New multiple sclerosis lesion segmentation and detection using pre-activation U-Net

Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an essential prerequisite for monitoring and quantifying MS progression. Manual delineation of such lesions is time-consuming and expensive, especially because raters need to deal with 3D images and several modalities. I...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroscience Vol. 16; p. 975862
Main Authors: Ashtari, Pooya, Barile, Berardino, Van Huffel, Sabine, Sappey-Marinier, Dominique
Format: Journal Article
Language:English
Published: Lausanne Frontiers Research Foundation 26.10.2022
Frontiers
Frontiers Media S.A
Subjects:
ISSN:1662-453X, 1662-4548, 1662-453X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an essential prerequisite for monitoring and quantifying MS progression. Manual delineation of such lesions is time-consuming and expensive, especially because raters need to deal with 3D images and several modalities. In this paper, we propose Pre-U-Net, a 3D encoder-decoder architecture with pre-activation residual blocks, for the segmentation and detection of new MS lesions. Due to the limited training set and the class imbalance problem, we apply intensive data augmentation and use deep supervision to train our models effectively. Following the same U-shaped architecture but different blocks, Pre-U-Net outperforms U-Net and Res-U-Net on the MSSEG-2 dataset, achieving a Dice score of 40.3% on new lesion segmentation and an F 1 score of 48.1% on new lesion detection. The codes and trained models are publicly available at https://github.com/pashtari/xunet .
AbstractList Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an essential prerequisite for monitoring and quantifying MS progression. Manual delineation of such lesions is time-consuming and expensive, especially because raters need to deal with 3D images and several modalities. In this paper, we propose Pre-U-Net, a 3D encoder-decoder architecture with pre-activation residual blocks, for the segmentation and detection of new MS lesions. Due to the limited training set and the class imbalance problem, we apply intensive data augmentation and use deep supervision to train our models effectively. Following the same U-shaped architecture but different blocks, Pre-U-Net outperforms U-Net and Res-U-Net on the MSSEG-2 dataset, achieving a Dice score of 40.3% on new lesion segmentation and an F 1 score of 48.1% on new lesion detection. The codes and trained models are publicly available at https://github.com/pashtari/xunet .
Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an essential prerequisite for monitoring and quantifying MS progression. Manual delineation of such lesions is time-consuming and expensive, especially because raters need to deal with 3D images and several modalities. In this paper, we propose Pre-U-Net, a 3D encoder-decoder architecture with pre-activation residual blocks, for the segmentation and detection of new MS lesions. Due to the limited training set and the class imbalance problem, we apply intensive data augmentation and use deep supervision to train our models effectively. Following the same U-shaped architecture but different blocks, Pre-U-Net outperforms U-Net and Res-U-Net on the MSSEG-2 dataset, achieving a Dice score of 40.3% on new lesion segmentation and an F1 score of 48.1% on new lesion detection. The codes and trained models are publicly available at https://github.com/pashtari/xunet.
Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an essential prerequisite for monitoring and quantifying MS progression. Manual delineation of such lesions is time-consuming and expensive, especially because raters need to deal with 3D images and several modalities. In this paper, we propose Pre-U-Net, a 3D encoder-decoder architecture with pre-activation residual blocks, for the segmentation and detection of new MS lesions. Due to the limited training set and the class imbalance problem, we apply intensive data augmentation and use deep supervision to train our models effectively. Following the same U-shaped architecture but different blocks, Pre-U-Net outperforms U-Net and Res-U-Net on the MSSEG-2 dataset, achieving a Dice score of 40.3% on new lesion segmentation and an F 1 score of 48.1% on new lesion detection. The codes and trained models are publicly available at https://github.com/pashtari/xunet .
Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an essential prerequisite for monitoring and quantifying MS progression. Manual delineation of such lesions is time-consuming and expensive, especially because raters need to deal with 3D images and several modalities. In this paper, we propose Pre-U-Net, a 3D encoder-decoder architecture with pre-activation residual blocks, for the segmentation and detection of new MS lesions. Due to the limited training set and the class imbalance problem, we apply intensive data augmentation and use deep supervision to train our models effectively. Following the same U-shaped architecture but different blocks, Pre-U-Net outperforms U-Net and Res-U-Net on the MSSEG-2 dataset, achieving a Dice score of 40.3% on new lesion segmentation and an F1 score of 48.1% on new lesion detection. The codes and trained models are publicly available at https://github.com/pashtari/xunet.Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an essential prerequisite for monitoring and quantifying MS progression. Manual delineation of such lesions is time-consuming and expensive, especially because raters need to deal with 3D images and several modalities. In this paper, we propose Pre-U-Net, a 3D encoder-decoder architecture with pre-activation residual blocks, for the segmentation and detection of new MS lesions. Due to the limited training set and the class imbalance problem, we apply intensive data augmentation and use deep supervision to train our models effectively. Following the same U-shaped architecture but different blocks, Pre-U-Net outperforms U-Net and Res-U-Net on the MSSEG-2 dataset, achieving a Dice score of 40.3% on new lesion segmentation and an F1 score of 48.1% on new lesion detection. The codes and trained models are publicly available at https://github.com/pashtari/xunet.
Author Ashtari, Pooya
Sappey-Marinier, Dominique
Barile, Berardino
Van Huffel, Sabine
AuthorAffiliation 2 CREATIS (UMR 5220 CNRS – U1294 INSERM), Université Claude Bernard Lyon 1, Université de Lyon , Villeurbanne , France
1 Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven , Leuven , Belgium
AuthorAffiliation_xml – name: 2 CREATIS (UMR 5220 CNRS – U1294 INSERM), Université Claude Bernard Lyon 1, Université de Lyon , Villeurbanne , France
– name: 1 Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven , Leuven , Belgium
Author_xml – sequence: 1
  givenname: Pooya
  surname: Ashtari
  fullname: Ashtari, Pooya
– sequence: 2
  givenname: Berardino
  surname: Barile
  fullname: Barile, Berardino
– sequence: 3
  givenname: Sabine
  surname: Van Huffel
  fullname: Van Huffel, Sabine
– sequence: 4
  givenname: Dominique
  surname: Sappey-Marinier
  fullname: Sappey-Marinier, Dominique
BackLink https://hal.science/hal-05055069$$DView record in HAL
BookMark eNp9Uk1v1DAQjVCRaBd-ALdIXOCQxd-OL0hVVdpKq3KAStwsxx9brxJ7sZNF_HucTYXaPXCyZ_zemxnPu6jOQgy2qt5DsMa4FZ9d8CGvEUBoLThtGXpVnUPGUEMo_nn27P6mush5BwBDLUHn1fd7-7sepn70-97WWfc2xexz3dvsY6iz3Q42jGqcAxVMbexo9TGasg_bep9so0risEAemns7vq1eO9Vn--7pXFUPX69_XN02m283d1eXm0ZTQMZGAyQ0BK0zSredhS0wqBNIC8sgtYQqzJlzmFDiHHOEdAwDA2DrOCSGiQ6vqrtF10S1k_vkB5X-yKi8PCZi2kqVRl9mkgZ2VKhOG-wAaZUSGBCiDOZzeViUV9WXRWs_dYM1ugydVP9C9OVL8I9yGw9SMMIImAU-LQKPJ7Tby42cc4ACSgETB1iwH5-KpfhrsnmUg8_a9r0KNk5ZIo454VDQGfrhBLqLUwrlWwsKtbxoMl5QcEHpsr2crPvXAQRy9oc8-kPO_pCLPwqHn3C0XxZd5vP9f5h_ActnxFQ
CitedBy_id crossref_primary_10_1007_s40747_025_01945_2
crossref_primary_10_3389_fnins_2024_1457420
crossref_primary_10_1016_j_msard_2023_105064
crossref_primary_10_1016_j_nicl_2023_103491
crossref_primary_10_3389_fnins_2024_1326108
crossref_primary_10_3390_jimaging11010006
crossref_primary_10_1007_s10462_025_11143_8
crossref_primary_10_1016_j_nicl_2024_103611
Cites_doi 10.1007/978-3-030-01261-8_1
10.1136/jnnp.55.8.671
10.1109/CVPR.2017.243
10.1109/3DV.2016.79
10.1177/1352458518815602
10.1016/j.neuroimage.2019.03.068
10.1038/s41598-018-31911-7
10.1007/978-3-319-46723-8_49
10.5281/zenodo.6114127
10.1016/j.compmedimag.2020.101772
10.1038/s41592-020-01008-z
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2016.90
10.1109/ICCV.2017.324
10.1016/j.nicl.2020.102335
ContentType Journal Article
Copyright 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2022 Ashtari, Barile, Van Huffel and Sappey-Marinier.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2022 Ashtari, Barile, Van Huffel and Sappey-Marinier. 2022 Ashtari, Barile, Van Huffel and Sappey-Marinier
Copyright_xml – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2022 Ashtari, Barile, Van Huffel and Sappey-Marinier.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2022 Ashtari, Barile, Van Huffel and Sappey-Marinier. 2022 Ashtari, Barile, Van Huffel and Sappey-Marinier
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
5PM
DOA
DOI 10.3389/fnins.2022.975862
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_d1b59abcd3f048aa93044ad3708fd1b6
PMC9646406
oai:HAL:hal-05055069v1
10_3389_fnins_2022_975862
GrantInformation_xml – fundername: ;
GroupedDBID ---
29H
2WC
53G
5GY
5VS
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
3V.
7XB
88I
8FK
ACXDI
CCPQU
DWQXO
GNUQQ
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
1XC
5PM
ID FETCH-LOGICAL-c504t-c029c108fdac8be180d2b92c9e615e45a376ff3454ff6f44b630d018f714d69b3
IEDL.DBID DOA
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000884228500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Fri Oct 03 12:16:16 EDT 2025
Tue Sep 30 17:18:08 EDT 2025
Tue Oct 14 20:43:45 EDT 2025
Thu Sep 04 17:32:26 EDT 2025
Mon Jun 30 09:44:58 EDT 2025
Sat Nov 29 02:55:25 EST 2025
Tue Nov 18 20:41:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-c029c108fdac8be180d2b92c9e615e45a376ff3454ff6f44b630d018f714d69b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Edited by: Michel Dojat, Institut National de la Santé et de la Recherche Médicale (INSERM), France
Reviewed by: Shen Zhao, Sun Yat-sen University, China; Cédric Meurée, Inria Rennes—Bretagne Atlantique Research Centre, France
OpenAccessLink https://doaj.org/article/d1b59abcd3f048aa93044ad3708fd1b6
PQID 2728705567
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_d1b59abcd3f048aa93044ad3708fd1b6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9646406
hal_primary_oai_HAL_hal_05055069v1
proquest_miscellaneous_2737471951
proquest_journals_2728705567
crossref_primary_10_3389_fnins_2022_975862
crossref_citationtrail_10_3389_fnins_2022_975862
PublicationCentury 2000
PublicationDate 2022-10-26
PublicationDateYYYYMMDD 2022-10-26
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-26
  day: 26
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationYear 2022
Publisher Frontiers Research Foundation
Frontiers
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers
– name: Frontiers Media S.A
References B21
La Rosa (B13) 2020; 27
Isensee (B12) 2019
B14
McKinley (B16) 2018
Myronenko (B19) 2019
Ronneberger (B22) 2015
Wu (B24) 2018
Commowick (B5) 2018; 8
Çiçek (B4) 2016
B1
Huang (B10) 2017
Vukusic (B23) 2020; 26
(B18) 2020
Nills (B20) 2020; 84
B7
Isensee (B11) 2020; 18
Lin (B15) 2017
Ashtari (B2)
Aslani (B3) 2019; 196
He (B9)
He (B8)
Confavreux (B6) 1992; 55
Milletari (B17) 2016
References_xml – start-page: 3
  year: 2018
  ident: B24
  article-title: Group normalization
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
  doi: 10.1007/978-3-030-01261-8_1
– volume: 55
  start-page: 671
  year: 1992
  ident: B6
  article-title: EDMUS, a European database for multiple sclerosis
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.55.8.671
– ident: B14
– start-page: 4700
  year: 2017
  ident: B10
  article-title: “Densely connected convolutional networks,”
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE)
  doi: 10.1109/CVPR.2017.243
– start-page: 565
  year: 2016
  ident: B17
  article-title: “V-Net: fully convolutional neural networks for volumetric medical image segmentation,”
  publication-title: 2016 Fourth International Conference on 3D Vision
  doi: 10.1109/3DV.2016.79
– volume: 26
  start-page: 118
  year: 2020
  ident: B23
  article-title: Observatoire français de la sclérose en plaques (OFSEP): a unique multimodal nationwide MS registry in France
  publication-title: Multip. Scler.
  doi: 10.1177/1352458518815602
– volume: 196
  start-page: 1
  year: 2019
  ident: B3
  article-title: Multi-branch convolutional neural network for multiple sclerosis lesion segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.03.068
– volume: 8
  start-page: 1
  year: 2018
  ident: B5
  article-title: Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure
  publication-title: Sci. Rep
  doi: 10.1038/s41598-018-31911-7
– start-page: 424
  volume-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016
  year: 2016
  ident: B4
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
  doi: 10.1007/978-3-319-46723-8_49
– start-page: 630
  ident: B9
  article-title: “Identity mappings in deep residual networks,” in Computer Vision – ECCV 2016
– year: 2020
  ident: B18
  article-title: MONAI: Medical Open Network for AI
  publication-title: Zenodo
  doi: 10.5281/zenodo.6114127
– ident: B1
– start-page: 470
  volume-title: International MICCAI Brainlesion Workshop: BrainLes 2020. Lecture Notes in Computer Science, Vol. 12658
  ident: B2
  article-title: Low-rank convolutional networks for brain tumor segmentation
– ident: B7
– start-page: 234
  volume-title: International MICCAI Brainlesion Workshop: BrainLes 2018. Lecture Notes in Computer Science
  year: 2019
  ident: B12
  article-title: No New-Net
– volume: 84
  start-page: 101772
  year: 2020
  ident: B20
  article-title: Multiple sclerosis lesion activity segmentation with attention-guided two-path CNNs
  publication-title: Computer. Med. Imag. Graph
  doi: 10.1016/j.compmedimag.2020.101772
– volume: 18
  start-page: 203
  year: 2020
  ident: B11
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– ident: B21
– start-page: 234
  volume-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015
  year: 2015
  ident: B22
  article-title: U-Net: convolutional networks for biomedical image segmentation
  doi: 10.1007/978-3-319-24574-4_28
– start-page: 770
  ident: B8
  article-title: “Deep residual learning for image recognition,”
  publication-title: Proceedings of the IEEE Conference on computer Vision and Pattern Recognition (IEEE)
  doi: 10.1109/CVPR.2016.90
– start-page: 2980
  year: 2017
  ident: B15
  article-title: “Focal loss for dense object detection,”
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (IEEE)
  doi: 10.1109/ICCV.2017.324
– start-page: 456
  volume-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
  year: 2018
  ident: B16
  article-title: Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation
– start-page: 311
  volume-title: International MICCAI Brainlesion Workshop: BrainLes 2018. Lecture Notes in Computer Science, Vol. 11384
  year: 2019
  ident: B19
  article-title: 3D MRI brain tumor segmentation using autoencoder regularization
– volume: 27
  start-page: 102335
  year: 2020
  ident: B13
  article-title: Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: a deep learning method based on FLAIR and MP2RAGE
  publication-title: NeuroImage. Clin
  doi: 10.1016/j.nicl.2020.102335
SSID ssj0062842
Score 2.3807123
Snippet Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an essential prerequisite for monitoring and quantifying MS progression. Manual...
SourceID doaj
pubmedcentral
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 975862
SubjectTerms Brain cancer
Computer Science
Experiments
Lesions
Medical Imaging
Multiple sclerosis
Neural networks
Neuroscience
new lesions
pre-activation
Segmentation
Semantics
U-Net
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcODCq6CmFGQQ4oAUaieOE5_Qgqh6gFUlqNRb5Od2pdZbNmml_ntmnOyqufTC1XFenvH488znGUI-ljD_AYXYnBsjYYOChdyrRuXBlcE6BQi_NqnYRD2fN2dn6mR0uHUjrXJjE5OhdiuLPvLDosaQXFXJ-uvV3xyrRmF0dSyh8ZA8AmTDkdL1qzjZWGIJpjdFOyWeDAJoPkQ1YVOmDkNcRszWXRRfFEBmWUzWpZS-H1abcyRH3kGeU97knYXo6Nn__sJz8nSEoHQ26MwL8sDHl2R3FmH7fXlLP9FECk3e9l3yG4wg3ZAOaQf94euXHb3w6GWjnV9cjoeXItXRUef7xO2KFAn1C4okEzw6MTh-6Wk-9_0rcnr048_343ysw5Dbiok-t6xQlrMmOG0b43nDXGFUYZUHOORFpcFIhVDCCIcggxBGlswx3oSaCyeVKV-TnbiKfo9QUTLv8Tgv05VwQihuNJNNbVRolLQhI2wjhdaOScqxVsZFC5sVFFybBNei4NpBcBn5vL3lasjQcV_nbyjabUdMrp0aVutFO87V1nFTKW0sqCvYN61VyYTQrqxxCLiRGfkAijF5xvHsZ4ttWBewYlLd8IwcbJSgHc0CfMlWAzLyfnsZJjRGaXT0q2vsU6KjAJBvRuqJvk3eOL0Sl-cpNbiSQgJE27__5W_IExwTXIILeUB2-vW1f0se25t-2a3fpTn0D0Y3Jhc
  priority: 102
  providerName: ProQuest
Title New multiple sclerosis lesion segmentation and detection using pre-activation U-Net
URI https://www.proquest.com/docview/2728705567
https://www.proquest.com/docview/2737471951
https://hal.science/hal-05055069
https://pubmed.ncbi.nlm.nih.gov/PMC9646406
https://doaj.org/article/d1b59abcd3f048aa93044ad3708fd1b6
Volume 16
WOSCitedRecordID wos000884228500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1db9QwLIKNB14QMBAd4xQQ4gGpLG3TpHm8oU1DYqcKmHQ8VfncTtoytLtN4t9jp73T9QVeeMlD4jSpYzt24tiEvK-A_0ELsXlhjAADBRO5143Kg6uCdQo0fGlSsgk5mzXzuWq3Un2hT1gfHrhH3KErTK20sdAXiE1rBfY3166SrAnQloJtM6nWxlQvgwUI3bK_wwQTTB2GuIgYm7ssPylQkEU52oVSsH7YWy7RFXJLzxx7SW5tOydPyZNBX6TTfp7PyAMfn5O9aQRb-fo3_UCTB2c6Gt8j30Fi0bWHIF0CPAy-WNIrj0didOkvroeXRpHq6Kjzq-SIFSl6v19Q9AjBdw79KS09z2d-9YKcnxz_-HyaD0kTclszvsotK5UtEDnaNsYXDXOlUaVVHnQXz2sNEiWEitc8BBE4N6JijhVNkAV3QpnqJdmJN9G_IpRXzHt8e8t0zR3nqjCaiUYaFRolbMgIWyOxs0NEcUxscdWBZYF47xLeO8R71-M9Ix83XX714TT-BnyEK7MBxEjYqQLooxvoo_sXfWTkHazr6Bun068d1mESv5oJdV9k5GC97N3AwzATiZfAdS1kRt5umoH78EpFR39zhzAVWvWgpmZEjshlNOK4JS4uUxxvJbgAfWr_f_zma_IYMYe7aikOyM7q9s6_IY_s_WqxvJ2Qh3LeTMju0fGs_TZJrALlWdliKaHcbb-ctT__AEZlHOw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKQYILW0EEChgEHJBCncRx4gNCw1JN1WFUiVbqLfU6HalNykxa1D_Fb-S9LKPm0lsPXBNnc773-T2_jZB3Ccg_aCEmjLQWYKBgI_c0l6G3iTdWgoaf6abZRDad5oeHcm-N_O1zYTCssufEhqhtZXCPfCvO0CWXpiL7cvY7xK5R6F3tW2i0sNh1l3_AZFt-3vkO__d9HG__2P82DruuAqFJGa9Dw2JpIpZ7q0yuXZQzG2sZG-lgcXc8VSBy3ic85d4Lz7kWCbMsyn0WcSukTuC-t8htjpXFMFQw3uuZXwDVN95VgZlIYAq0XlQwAuWWL-clVgeP408SVHQRD9bBpl0ArG7HGIx5RdMdxmleWfi2H_xvU_aQ3O9UbDpqZeIRWXPlY7IxKlVdnV7SD7QJem28CRvkF5A87YMq6RLGw2zNl_TE4S4iXbrZaZecVVJVWmpd3cSulRQTBmYUg2gwNaTd2KYH4dTVT8jBjXzeU7JeVqV7RihPmHOYrsxUyi3nMtKKiTzT0udSGB8Q1v_1wnRF2LEXyEkBxhgCpWiAUiBQihYoAfm4uuSsrUBy3eCvCKXVQCwe3hyoFrOi46LCRjqVShsQR-BvpWTCOFc2yXAKIi0C8haAOLjHeDQp8Bj2PUyZkBdRQDZ70BUd7cGbrBAXkDer00BY6IVSpavOcUyCGyGg2QckG-B78MThmXJ-3JQ-l4ILUEGfX__w1-TueP_npJjsTHdfkHs4P6huxGKTrNeLc_eS3DEX9Xy5eNXILyVHN43-f-x7grc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFCEuvArCUGBBwAHJZG2v194DQoESNWqJIkGl9mS8rzRSa5fELepf49cx40dUX3rrgau9sZPNNzPf7LwIeRuB_AML0X6glAAHBQe5x6n0nYmcNhIYfqLqYRPJdJoeHsrZBvnb1cJgWmWnE2tFbUqNZ-TDMMGQXByLZOjatIjZzvjz2W8fJ0hhpLUbp9FAZM9e_gH3bfVpsgP_9bswHH_7-XXXbycM-DpmvPI1C6UOWOpMrlNlg5SZUMlQSwuG3vI4B_FzLuIxd044zpWImGFB6pKAGyFVBM-9RTaBkvNwQDZnk--zo84OCFD8daxVYF0SOAZNTBVcQjl0xaLAXuFh-FECYRdhzyrWwwPA1h1jauYV3tvP2rxiBsf3_-cNfEDuteSbjhppeUg2bPGIbI2KvCpPL-l7WqfD1nGGLfID1D_t0i3pCtbDzi1W9MTi-SJd2flpW7ZV0Lww1NiqzmorKJYSzCmm12DRSHPkTQ_8qa0ek4Mb-XlPyKAoC_uUUB4xa7GQmeUxN5zLQOVMpImSLpVCO4-wDgGZbtuz45SQkwzcNARNVoMmQ9BkDWg88mH9kbOmN8l1i78grNYLsa14faFczrNWS2UmULHMlQZBBc2e5zJinOcmSnALAiU88gZA2XvG7mg_w2s4ETFmQl4EHtnuAJi1ChG-yRp9Hnm9vg2qDONTeWHLc1wT4REJcH6PJD2s997Yv1Msjuum6FJwAeT02fUvf0XuAOiz_cl07zm5i9uDPCQU22RQLc_tC3JbX1SL1fJlK8yU_Lpp-P8Dt32NAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+multiple+sclerosis+lesion+segmentation+and+detection+using+pre-activation+U-Net&rft.jtitle=Frontiers+in+neuroscience&rft.au=Ashtari%2C+Pooya&rft.au=Barile%2C+Berardino&rft.au=Van+Huffel%2C+Sabine&rft.au=Sappey-Marinier%2C+Dominique&rft.date=2022-10-26&rft.pub=Frontiers+Media+S.A&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=16&rft_id=info:doi/10.3389%2Ffnins.2022.975862&rft.externalDocID=PMC9646406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon