The Most Probable Curve method - A robust approach to estimate kinetic models from low plate count data resulting in reduced uncertainty
A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model that makes a separation between the “true” microbial concentration according to the model, the “actual” concentration in the media considering...
Uloženo v:
| Vydáno v: | International journal of food microbiology Ročník 380; s. 109871 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
02.11.2022
|
| Témata: | |
| ISSN: | 0168-1605, 1879-3460, 1879-3460 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model that makes a separation between the “true” microbial concentration according to the model, the “actual” concentration in the media considering chance, and the actual counts on the plate. It is based on the assumptions that stress resistance is homogeneous within a microbial population, and that there is no aggregation of microbial cells. Under these assumptions, the number of colonies in/on a plate follows a Poisson distribution with expected value depending on the proposed kinetic model, the number of dilutions and the plated volume.
The novel method is compared against (non)linear regression based on a normal likelihood distribution (traditional method), Poisson regression and gamma-Poisson regression using data on the inactivation of Listeria monocytogenes. The conclusion is that the traditional method has limitations when the data includes plates with low (or zero) cell counts, which can be mitigated using more complex (discrete) likelihoods. However, Poisson regression uses an unrealistic likelihood function, making it unsuitable for survivor curves with several log-reductions. Gamma-Poisson regression uses a more realistic likelihood function, even though it is based mostly on empirical hypotheses. We conclude that the MPC method can be used reliably, especially when the data includes plates with low or zero counts. Furthermore, it generates a more realistic description of uncertainty, integrating the contribution of the plating error and reducing the uncertainty of the primary model parameters. Consequently, although it increases modelling complexity, the MPC method can be of great interest in predictive microbiology, especially in studies focused on variability analysis.
•Models fitted using normal likelihood functions have limitations for low plate counts.•Poisson regression is unsuitable to describe survivor curves with multiple log-reductions.•Gamma-Poisson provides a suitable empirical extension of Poisson regression.•The Most Probable Curve (MPC) method estimates kinetic parameters from low plate counts reliably.•The MPC method can integrate the uncertainty resulting from serial dilutions and plating. |
|---|---|
| AbstractList | A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model that makes a separation between the “true” microbial concentration according to the model, the “actual” concentration in the media considering chance, and the actual counts on the plate. It is based on the assumptions that stress resistance is homogeneous within a microbial population, and that there is no aggregation of microbial cells. Under these assumptions, the number of colonies in/on a plate follows a Poisson distribution with expected value depending on the proposed kinetic model, the number of dilutions and the plated volume.
The novel method is compared against (non)linear regression based on a normal likelihood distribution (traditional method), Poisson regression and gamma-Poisson regression using data on the inactivation of Listeria monocytogenes. The conclusion is that the traditional method has limitations when the data includes plates with low (or zero) cell counts, which can be mitigated using more complex (discrete) likelihoods. However, Poisson regression uses an unrealistic likelihood function, making it unsuitable for survivor curves with several log-reductions. Gamma-Poisson regression uses a more realistic likelihood function, even though it is based mostly on empirical hypotheses. We conclude that the MPC method can be used reliably, especially when the data includes plates with low or zero counts. Furthermore, it generates a more realistic description of uncertainty, integrating the contribution of the plating error and reducing the uncertainty of the primary model parameters. Consequently, although it increases modelling complexity, the MPC method can be of great interest in predictive microbiology, especially in studies focused on variability analysis.
•Models fitted using normal likelihood functions have limitations for low plate counts.•Poisson regression is unsuitable to describe survivor curves with multiple log-reductions.•Gamma-Poisson provides a suitable empirical extension of Poisson regression.•The Most Probable Curve (MPC) method estimates kinetic parameters from low plate counts reliably.•The MPC method can integrate the uncertainty resulting from serial dilutions and plating. A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model that makes a separation between the “true” microbial concentration according to the model, the “actual” concentration in the media considering chance, and the actual counts on the plate. It is based on the assumptions that stress resistance is homogeneous within a microbial population, and that there is no aggregation of microbial cells. Under these assumptions, the number of colonies in/on a plate follows a Poisson distribution with expected value depending on the proposed kinetic model, the number of dilutions and the plated volume. The novel method is compared against (non)linear regression based on a normal likelihood distribution (traditional method), Poisson regression and gamma-Poisson regression using data on the inactivation of Listeria monocytogenes. The conclusion is that the traditional method has limitations when the data includes plates with low (or zero) cell counts, which can be mitigated using more complex (discrete) likelihoods. However, Poisson regression uses an unrealistic likelihood function, making it unsuitable for survivor curves with several log-reductions. Gamma-Poisson regression uses a more realistic likelihood function, even though it is based mostly on empirical hypotheses. We conclude that the MPC method can be used reliably, especially when the data includes plates with low or zero counts. Furthermore, it generates a more realistic description of uncertainty, integrating the contribution of the plating error and reducing the uncertainty of the primary model parameters. Consequently, although it increases modelling complexity, the MPC method can be of great interest in predictive microbiology, especially in studies focused on variability analysis. A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model that makes a separation between the "true" microbial concentration according to the model, the "actual" concentration in the media considering chance, and the actual counts on the plate. It is based on the assumptions that stress resistance is homogeneous within a microbial population, and that there is no aggregation of microbial cells. Under these assumptions, the number of colonies in/on a plate follows a Poisson distribution with expected value depending on the proposed kinetic model, the number of dilutions and the plated volume. The novel method is compared against (non)linear regression based on a normal likelihood distribution (traditional method), Poisson regression and gamma-Poisson regression using data on the inactivation of Listeria monocytogenes. The conclusion is that the traditional method has limitations when the data includes plates with low (or zero) cell counts, which can be mitigated using more complex (discrete) likelihoods. However, Poisson regression uses an unrealistic likelihood function, making it unsuitable for survivor curves with several log-reductions. Gamma-Poisson regression uses a more realistic likelihood function, even though it is based mostly on empirical hypotheses. We conclude that the MPC method can be used reliably, especially when the data includes plates with low or zero counts. Furthermore, it generates a more realistic description of uncertainty, integrating the contribution of the plating error and reducing the uncertainty of the primary model parameters. Consequently, although it increases modelling complexity, the MPC method can be of great interest in predictive microbiology, especially in studies focused on variability analysis.A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model that makes a separation between the "true" microbial concentration according to the model, the "actual" concentration in the media considering chance, and the actual counts on the plate. It is based on the assumptions that stress resistance is homogeneous within a microbial population, and that there is no aggregation of microbial cells. Under these assumptions, the number of colonies in/on a plate follows a Poisson distribution with expected value depending on the proposed kinetic model, the number of dilutions and the plated volume. The novel method is compared against (non)linear regression based on a normal likelihood distribution (traditional method), Poisson regression and gamma-Poisson regression using data on the inactivation of Listeria monocytogenes. The conclusion is that the traditional method has limitations when the data includes plates with low (or zero) cell counts, which can be mitigated using more complex (discrete) likelihoods. However, Poisson regression uses an unrealistic likelihood function, making it unsuitable for survivor curves with several log-reductions. Gamma-Poisson regression uses a more realistic likelihood function, even though it is based mostly on empirical hypotheses. We conclude that the MPC method can be used reliably, especially when the data includes plates with low or zero counts. Furthermore, it generates a more realistic description of uncertainty, integrating the contribution of the plating error and reducing the uncertainty of the primary model parameters. Consequently, although it increases modelling complexity, the MPC method can be of great interest in predictive microbiology, especially in studies focused on variability analysis. |
| ArticleNumber | 109871 |
| Author | van Boekel, Martinus A.J.S. Zwietering, Marcel H. Garre, Alberto |
| Author_xml | – sequence: 1 givenname: Alberto surname: Garre fullname: Garre, Alberto organization: Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands – sequence: 2 givenname: Marcel H. surname: Zwietering fullname: Zwietering, Marcel H. organization: Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands – sequence: 3 givenname: Martinus A.J.S. surname: van Boekel fullname: van Boekel, Martinus A.J.S. email: tiny.vanboekel@wur.nl organization: Food Quality & Design, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands |
| BookMark | eNqNkc9u1DAQhy3USmxL32G4ccliO4mTnFC1goJUBIf2bDn2hPXi2IvtFPUNeOw6Wg6I0578Z775STPfFbnwwSMhbxndMsrE-8PWHqYQzGx1DFtOOS__Q9-xV2TD-m6o6kbQC7IpbF8xQdvX5CqlA6W0rWu6IX8e9ghfQ8rwPYZRjQ5ht8QnhBnzPhio4BZKYSmAOh5jUHoPOQCmbGeVEX5aj9lqmINBl2CKYQYXfsPRrVUdFp_BqKwgYlpctv4HWF8eZtFoYPEaY1bW5-c35HJSLuHN3_OaPH76-LD7XN1_u_uyu72vdEubXGnRNEK1vKemFWKkqFE3KGqmR5yGDkcqhna98rbBSdQj5UI0HAetGQ69qq_Ju1NuGebXUuaQs00anVMew5Ik71hfC86YOAOlTd81LV3R4YQWCylFnOQxlgXFZ8moXEXJg_xHlFxFyZOo0vvhv15ts8o2-ByVdWcl7E4JRQE-WYwyaYtlt8ZG1FmaYM9IeQGRVLvP |
| CitedBy_id | crossref_primary_10_1016_j_ijfoodmicro_2025_111446 crossref_primary_10_1093_jaoacint_qsae044 crossref_primary_10_1016_j_mimet_2023_106723 crossref_primary_10_1016_j_ijfoodmicro_2024_110618 crossref_primary_10_1111_1750_3841_70357 crossref_primary_10_1016_j_foodres_2025_117288 crossref_primary_10_3390_biology12081148 |
| Cites_doi | 10.18637/jss.v076.i01 10.1016/j.tifs.2020.02.027 10.1016/j.tifs.2021.10.033 10.1016/j.foodres.2020.109374 10.4315/0362-028X-73.1.140 10.1146/annurev-food-030117-012808 10.1016/S0168-1605(01)00624-9 10.1080/10408699891274246 10.1080/10408398.2015.1082126 10.1016/j.foodres.2018.02.040 10.1016/j.jfoodeng.2012.03.018 10.1016/j.foodres.2019.108714 10.1007/s11222-016-9696-4 10.3389/fmicb.2019.02239 10.1016/j.ijfoodmicro.2011.12.013 10.18637/jss.v080.i01 10.1016/j.cofs.2020.12.017 10.1016/S0168-1605(00)00225-7 10.3390/foods10030617 10.1016/j.foodres.2019.01.059 10.1080/10408398.2011.637645 10.1016/j.ijfoodmicro.2014.11.023 10.1016/j.ijfoodmicro.2021.109283 10.3389/fmicb.2021.674364 10.1016/j.cofs.2020.02.001 10.4315/0362-028X.JFP-13-462 10.1016/j.ces.2012.05.002 10.3389/fmicb.2018.02304 10.1016/j.foodcont.2004.10.020 10.1016/j.foodres.2020.109579 10.1016/j.ijfoodmicro.2014.10.021 10.1007/s11222-013-9416-2 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.ijfoodmicro.2022.109871 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Biology |
| EISSN | 1879-3460 |
| ExternalDocumentID | 10_1016_j_ijfoodmicro_2022_109871 S0168160522003439 |
| GroupedDBID | --- --K --M .1- .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATLK AAXUO ABFNM ABFRF ABGRD ABMAC ABYKQ ACDAQ ACGFO ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFCTW AFKWA AFRAH AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CJTIS CNWQP CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LUGTX LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SAB SDF SDG SES SPCBC SSA SSI SSZ T5K UBH Z5R ~G- ~KM 29J 3EH 53G 9DU AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AJUYK AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLV HMG HVGLF HZ~ R2- SEW SIN VH1 WUQ XPP Y6R ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c504t-c6446a5280d566b0ecec4e631cbef97eb0695bef9254ef63b026642e9cc1e98a3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000863215500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-1605 1879-3460 |
| IngestDate | Sat Sep 27 22:14:08 EDT 2025 Sat Sep 27 21:39:04 EDT 2025 Sat Nov 29 07:25:38 EST 2025 Tue Nov 18 21:02:52 EST 2025 Fri Feb 23 02:38:07 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Robust statistics Bayesian statistics Predictive microbiology Kinetic modelling Pasteurization Gamma-Poisson regression Microbial inactivation Poisson regression |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c504t-c6446a5280d566b0ecec4e631cbef97eb0695bef9254ef63b026642e9cc1e98a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.ijfoodmicro.2022.109871 |
| PQID | 2704874506 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2718362116 proquest_miscellaneous_2704874506 crossref_primary_10_1016_j_ijfoodmicro_2022_109871 crossref_citationtrail_10_1016_j_ijfoodmicro_2022_109871 elsevier_sciencedirect_doi_10_1016_j_ijfoodmicro_2022_109871 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-02 |
| PublicationDateYYYYMMDD | 2022-11-02 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of food microbiology |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Nauta (bb0140) 2000; 57 Peng, Tang, Barrett, Sablani, Anderson, Powers (bb0160) 2017; 57 Duarte, Stockmarr, Nauta (bb0060) 2015; 196 Vehtari, Gelman, Gabry (bb0215) 2017; 27 Possas, Valero, Pérez-Rodríguez (bb0170) 2022; 44 Gelman, Hwang, Vehtari (bb0090) 2014; 24 van Boekel (bb0200) 2021; 354 Bürkner (bb0035) 2017; 80 Jaloustre, Guillier, Morelli, Noël, Delignette-Muller (bb0110) 2012; 154 Vose (bb0225) 2008 Garcés-Vega, Marks (bb0065) 2014; 77 Garre, Zwietering, den Besten (bb0085) 2020; 137 Gorris (bb0095) 2005; 16 Peñalver-Soto, Garre, Esnoz, Fernández, Egea (bb0155) 2019; 126 Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, Riddell (bb0040) 2017; 76 Peleg, Cole (bb0150) 1998; 38 Perez-Rodriguez, Valero (bb0165) 2012 McElreath (bb0130) 2016 Koyama, Aspridou, Koseki, Koutsoumanis (bb0120) 2019; 10 Dayal (bb0050) 2015 Aspridou, Koutsoumanis (bb0020) 2020; 137 Garre, den Besten, Fernandez, Zwietering (bb0070) 2021; 118 R Core Team (bb0175) 2016 Aryani, den Besten, Hazeleger, Zwietering (bb0015) 2015; 193 Mertens, Van, Van Impe (bb0135) 2012; 112 Smelt, Brul (bb0180) 2014; 54 Vilas, Arias-Mendez, Garcia, Alonso, Balsa-Canto (bb0220) 2018; 58 Chik, Schmidt, Emelko (bb0045) 2018; 9 National Advisory Committee on microbiological criteria for foods (bb0145) 2010; 73 Telen, Logist, Van Derlinden, Tack, Van Impe (bb0190) 2012; 78 Brooks (bb0030) 2011 Bates, Watts (bb0025) 2007 Hiura, Abe, Koyama, Koseki (bb0105) 2021; 12 den Besten, Wells-Bennik, Zwietering (bb0055) 2018; 9 Garre, Egea, Esnoz, Palop, Fernandez (bb0075) 2019; 119 Garre, González-Tejedor, Peñalver-Soto, Fernández, Egea (bb0080) 2018; 107 Alexander (bb0005) 1965 van Boekel (bb0195) 2020; 99 van Boekel, ter Steeg, Dahoe (bb0205) 2020; 35 Guillén, Nadal, Álvarez, Mañas, Cebrián (bb0100) 2021; 10 Stan Development Team (bb0185) 2019 Allende, Bover-Cid, Fernández (bb0010) 2022; 100839 Jarvis (bb0115) 2008 Zwietering, Garre, Wiedmann, Buchanan (bb0230) 2021; 39 Mafart, Couvert, Gaillard, Leguerinel (bb0125) 2002; 72 van Derlinden, Balsa-Canto, Impe (bb0210) 2010 Dayal (10.1016/j.ijfoodmicro.2022.109871_bb0050) 2015 Aspridou (10.1016/j.ijfoodmicro.2022.109871_bb0020) 2020; 137 Garcés-Vega (10.1016/j.ijfoodmicro.2022.109871_bb0065) 2014; 77 Garre (10.1016/j.ijfoodmicro.2022.109871_bb0075) 2019; 119 Garre (10.1016/j.ijfoodmicro.2022.109871_bb0080) 2018; 107 National Advisory Committee on microbiological criteria for foods (10.1016/j.ijfoodmicro.2022.109871_bb0145) 2010; 73 van Derlinden (10.1016/j.ijfoodmicro.2022.109871_bb0210) 2010 Guillén (10.1016/j.ijfoodmicro.2022.109871_bb0100) 2021; 10 Peleg (10.1016/j.ijfoodmicro.2022.109871_bb0150) 1998; 38 Mafart (10.1016/j.ijfoodmicro.2022.109871_bb0125) 2002; 72 R Core Team (10.1016/j.ijfoodmicro.2022.109871_bb0175) 2016 Gelman (10.1016/j.ijfoodmicro.2022.109871_bb0090) 2014; 24 Vilas (10.1016/j.ijfoodmicro.2022.109871_bb0220) 2018; 58 Bates (10.1016/j.ijfoodmicro.2022.109871_bb0025) 2007 Mertens (10.1016/j.ijfoodmicro.2022.109871_bb0135) 2012; 112 Zwietering (10.1016/j.ijfoodmicro.2022.109871_bb0230) 2021; 39 Hiura (10.1016/j.ijfoodmicro.2022.109871_bb0105) 2021; 12 Brooks (10.1016/j.ijfoodmicro.2022.109871_bb0030) 2011 Jarvis (10.1016/j.ijfoodmicro.2022.109871_bb0115) 2008 Aryani (10.1016/j.ijfoodmicro.2022.109871_bb0015) 2015; 193 Garre (10.1016/j.ijfoodmicro.2022.109871_bb0070) 2021; 118 Chik (10.1016/j.ijfoodmicro.2022.109871_bb0045) 2018; 9 den Besten (10.1016/j.ijfoodmicro.2022.109871_bb0055) 2018; 9 Vose (10.1016/j.ijfoodmicro.2022.109871_bb0225) 2008 Perez-Rodriguez (10.1016/j.ijfoodmicro.2022.109871_bb0165) 2012 van Boekel (10.1016/j.ijfoodmicro.2022.109871_bb0205) 2020; 35 Telen (10.1016/j.ijfoodmicro.2022.109871_bb0190) 2012; 78 Vehtari (10.1016/j.ijfoodmicro.2022.109871_bb0215) 2017; 27 Allende (10.1016/j.ijfoodmicro.2022.109871_bb0010) 2022; 100839 Koyama (10.1016/j.ijfoodmicro.2022.109871_bb0120) 2019; 10 Garre (10.1016/j.ijfoodmicro.2022.109871_bb0085) 2020; 137 van Boekel (10.1016/j.ijfoodmicro.2022.109871_bb0195) 2020; 99 Alexander (10.1016/j.ijfoodmicro.2022.109871_bb0005) 1965 Jaloustre (10.1016/j.ijfoodmicro.2022.109871_bb0110) 2012; 154 McElreath (10.1016/j.ijfoodmicro.2022.109871_bb0130) 2016 Carpenter (10.1016/j.ijfoodmicro.2022.109871_bb0040) 2017; 76 Peñalver-Soto (10.1016/j.ijfoodmicro.2022.109871_bb0155) 2019; 126 Duarte (10.1016/j.ijfoodmicro.2022.109871_bb0060) 2015; 196 Peng (10.1016/j.ijfoodmicro.2022.109871_bb0160) 2017; 57 Bürkner (10.1016/j.ijfoodmicro.2022.109871_bb0035) 2017; 80 Smelt (10.1016/j.ijfoodmicro.2022.109871_bb0180) 2014; 54 Nauta (10.1016/j.ijfoodmicro.2022.109871_bb0140) 2000; 57 Stan Development Team (10.1016/j.ijfoodmicro.2022.109871_bb0185) 2019 Possas (10.1016/j.ijfoodmicro.2022.109871_bb0170) 2022; 44 Gorris (10.1016/j.ijfoodmicro.2022.109871_bb0095) 2005; 16 van Boekel (10.1016/j.ijfoodmicro.2022.109871_bb0200) 2021; 354 |
| References_xml | – volume: 72 start-page: 107 year: 2002 end-page: 113 ident: bb0125 article-title: On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model publication-title: Int. J. Food Microbiol. – volume: 9 start-page: 383 year: 2018 end-page: 410 ident: bb0055 article-title: Natural diversity in heat resistance of bacteria and bacterial spores: impact on food safety and quality publication-title: Annu. Rev. Food Sci. Technol. – year: 2011 ident: bb0030 article-title: Handbook of Markov Chain Monte Carlo – volume: 196 start-page: 40 year: 2015 end-page: 50 ident: bb0060 article-title: Fitting a distribution to microbial counts: making sense of zeroes publication-title: Int. J. Food Microbiol. – volume: 16 start-page: 801 year: 2005 end-page: 809 ident: bb0095 article-title: Food safety objective: an integral part of food chain management publication-title: Food Control – year: 2008 ident: bb0225 article-title: Risk Analysis—A Quantitative Guide – volume: 99 start-page: 181 year: 2020 end-page: 193 ident: bb0195 article-title: On the pros and cons of bayesian kinetic modeling in food science publication-title: Trends Food Sci. Technol. – volume: 39 start-page: 83 year: 2021 end-page: 92 ident: bb0230 article-title: All food processes have a residual risk, some are small, some very small and some are extremely small: zero risk does not exist publication-title: Curr. Opin. Food Sci. – volume: 119 start-page: 76 year: 2019 end-page: 83 ident: bb0075 article-title: Tail or artefact? Illustration of the impact that uncertainty of the serial dilution and cell enumeration methods has on microbial inactivation publication-title: Food Res. Int. – volume: 73 start-page: 140 year: 2010 end-page: 202 ident: bb0145 article-title: Parameters for determining inoculated pack/challenge study protocols publication-title: J. Food Prot. – start-page: 67 year: 2010 end-page: 98 ident: bb0210 article-title: (Optimal) experiment design for microbial inactivation publication-title: Progress on Quantitative Approaches of Thermal Food Processing – volume: 10 start-page: 617 year: 2021 ident: bb0100 article-title: Impact of the resistance responses to stress conditions encountered in food and food processing environments on the virulence and growth fitness of non-typhoidal salmonellae publication-title: Foods – volume: 57 start-page: 2970 year: 2017 end-page: 2995 ident: bb0160 article-title: Thermal pasteurization of ready-to-eat foods and vegetables: critical factors for process design and effects on quality publication-title: Crit. Rev. Food Sci. Nutr. – year: 2016 ident: bb0175 article-title: R: A Language and Environment for Statistical Computing – volume: 54 start-page: 1371 year: 2014 end-page: 1385 ident: bb0180 article-title: Thermal inactivation of microorganisms publication-title: Crit. Rev. Food Sci. Nutr. – volume: 100839 year: 2022 ident: bb0010 article-title: Challenges and opportunities related to the use of innovative modelling approaches and tools for microbiological food safety management publication-title: Curr. Opin. Food Sci. – volume: 9 start-page: 2304 year: 2018 ident: bb0045 article-title: Learning something from nothing: the critical importance of rethinking microbial non-detects publication-title: Front. Microbiol. – volume: 112 start-page: 119 year: 2012 end-page: 133 ident: bb0135 article-title: Comparing experimental design schemes in predictive food microbiology: optimal parameter estimation of secondary models publication-title: J. Food Eng. – year: 2012 ident: bb0165 article-title: Predictive Microbiology in Foods – volume: 354 year: 2021 ident: bb0200 article-title: To pool or not to pool: that is the question in microbial kinetics publication-title: Int. J. Food Microbiol. – volume: 76 start-page: 1 year: 2017 end-page: 32 ident: bb0040 article-title: Stan: a probabilistic programming language publication-title: J. Stat. Softw. – volume: 24 start-page: 997 year: 2014 end-page: 1016 ident: bb0090 article-title: Understanding predictive information criteria for Bayesian models publication-title: Stat. Comput. – year: 2019 ident: bb0185 article-title: RStan: The R Interface to Stan – volume: 193 start-page: 130 year: 2015 end-page: 138 ident: bb0015 article-title: Quantifying variability on thermal resistance of listeria monocytogenes publication-title: Int. J. Food Microbiol. – volume: 80 start-page: 1 year: 2017 end-page: 28 ident: bb0035 article-title: Brms: an R package for Bayesian multilevel models using Stan publication-title: J. Stat. Softw. – volume: 57 start-page: 9 year: 2000 end-page: 18 ident: bb0140 article-title: Separation of uncertainty and variability in quantitative microbial risk assessment models publication-title: Int. J. Food Microbiol. – volume: 107 start-page: 267 year: 2018 end-page: 274 ident: bb0080 article-title: Optimal characterization of thermal microbial inactivation simulating non-isothermal processes publication-title: Food Res. Int. – volume: 77 start-page: 1372 year: 2014 end-page: 1379 ident: bb0065 article-title: Use of simulation tools to illustrate the effect of data management practices for low and negative plate counts on the estimated parameters of microbial reduction models publication-title: J. Food Prot. – year: 2007 ident: bb0025 article-title: Nonlinear Regression Analysis and Its Applications – volume: 154 start-page: 44 year: 2012 end-page: 51 ident: bb0110 article-title: Modeling of Clostridium perfringens vegetative cell inactivation in beef-in-sauce products: a meta-analysis using mixed linear models publication-title: Int. J. Food Microbiol. – volume: 137 year: 2020 ident: bb0085 article-title: Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of listeria monocytogenes as proof of concept publication-title: Food Res. Int. – volume: 10 start-page: 2239 year: 2019 ident: bb0120 article-title: Describing uncertainty in salmonella thermal inactivation using Bayesian statistical modeling publication-title: Front. Microbiol. – volume: 27 start-page: 1413 year: 2017 end-page: 1432 ident: bb0215 article-title: Practical bayesian model evaluation using leave-one-out cross-validation and WAIC publication-title: Stat. Comput. – volume: 38 start-page: 353 year: 1998 end-page: 380 ident: bb0150 article-title: Reinterpretation of microbial survival curves publication-title: Crit. Rev. Food Sci. Nutr. – year: 2016 ident: bb0130 article-title: Statistical Rethinking: A Bayesian Course With Examples in R and Stan – volume: 58 start-page: 436 year: 2018 end-page: 449 ident: bb0220 article-title: Toward predictive food process models: a protocol for parameter estimation publication-title: Crit. Rev. Food Sci. Nutr. – volume: 137 year: 2020 ident: bb0020 article-title: Variability in microbial inactivation: from deterministic Bigelow model to probability distribution of single cell inactivation times publication-title: Food Res. Int. – volume: 118 start-page: 799 year: 2021 end-page: 807 ident: bb0070 article-title: Not just variability and uncertainty; the relevance of chance for the survival of microbial cells to stress publication-title: Trends Food Sci. Technol. – volume: 78 start-page: 82 year: 2012 end-page: 97 ident: bb0190 article-title: Optimal experiment design for dynamic bioprocesses: a multi-objective approach publication-title: Chem. Eng. Sci. – start-page: 59 year: 2015 end-page: 63 ident: bb0050 article-title: Anscombe’s quartet: graphs can reveal publication-title: An Introduction to R for Quantitative Economics: Graphing, Simulating and Computing – year: 2008 ident: bb0115 article-title: Statistical Aspects of the Microbiological Examination of Foods – volume: 126 year: 2019 ident: bb0155 article-title: Guidelines for the design of (optimal) isothermal inactivation experiments publication-title: Food Res. Int. – volume: 35 start-page: 65 year: 2020 end-page: 71 ident: bb0205 article-title: Co-optimization of safety, quality and legislation: opening Pandora’s box? publication-title: Curr. Opin. Food Sci. – start-page: 1467 year: 1965 end-page: 1472 ident: bb0005 article-title: Most-probable-number method for microbial populations publication-title: Methods of Soil Analysis – volume: 12 start-page: 1492 year: 2021 ident: bb0105 article-title: Bayesian generalized linear model for simulating bacterial inactivation/growth considering variability and uncertainty publication-title: Front. Microbiol. – volume: 44 year: 2022 ident: bb0170 article-title: New software solutions for microbiological food safety assessment and management publication-title: Curr. Opin. Food Sci. – volume: 76 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0040 article-title: Stan: a probabilistic programming language publication-title: J. Stat. Softw. doi: 10.18637/jss.v076.i01 – volume: 99 start-page: 181 year: 2020 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0195 article-title: On the pros and cons of bayesian kinetic modeling in food science publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2020.02.027 – volume: 118 start-page: 799 year: 2021 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0070 article-title: Not just variability and uncertainty; the relevance of chance for the survival of microbial cells to stress publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2021.10.033 – volume: 44 year: 2022 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0170 article-title: New software solutions for microbiological food safety assessment and management publication-title: Curr. Opin. Food Sci. – start-page: 1467 year: 1965 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0005 article-title: Most-probable-number method for microbial populations – volume: 137 year: 2020 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0085 article-title: Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of listeria monocytogenes as proof of concept publication-title: Food Res. Int. doi: 10.1016/j.foodres.2020.109374 – year: 2016 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0175 – volume: 73 start-page: 140 issue: 1 year: 2010 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0145 article-title: Parameters for determining inoculated pack/challenge study protocols publication-title: J. Food Prot. doi: 10.4315/0362-028X-73.1.140 – volume: 58 start-page: 436 issue: 3 year: 2018 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0220 article-title: Toward predictive food process models: a protocol for parameter estimation publication-title: Crit. Rev. Food Sci. Nutr. – year: 2008 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0115 – volume: 9 start-page: 383 issue: 1 year: 2018 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0055 article-title: Natural diversity in heat resistance of bacteria and bacterial spores: impact on food safety and quality publication-title: Annu. Rev. Food Sci. Technol. doi: 10.1146/annurev-food-030117-012808 – volume: 72 start-page: 107 issue: 1–2 year: 2002 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0125 article-title: On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model publication-title: Int. J. Food Microbiol. doi: 10.1016/S0168-1605(01)00624-9 – volume: 38 start-page: 353 issue: 5 year: 1998 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0150 article-title: Reinterpretation of microbial survival curves publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408699891274246 – volume: 57 start-page: 2970 issue: 14 year: 2017 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0160 article-title: Thermal pasteurization of ready-to-eat foods and vegetables: critical factors for process design and effects on quality publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2015.1082126 – volume: 107 start-page: 267 year: 2018 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0080 article-title: Optimal characterization of thermal microbial inactivation simulating non-isothermal processes publication-title: Food Res. Int. doi: 10.1016/j.foodres.2018.02.040 – volume: 112 start-page: 119 issue: 3 year: 2012 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0135 article-title: Comparing experimental design schemes in predictive food microbiology: optimal parameter estimation of secondary models publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2012.03.018 – volume: 126 year: 2019 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0155 article-title: Guidelines for the design of (optimal) isothermal inactivation experiments publication-title: Food Res. Int. doi: 10.1016/j.foodres.2019.108714 – year: 2019 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0185 – volume: 27 start-page: 1413 issue: 5 year: 2017 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0215 article-title: Practical bayesian model evaluation using leave-one-out cross-validation and WAIC publication-title: Stat. Comput. doi: 10.1007/s11222-016-9696-4 – volume: 10 start-page: 2239 year: 2019 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0120 article-title: Describing uncertainty in salmonella thermal inactivation using Bayesian statistical modeling publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.02239 – volume: 154 start-page: 44 issue: 1 year: 2012 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0110 article-title: Modeling of Clostridium perfringens vegetative cell inactivation in beef-in-sauce products: a meta-analysis using mixed linear models publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2011.12.013 – volume: 80 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0035 article-title: Brms: an R package for Bayesian multilevel models using Stan publication-title: J. Stat. Softw. doi: 10.18637/jss.v080.i01 – volume: 39 start-page: 83 year: 2021 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0230 article-title: All food processes have a residual risk, some are small, some very small and some are extremely small: zero risk does not exist publication-title: Curr. Opin. Food Sci. doi: 10.1016/j.cofs.2020.12.017 – volume: 100839 year: 2022 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0010 article-title: Challenges and opportunities related to the use of innovative modelling approaches and tools for microbiological food safety management publication-title: Curr. Opin. Food Sci. – volume: 57 start-page: 9 issue: 1 year: 2000 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0140 article-title: Separation of uncertainty and variability in quantitative microbial risk assessment models publication-title: Int. J. Food Microbiol. doi: 10.1016/S0168-1605(00)00225-7 – volume: 10 start-page: 617 issue: 3 year: 2021 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0100 article-title: Impact of the resistance responses to stress conditions encountered in food and food processing environments on the virulence and growth fitness of non-typhoidal salmonellae publication-title: Foods doi: 10.3390/foods10030617 – volume: 119 start-page: 76 year: 2019 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0075 article-title: Tail or artefact? Illustration of the impact that uncertainty of the serial dilution and cell enumeration methods has on microbial inactivation publication-title: Food Res. Int. doi: 10.1016/j.foodres.2019.01.059 – start-page: 59 year: 2015 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0050 article-title: Anscombe’s quartet: graphs can reveal – year: 2008 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0225 – volume: 54 start-page: 1371 issue: 10 year: 2014 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0180 article-title: Thermal inactivation of microorganisms publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2011.637645 – volume: 196 start-page: 40 year: 2015 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0060 article-title: Fitting a distribution to microbial counts: making sense of zeroes publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2014.11.023 – volume: 354 year: 2021 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0200 article-title: To pool or not to pool: that is the question in microbial kinetics publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2021.109283 – year: 2016 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0130 – year: 2007 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0025 – year: 2011 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0030 – volume: 12 start-page: 1492 year: 2021 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0105 article-title: Bayesian generalized linear model for simulating bacterial inactivation/growth considering variability and uncertainty publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.674364 – volume: 35 start-page: 65 year: 2020 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0205 article-title: Co-optimization of safety, quality and legislation: opening Pandora’s box? publication-title: Curr. Opin. Food Sci. doi: 10.1016/j.cofs.2020.02.001 – year: 2012 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0165 – volume: 77 start-page: 1372 issue: 8 year: 2014 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0065 article-title: Use of simulation tools to illustrate the effect of data management practices for low and negative plate counts on the estimated parameters of microbial reduction models publication-title: J. Food Prot. doi: 10.4315/0362-028X.JFP-13-462 – start-page: 67 year: 2010 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0210 article-title: (Optimal) experiment design for microbial inactivation – volume: 78 start-page: 82 year: 2012 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0190 article-title: Optimal experiment design for dynamic bioprocesses: a multi-objective approach publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.05.002 – volume: 9 start-page: 2304 year: 2018 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0045 article-title: Learning something from nothing: the critical importance of rethinking microbial non-detects publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02304 – volume: 16 start-page: 801 issue: 9 year: 2005 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0095 article-title: Food safety objective: an integral part of food chain management publication-title: Food Control doi: 10.1016/j.foodcont.2004.10.020 – volume: 137 year: 2020 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0020 article-title: Variability in microbial inactivation: from deterministic Bigelow model to probability distribution of single cell inactivation times publication-title: Food Res. Int. doi: 10.1016/j.foodres.2020.109579 – volume: 193 start-page: 130 year: 2015 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0015 article-title: Quantifying variability on thermal resistance of listeria monocytogenes publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2014.10.021 – volume: 24 start-page: 997 issue: 6 year: 2014 ident: 10.1016/j.ijfoodmicro.2022.109871_bb0090 article-title: Understanding predictive information criteria for Bayesian models publication-title: Stat. Comput. doi: 10.1007/s11222-013-9416-2 |
| SSID | ssj0005330 |
| Score | 2.4445865 |
| Snippet | A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable Curve (MPC) method. It is a multilevel model... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 109871 |
| SubjectTerms | Bayesian statistics food microbiology Gamma-Poisson regression Kinetic modelling kinetics liquids Listeria monocytogenes Microbial inactivation Pasteurization plate count Poisson distribution Poisson regression Predictive microbiology regression analysis Robust statistics stress tolerance uncertainty |
| Title | The Most Probable Curve method - A robust approach to estimate kinetic models from low plate count data resulting in reduced uncertainty |
| URI | https://dx.doi.org/10.1016/j.ijfoodmicro.2022.109871 https://www.proquest.com/docview/2704874506 https://www.proquest.com/docview/2718362116 |
| Volume | 380 |
| WOSCitedRecordID | wos000863215500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3460 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005330 issn: 0168-1605 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba5xAFB5y6e2ltGlL00s4gb6J4uo4KvRlG1LSQEIhKeybeBlhN1sNq27Sf9A_1P_XcxxHNwkpW0pfRHTdUc_nzHdmvnMOYx94FiYSab2JvkFucid1zTjhmSl5yF3pJiMRxG2xCf_0NJhMwq8bG790LMxy7hdFcH0dXv5XU-MxNDaFzv6Fufs_xQO4j0bHLZodt2sb_qSsaooBSNrAqINmsZRdrWjDxK4ATzTVkE-c-Ccl20DyKo0LpJ2UxLUtkVOp8JN5eUXlpmtStjdFbZCs1EA_ncSIOiQma0hJgKOk0hjUN5aLb847rmSryCmp8vfpkA2q1wORhFhF4JD0u-wnuK-mJODpKrGcUKTm3Diy9GmKxvpUygulPVA5EprKGFvH1pm1OsOBzjHN2g7-8N3QGzUTKtD9FbZaEpeq9w780HS5KlCgu3dXVYq6M1SoWYuZNZ3Ro7ZPalHrlGArUGVhbmXiPqM2qUmHFH3I5DbZtuN7IXam2-Mvh5PjQVvktkVu-nt8xPYHYeE9Dd5HjG5RhJb3nD9jTzuHBcYKaM_Zhix22ENVwvTHDnusI9urF-wnQg8IeqChBy30QEEPTBiDgh5o6EFdgoYedNADBT0g6AFCD1roQQs9IOhBDz2YFtBBD1ag95J9-3x4fnBkdpU-zNSzeW2myMpF7DmBnaF7kdgylSmXwh2licxDXya2CD3adTwuc-EmNvJK7sgwTUcyDGL3FdsqykK-ZiAyEQdp7oToqfM4zmMuKYFRgn5xLqTIdlmgX3OUdmnwqRrLPNJ6x1m0YqGILBQpC-0yp7_0UuWCWeeij9qWUUdqFVmNEIjrXL6v7R9hx0-reXEhy6aKHB8HX597tvjTb3DEFs5oJN782228ZU-GL_Md26oXjXzPHqTLelot9timPwn2uo_gN3lh7K0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Most+Probable+Curve+method+-+A+robust+approach+to+estimate+kinetic+models+from+low+plate+count+data+resulting+in+reduced+uncertainty&rft.jtitle=International+journal+of+food+microbiology&rft.au=Garre%2C+Alberto&rft.au=Zwietering%2C+Marcel+H.&rft.au=van+Boekel%2C+Martinus+A.J.S.&rft.date=2022-11-02&rft.pub=Elsevier+B.V&rft.issn=0168-1605&rft.eissn=1879-3460&rft.volume=380&rft_id=info:doi/10.1016%2Fj.ijfoodmicro.2022.109871&rft.externalDocID=S0168160522003439 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1605&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1605&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1605&client=summon |