Heavy-Traffic Optimality of a Stochastic Network Under Utility-Maximizing Resource Allocation

We study a stochastic network that consists of a set of servers processing multiple classes of jobs. Each class of jobs requires a concurrent occupancy of several servers while being processed, and each server is shared among the job classes in a head-of-the-line processor-sharing mechanism. The all...

Full description

Saved in:
Bibliographic Details
Published in:Operations research Vol. 56; no. 2; pp. 453 - 470
Main Authors: Ye, Heng-Qing, Yao, David D
Format: Journal Article
Language:English
Published: Linthicum, MD INFORMS 01.03.2008
Institute for Operations Research and the Management Sciences
Subjects:
ISSN:0030-364X, 1526-5463
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study a stochastic network that consists of a set of servers processing multiple classes of jobs. Each class of jobs requires a concurrent occupancy of several servers while being processed, and each server is shared among the job classes in a head-of-the-line processor-sharing mechanism. The allocation of the service capacities is a real-time control mechanism: in each network state, the resource allocation is the solution to an optimization problem that maximizes a general utility function. Whereas this resource allocation optimizes in a "greedy" fashion with respect to each state, we establish its asymptotic optimality in terms of (a) deriving the fluid and diffusion limits of the network under this allocation scheme, and (b) identifying a cost function that is minimized in the diffusion limit, along with a characterization of the so-called fixed-point state of the network.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0030-364X
1526-5463
DOI:10.1287/opre.1070.0455