ijfoodmicro.2022.109871_bb0185) 2019
Possas (10.1016/j.ijfoodmicro.2022.109871_bb0170) 2022; 44
Gorris (10.1016/j.ijfoodmicro.2022.109871_bb0095) 2005; 16
van Boekel (10.1016/j.ijfoodmicro.2022.109871_bb0200) 2021; 354
References_xml – volume: 72
  start-page: 107
  year: 2002
  end-page: 113
  ident: bb0125
  article-title: On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model
  publication-title: Int. J. Food Microbiol.
– volume: 9
  start-page: 383
  year: 2018
  end-page: 410
  ident: bb0055
  article-title: Natural diversity in heat resistance of bacteria and bacterial spores: impact on food safety and quality
  publication-title: Annu. Rev. Food Sci. Technol.
– year: 2011
  ident: bb0030
  article-title: Handbook of Markov Chain Monte Carlo
– volume: 196
  start-page: 40
  year: 2015
  end-page: 50
  ident: bb0060
  article-title: Fitting a distribution to microbial counts: making sense of zeroes
  publication-title: Int. J. Food Microbiol.
– volume: 16
  start-page: 801
  year: 2005
  end-page: 809
  ident: bb0095
  article-title: Food safety objective: an integral part of food chain management
  publication-title: Food Control
– year: 2008
  ident: bb0225
  article-title: Risk Analysis—A Quantitative Guide
– volume: 99
  start-page: 181
  year: 2020
  end-page: 193
  ident: bb0195
  article-title: On the pros and cons of bayesian kinetic modeling in food science
  publication-title: Trends Food Sci. Technol.
– volume: 39
  start-page: 83
  year: 2021
  end-page: 92
  ident: bb0230
  article-title: All food processes have a residual risk, some are small, some very small and some are extremely small: zero risk does not exist
  publication-title: Curr. Opin. Food Sci.
– volume: 119
  start-page: 76
  year: 2019
  end-page: 83
  ident: bb0075
  article-title: Tail or artefact? Illustration of the impact that uncertainty of the serial dilution and cell enumeration methods has on microbial inactivation
  publication-title: Food Res. Int.
– volume: 73
  start-page: 140
  year: 2010
  end-page: 202
  ident: bb0145
  article-title: Parameters for determining inoculated pack/challenge study protocols
  publication-title: J. Food Prot.
– start-page: 67
  year: 2010
  end-page: 98
  ident: bb0210
  article-title: (Optimal) experiment design for microbial inactivation
  publication-title: Progress on Quantitative Approaches of Thermal Food Processing
– volume: 10
  start-page: 617
  year: 2021
  ident: bb0100
  article-title: Impact of the resistance responses to stress conditions encountered in food and food processing environments on the virulence and growth fitness of non-typhoidal salmonellae
  publication-title: Foods
– volume: 57
  start-page: 2970
  year: 2017
  end-page: 2995
  ident: bb0160
  article-title: Thermal pasteurization of ready-to-eat foods and vegetables: critical factors for process design and effects on quality
  publication-title: Crit. Rev. Food Sci. Nutr.
– year: 2016
  ident: bb0175
  article-title: R: A Language and Environment for Statistical Computing
– volume: 54
  start-page: 1371
  year: 2014
  end-page: 1385
  ident: bb0180
  article-title: Thermal inactivation of microorganisms
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 100839
  year: 2022
  ident: bb0010
  article-title: Challenges and opportunities related to the use of innovative modelling approaches and tools for microbiological food safety management
  publication-title: Curr. Opin. Food Sci.
– volume: 9
  start-page: 2304
  year: 2018
  ident: bb0045
  article-title: Learning something from nothing: the critical importance of rethinking microbial non-detects
  publication-title: Front. Microbiol.
– volume: 112
  start-page: 119
  year: 2012
  end-page: 133
  ident: bb0135
  article-title: Comparing experimental design schemes in predictive food microbiology: optimal parameter estimation of secondary models
  publication-title: J. Food Eng.
– year: 2012
  ident: bb0165
  article-title: Predictive Microbiology in Foods
– volume: 354
  year: 2021
  ident: bb0200
  article-title: To pool or not to pool: that is the question in microbial kinetics
  publication-title: Int. J. Food Microbiol.
– volume: 76
  start-page: 1
  year: 2017
  end-page: 32
  ident: bb0040
  article-title: Stan: a probabilistic programming language
  publication-title: J. Stat. Softw.
– volume: 24
  start-page: 997
  year: 2014
  end-page: 1016
  ident: bb0090
  article-title: Understanding predictive information criteria for Bayesian models
  publication-title: Stat. Comput.
– year: 2019
  ident: bb0185
  article-title: RStan: The R Interface to Stan
– volume: 193
  start-page: 130
  year: 2015
  end-page: 138
  ident: bb0015
  article-title: Quantifying variability on thermal resistance of listeria monocytogenes
  publication-title: Int. J. Food Microbiol.
– volume: 80
  start-page: 1
  year: 2017
  end-page: 28
  ident: bb0035
  article-title: Brms: an R package for Bayesian multilevel models using Stan
  publication-title: J. Stat. Softw.
– volume: 57
  start-page: 9
  year: 2000
  end-page: 18
  ident: bb0140
  article-title: Separation of uncertainty and variability in quantitative microbial risk assessment models
  publication-title: Int. J. Food Microbiol.
– volume: 107
  start-page: 267
  year: 2018
  end-page: 274
  ident: bb0080
  article-title: Optimal characterization of thermal microbial inactivation simulating non-isothermal processes
  publication-title: Food Res. Int.
– volume: 77
  start-page: 1372
  year: 2014
  end-page: 1379
  ident: bb0065
  article-title: Use of simulation tools to illustrate the effect of data management practices for low and negative plate counts on the estimated parameters of microbial reduction models
  publication-title: J. Food Prot.
– year: 2007
  ident: bb0025
  article-title: Nonlinear Regression Analysis and Its Applications
– volume: 154
  start-page: 44
  year: 2012
  end-page: 51
  ident: bb0110
  article-title: Modeling of Clostridium perfringens vegetative cell inactivation in beef-in-sauce products: a meta-analysis using mixed linear models
  publication-title: Int. J. Food Microbiol.
– volume: 137
  year: 2020
  ident: bb0085
  article-title: Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of listeria monocytogenes as proof of concept
  publication-title: Food Res. Int.
– volume: 10
  start-page: 2239
  year: 2019
  ident: bb0120
  article-title: Describing uncertainty in salmonella thermal inactivation using Bayesian statistical modeling
  publication-title: Front. Microbiol.
– volume: 27
  start-page: 1413
  year: 2017
  end-page: 1432
  ident: bb0215
  article-title: Practical bayesian model evaluation using leave-one-out cross-validation and WAIC
  publication-title: Stat. Comput.
– volume: 38
  start-page: 353
  year: 1998
  end-page: 380
  ident: bb0150
  article-title: Reinterpretation of microbial survival curves
  publication-title: Crit. Rev. Food Sci. Nutr.
– year: 2016
  ident: bb0130
  article-title: Statistical Rethinking: A Bayesian Course With Examples in R and Stan
– volume: 58
  start-page: 436
  year: 2018
  end-page: 449
  ident: bb0220
  article-title: Toward predictive food process models: a protocol for parameter estimation
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 137
  year: 2020
  ident: bb0020
  article-title: Variability in microbial inactivation: from deterministic Bigelow model to probability distribution of single cell inactivation times
  publication-title: Food Res. Int.
– volume: 118
  start-page: 799
  year: 2021
  end-page: 807
  ident: bb0070
  article-title: Not just variability and uncertainty; the relevance of chance for the survival of microbial cells to stress
  publication-title: Trends Food Sci. Technol.
– volume: 78
  start-page: 82
  year: 2012
  end-page: 97
  ident: bb0190
  article-title: Optimal experiment design for dynamic bioprocesses: a multi-objective approach
  publication-title: Chem. Eng. Sci.
– start-page: 59
  year: 2015
  end-page: 63
  ident: bb0050
  article-title: Anscombe’s quartet: graphs can reveal
  publication-title: An Introduction to R for Quantitative Economics: Graphing, Simulating and Computing
– year: 2008
  ident: bb0115
  article-title: Statistical Aspects of the Microbiological Examination of Foods
– volume: 126
  year: 2019
  ident: bb0155
  article-title: Guidelines for the design of (optimal) isothermal inactivation experiments
  publication-title: Food Res. Int.
– volume: 35
  start-page: 65
  year: 2020
  end-page: 71
  ident: bb0205
  article-title: Co-optimization of safety, quality and legislation: opening Pandora’s box?
  publication-title: Curr. Opin. Food Sci.
– start-page: 1467
  year: 1965
  end-page: 1472
  ident: bb0005
  article-title: Most-probable-number method for microbial populations
  publication-title: Methods of Soil Analysis
– volume: 12
  start-page: 1492
  year: 2021
  ident: bb0105
  article-title: Bayesian generalized linear model for simulating bacterial inactivation/growth considering variability and uncertainty
  publication-title: Front. Microbiol.
– volume: 44
  year: 2022
  ident: bb0170
  article-title: New software solutions for microbiological food safety assessment and management
  publication-title: Curr. Opin. Food Sci.
– volume: 76
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0040
  article-title: Stan: a probabilistic programming language
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v076.i01
– volume: 99
  start-page: 181
  year: 2020
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0195
  article-title: On the pros and cons of bayesian kinetic modeling in food science
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2020.02.027
– volume: 118
  start-page: 799
  year: 2021
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0070
  article-title: Not just variability and uncertainty; the relevance of chance for the survival of microbial cells to stress
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2021.10.033
– volume: 44
  year: 2022
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0170
  article-title: New software solutions for microbiological food safety assessment and management
  publication-title: Curr. Opin. Food Sci.
– start-page: 1467
  year: 1965
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0005
  article-title: Most-probable-number method for microbial populations
– volume: 137
  year: 2020
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0085
  article-title: Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of listeria monocytogenes as proof of concept
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2020.109374
– year: 2016
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0175
– volume: 73
  start-page: 140
  issue: 1
  year: 2010
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0145
  article-title: Parameters for determining inoculated pack/challenge study protocols
  publication-title: J. Food Prot.
  doi: 10.4315/0362-028X-73.1.140
– volume: 58
  start-page: 436
  issue: 3
  year: 2018
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0220
  article-title: Toward predictive food process models: a protocol for parameter estimation
  publication-title: Crit. Rev. Food Sci. Nutr.
– year: 2008
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0115
– volume: 9
  start-page: 383
  issue: 1
  year: 2018
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0055
  article-title: Natural diversity in heat resistance of bacteria and bacterial spores: impact on food safety and quality
  publication-title: Annu. Rev. Food Sci. Technol.
  doi: 10.1146/annurev-food-030117-012808
– volume: 72
  start-page: 107
  issue: 1–2
  year: 2002
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0125
  article-title: On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/S0168-1605(01)00624-9
– volume: 38
  start-page: 353
  issue: 5
  year: 1998
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0150
  article-title: Reinterpretation of microbial survival curves
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408699891274246
– volume: 57
  start-page: 2970
  issue: 14
  year: 2017
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0160
  article-title: Thermal pasteurization of ready-to-eat foods and vegetables: critical factors for process design and effects on quality
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2015.1082126
– volume: 107
  start-page: 267
  year: 2018
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0080
  article-title: Optimal characterization of thermal microbial inactivation simulating non-isothermal processes
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2018.02.040
– volume: 112
  start-page: 119
  issue: 3
  year: 2012
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0135
  article-title: Comparing experimental design schemes in predictive food microbiology: optimal parameter estimation of secondary models
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2012.03.018
– volume: 126
  year: 2019
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0155
  article-title: Guidelines for the design of (optimal) isothermal inactivation experiments
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2019.108714
– year: 2019
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0185
– volume: 27
  start-page: 1413
  issue: 5
  year: 2017
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0215
  article-title: Practical bayesian model evaluation using leave-one-out cross-validation and WAIC
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-016-9696-4
– volume: 10
  start-page: 2239
  year: 2019
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0120
  article-title: Describing uncertainty in salmonella thermal inactivation using Bayesian statistical modeling
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.02239
– volume: 154
  start-page: 44
  issue: 1
  year: 2012
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0110
  article-title: Modeling of Clostridium perfringens vegetative cell inactivation in beef-in-sauce products: a meta-analysis using mixed linear models
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2011.12.013
– volume: 80
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0035
  article-title: Brms: an R package for Bayesian multilevel models using Stan
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v080.i01
– volume: 39
  start-page: 83
  year: 2021
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0230
  article-title: All food processes have a residual risk, some are small, some very small and some are extremely small: zero risk does not exist
  publication-title: Curr. Opin. Food Sci.
  doi: 10.1016/j.cofs.2020.12.017
– volume: 100839
  year: 2022
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0010
  article-title: Challenges and opportunities related to the use of innovative modelling approaches and tools for microbiological food safety management
  publication-title: Curr. Opin. Food Sci.
– volume: 57
  start-page: 9
  issue: 1
  year: 2000
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0140
  article-title: Separation of uncertainty and variability in quantitative microbial risk assessment models
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/S0168-1605(00)00225-7
– volume: 10
  start-page: 617
  issue: 3
  year: 2021
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0100
  article-title: Impact of the resistance responses to stress conditions encountered in food and food processing environments on the virulence and growth fitness of non-typhoidal salmonellae
  publication-title: Foods
  doi: 10.3390/foods10030617
– volume: 119
  start-page: 76
  year: 2019
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0075
  article-title: Tail or artefact? Illustration of the impact that uncertainty of the serial dilution and cell enumeration methods has on microbial inactivation
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2019.01.059
– start-page: 59
  year: 2015
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0050
  article-title: Anscombe’s quartet: graphs can reveal
– year: 2008
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0225
– volume: 54
  start-page: 1371
  issue: 10
  year: 2014
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0180
  article-title: Thermal inactivation of microorganisms
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2011.637645
– volume: 196
  start-page: 40
  year: 2015
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0060
  article-title: Fitting a distribution to microbial counts: making sense of zeroes
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2014.11.023
– volume: 354
  year: 2021
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0200
  article-title: To pool or not to pool: that is the question in microbial kinetics
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2021.109283
– year: 2016
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0130
– year: 2007
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0025
– year: 2011
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0030
– volume: 12
  start-page: 1492
  year: 2021
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0105
  article-title: Bayesian generalized linear model for simulating bacterial inactivation/growth considering variability and uncertainty
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.674364
– volume: 35
  start-page: 65
  year: 2020
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0205
  article-title: Co-optimization of safety, quality and legislation: opening Pandora’s box?
  publication-title: Curr. Opin. Food Sci.
  doi: 10.1016/j.cofs.2020.02.001
– year: 2012
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0165
– volume: 77
  start-page: 1372
  issue: 8
  year: 2014
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0065
  article-title: Use of simulation tools to illustrate the effect of data management practices for low and negative plate counts on the estimated parameters of microbial reduction models
  publication-title: J. Food Prot.
  doi: 10.4315/0362-028X.JFP-13-462
– start-page: 67
  year: 2010
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0210
  article-title: (Optimal) experiment design for microbial inactivation
– volume: 78
  start-page: 82
  year: 2012
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0190
  article-title: Optimal experiment design for dynamic bioprocesses: a multi-objective approach
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.05.002
– volume: 9
  start-page: 2304
  year: 2018
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0045
  article-title: Learning something from nothing: the critical importance of rethinking microbial non-detects
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02304
– volume: 16
  start-page: 801
  issue: 9
  year: 2005
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0095
  article-title: Food safety objective: an integral part of food chain management
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2004.10.020
– volume: 137
  year: 2020
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0020
  article-title: Variability in microbial inactivation: from deterministic Bigelow model to probability distribution of single cell inactivation times
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2020.109579
– volume: 193
  start-page: 130
  year: 2015
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0015
  article-title: Quantifying variability on thermal resistance of listeria monocytogenes
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2014.10.021
– volume: 24
  start-page: 997
  issue: 6
  year: 2014
  ident: 10.1016/j.ijfoodmicro.2022.109871_bb0090
  article-title: Understanding predictive information criteria for Bayesian models
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-013-9416-2
SSID ssj0005330
Score 2.4445865
Snippet A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109871
SubjectTerms Bayesian statistics
food microbiology
Gamma-Poisson regression
Kinetic modelling
kinetics
liquids
Listeria monocytogenes
Microbial inactivation
Pasteurization
plate count
Poisson distribution
Poisson regression
Predictive microbiology
regression analysis
Robust statistics
stress tolerance
uncertainty
Title The Most Probable Curve method - A robust approach to estimate kinetic models from low plate count data resulting in reduced uncertainty
URI https://dx.doi.org/10.1016/j.ijfoodmicro.2022.109871
https://www.proquest.com/docview/2704874506
https://www.proquest.com/docview/2718362116
Volume 380
WOSCitedRecordID wos000863215500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3460
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005330
  issn: 0168-1605
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3batwwEBW59PZS2rSl6SVMoG_GxitfZENftiElDSQUksK-GV9k2M3WDmt7k_5Bf6j_1xnLsjcJKVtKX4yxVyvbczSakc7MMPYhEIG0JXonwua56SYZjrkk4WYc5q4jxEimUhWbEKenwWQSft3Y-KVjYZZzURTB9XV4-V9FjddQ2BQ6-xfi7v8UL-A5Ch2PKHY8ri34k7KqKQYgaQOjDprFUna1og0TVQHeaKohnzjZn5RsA41XaVyg2UlJXNsSOZUKP5mXV1RuuiZme1PUBtFKDfTTiYyoQ2KyhpgEOEsqjkF9Y7v45rrjSraKnJIqf58O2aB6PhBRiFUEDlG_y36B-2pKBJ6uEssJRWrOjSNL36ZorE-lvFDcA5UjoamMsXVsnVmrKxzoHNOq7eAP3w29USuhPrq_vq22xKXS3oEITcdVBQq0endUpag7U4VatZhZ0xm9avumFvVOCbYCVRbmVibuM-qTuuTE6ENLbpNtc-GFqEy3x18OJ8cDt8hpi9z0z_iI7Q_Ewns6vM8wumUitHbP-TP2tHNYYKyA9pxtyGKHPVQlTH_ssMc6sr16wX4i9ICgBxp60EIPFPTAhDEo6IGGHtQlaOhBBz1Q0AOCHiD0oIUetNADgh700INpAR30YAV6L9m3z4fnB0dmV-nDTD3brc0UrXI_9nhgZ-heJDZqiNSVvjNKE5mHQia2H3p0yj1X5r6T2GhXulyGaTqSYRA7r9hWURbyNQPHc2M74znqoNyN0b_x4ozLJBUiS_KEu7ss0J85Srs0-FSNZR5pvuMsWpFQRBKKlIR2Ge-bXqpcMOs0-qhlGXVGrTJWIwTiOs33tfwjVPy0mxcXsmyqiAucfIXr2f6ffoMzts9HI__Nvz3GW_ZkGJnv2Fa9aOR79iBd1tNqscc2xSTY6wbBbxR87QA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Most+Probable+Curve+method+-+A+robust+approach+to+estimate+kinetic+models+from+low+plate+count+data+resulting+in+reduced+uncertainty&rft.jtitle=International+journal+of+food+microbiology&rft.au=Garre%2C+Alberto&rft.au=Zwietering%2C+Marcel+H.&rft.au=van+Boekel%2C+Martinus+A.J.S.&rft.date=2022-11-02&rft.pub=Elsevier+B.V&rft.issn=0168-1605&rft.eissn=1879-3460&rft.volume=380&rft_id=info:doi/10.1016%2Fj.ijfoodmicro.2022.109871&rft.externalDocID=S0168160522003439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1605&client=summon