Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms
Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model paramet...
Uložené v:
| Vydané v: | Experimental brain research Ročník 235; číslo 8; s. 2561 - 2573 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2017
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0014-4819, 1432-1106, 1432-1106 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action:
p
= 0.01; double action:
p
= 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions. |
|---|---|
| AbstractList | Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions. Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions. Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions. Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions. |
| Audience | Academic |
| Author | Almuklass, Awad M. Enoka, Roger M. Feeney, Daniel F. Dideriksen, Jakob Lund |
| Author_xml | – sequence: 1 givenname: Jakob Lund surname: Dideriksen fullname: Dideriksen, Jakob Lund email: jldi@hst.aau.dk organization: SMI, Department of Health Science and Technology, Aalborg University – sequence: 2 givenname: Daniel F. surname: Feeney fullname: Feeney, Daniel F. organization: Department of Integrative Physiology, University of Colorado Boulder – sequence: 3 givenname: Awad M. surname: Almuklass fullname: Almuklass, Awad M. organization: Department of Integrative Physiology, University of Colorado Boulder, College of Medicine, King Saud bin Abdulaziz University for Health Sciences – sequence: 4 givenname: Roger M. surname: Enoka fullname: Enoka, Roger M. organization: Department of Integrative Physiology, University of Colorado Boulder |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28555275$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv3CAUhVGVqpmk_QHdVEiVqnTh9ILx2F5G09dIkVr1sUaAr2dIbTMBHDX_PlieqJmorVgg4DuHy-WckKPBDUjISwbnDKB8FwA4ZxmwMhN1XWT5E7JgIucZY7A8IgsAJjJRsfqYnIRwNS3zEp6RY14VRcHLYkFuVm6I3nXUtbR13iBtRm-HDfVqZxt6Y8Poehedn0-zXkWznc6jCr8CNWqgOmkwGG81NlTf0samBUak0fZIv67fU7O_Q3Ub523c9uE5edqqLuCL_XxKfn788GP1Obv88mm9urjMTAEiZmbJc9SsMjUHBqZErYVGMKpuuS6E5hqZ4k1r2iVvALFaqqoG0eTAQS-hzE_J2ey78-56xBBln6rDrlMDujFIVkNeC5YLSOjrR-iVG_2QqksUKxmrBKv_UBvVobRD66JXZjKVF6Ku2GQ3XXv-FyqNBnubuoGtTfsHgrcHgqlj-Dtu1BiCXH__dsi-ecBuUXVxG1w3RuuGcAi-2r9o1D02cudtr_ytvP_9BJQzYLwLwWMrjY1q8knl2k4ykFPO5JwzmXImp5zJPCnZI-W9-f80fNaE3ZQw9A8a_E_RHfa-4Zc |
| CitedBy_id | crossref_primary_10_1016_j_humov_2019_102516 crossref_primary_10_1007_s00221_019_05524_z crossref_primary_10_1109_TNSRE_2025_3576669 crossref_primary_10_1177_17531934231211254 crossref_primary_10_3389_fphys_2019_00176 crossref_primary_10_1152_jn_00222_2022 crossref_primary_10_1113_JP275658 crossref_primary_10_1155_2018_9324623 |
| Cites_doi | 10.1037/0096-1523.7.5.1019 10.1152/jn.01110.2007 10.1007/BF00364156 10.1016/0166-4328(86)90003-3 10.1152/jn.00868.2005 10.1113/jphysiol.2010.194712 10.1038/nrn1932 10.1152/jn.01280.2006 10.1152/jn.00516.2003 10.1038/nature02169 10.1007/s12311-011-0331-9 10.1113/jphysiol.2006.120121 10.1152/japplphysiol.01017.2009 10.1093/geronb/61.2.P117 10.1038/320748a0 10.1113/jphysiol.2009.175372 10.1152/jn.00403.2001 10.1113/jphysiol.2008.166173 10.1007/s00221-005-0017-y 10.1002/mus.20392 10.1007/s00221-010-2233-3 10.1016/j.conb.2009.09.002 10.1007/s00422-004-0497-z 10.1152/jn.00793.2001 10.1007/s00422-010-0416-4 10.1016/j.neulet.2005.09.010 10.1016/j.tics.2012.09.008 10.1152/japplphysiol.01051.2015 10.1249/JES.0000000000000018 10.1007/BF00230851 10.1080/00222895.1993.9941639 10.1113/jphysiol.2009.178509 10.1007/s00221-013-3527-z 10.1016/j.tics.2009.11.004 10.1152/jn.01122.2004 10.1152/jn.00938.2011 10.1109/TCST.2005.847331 10.1523/JNEUROSCI.0240-15.2015 10.1371/journal.pcbi.1000345 10.1371/journal.pcbi.1002843 10.1152/jn.2000.84.4.1708 10.1152/jn.1997.78.1.271 10.1152/jn.2002.88.3.1097 10.1167/8.4.20 10.1152/jn.1993.70.6.2470 10.1038/nrn3112 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2017 COPYRIGHT 2017 Springer Experimental Brain Research is a copyright of Springer, 2017. |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2017 – notice: COPYRIGHT 2017 Springer – notice: Experimental Brain Research is a copyright of Springer, 2017. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 0-V 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88E 88G 88J 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA ALSLI AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ K9. KB0 M0S M1P M2M M2R NAPCQ P64 PHGZM PHGZT PJZUB PKEHL POGQB PPXIY PQEST PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U RC3 7X8 |
| DOI | 10.1007/s00221-017-4995-3 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Social Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Psychology Database Social Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts Sociology & Social Sciences Collection ProQuest Central China Health Research Premium Collection Health & Medical Research Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Social Science Premium Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Sociology & Social Sciences Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Social Science Journals (Alumni Edition) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Social Sciences ProQuest Central Basic ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest Medical Library ProQuest Psychology Journals ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Psychology |
| EISSN | 1432-1106 |
| EndPage | 2573 |
| ExternalDocumentID | A498103947 28555275 10_1007_s00221_017_4995_3 |
| Genre | Journal Article |
| GeographicLocations | Denmark |
| GeographicLocations_xml | – name: Denmark |
| GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -XW -Y2 -~C -~X .55 .86 .GJ .VR 0-V 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYJJ AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 FA8 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IHW IJ- IKXTQ INH INR IPY ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAS LLZTM M1P M2M M2R M4Y MA- N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OVD P19 P2P PF- PKN PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7W Z7X Z82 Z83 Z87 Z88 Z8M Z8O Z8Q Z8R Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ABUFD ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PRQQA CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7XB 8FD 8FK FR3 K9. P64 PKEHL POGQB PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c504t-c623eb18c92010c7ebb4be0ca9f2b54b2be1a2dfcf62d0ee86a8904d3020b6073 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405283100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0014-4819 1432-1106 |
| IngestDate | Fri Sep 05 12:09:56 EDT 2025 Tue Dec 02 16:27:12 EST 2025 Sat Nov 29 13:25:58 EST 2025 Sun Nov 23 09:02:32 EST 2025 Wed Nov 26 10:30:53 EST 2025 Thu May 22 21:22:13 EDT 2025 Thu Apr 03 07:10:02 EDT 2025 Tue Nov 18 21:31:34 EST 2025 Sat Nov 29 04:00:05 EST 2025 Fri Feb 21 02:37:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Visuomotor tasks Isometric force Computational models Motor control |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c504t-c623eb18c92010c7ebb4be0ca9f2b54b2be1a2dfcf62d0ee86a8904d3020b6073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 28555275 |
| PQID | 1917118419 |
| PQPubID | 47176 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1903941340 proquest_journals_1917118419 gale_infotracmisc_A498103947 gale_infotracacademiconefile_A498103947 gale_incontextgauss_ISR_A498103947 gale_healthsolutions_A498103947 pubmed_primary_28555275 crossref_citationtrail_10_1007_s00221_017_4995_3 crossref_primary_10_1007_s00221_017_4995_3 springer_journals_10_1007_s00221_017_4995_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20170800 2017-8-00 2017-08-00 20170801 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 8 year: 2017 text: 20170800 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | Experimental brain research |
| PublicationTitleAbbrev | Exp Brain Res |
| PublicationTitleAlternate | Exp Brain Res |
| PublicationYear | 2017 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | Jo, Massaquoi (CR18) 2004; 91 Körding, Wolpert (CR20) 2004; 427 Slifkin, Vaillancourt, Newell (CR40) 2000; 84 Tresch, Jarc (CR44) 2009; 19 Negro, Holobar, Farina (CR32) 2009; 587 Ang, Chong, Li (CR3) 2005; 13 De Luca, Erim (CR10) 2002; 87 CR16 Tracy, Maluf, Stephenson (CR43) 2005; 32 Bays, Wolpert (CR5) 2007; 578 Neilson, Neilson, O’Dwyer (CR33) 1988; 58 Manto, Bower, Conforto (CR26) 2012; 11 Carlton (CR8) 1981; 7 Dideriksen, Negro, Enoka, Farina (CR12) 2012; 107 Miall, Weir, Stein (CR28) 1986; 20 Peterka (CR35) 2002; 88 Peterka, Loughlin (CR36) 2004; 91 Scott (CR39) 2012; 16 Welch, Ting (CR46) 2008; 99 Almuklass, Price, Gould, Enoka (CR1) 2016; 120 Barry, Pascoe, Jesunathadas, Enoka (CR4) 2007; 97 Diedrichsen, Shadmehr, Ivry (CR13) 2010; 14 Gawthrop, Loram, Lakie, Gollee (CR15) 2011; 104 Goodale, Pelisson, Prablanc (CR17) 1986; 320 Craik (CR9) 1947; 38 Moritz, Barry, Pascoe, Enoka (CR31) 2005; 93 Loram, Gollee, Lakie, Gawthrop (CR23) 2011; 589 Miall, Weir, Stein (CR29) 1993; 25 Rudroff, Justice, Matthews (CR38) 2010; 203 Wolpert, Diedrichsen, Flanagan (CR48) 2011; 12 Werremeyer, Cole (CR47) 1997; 78 Maluf, Shinohara, Stephenson, Enoka (CR25) 2005; 167 Dideriksen, Farina, Baekgaard, Enoka (CR11) 2010; 108 Fuglevand, Winter, Patla (CR14) 1993; 70 O’Sullivan, Burdet, Diedrichsen (CR34) 2009; 5 Laine, Martinez-valdes, Falla (CR21) 2015; 35 Loram, Lakie, Gawthrop (CR22) 2009; 587 Ambike, Paclet, Latash, Zatsiorsky (CR2) 2013; 227 Sosnoff, Valantine, Newell (CR42) 2006; 392 CR7 Loram, Van De Kamp, Lakie (CR24) 2014; 42 Jones, Hamilton, Wolpert (CR19) 2002; 88 Proske, Gandevia (CR37) 2009; 587 Mileusnic, Brown, Lan, Loeb (CR30) 2006; 96 van de Kamp, Gawthrop, Gollee, Loram (CR45) 2013; 9 McNaughton, Battaglia, Jensen (CR27) 2006; 7 Bessou, Joffroy, Montoya, Pages (CR6) 1990; 82 Sosnoff, Newell (CR41) 2006; 61B AJ Fuglevand (4995_CR14) 1993; 70 BK Barry (4995_CR4) 2007; 97 U Proske (4995_CR37) 2009; 587 CJ Luca De (4995_CR10) 2002; 87 J Diedrichsen (4995_CR13) 2010; 14 F Negro (4995_CR32) 2009; 587 LG Carlton (4995_CR8) 1981; 7 KE Jones (4995_CR19) 2002; 88 AB Slifkin (4995_CR40) 2000; 84 CT Moritz (4995_CR31) 2005; 93 A Almuklass (4995_CR1) 2016; 120 RC Miall (4995_CR29) 1993; 25 MC Tresch (4995_CR44) 2009; 19 ID Loram (4995_CR22) 2009; 587 P Bessou (4995_CR6) 1990; 82 4995_CR7 S Jo (4995_CR18) 2004; 91 DM Wolpert (4995_CR48) 2011; 12 BL McNaughton (4995_CR27) 2006; 7 KP Körding (4995_CR20) 2004; 427 JJ Sosnoff (4995_CR41) 2006; 61B P Gawthrop (4995_CR15) 2011; 104 RJ Peterka (4995_CR36) 2004; 91 C Kamp van de (4995_CR45) 2013; 9 ID Loram (4995_CR24) 2014; 42 TDJ Welch (4995_CR46) 2008; 99 MP Mileusnic (4995_CR30) 2006; 96 JJ Sosnoff (4995_CR42) 2006; 392 RC Miall (4995_CR28) 1986; 20 M Manto (4995_CR26) 2012; 11 MA Goodale (4995_CR17) 1986; 320 4995_CR16 JL Dideriksen (4995_CR12) 2012; 107 PD Neilson (4995_CR33) 1988; 58 PM Bays (4995_CR5) 2007; 578 BL Tracy (4995_CR43) 2005; 32 KJW Craik (4995_CR9) 1947; 38 JL Dideriksen (4995_CR11) 2010; 108 ID Loram (4995_CR23) 2011; 589 T Rudroff (4995_CR38) 2010; 203 KH Ang (4995_CR3) 2005; 13 KS Maluf (4995_CR25) 2005; 167 SS Ambike (4995_CR2) 2013; 227 CM Laine (4995_CR21) 2015; 35 MM Werremeyer (4995_CR47) 1997; 78 I O’Sullivan (4995_CR34) 2009; 5 RJ Peterka (4995_CR35) 2002; 88 SH Scott (4995_CR39) 2012; 16 17008369 - J Physiol. 2007 Jan 15;578(Pt 2):387-96 12730041 - J Mot Behav. 1993 Mar;25(1):53-63 19828310 - Curr Opin Neurobiol. 2009 Dec;19(6):601-7 3703000 - Nature. 1986 Apr 24-30;320(6064):748-50 22033537 - Nat Rev Neurosci. 2011 Oct 27;12(12):739-51 2257904 - Exp Brain Res. 1990;82(1):191-8 16497955 - J Gerontol B Psychol Sci Soc Sci. 2006 Mar;61(2):P117-24 9242279 - J Neurophysiol. 1997 Jul;78(1):271-80 21327829 - Biol Cybern. 2011 Feb;104(1-2):31-51 16858394 - Nat Rev Neurosci. 2006 Aug;7(8):663-78 11929938 - J Neurophysiol. 2002 Apr;87(4):2200-4 23625077 - Exp Brain Res. 2013 Jun;227(4):509-22 16044306 - Exp Brain Res. 2005 Nov;167(2):165-77 23300430 - PLoS Comput Biol. 2013;9(1):e1002843 24819544 - Exerc Sport Sci Rev. 2014 Jul;42(3):117-25 18917476 - Br J Psychol Gen Sect. 1947 Dec;38(Pt 2):56-61 26338331 - J Neurosci. 2015 Sep 2;35(35):12207-16 20358188 - Exp Brain Res. 2010 Jun;203(2):307-16 16672301 - J Neurophysiol. 2006 Oct;96(4):1772-88 3730133 - Behav Brain Res. 1986 May;20(2):185-201 15986419 - Muscle Nerve. 2005 Oct;32(4):533-40 15372241 - Biol Cybern. 2004 Sep;91(3):188-202 19360132 - PLoS Comput Biol. 2009 Apr;5(4):e1000345 20360437 - J Appl Physiol (1985). 2010 Jun;108(6):1550-62 19840996 - J Physiol. 2009 Dec 15;587(Pt 24):5925-38 18484859 - J Vis. 2008 Apr 23;8(4):20.1-19 3349110 - Biol Cybern. 1988;58(2):101-12 18094102 - J Neurophysiol. 2008 Feb;99(2):1032-8 19171654 - J Physiol. 2009 Mar 15;587(Pt 6):1343-65 17360826 - J Neurophysiol. 2007 May;97(5):3206-18 22161499 - Cerebellum. 2012 Jun;11(2):457-87 12205173 - J Neurophysiol. 2002 Sep;88(3):1533-44 12205132 - J Neurophysiol. 2002 Sep;88(3):1097-118 23031541 - Trends Cogn Sci. 2012 Nov;16(11):541-9 22423000 - J Neurophysiol. 2012 Jun;107(12):3357-69 6457106 - J Exp Psychol Hum Percept Perform. 1981 Oct;7(5):1019-30 27103655 - J Appl Physiol (1985). 2016 Jun 15;120(12):1410-7 15615827 - J Neurophysiol. 2005 May;93(5):2449-59 19581378 - J Physiol. 2009 Sep 1;587(Pt 17):4139-46 8120594 - J Neurophysiol. 1993 Dec;70(6):2470-88 21098004 - J Physiol. 2011 Jan 15;589(Pt 2):307-24 20005767 - Trends Cogn Sci. 2010 Jan;14(1):31-9 14724638 - Nature. 2004 Jan 15;427(6971):244-7 13679407 - J Neurophysiol. 2004 Jan;91(1):410-23 11024063 - J Neurophysiol. 2000 Oct;84(4):1708-18 16188384 - Neurosci Lett. 2006 Jan 16;392(3):165-9 |
| References_xml | – volume: 7 start-page: 1019 year: 1981 ident: CR8 article-title: Processing visual feedback information for movement control publication-title: J Exp Psychol Hum Percept Perform doi: 10.1037/0096-1523.7.5.1019 – volume: 99 start-page: 1032 year: 2008 end-page: 1038 ident: CR46 article-title: A feedback model reproduces muscle activity during human postural responses to support-surface translations publication-title: J Neurophysiol doi: 10.1152/jn.01110.2007 – volume: 38 start-page: 56 year: 1947 end-page: 61 ident: CR9 article-title: Theory of the human operator in control systems. I. The operator as an engineering system publication-title: Br J Psychol – volume: 58 start-page: 101 year: 1988 end-page: 112 ident: CR33 article-title: Internal models and intermittency: a theoretical account of human tracking behavior publication-title: Biol Cybern doi: 10.1007/BF00364156 – ident: CR16 – volume: 20 start-page: 185 year: 1986 end-page: 201 ident: CR28 article-title: Manual tracking of visual targets by trained monkeys publication-title: Behav Brain Res doi: 10.1016/0166-4328(86)90003-3 – volume: 96 start-page: 1772 year: 2006 end-page: 1788 ident: CR30 article-title: Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle publication-title: J Neurophysiol doi: 10.1152/jn.00868.2005 – volume: 12 start-page: 739 year: 2011 end-page: 751 ident: CR48 article-title: Principles of sensorimotor learning publication-title: Nat Rev Neurosci – volume: 589 start-page: 307 year: 2011 end-page: 324 ident: CR23 article-title: Human control of an inverted pendulum: is continuous control necessary? Is intermittent control effective? Is intermittent control physiological? publication-title: J Physiol doi: 10.1113/jphysiol.2010.194712 – volume: 7 start-page: 663 year: 2006 end-page: 678 ident: CR27 article-title: Path integration and the neural basis of the “cognitive map” publication-title: Nat Rev Neurosci doi: 10.1038/nrn1932 – volume: 97 start-page: 3206 year: 2007 end-page: 3218 ident: CR4 article-title: Rate coding is compressed but variability is unaltered for motor units in a hand muscle of old adults publication-title: J Neurophysiol doi: 10.1152/jn.01280.2006 – volume: 91 start-page: 410 year: 2004 end-page: 423 ident: CR36 article-title: Dynamic regulation of sensorimotor integration in human postural control publication-title: J Neurophysiol doi: 10.1152/jn.00516.2003 – volume: 427 start-page: 244 year: 2004 end-page: 247 ident: CR20 article-title: Bayesian integration in sensorimotor learning publication-title: Nature doi: 10.1038/nature02169 – volume: 11 start-page: 457 issue: 2 year: 2012 end-page: 487 ident: CR26 article-title: Consensus paper: roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement publication-title: Cerebellum doi: 10.1007/s12311-011-0331-9 – volume: 578 start-page: 387 year: 2007 end-page: 396 ident: CR5 article-title: Computational principles of sensorimotor control that minimize uncertainty and variability publication-title: J Physiol doi: 10.1113/jphysiol.2006.120121 – volume: 108 start-page: 1550 year: 2010 end-page: 1562 ident: CR11 article-title: An integrative model of motor unit activity during sustained submaximal contractions publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01017.2009 – volume: 61B start-page: P117 year: 2006 end-page: P124 ident: CR41 article-title: Aging, visual intermittency, and variability in isometric force output publication-title: J Gerontol B Psychol Sci Soc Sci doi: 10.1093/geronb/61.2.P117 – volume: 320 start-page: 748 year: 1986 end-page: 750 ident: CR17 article-title: Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement publication-title: Nature doi: 10.1038/320748a0 – volume: 587 start-page: 4139 year: 2009 end-page: 4146 ident: CR37 article-title: The kinaesthetic senses publication-title: J Physiol doi: 10.1113/jphysiol.2009.175372 – volume: 88 start-page: 1533 year: 2002 end-page: 1544 ident: CR19 article-title: Sources of signal-dependent noise during isometric force production publication-title: J Neurophysiol doi: 10.1152/jn.00403.2001 – volume: 587 start-page: 1343 year: 2009 end-page: 1365 ident: CR22 article-title: Visual control of stable and unstable loads: what is the feedback delay and extent of linear time-invariant control? publication-title: J Physiol doi: 10.1113/jphysiol.2008.166173 – volume: 167 start-page: 165 year: 2005 end-page: 177 ident: CR25 article-title: Muscle activation and time to task failure differ with load type and contraction intensity for a human hand muscle publication-title: Exp Brain Res doi: 10.1007/s00221-005-0017-y – volume: 32 start-page: 533 year: 2005 end-page: 540 ident: CR43 article-title: Variability of motor unit discharge and force fluctuations across a range of muscle forces in older adults publication-title: Muscle Nerve doi: 10.1002/mus.20392 – volume: 88 start-page: 1097 year: 2002 end-page: 1118 ident: CR35 article-title: Sensorimotor integration in human postural control publication-title: J Neurophysiol – volume: 203 start-page: 307 year: 2010 end-page: 316 ident: CR38 article-title: Muscle activity differs with load compliance during fatiguing contractions with the knee extensor muscles publication-title: Exp Brain Res doi: 10.1007/s00221-010-2233-3 – volume: 19 start-page: 601 year: 2009 end-page: 607 ident: CR44 article-title: The case for and against muscle synergies publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2009.09.002 – volume: 78 start-page: 271 year: 1997 end-page: 280 ident: CR47 article-title: Wrist action affects precision grip force publication-title: J Neurophysiol – volume: 91 start-page: 188 year: 2004 end-page: 202 ident: CR18 article-title: A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance publication-title: Biol Cybern doi: 10.1007/s00422-004-0497-z – volume: 84 start-page: 1708 year: 2000 end-page: 1718 ident: CR40 article-title: Intermittency in the control of continuous force production publication-title: J Neurophysiol – volume: 87 start-page: 2200 year: 2002 end-page: 2204 ident: CR10 article-title: Common drive in motor units of a synergistic muscle pair publication-title: J Neurophysiol doi: 10.1152/jn.00793.2001 – volume: 104 start-page: 31 year: 2011 end-page: 51 ident: CR15 article-title: Intermittent control: a computational theory of human control publication-title: Biol Cybern doi: 10.1007/s00422-010-0416-4 – volume: 392 start-page: 165 year: 2006 end-page: 169 ident: CR42 article-title: Independence between the amount and structure of variability at low force levels publication-title: Neurosci Lett doi: 10.1016/j.neulet.2005.09.010 – volume: 16 start-page: 541 year: 2012 end-page: 549 ident: CR39 article-title: The computational and neural basis of voluntary motor control and planning publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2012.09.008 – volume: 120 start-page: 1410 year: 2016 end-page: 1417 ident: CR1 article-title: Force steadiness as a predictor of time to complete a pegboard test of dexterity in young men and women publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01051.2015 – volume: 42 start-page: 117 year: 2014 end-page: 125 ident: CR24 article-title: Does the motor system need intermittent control? publication-title: Exerc Sport Sci Rev doi: 10.1249/JES.0000000000000018 – volume: 82 start-page: 191 year: 1990 end-page: 198 ident: CR6 article-title: Evidence of the co-activation of alpha-motoneurones and static gamma-motoneurones of the sartorius medialis muscle during locomotion in the thalamic cat publication-title: Exp Brain Res doi: 10.1007/BF00230851 – volume: 25 start-page: 53 year: 1993 end-page: 63 ident: CR29 article-title: Intermittency in human manual tracking tasks publication-title: J Mot Behav doi: 10.1080/00222895.1993.9941639 – volume: 587 start-page: 5925 year: 2009 end-page: 5938 ident: CR32 article-title: Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates publication-title: J Physiol doi: 10.1113/jphysiol.2009.178509 – ident: CR7 – volume: 227 start-page: 509 year: 2013 end-page: 522 ident: CR2 article-title: Grip-force modulation in multi-finger prehension during wrist flexion and extension publication-title: Exp Brain Res doi: 10.1007/s00221-013-3527-z – volume: 14 start-page: 31 year: 2010 end-page: 39 ident: CR13 article-title: The coordination of movement: optimal feedback control and beyond publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2009.11.004 – volume: 93 start-page: 2449 year: 2005 end-page: 2459 ident: CR31 article-title: Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle publication-title: J Neurophysiol doi: 10.1152/jn.01122.2004 – volume: 107 start-page: 3357 year: 2012 end-page: 3369 ident: CR12 article-title: Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness publication-title: J Neurophysiol doi: 10.1152/jn.00938.2011 – volume: 13 start-page: 559 year: 2005 end-page: 576 ident: CR3 article-title: PID control system analysis, design, and technology publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2005.847331 – volume: 35 start-page: 12207 year: 2015 end-page: 12216 ident: CR21 article-title: Motor neuron pools of synergistic thigh muscles share most of their synaptic input publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0240-15.2015 – volume: 70 start-page: 2470 year: 1993 end-page: 2488 ident: CR14 article-title: Models of recruitment and rate coding organization in motor-unit pools publication-title: J Neurophysiol – volume: 5 start-page: e1000345 year: 2009 ident: CR34 article-title: Dissociating Variability and Effort as Determinants of Coordination publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000345 – volume: 9 start-page: e1002843 year: 2013 ident: CR45 article-title: Refractoriness in sustained visuo-manual control: is the refractory duration intrinsic or does it depend on external system properties? publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002843 – volume: 82 start-page: 191 year: 1990 ident: 4995_CR6 publication-title: Exp Brain Res doi: 10.1007/BF00230851 – volume: 320 start-page: 748 year: 1986 ident: 4995_CR17 publication-title: Nature doi: 10.1038/320748a0 – volume: 25 start-page: 53 year: 1993 ident: 4995_CR29 publication-title: J Mot Behav doi: 10.1080/00222895.1993.9941639 – volume: 203 start-page: 307 year: 2010 ident: 4995_CR38 publication-title: Exp Brain Res doi: 10.1007/s00221-010-2233-3 – volume: 87 start-page: 2200 year: 2002 ident: 4995_CR10 publication-title: J Neurophysiol doi: 10.1152/jn.00793.2001 – volume: 91 start-page: 188 year: 2004 ident: 4995_CR18 publication-title: Biol Cybern doi: 10.1007/s00422-004-0497-z – volume: 32 start-page: 533 year: 2005 ident: 4995_CR43 publication-title: Muscle Nerve doi: 10.1002/mus.20392 – volume: 427 start-page: 244 year: 2004 ident: 4995_CR20 publication-title: Nature doi: 10.1038/nature02169 – volume: 589 start-page: 307 year: 2011 ident: 4995_CR23 publication-title: J Physiol doi: 10.1113/jphysiol.2010.194712 – volume: 167 start-page: 165 year: 2005 ident: 4995_CR25 publication-title: Exp Brain Res doi: 10.1007/s00221-005-0017-y – volume: 96 start-page: 1772 year: 2006 ident: 4995_CR30 publication-title: J Neurophysiol doi: 10.1152/jn.00868.2005 – volume: 84 start-page: 1708 year: 2000 ident: 4995_CR40 publication-title: J Neurophysiol doi: 10.1152/jn.2000.84.4.1708 – volume: 61B start-page: P117 year: 2006 ident: 4995_CR41 publication-title: J Gerontol B Psychol Sci Soc Sci doi: 10.1093/geronb/61.2.P117 – volume: 88 start-page: 1533 year: 2002 ident: 4995_CR19 publication-title: J Neurophysiol doi: 10.1152/jn.00403.2001 – volume: 42 start-page: 117 year: 2014 ident: 4995_CR24 publication-title: Exerc Sport Sci Rev doi: 10.1249/JES.0000000000000018 – volume: 7 start-page: 663 year: 2006 ident: 4995_CR27 publication-title: Nat Rev Neurosci doi: 10.1038/nrn1932 – ident: 4995_CR16 – volume: 38 start-page: 56 year: 1947 ident: 4995_CR9 publication-title: Br J Psychol – volume: 16 start-page: 541 year: 2012 ident: 4995_CR39 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2012.09.008 – volume: 78 start-page: 271 year: 1997 ident: 4995_CR47 publication-title: J Neurophysiol doi: 10.1152/jn.1997.78.1.271 – volume: 578 start-page: 387 year: 2007 ident: 4995_CR5 publication-title: J Physiol doi: 10.1113/jphysiol.2006.120121 – volume: 120 start-page: 1410 year: 2016 ident: 4995_CR1 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01051.2015 – volume: 108 start-page: 1550 year: 2010 ident: 4995_CR11 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01017.2009 – volume: 107 start-page: 3357 year: 2012 ident: 4995_CR12 publication-title: J Neurophysiol doi: 10.1152/jn.00938.2011 – volume: 5 start-page: e1000345 year: 2009 ident: 4995_CR34 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000345 – volume: 88 start-page: 1097 year: 2002 ident: 4995_CR35 publication-title: J Neurophysiol doi: 10.1152/jn.2002.88.3.1097 – volume: 227 start-page: 509 year: 2013 ident: 4995_CR2 publication-title: Exp Brain Res doi: 10.1007/s00221-013-3527-z – volume: 7 start-page: 1019 year: 1981 ident: 4995_CR8 publication-title: J Exp Psychol Hum Percept Perform doi: 10.1037/0096-1523.7.5.1019 – volume: 93 start-page: 2449 year: 2005 ident: 4995_CR31 publication-title: J Neurophysiol doi: 10.1152/jn.01122.2004 – volume: 587 start-page: 4139 year: 2009 ident: 4995_CR37 publication-title: J Physiol doi: 10.1113/jphysiol.2009.175372 – volume: 587 start-page: 5925 year: 2009 ident: 4995_CR32 publication-title: J Physiol doi: 10.1113/jphysiol.2009.178509 – volume: 9 start-page: e1002843 year: 2013 ident: 4995_CR45 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002843 – volume: 14 start-page: 31 year: 2010 ident: 4995_CR13 publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2009.11.004 – volume: 11 start-page: 457 issue: 2 year: 2012 ident: 4995_CR26 publication-title: Cerebellum doi: 10.1007/s12311-011-0331-9 – ident: 4995_CR7 doi: 10.1167/8.4.20 – volume: 587 start-page: 1343 year: 2009 ident: 4995_CR22 publication-title: J Physiol doi: 10.1113/jphysiol.2008.166173 – volume: 97 start-page: 3206 year: 2007 ident: 4995_CR4 publication-title: J Neurophysiol doi: 10.1152/jn.01280.2006 – volume: 13 start-page: 559 year: 2005 ident: 4995_CR3 publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2005.847331 – volume: 99 start-page: 1032 year: 2008 ident: 4995_CR46 publication-title: J Neurophysiol doi: 10.1152/jn.01110.2007 – volume: 20 start-page: 185 year: 1986 ident: 4995_CR28 publication-title: Behav Brain Res doi: 10.1016/0166-4328(86)90003-3 – volume: 104 start-page: 31 year: 2011 ident: 4995_CR15 publication-title: Biol Cybern doi: 10.1007/s00422-010-0416-4 – volume: 70 start-page: 2470 year: 1993 ident: 4995_CR14 publication-title: J Neurophysiol doi: 10.1152/jn.1993.70.6.2470 – volume: 12 start-page: 739 year: 2011 ident: 4995_CR48 publication-title: Nat Rev Neurosci doi: 10.1038/nrn3112 – volume: 91 start-page: 410 year: 2004 ident: 4995_CR36 publication-title: J Neurophysiol doi: 10.1152/jn.00516.2003 – volume: 58 start-page: 101 year: 1988 ident: 4995_CR33 publication-title: Biol Cybern doi: 10.1007/BF00364156 – volume: 35 start-page: 12207 year: 2015 ident: 4995_CR21 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0240-15.2015 – volume: 392 start-page: 165 year: 2006 ident: 4995_CR42 publication-title: Neurosci Lett doi: 10.1016/j.neulet.2005.09.010 – volume: 19 start-page: 601 year: 2009 ident: 4995_CR44 publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2009.09.002 – reference: 15986419 - Muscle Nerve. 2005 Oct;32(4):533-40 – reference: 17008369 - J Physiol. 2007 Jan 15;578(Pt 2):387-96 – reference: 3349110 - Biol Cybern. 1988;58(2):101-12 – reference: 20005767 - Trends Cogn Sci. 2010 Jan;14(1):31-9 – reference: 22423000 - J Neurophysiol. 2012 Jun;107(12):3357-69 – reference: 11024063 - J Neurophysiol. 2000 Oct;84(4):1708-18 – reference: 2257904 - Exp Brain Res. 1990;82(1):191-8 – reference: 16672301 - J Neurophysiol. 2006 Oct;96(4):1772-88 – reference: 24819544 - Exerc Sport Sci Rev. 2014 Jul;42(3):117-25 – reference: 16497955 - J Gerontol B Psychol Sci Soc Sci. 2006 Mar;61(2):P117-24 – reference: 12205173 - J Neurophysiol. 2002 Sep;88(3):1533-44 – reference: 13679407 - J Neurophysiol. 2004 Jan;91(1):410-23 – reference: 3730133 - Behav Brain Res. 1986 May;20(2):185-201 – reference: 16858394 - Nat Rev Neurosci. 2006 Aug;7(8):663-78 – reference: 23031541 - Trends Cogn Sci. 2012 Nov;16(11):541-9 – reference: 16188384 - Neurosci Lett. 2006 Jan 16;392(3):165-9 – reference: 19360132 - PLoS Comput Biol. 2009 Apr;5(4):e1000345 – reference: 12205132 - J Neurophysiol. 2002 Sep;88(3):1097-118 – reference: 20360437 - J Appl Physiol (1985). 2010 Jun;108(6):1550-62 – reference: 18484859 - J Vis. 2008 Apr 23;8(4):20.1-19 – reference: 16044306 - Exp Brain Res. 2005 Nov;167(2):165-77 – reference: 6457106 - J Exp Psychol Hum Percept Perform. 1981 Oct;7(5):1019-30 – reference: 21098004 - J Physiol. 2011 Jan 15;589(Pt 2):307-24 – reference: 18917476 - Br J Psychol Gen Sect. 1947 Dec;38(Pt 2):56-61 – reference: 19171654 - J Physiol. 2009 Mar 15;587(Pt 6):1343-65 – reference: 15372241 - Biol Cybern. 2004 Sep;91(3):188-202 – reference: 23625077 - Exp Brain Res. 2013 Jun;227(4):509-22 – reference: 21327829 - Biol Cybern. 2011 Feb;104(1-2):31-51 – reference: 20358188 - Exp Brain Res. 2010 Jun;203(2):307-16 – reference: 27103655 - J Appl Physiol (1985). 2016 Jun 15;120(12):1410-7 – reference: 19581378 - J Physiol. 2009 Sep 1;587(Pt 17):4139-46 – reference: 14724638 - Nature. 2004 Jan 15;427(6971):244-7 – reference: 9242279 - J Neurophysiol. 1997 Jul;78(1):271-80 – reference: 11929938 - J Neurophysiol. 2002 Apr;87(4):2200-4 – reference: 3703000 - Nature. 1986 Apr 24-30;320(6064):748-50 – reference: 18094102 - J Neurophysiol. 2008 Feb;99(2):1032-8 – reference: 19840996 - J Physiol. 2009 Dec 15;587(Pt 24):5925-38 – reference: 15615827 - J Neurophysiol. 2005 May;93(5):2449-59 – reference: 22033537 - Nat Rev Neurosci. 2011 Oct 27;12(12):739-51 – reference: 12730041 - J Mot Behav. 1993 Mar;25(1):53-63 – reference: 19828310 - Curr Opin Neurobiol. 2009 Dec;19(6):601-7 – reference: 26338331 - J Neurosci. 2015 Sep 2;35(35):12207-16 – reference: 23300430 - PLoS Comput Biol. 2013;9(1):e1002843 – reference: 17360826 - J Neurophysiol. 2007 May;97(5):3206-18 – reference: 22161499 - Cerebellum. 2012 Jun;11(2):457-87 – reference: 8120594 - J Neurophysiol. 1993 Dec;70(6):2470-88 |
| SSID | ssj0014370 |
| Score | 2.2765813 |
| Snippet | Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2561 |
| SubjectTerms | Action Adult Algorithms Analysis Biomedical and Life Sciences Biomedicine Control algorithms Discrete time Electromyography Feedback Feedback, Sensory - physiology Female Humans Imperative sentences Isometric Contraction - physiology Male Matching Matching tasks Models, Theoretical Movement (Physiology) Muscle contraction Neurology Neurosciences Psychomotor Performance - physiology Reduction (Phonological or Phonetic) Research Article Sensorimotor integration Signal Processing, Computer-Assisted Time Factors Trajectories (Physics) Visual feedback Visual perception Young Adult |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcARbDr0UaHkEChiEQKKycBxvHie0lFZUQqtVAam3yHacsmqbLJvsSvv3eBInNJXohbNnIjsznofnBfDWajgVCZNTa8oGVORKUOlHOWVJxsOIq0T4TaHwt2g6jc_Okpl7cKtcWmUnExtBnZUa38g_ol9hjWHhJ58WvylOjcLoqhuhcRe2sFOZGMHW56Pp7LSPI4ggaotQfEGFVX5dXJM1bUQ5R1c6ogLLlIOBZropn68pqBsR00YRHd__3yM8gB1ngpJJyzMP4Y4pdmFvUlj3-2pD3pEmKbR5bd-F7V5AbvZgfdjmtZMyJ9bW1Ya0RY5kKRfzjKzn1Qpz-8plu0qtMdxkapJaVhcVsUQkyuIYlFTKZERtCBYFL63dTnDGPZmdfCEud57Iy3O79_rXVfUIfh4f_Tj8St3cBqrHTNRUW5PKqoBYJxhq15FRSijDtExyrsZCcWV8ybNc5yHPmDFxKOOEiSywpqsKrcx5DKOiLMxTIOhgxVwqkYWRdVx1IpgwJseYMwtiqT1gHc1S7Zqa42yNy7Rvx9yQObVkTpHMaeDBhx5l0Xb0uA34FTJC2hal9tIgnYgkxiC6iDx400BgL40Ck3XO5aqq0pPvpwOg9w4oL-32tHS1D_aQ2H5rALk_gLSXXQ-XO9ZKnbCp0r985cHrfhkxMYGuMOUKYRDfDwTz4EnLyf3peTzGPnxjDw461r728X_9mme3b-U5bHO8W02u5D6M6uXKvIB7el3Pq-VLd0__AB4cQSw priority: 102 providerName: ProQuest |
| Title | Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms |
| URI | https://link.springer.com/article/10.1007/s00221-017-4995-3 https://www.ncbi.nlm.nih.gov/pubmed/28555275 https://www.proquest.com/docview/1917118419 https://www.proquest.com/docview/1903941340 |
| Volume | 235 |
| WOSCitedRecordID | wos000405283100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1432-1106 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0014370 issn: 0014-4819 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1432-1106 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0014370 issn: 0014-4819 databaseCode: 7RV dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-1106 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0014370 issn: 0014-4819 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1432-1106 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0014370 issn: 0014-4819 databaseCode: M2M dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Social Science Database customDbUrl: eissn: 1432-1106 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0014370 issn: 0014-4819 databaseCode: M2R dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/socscijournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-1106 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014370 issn: 0014-4819 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB6apA956ZH0cJqmaiktNBh8aFf24zZNaKBZlk0b9s1IspwuSexg7y7sv--MfBCHttC-CBuNjC2N5vB8MwJ4jxpOCW4yF03Z0OWZ4q70ReZ6cRoMRaBi7ttE4W9iPI5ms3jS5HFXLdq9DUlaSd0lu5G6IddXuJzSisMN2EJtF9FunJ5fdKEDHoo678TnLkd914Yyf_eInjK6L5Lv6KR7QVKre04e_9dbP4FHjanJRjVvPIUHJt-B3VGObvbNmn1gFvxp_6rvwHYnCNe7sDqq8eusyBjatNqwOpmRlfJ2nrLVvFoShq8o614XjV6LyGQLWV1VDBeLKRxjSCIpkzK1ZpT8W6J9zugsezY5_cIajDyT15dFOV_8vKmewY-T4-9HX93mfAZXDzy-cDWaTijqIx1TSF0LoxRXxtMyzgI14CpQxpdBmulsGKSeMdFQRrHH0xBNVDVE2fIcNvMiNy-BkSMVBVLxdCjQQdUx97gxGcWWvTCS2gGvXahEN8XL6QyN66Qru2wnOsGJTmiik9CBT92Q27pyx9-I39DqJ3XyabfrkxFHBvPCmAsH3lkKqpmREyjnUi6rKjk9n_aIPjZEWYGvp2WT44AfSWW2epT7PUrc1Lrf3bJh0giVKiHXGv1B7scOvO26aSQB5XJTLImGxvsh9xx4UbNv9_VBNKB6ewMHDltevfPwP03N3j9Rv4LtgJjdQiT3YXNRLs1reKhXi3lVHsCGmF5QOxO2jQ5g6_PxeDLFu7PgzLZ0jfv5F14-O4o |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgkQvPFoohkIXxEOisrDXm9g-IBS1VI0aoqoU1JvZXa9LRGOH2AnKn-I3MuMXTSV664Hzzlr2Zuabmcw3swAv0cMpX5jExlDWs0WihC1dP7GdMOZdn6tQuGWj8MAfDoPT0_BoBX43vTBEq2wwsQTqONP0H_k7yiswGBZu-GHy06Zbo6i62lyhUanFoVn8wpQtf9_fw9_3Fef7H092D-z6VgFbdxxR2BodPgJUoEMqBGvfKCWUcbQME646QnFlXMnjRCddHjvGBF0ZhI6IPQysVBctAp97A24ijrtEIfOPv7ZVC-H5VcuLK2yBrrapojrl0FLOKXH3bUFN0d6SH7zsDS64w0v12dLt7d_93w7sHtypA2zWqyziPqyYdB02eqkssvGCvWYl5bWsJazDWgv_iw2Y71asfZYlDCN5bVjVwsmmcjKK2XyUz4i5mE2rVRtD_ZKHygqZ_8gZqihTuMcQDisTM7Vg1PI8xayEFaOxYUf9PVZ3BjB5foZnVXwf5w_gy7Ucx0NYTbPUPAJG6WPApRJx18e0XIfCEcYkVFF3vEBqC5xGRyJdj2ynm0POo3bYdKlWEapVRGoVeRa8bbdMqnklVwlvk-JFVctti3VRT4QBUQSEb8GLUoImhaRERTqTszyP-p-Pl4Te1EJJhq-nZd3ZgR9Jw8WWJLeWJBHK9PJyo8pRDaV59FePLXjeLtNOogemJpuRDO13PeFYsFlZTvv1POjQlMGOBTuNKV14-L-O5vHVr7INtw9OPg2iQX94-ATWONl1yQrdgtViOjNP4ZaeF6N8-qxECAbfrtvC_gDQ5Z5d |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VglAvPFoegUIXxEMCWbXX69g-IBQ1REQtUVRA6s3srtclorFD7ATlr_HrmPGLphK99cB5Zy17880rM98swAv0cMoXJrEwlHUtkShhScdPLDuMedfnKhROSRQ-8kej4OQkHG_A74YLQ22VjU0sDXWcafqPfJ_yCgyGhRPuJ3VbxLg_eD_7adENUlRpba7TqCByaFa_MH3L3w37-Fu_5Hzw4cvBR6u-YcDSni0KS6PzR2MV6JCKwto3SgllbC3DhCtPKK6MI3mc6KTLY9uYoCuD0Baxi0GW6qJ24HOvwXVfeB5p1yd-3FYwhOtX9BdHWALdblNRtcsBppxTEu9bggjS7ppPvOgZzrnGC7Xa0gUObv_Ph3cHbtWBN-tVmnIXNky6DTu9VBbZdMVesbIVtqwxbMNW6xZWO7A8qLr5WZYwjPC1YRW1k83lbBKz5SRfUEdjNq9WLUwByv5UVsj8R84QukzhHkP2WZmYqRUjKvQcsxVWTKaGjYd9VjMGmDw7xbMqvk_ze_D1So7jPmymWWoeAqO0MuBSibjrY7quQ2ELYxKqtNtuIHUH7AYvka5HudONImdRO4S6hFiEEIsIYpHbgTftllk1x-Qy4T0CYVRRcVsbGPVEGFDrgPA78LyUoAkiKcHpVC7yPBp-Pl4Tel0LJRm-npY14wM_koaOrUnurkmiidPryw2so9rE5tFfTHfgWbtMO6ltMDXZgmRov-MKuwMPKi1qv54HHk0f9DrwtlGrcw__19E8uvxV9uAmKlZ0NBwdPoYtTipeNovuwmYxX5gncEMvi0k-f1oaCwbfrlrB_gCvK6cC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+force+during+rapid+visuomotor+force-matching+tasks+can+be+described+by+discrete+time+PID+control+algorithms&rft.jtitle=Experimental+brain+research&rft.au=Dideriksen%2C+Jakob+Lund&rft.au=Feeney%2C+Daniel+F.&rft.au=Almuklass%2C+Awad+M.&rft.au=Enoka%2C+Roger+M.&rft.date=2017-08-01&rft.issn=0014-4819&rft.eissn=1432-1106&rft.volume=235&rft.issue=8&rft.spage=2561&rft.epage=2573&rft_id=info:doi/10.1007%2Fs00221-017-4995-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00221_017_4995_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon |