Molecular digital data storage using DNA

Molecular data storage is an attractive alternative for dense and durable information storage, which is sorely needed to deal with the growing gap between information production and the ability to store data. DNA is a clear example of effective archival data storage in molecular form. In this Review...

Full description

Saved in:
Bibliographic Details
Published in:Nature reviews. Genetics Vol. 20; no. 8; pp. 456 - 466
Main Authors: Ceze, Luis, Nivala, Jeff, Strauss, Karin
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.08.2019
Nature Publishing Group
Subjects:
ISSN:1471-0056, 1471-0064, 1471-0064
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Molecular data storage is an attractive alternative for dense and durable information storage, which is sorely needed to deal with the growing gap between information production and the ability to store data. DNA is a clear example of effective archival data storage in molecular form. In this Review, we provide an overview of the process, the state of the art in this area and challenges for mainstream adoption. We also survey the field of in vivo molecular memory systems that record and store information within the DNA of living cells, which, together with in vitro DNA data storage, lie at the growing intersection of computer systems and biotechnology. Throughout evolution, DNA has been the primary medium of biological information storage. In this article, Ceze, Nivala and Strauss discuss how DNA can be adopted as a storage medium for custom data, as a potential future complement to current data storage media such as computer hard disks, optical disks and tape. They discuss strategies for coding, decoding and error correction and give examples of implementation both in vitro and in vivo.
AbstractList Molecular data storage is an attractive alternative for dense and durable information storage, which is sorely needed to deal with the growing gap between information production and the ability to store data. DNA is a clear example of effective archival data storage in molecular form. In this Review, we provide an overview of the process, the state of the art in this area and challenges for mainstream adoption. We also survey the field of in vivo molecular memory systems that record and store information within the DNA of living cells, which, together with in vitro DNA data storage, lie at the growing intersection of computer systems and biotechnology.
Molecular data storage is an attractive alternative for dense and durable information storage, which is sorely needed to deal with the growing gap between information production and the ability to store data. DNA is a clear example of effective archival data storage in molecular form. In this Review, we provide an overview of the process, the state of the art in this area and challenges for mainstream adoption. We also survey the field of in vivo molecular memory systems that record and store information within the DNA of living cells, which, together with in vitro DNA data storage, lie at the growing intersection of computer systems and biotechnology. Throughout evolution, DNA has been the primary medium of biological information storage. In this article, Ceze, Nivala and Strauss discuss how DNA can be adopted as a storage medium for custom data, as a potential future complement to current data storage media such as computer hard disks, optical disks and tape. They discuss strategies for coding, decoding and error correction and give examples of implementation both in vitro and in vivo.
Molecular data storage is an attractive alternative for dense and durable information storage, which is sorely needed to deal with the growing gap between information production and the ability to store data. DNA is a clear example of effective archival data storage in molecular form. In this Review, we provide an overview of the process, the state of the art in this area and challenges for mainstream adoption. We also survey the field of in vivo molecular memory systems that record and store information within the DNA of living cells, which, together with in vitro DNA data storage, lie at the growing intersection of computer systems and biotechnology.Molecular data storage is an attractive alternative for dense and durable information storage, which is sorely needed to deal with the growing gap between information production and the ability to store data. DNA is a clear example of effective archival data storage in molecular form. In this Review, we provide an overview of the process, the state of the art in this area and challenges for mainstream adoption. We also survey the field of in vivo molecular memory systems that record and store information within the DNA of living cells, which, together with in vitro DNA data storage, lie at the growing intersection of computer systems and biotechnology.
Molecular data storage is an attractive alternative for dense and durable information storage, which is sorely needed to deal with the growing gap between information production and the ability to store data. DNA is a clear example of effective archival data storage in molecular form. In this Review, we provide an overview of the process, the state of the art in this area and challenges for mainstream adoption. We also survey the field of in vivo molecular memory systems that record and store information within the DNA of living cells, which, together with in vitro DNA data storage, lie at the growing intersection of computer systems and biotechnology.Throughout evolution, DNA has been the primary medium of biological information storage. In this article, Ceze, Nivala and Strauss discuss how DNA can be adopted as a storage medium for custom data, as a potential future complement to current data storage media such as computer hard disks, optical disks and tape. They discuss strategies for coding, decoding and error correction and give examples of implementation both in vitro and in vivo.
Audience Academic
Author Strauss, Karin
Ceze, Luis
Nivala, Jeff
Author_xml – sequence: 1
  givenname: Luis
  orcidid: 0000-0002-1377-6217
  surname: Ceze
  fullname: Ceze, Luis
  email: luisceze@cs.washington.edu
  organization: Paul G. Allen School of Computer Science and Engineering, University of Washington
– sequence: 2
  givenname: Jeff
  orcidid: 0000-0002-8210-5417
  surname: Nivala
  fullname: Nivala, Jeff
  organization: Paul G. Allen School of Computer Science and Engineering, University of Washington
– sequence: 3
  givenname: Karin
  surname: Strauss
  fullname: Strauss, Karin
  organization: Paul G. Allen School of Computer Science and Engineering, University of Washington, Microsoft Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31068682$$D View this record in MEDLINE/PubMed
BookMark eNp9kltrFTEUhYNU7EV_gC8yIEh9mJqd20weD_VWqApenkNOJpmm5ExqkgH775vhtNZTVEJICN9a7Oy9DtHeFCeL0HPAJ4Bp_yYz4J1oMci6CW_pI3QArIMWY8H2ft-52EeHOV9iDAI6-gTtU8CiFz05QMefYrBmDjo1gx990aEZdNFNLjHp0TZz9tPYvP28eooeOx2yfXZ7HqEf7999P_3Ynn_5cHa6Om8Nx6y0a8eM63vJrYCBcEYsCCa5tmA7Rhl3UmNnoJdD55iWAyPAYS0o0F5jcIQeoeOt71WKP2ebi9r4bGwIerJxzooQCpJTgnlFXz5AL-OcplpdpbikHED099Sog1V-crEkbRZTtaqQkFIKWqmTv1B1DXbjTW278_V9R_B6R1CZYn-VUc85q7NvX3fZV3-wF1aHcpFjmIuPU94FX9z-aF5v7KCukt_odK3u5lWBbguYFHNO1ilTZ7b41HJ9UIDVkgy1TYaqyVBLMtRiDQ-Ud-b_05CtJld2Gm26b_C_RTc088MR
CitedBy_id crossref_primary_10_1021_acsnano_4c13882
crossref_primary_10_1016_j_csbj_2025_06_003
crossref_primary_10_1038_s41563_021_01096_y
crossref_primary_10_1007_s13206_024_00146_2
crossref_primary_10_1016_j_biosystems_2023_104934
crossref_primary_10_1109_TETC_2025_3546119
crossref_primary_10_1002_adfm_202511868
crossref_primary_10_1038_s41589_020_00711_4
crossref_primary_10_1002_advs_202505868
crossref_primary_10_1002_smtd_202101335
crossref_primary_10_1007_s42979_024_02672_0
crossref_primary_10_1039_D5SC00834D
crossref_primary_10_1038_s41467_020_18842_6
crossref_primary_10_1145_3516482
crossref_primary_10_1038_s42004_022_00685_5
crossref_primary_10_1002_adfm_202408852
crossref_primary_10_1039_D4NR04544K
crossref_primary_10_1038_s41589_021_00737_2
crossref_primary_10_5802_crchim_72
crossref_primary_10_1016_j_nlm_2023_107748
crossref_primary_10_1038_s41598_023_34160_5
crossref_primary_10_1039_C9SC04098F
crossref_primary_10_1021_acs_chemmater_5c00330
crossref_primary_10_1109_TNB_2021_3091685
crossref_primary_10_1002_smll_202100711
crossref_primary_10_1111_1751_7915_14171
crossref_primary_10_1109_TCBB_2020_3011582
crossref_primary_10_3390_nano11071725
crossref_primary_10_1016_j_ijbiomac_2024_137491
crossref_primary_10_1002_anie_202116718
crossref_primary_10_1002_adma_202412926
crossref_primary_10_1109_TIT_2024_3515896
crossref_primary_10_1002_cbic_202400670
crossref_primary_10_1038_s41586_023_06369_x
crossref_primary_10_1186_s12951_022_01242_x
crossref_primary_10_1002_nano_202100275
crossref_primary_10_1093_nar_gkz580
crossref_primary_10_1139_bcb_2021_0504
crossref_primary_10_1038_s41540_022_00233_w
crossref_primary_10_1109_COMST_2021_3066117
crossref_primary_10_1080_14686996_2024_2346068
crossref_primary_10_1002_sstr_202400203
crossref_primary_10_1038_s41467_020_14455_1
crossref_primary_10_1002_cplu_202200183
crossref_primary_10_1016_j_jmb_2023_168416
crossref_primary_10_1016_j_compbiolchem_2022_107696
crossref_primary_10_1371_journal_pone_0292228
crossref_primary_10_1016_j_tibtech_2020_12_008
crossref_primary_10_1109_TNB_2021_3121278
crossref_primary_10_1016_j_nantod_2020_100871
crossref_primary_10_1109_TCBB_2021_3127271
crossref_primary_10_1038_s42256_025_01003_z
crossref_primary_10_1109_TIT_2020_3030569
crossref_primary_10_1039_D4SC06958G
crossref_primary_10_1038_s41467_021_25023_6
crossref_primary_10_1073_pnas_2112812119
crossref_primary_10_1038_s41467_023_42223_4
crossref_primary_10_1093_nargab_lqab126
crossref_primary_10_3390_mi11110982
crossref_primary_10_1007_s12257_020_0022_9
crossref_primary_10_1039_D0NR07865D
crossref_primary_10_1016_j_csbj_2024_10_038
crossref_primary_10_1371_journal_pone_0321246
crossref_primary_10_1515_revic_2023_0018
crossref_primary_10_1016_j_cell_2021_03_007
crossref_primary_10_1177_02666669251349162
crossref_primary_10_1016_j_biosystems_2022_104664
crossref_primary_10_1038_s41563_021_01021_3
crossref_primary_10_1002_adma_202403071
crossref_primary_10_1038_s42003_020_01141_7
crossref_primary_10_1002_advs_202411354
crossref_primary_10_1016_j_csbj_2025_09_002
crossref_primary_10_1016_j_microc_2025_114315
crossref_primary_10_1073_pnas_2217330120
crossref_primary_10_1126_sciadv_adw2613
crossref_primary_10_1002_ange_202215759
crossref_primary_10_1002_smll_202412225
crossref_primary_10_1093_nsr_nwab028
crossref_primary_10_3390_act10100246
crossref_primary_10_1016_j_procir_2024_08_277
crossref_primary_10_3390_ijms25126449
crossref_primary_10_1021_acsnano_5c08183
crossref_primary_10_1016_j_bpj_2022_08_045
crossref_primary_10_1038_s41586_024_08040_5
crossref_primary_10_1038_s41598_022_19751_y
crossref_primary_10_1002_ange_202116718
crossref_primary_10_3390_app13126996
crossref_primary_10_1002_elps_202200079
crossref_primary_10_1371_journal_pone_0259868
crossref_primary_10_1111_csp2_13095
crossref_primary_10_1007_s41965_025_00202_2
crossref_primary_10_3390_ph15050572
crossref_primary_10_3390_ijms222111901
crossref_primary_10_1109_TMBMC_2024_3403488
crossref_primary_10_1002_cphc_202400863
crossref_primary_10_1021_jacs_2c02456
crossref_primary_10_1002_prot_26308
crossref_primary_10_1016_j_isci_2024_109575
crossref_primary_10_3390_biologics4040026
crossref_primary_10_1093_pnasnexus_pgaf233
crossref_primary_10_1016_j_eswa_2025_128714
crossref_primary_10_1039_D3SC01162C
crossref_primary_10_3389_fbioe_2022_916615
crossref_primary_10_1039_C9SC05133C
crossref_primary_10_1109_ACCESS_2020_2980036
crossref_primary_10_1007_s13206_025_00214_1
crossref_primary_10_1002_bies_202100051
crossref_primary_10_1038_s41565_023_01377_4
crossref_primary_10_1002_advs_202004038
crossref_primary_10_3762_bjoc_19_146
crossref_primary_10_1093_nsr_nwad229
crossref_primary_10_1039_D4CC06351A
crossref_primary_10_1186_s12859_024_05943_y
crossref_primary_10_1007_s12539_024_00671_6
crossref_primary_10_4467_26581264ARC_21_014_14494
crossref_primary_10_3390_app15095050
crossref_primary_10_1002_ange_202310801
crossref_primary_10_1093_nar_gkz1024
crossref_primary_10_1073_pnas_2004821117
crossref_primary_10_1109_JIOT_2023_3332903
crossref_primary_10_1002_anie_202506846
crossref_primary_10_1016_j_copbio_2023_102936
crossref_primary_10_3390_app15094760
crossref_primary_10_1016_j_compbiomed_2023_107548
crossref_primary_10_1038_s41570_022_00456_9
crossref_primary_10_1038_s41467_024_53455_3
crossref_primary_10_1038_s41557_022_01111_y
crossref_primary_10_1088_1367_2630_ac2a5d
crossref_primary_10_1016_j_nancom_2021_100391
crossref_primary_10_1002_marc_202100084
crossref_primary_10_1007_s12539_021_00476_x
crossref_primary_10_1016_j_bsheal_2025_03_006
crossref_primary_10_3390_biotech12020044
crossref_primary_10_1093_nsr_nwae469
crossref_primary_10_1002_ange_202506846
crossref_primary_10_1109_TMBMC_2023_3331579
crossref_primary_10_1038_s41467_024_51768_x
crossref_primary_10_1016_j_csbj_2023_09_004
crossref_primary_10_1007_s11427_021_2074_7
crossref_primary_10_1126_science_adf1354
crossref_primary_10_1126_science_abe4882
crossref_primary_10_3724_BNSFC_2025_02_19_0002
crossref_primary_10_1038_s43588_024_00717_1
crossref_primary_10_1016_j_csbj_2024_02_019
crossref_primary_10_1007_s13222_023_00460_3
crossref_primary_10_1021_jacs_2c10316
crossref_primary_10_1038_s43588_025_00793_x
crossref_primary_10_1109_TNB_2024_3424576
crossref_primary_10_1038_s41467_023_41729_1
crossref_primary_10_1002_ange_202003823
crossref_primary_10_1007_s11684_023_1013_y
crossref_primary_10_1002_anie_202215759
crossref_primary_10_1038_s41467_023_36297_3
crossref_primary_10_1038_s41467_020_19757_y
crossref_primary_10_1134_S0032946023020023
crossref_primary_10_1038_s41563_021_01089_x
crossref_primary_10_1214_21_AAP1662
crossref_primary_10_1038_s41467_025_62353_1
crossref_primary_10_1002_VIW_20230062
crossref_primary_10_1002_adma_202312915
crossref_primary_10_1002_ange_202416004
crossref_primary_10_1002_marc_202400482
crossref_primary_10_1002_cplu_202200127
crossref_primary_10_1038_s44172_023_00134_8
crossref_primary_10_3389_fgene_2023_1120791
crossref_primary_10_3390_bios14040177
crossref_primary_10_1002_adma_202415358
crossref_primary_10_1002_anie_202310801
crossref_primary_10_1038_s41467_020_18681_5
crossref_primary_10_1039_D4RA03656E
crossref_primary_10_1002_adfm_202305680
crossref_primary_10_1002_imt2_168
crossref_primary_10_1016_j_techfore_2023_122588
crossref_primary_10_1109_TMBMC_2025_3556858
crossref_primary_10_1002_cbic_202100420
crossref_primary_10_1016_j_cej_2025_161245
crossref_primary_10_1093_nar_gkab230
crossref_primary_10_1016_j_jtbi_2020_110316
crossref_primary_10_1038_s41598_024_53944_x
crossref_primary_10_3390_app142411663
crossref_primary_10_1109_TCOMM_2024_3506938
crossref_primary_10_1109_TNB_2021_3102122
crossref_primary_10_1007_s11427_022_2214_2
crossref_primary_10_1016_j_engstruct_2022_115178
crossref_primary_10_1016_j_eurpolymj_2019_109260
crossref_primary_10_1088_1361_648X_addbb7
crossref_primary_10_1109_MDAT_2021_3069369
crossref_primary_10_31857_S055529232302002X
crossref_primary_10_1038_s41467_021_21587_5
crossref_primary_10_1016_j_tibtech_2023_04_005
crossref_primary_10_1017_S0033583520000050
crossref_primary_10_1093_bib_bbaf102
crossref_primary_10_1021_jacs_3c01941
crossref_primary_10_1038_s41467_020_16958_3
crossref_primary_10_1073_pnas_2410164121
crossref_primary_10_1002_advs_201903785
crossref_primary_10_1109_TNB_2022_3181615
crossref_primary_10_1002_adhm_202302652
crossref_primary_10_1088_2058_9565_abd3dc
crossref_primary_10_1016_j_bios_2025_117132
crossref_primary_10_1070_RCR4994
crossref_primary_10_1038_s41598_023_29575_z
crossref_primary_10_1002_adma_202302345
crossref_primary_10_1038_s41587_021_00969_6
crossref_primary_10_1093_bioadv_vbad117
crossref_primary_10_1186_s12934_020_01387_0
crossref_primary_10_1002_chem_202203919
crossref_primary_10_1039_D1SC01098K
crossref_primary_10_1021_acscentsci_2c00460
crossref_primary_10_1007_s13205_021_02882_w
crossref_primary_10_3390_math12081235
crossref_primary_10_1016_j_biotechadv_2020_107639
crossref_primary_10_1002_advs_202303197
crossref_primary_10_1016_j_ymssp_2024_111458
crossref_primary_10_1002_adom_202300991
crossref_primary_10_1016_j_compbiomed_2023_107244
crossref_primary_10_1039_D5AN00353A
crossref_primary_10_1002_sstr_202000046
crossref_primary_10_1016_j_tibtech_2023_08_001
crossref_primary_10_1039_D5TB00869G
crossref_primary_10_1093_nsr_nwaa007
crossref_primary_10_1109_ACCESS_2020_2995812
crossref_primary_10_1021_jacs_3c00081
crossref_primary_10_1093_nar_gkab1209
crossref_primary_10_1002_advs_202402951
crossref_primary_10_1038_s41467_023_38876_w
crossref_primary_10_1002_cbic_202200521
crossref_primary_10_1016_j_tics_2022_01_007
crossref_primary_10_1038_s41467_022_33046_w
crossref_primary_10_1038_s41467_025_55986_9
crossref_primary_10_1038_s41598_021_97570_3
crossref_primary_10_1089_cmb_2024_0697
crossref_primary_10_1016_j_chempr_2021_05_012
crossref_primary_10_1016_j_jtbi_2021_110984
crossref_primary_10_1038_s41565_024_01771_6
crossref_primary_10_1038_s41467_021_24497_8
crossref_primary_10_1109_TBCAS_2023_3342704
crossref_primary_10_1002_advs_202305921
crossref_primary_10_1016_j_addr_2023_114872
crossref_primary_10_1038_s41467_021_24991_z
crossref_primary_10_1088_2399_6528_ad246d
crossref_primary_10_1109_TCSI_2023_3311145
crossref_primary_10_1038_d41586_024_03312_6
crossref_primary_10_1038_s41586_022_04994_6
crossref_primary_10_1088_1367_2630_ac3883
crossref_primary_10_1002_smll_202309867
crossref_primary_10_1002_adhm_202401207
crossref_primary_10_1021_acsomega_5c00645
crossref_primary_10_1002_anie_202416004
crossref_primary_10_1021_jacs_2c08135
crossref_primary_10_1109_TIT_2022_3184903
crossref_primary_10_1038_s41467_021_27846_9
crossref_primary_10_1016_j_bbrep_2025_101962
crossref_primary_10_1002_anie_202003823
crossref_primary_10_1109_ACCESS_2023_3235201
crossref_primary_10_1007_s41965_024_00149_w
crossref_primary_10_1016_j_biosystems_2023_104870
crossref_primary_10_1038_s41467_025_61991_9
crossref_primary_10_1038_s41598_023_43658_x
crossref_primary_10_1016_j_tibtech_2023_03_005
crossref_primary_10_1051_e3sconf_202341201090
crossref_primary_10_1002_smsc_202400094
crossref_primary_10_1109_ACCESS_2025_3568380
crossref_primary_10_3390_ijms21062191
crossref_primary_10_1038_s41570_024_00576_4
crossref_primary_10_1002_adsr_202300176
crossref_primary_10_1002_adma_202307499
crossref_primary_10_1109_ACCESS_2023_3332254
crossref_primary_10_1145_3626233
crossref_primary_10_1016_j_progpolymsci_2023_101677
crossref_primary_10_3389_fbioe_2021_689797
crossref_primary_10_1038_s41598_022_18108_9
crossref_primary_10_1038_s41467_024_55527_w
crossref_primary_10_1038_s44160_025_00805_8
crossref_primary_10_1016_j_chempr_2025_102571
crossref_primary_10_1145_3723166
crossref_primary_10_1016_j_cej_2024_150485
crossref_primary_10_1016_j_cclet_2023_109104
crossref_primary_10_1007_s12668_020_00764_8
crossref_primary_10_1021_jacs_3c13953
crossref_primary_10_1093_nar_gkaf733
crossref_primary_10_1002_cjoc_202300272
crossref_primary_10_1007_s11047_023_09964_z
crossref_primary_10_1109_TMBMC_2024_3403755
crossref_primary_10_1109_TNB_2023_3303512
Cites_doi 10.1002/j.1538-7305.1948.tb01338.x
10.1073/pnas.1202344109
10.1371/journal.pcbi.1003145
10.1038/srep14138
10.1126/science.aaf1175
10.1101/433524
10.1038/nbt.3423
10.1021/bp060261y
10.1038/nmeth.3147
10.1126/science.1226355
10.1038/21092
10.1016/j.procs.2016.05.398
10.1080/00043249.1996.10791743
10.1126/science.1190719
10.1093/nar/gkp1060
10.1101/439521
10.1145/602421.602426
10.1038/nrg.2017.15
10.1126/science.7725109
10.1111/1755-0998.12134
10.1145/2872362.2872397
10.1038/nmat4594
10.1098/rspb.2012.1745
10.1016/j.fsigen.2013.09.003
10.1002/anie.201411378
10.1038/s41598-017-05188-1
10.1038/s41570-018-0051-5
10.1126/science.aaj2038
10.1016/j.cub.2013.06.047
10.1074/jbc.X112.442855
10.1146/annurev-anchem-062011-143028
10.2144/000113218
10.1109/TMAG.2015.2397880
10.1038/nrg.2016.49
10.1038/nature24286
10.1038/nbt.4079
10.1038/nbt.4173
10.1137/0108018
10.1021/acs.biochem.7b00937
10.1126/science.aad8559
10.1126/science.1258096
10.1126/science.aag0511
10.1038/nmeth.4108
10.1021/bp049917i
10.1126/science.1256272
10.1016/j.cell.2009.12.034
10.1101/348987
10.1126/science.aap8992
10.1038/nmeth.2918
10.1109/ISIT.2017.8007106
10.1126/science.1172005
10.1126/science.aao0958
10.1038/nature15386
10.1038/s41576-018-0052-8
10.1063/1.5007621
10.1021/la703235y
10.1038/nature11875
10.1126/science.293.5536.1763c
10.1101/367052
10.1371/journal.pone.0002815
10.1038/nature23017
ContentType Journal Article
Copyright Springer Nature Limited 2019
COPYRIGHT 2019 Nature Publishing Group
Springer Nature Limited 2019.
Copyright_xml – notice: Springer Nature Limited 2019
– notice: COPYRIGHT 2019 Nature Publishing Group
– notice: Springer Nature Limited 2019.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
DOI 10.1038/s41576-019-0125-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest Central Student




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1471-0064
EndPage 466
ExternalDocumentID A593699963
31068682
10_1038_s41576_019_0125_3
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFFNX
AFKRA
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
IHW
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QP
7QR
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ID FETCH-LOGICAL-c504t-bf4cf8895e61d2542e16495ae1e74345f9a0fc189d7f4a9d42151b63138a01f23
IEDL.DBID M7P
ISICitedReferencesCount 401
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475969100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0056
1471-0064
IngestDate Sun Nov 09 09:44:14 EST 2025
Mon Oct 06 18:25:48 EDT 2025
Sat Nov 29 13:03:04 EST 2025
Sat Nov 29 10:10:28 EST 2025
Wed Nov 26 10:32:02 EST 2025
Thu May 22 21:03:21 EDT 2025
Mon Jul 21 05:46:49 EDT 2025
Sat Nov 29 02:34:58 EST 2025
Tue Nov 18 21:58:34 EST 2025
Fri Feb 21 02:40:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-bf4cf8895e61d2542e16495ae1e74345f9a0fc189d7f4a9d42151b63138a01f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8210-5417
0000-0002-1377-6217
PMID 31068682
PQID 2259351168
PQPubID 44267
PageCount 11
ParticipantIDs proquest_miscellaneous_2231953205
proquest_journals_2259351168
gale_infotracmisc_A593699963
gale_infotracacademiconefile_A593699963
gale_incontextgauss_ISR_A593699963
gale_healthsolutions_A593699963
pubmed_primary_31068682
crossref_citationtrail_10_1038_s41576_019_0125_3
crossref_primary_10_1038_s41576_019_0125_3
springer_journals_10_1038_s41576_019_0125_3
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Genetics
PublicationTitleAbbrev Nat Rev Genet
PublicationTitleAlternate Nat Rev Genet
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References ErlichYZielinskiDDNA Fountain enables a robust and efficient storage architectureScience20173559509541:CAS:528:DC%2BC2sXjsVCgsrc%3D10.1126/science.aaj2038
WongPCWongK-kFooteHOrganic data memory using the DNA approachCommun. ACM200346959810.1145/602421.602426
Bornholt, J. et al. A DNA-based archival storage system. Presented at the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ‘16) (2016).
PortneyNGWuYQuezadaLKLonardiSOzkanMLength-based encoding of binary data in DNALangmuir200824161316161:CAS:528:DC%2BD1cXhtFCht70%3D10.1021/la703235y
JensenMADavisRWTemplate-independent enzymatic oligonucleotide synthesis (TiEOS): its history, prospects, and challengesBiochemistry201857182118321:CAS:528:DC%2BC1cXktlKhsr8%3D10.1021/acs.biochem.7b00937
IvanovaNVKuzminaMLProtocols for dry DNA storage and shipment at room temperatureMol. Ecol. Resour.2013138908981:CAS:528:DC%2BC3sXht1OqtrnJ10.1111/1755-0998.12134
DoudnaJACharpentierEThe new frontier of genome engineering with CRISPR-Cas9Science2014346125809610.1126/science.1258096
FriedlandAESynthetic gene networks that countScience2009324119912021:CAS:528:DC%2BD1MXmsVGisLw%3D10.1126/science.1172005
Lee, H. H., Kalhor, R., Goela, N., Bolot, J. & Church, G. M. Enzymatic DNA synthesis for digital information storage. Preprint at bioRxivhttps://www.biorxiv.org/content/10.1101/348987v1 (2018).
ShannonCThe mathematical theory of communicationBell Syst. Tech. J.19482737942310.1002/j.1538-7305.1948.tb01338.x
HowlettSECastilloHSGioeniLJRobertsonJMDonfackJEvaluation of DNAstableTM for DNA storage at ambient temperatureForens. Sci. Int. Genet.201481701781:CAS:528:DC%2BC3sXitVWntrjN10.1016/j.fsigen.2013.09.003
KosuriSChurchGMLarge-scale de novo DNA synthesis: technologies and applicationsNat. Methods2014114995071:CAS:528:DC%2BC2cXntVSnu7s%3D10.1038/nmeth.2918
ShethRUWangHHDNA-based memory devices for recording cellular eventsNat. Rev. Genet.2018197187321:CAS:528:DC%2BC1cXhslKjt7nM10.1038/s41576-018-0052-8
AlbrechtTRBit-patterned magnetic recording: theory, media fabrication, and recording performanceIEEE Trans. Magn.201551080034210.1109/TMAG.2015.2397880
OrganickLRandom access in large-scale DNA data storageNat. Biotechnol.2018362422481:CAS:528:DC%2BC1cXivFGitr4%3D10.1038/nbt.4079This study presents an end-to-end discussion of DNA data storage, demonstrating the ability to perform random access at a large scale, the first error correction that tolerates insertions and deletions, and the largest amount of digital data in DNA as of 2019
Choi, Y. et al. Addition of degenerate bases to DNA-based data storage for increased information capacity. Preprint at bioRxivhttps://www.biorxiv.org/content/10.1101/367052v1 (2018).
ShethRUYimSSWuFLWangHHMultiplex recording of cellular events over time on CRISPR biological tapeScience2017358145714611:CAS:528:DC%2BC2sXhvFGmtr3N10.1126/science.aao0958
RuttenMGTAVaandragerFWElemansJAAWNolteRJMEncoding information into polymersNat. Rev. Chem.2018236538110.1038/s41570-018-0051-5
Heckel, R., Shomorony, I., Ramchandran, K. & Tse, D. N. Fundamental limits of DNA storage systems. Presented at the 2017 IEEE International Symposium on Information Theory (ISIT) (2017).
YazdiSMHTYuanYMaJZhaoHMilenkovicOARewritable, random-access DNA-based storage systemSci. Rep.2015510.1038/srep14138This paper proposes PCR-based random access
ShendureJDNA sequencing at 40: past, present and futureNature20175503453531:CAS:528:DC%2BC2sXhs1eksrvL10.1038/nature24286
Willsey, M. et al. in Proc. 24th Int. Conf. on Architectural Support for Programming Languages and Operating Systems 183–197 (ACM, 2019).
GrassRNHeckelRPudduMPaunescuDStarkWJRobust chemical preservation of digital information on DNA in silica with error-correcting codesAngew. Chem.201554255225551:CAS:528:DC%2BC2MXis1Snsr8%3D10.1002/anie.201411378This study introduces the first robust system based on error correcting codes using inner codes and outer codes for DNA data storage, and it demonstrates silica encapsulation for greater durability
ShipmanSLNivalaJMacklisJDChurchGMCRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteriaNature20175473453491:CAS:528:DC%2BC2sXhtFOjtrfN10.1038/nature23017
GibsonDGCreation of a bacterial cell controlled by a chemically synthesized genomeScience201032952571:CAS:528:DC%2BC3cXotVeqsLg%3D10.1126/science.1190719
HamTSLeeSKKeaslingJDArkinAPDesign and construction of a double inversion recombination switch for heritable sequential genetic memoryPLOS ONE2008310.1371/journal.pone.0002815
AritaMOhashiYSecret signatures inside genomic DNABiotechnol. Prog.200420160516071:CAS:528:DC%2BD2cXlsFaht7o%3D10.1021/bp049917i
AilenbergMRotsteinODAn improved Huffman coding method for archiving text, images, and music characters in DNABiotechniques2009477477541:CAS:528:DC%2BD1MXhtFKmurjK10.2144/000113218
Dawkins, R. The Blind Watchmaker (Longman Scientific & Technical, 1986).
YachieNSekiyamaKSugaharaJOhashiYTomitaMAlignment-based approach for durable data storage into living organismsBiotechnol. Prog.2007235015051:CAS:528:DC%2BD2sXot1aisg%3D%3D10.1021/bp060261y
ChurchGMGaoYKosuriSNext-generation digital information storage in DNAScience2012337162816281:CAS:528:DC%2BC38Xhtl2ntrrL10.1126/science.1226355
GoodwinSMcPhersonJDMcCombieWRComing of age: ten years of next-generation sequencing technologiesNat. Rev. Genet.2016173333511:CAS:528:DC%2BC28XnvFOksL8%3D10.1038/nrg.2016.49
ChoiKNgAHFobelRWheelerARDigital microfluidicsAnnu. Rev. Anal. Chem.201254134401:CAS:528:DC%2BC38Xht1GmtLnF10.1146/annurev-anchem-062011-143028
KalhorRMaliPChurchGMRapidly evolving homing CRISPR barcodesNat. Methods2017141952001:CAS:528:DC%2BC28XitVSrurbF10.1038/nmeth.4108
NeimanMSOn the molecular memory systems and the directed mutationsRadiotekhnika1965618
GoldmanNTowards practical, high-capacity, low-maintenance information storage in synthesized DNANature201349477801:CAS:528:DC%2BC3sXhsVygsLg%3D10.1038/nature11875Church et al. (2012) and Goldman et al. (2013) feature key work on the modern reincarnation and demonstration of DNA data storage ideas
BancroftCLong-term storage of information in DNAScience2001293176317651:CAS:528:DC%2BD3MXmvVSmsbc%3D10.1126/science.293.5536.1763c
ReedISSolomonGPolynomial codes over certain finite fieldsJ. Soc. Ind. Appl. Math.1960830030410.1137/0108018
MarraffiniLACRISPR-Cas immunity in prokaryotesNature201552655611:CAS:528:DC%2BC2MXhs1SitLjL10.1038/nature15386
ClellandCTRiscaVBancroftCHiding messages in DNA microdotsNature19993995335341:CAS:528:DyaK1MXjvFeitrs%3D10.1038/21092
YazdiSMHTGabrysRMilenkovicOPortable and error-free DNA-based data storageSci. Rep.2017710.1038/s41598-017-05188-1
CaruthersMHThe chemical synthesis of DNA/RNA: our gift to scienceJ. Biol. Chem.2013288142014271:CAS:528:DC%2BC3sXosFOksw%3D%3D10.1074/jbc.X112.442855
Anavy, L., Vaknin, I., Atar, O., Amit, R. & Yakhini, Z. Improved DNA based storage capacity and fidelity using composite DNA letters. Preprint at bioRxivhttps://www.biorxiv.org/content/10.1101/433524v1 (2018).
Newman, S. et al. High density DNA data storage library via dehydration with digital microfluidic retrieval. Nat. Commun.10, 1706 (2019).
Heckel, R., Mikutis, G. & Grass, R. N. A characterization of the DNA data storage channel. Preprint at arXivhttps://arxiv.org/abs/1803.03322 (2018).
PerliSDCuiCHLuTKContinuous genetic recording with self-targeting CRISPR-Cas in human cellsScience2016353aag051110.1126/science.aag0511
DeamerDAkesonMBrantonDThree decades of nanopore sequencingNat. Biotechnol.2016345185241:CAS:528:DC%2BC28XnsVahtrY%3D10.1038/nbt.3423
Stewart, K. et al. in DNA Computing and Molecular Programming (eds Doty, D. & Dietz, H.) 55–70 (Springer International Publishing, Cham, 2018).
FarzadfardFLuTKGenomically encoded analog memory with precise in vivo DNA writing in living cell populationsScience2014346125627210.1126/science.1256272
YangLPermanent genetic memory with>1-byte capacityNat. Methods201411126112661:CAS:528:DC%2BC2cXhvVSqsbnE10.1038/nmeth.3147
BaumEBBuilding an associative memory vastly larger than the brainScience19952685835851:CAS:528:DyaK2MXlt1KntLs%3D10.1126/science.7725109
Tavella, F. et al. DNA molecular storage system: transferring digitally encoded information through bacterial nanonetworks. Preprint at arXivhttps://arxiv.org/abs/1801.04774 (2018).
GlaserJIStatistical analysis of molecular signal recordingPLOS Comput. Biol.201391:CAS:528:DC%2BC3sXht1ygu7nI10.1371/journal.pcbi.1003145
BlawatMForward error correction for DNA data storageProcedia Comput. Sci.2016801011102210.1016/j.procs.2016.05.398
DavisJMicrovenusArt J.199655707410.1080/00043249.1996.10791743
WienerNInterview: machines smarter than men?US News World Rep.1964568486
Reisel, D., Gantz, J. & Rydning, J. Data age 2025: the digitization of the world from edge to core. Seagate https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf (2018).
RoquetNSoleimanyAPFerrisACAaronsonSLuTKSynthetic recombinase-based state machines in living cellsScience2016353aad855910.1126/science.aad8559
AllentoftMEThe half-life of DNA in bone: measuring decay kinetics in 158 dated fossilsProc. Biol. Sci.2012279472447331:CAS:528:DC%2BC38XhvVyms7rI10.1098/rspb.2012.1745
BonnetJChain and conformation stability of solid-state DNA: implications for room temperature storageNucleic Acids Res.2009381531154610.1093/nar/gkp1060
InnissMCSilverPABuilding synthetic memoryCurr. Biol.201323R812R8161:CAS:528:DC%2BC3sXhsVWjtLfM10.1016/j.cub.2013.06.047
ZhirnovVZadeganRMSandhuGSChurchGMHughesWLNucleic acid memoryNat. Mater.2016153663701:CAS:528:DC%2BC28XkvVCitb0%3D10.1038/nmat4594This paper presents a detailed analysis of properties of DNA as a data storage medium and compares it with other media
Rashtchian, C. et al. Clustering billions of reads for DNA data storage. NIPShttps://papers.nips.cc/paper/6928-clustering-billions-of-reads-for-dna-data-storage.pdf (2017).
BurrillDRSilverPAMaking cellular memoriesCell201014013181:CAS:528:DC%2BC3cXkvVWitbs%3D10.1
MC Inniss (125_CR59) 2013; 23
N Goldman (125_CR20) 2013; 494
D Deamer (125_CR46) 2016; 34
125_CR49
S Palluk (125_CR42) 2018; 36
C Bancroft (125_CR13) 2001; 293
GM Church (125_CR19) 2012; 337
DR Burrill (125_CR60) 2010; 140
125_CR40
C Shannon (125_CR36) 1948; 27
SL Shipman (125_CR24) 2016; 353
SD Perli (125_CR23) 2016; 353
RN Grass (125_CR6) 2015; 54
N Yachie (125_CR16) 2007; 23
J Shendure (125_CR45) 2017; 550
MA Jensen (125_CR41) 2018; 57
N Roquet (125_CR64) 2016; 353
L Organick (125_CR3) 2018; 36
M Arita (125_CR15) 2004; 20
DG Gibson (125_CR22) 2010; 329
Y Erlich (125_CR32) 2017; 355
125_CR39
NV Ivanova (125_CR52) 2013; 13
ME Allentoft (125_CR50) 2012; 279
V Zhirnov (125_CR4) 2016; 15
125_CR57
125_CR58
125_CR10
125_CR54
LA Marraffini (125_CR67) 2015; 526
CT Clelland (125_CR12) 1999; 399
RU Sheth (125_CR25) 2017; 358
S Goodwin (125_CR44) 2016; 17
S Kosuri (125_CR30) 2014; 11
JI Glaser (125_CR27) 2013; 9
RU Sheth (125_CR7) 2018; 19
SMHT Yazdi (125_CR43) 2017; 7
F Farzadfard (125_CR66) 2014; 346
MH Caruthers (125_CR33) 2013; 288
TR Albrecht (125_CR35) 2015; 51
R Kalhor (125_CR69) 2017; 14
SM Prakadan (125_CR56) 2017; 18
J Davis (125_CR11) 1996; 55
125_CR21
RE Fontana (125_CR48) 2018; 8
MS Neiman (125_CR9) 1965; 6
EB Baum (125_CR47) 1995; 268
125_CR5
125_CR38
SE Howlett (125_CR53) 2014; 8
M Blawat (125_CR72) 2016; 80
W Tang (125_CR26) 2018; 360
125_CR34
125_CR71
L Yang (125_CR65) 2014; 11
IS Reed (125_CR37) 1960; 8
N Wiener (125_CR8) 1964; 56
J Bonnet (125_CR62) 2012; 109
125_CR1
MGTA Rutten (125_CR2) 2018; 2
M Ailenberg (125_CR18) 2009; 47
J Bonnet (125_CR51) 2009; 38
TS Ham (125_CR61) 2008; 3
NG Portney (125_CR17) 2008; 24
AE Friedland (125_CR63) 2009; 324
K Choi (125_CR55) 2012; 5
JA Doudna (125_CR68) 2014; 346
PC Wong (125_CR14) 2003; 46
125_CR28
125_CR29
SMHT Yazdi (125_CR31) 2015; 5
SL Shipman (125_CR70) 2017; 547
References_xml – reference: ShipmanSLNivalaJMacklisJDChurchGMCRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteriaNature20175473453491:CAS:528:DC%2BC2sXhtFOjtrfN10.1038/nature23017
– reference: FontanaREDecadGMMoore’s law realities for recording systems and memory storage components: HDD, tape, NAND, and opticalAIP Adv.2018805650610.1063/1.5007621
– reference: Willsey, M. et al. in Proc. 24th Int. Conf. on Architectural Support for Programming Languages and Operating Systems 183–197 (ACM, 2019).
– reference: PallukSDe novo DNA synthesis using polymerase-nucleotide conjugatesNat. Biotechnol.2018366456501:CAS:528:DC%2BC1cXhtFGjs7%2FI10.1038/nbt.4173
– reference: DavisJMicrovenusArt J.199655707410.1080/00043249.1996.10791743
– reference: Lee, H. H., Kalhor, R., Goela, N., Bolot, J. & Church, G. M. Enzymatic DNA synthesis for digital information storage. Preprint at bioRxivhttps://www.biorxiv.org/content/10.1101/348987v1 (2018).
– reference: NeimanMSOn the molecular memory systems and the directed mutationsRadiotekhnika1965618
– reference: FarzadfardFLuTKGenomically encoded analog memory with precise in vivo DNA writing in living cell populationsScience2014346125627210.1126/science.1256272
– reference: KalhorRMaliPChurchGMRapidly evolving homing CRISPR barcodesNat. Methods2017141952001:CAS:528:DC%2BC28XitVSrurbF10.1038/nmeth.4108
– reference: BaumEBBuilding an associative memory vastly larger than the brainScience19952685835851:CAS:528:DyaK2MXlt1KntLs%3D10.1126/science.7725109
– reference: ErlichYZielinskiDDNA Fountain enables a robust and efficient storage architectureScience20173559509541:CAS:528:DC%2BC2sXjsVCgsrc%3D10.1126/science.aaj2038
– reference: GrassRNHeckelRPudduMPaunescuDStarkWJRobust chemical preservation of digital information on DNA in silica with error-correcting codesAngew. Chem.201554255225551:CAS:528:DC%2BC2MXis1Snsr8%3D10.1002/anie.201411378This study introduces the first robust system based on error correcting codes using inner codes and outer codes for DNA data storage, and it demonstrates silica encapsulation for greater durability
– reference: Dawkins, R. The Blind Watchmaker (Longman Scientific & Technical, 1986).
– reference: RoquetNSoleimanyAPFerrisACAaronsonSLuTKSynthetic recombinase-based state machines in living cellsScience2016353aad855910.1126/science.aad8559
– reference: GibsonDGCreation of a bacterial cell controlled by a chemically synthesized genomeScience201032952571:CAS:528:DC%2BC3cXotVeqsLg%3D10.1126/science.1190719
– reference: MarraffiniLACRISPR-Cas immunity in prokaryotesNature201552655611:CAS:528:DC%2BC2MXhs1SitLjL10.1038/nature15386
– reference: OrganickLRandom access in large-scale DNA data storageNat. Biotechnol.2018362422481:CAS:528:DC%2BC1cXivFGitr4%3D10.1038/nbt.4079This study presents an end-to-end discussion of DNA data storage, demonstrating the ability to perform random access at a large scale, the first error correction that tolerates insertions and deletions, and the largest amount of digital data in DNA as of 2019
– reference: KosuriSChurchGMLarge-scale de novo DNA synthesis: technologies and applicationsNat. Methods2014114995071:CAS:528:DC%2BC2cXntVSnu7s%3D10.1038/nmeth.2918
– reference: ShethRUYimSSWuFLWangHHMultiplex recording of cellular events over time on CRISPR biological tapeScience2017358145714611:CAS:528:DC%2BC2sXhvFGmtr3N10.1126/science.aao0958
– reference: DeamerDAkesonMBrantonDThree decades of nanopore sequencingNat. Biotechnol.2016345185241:CAS:528:DC%2BC28XnsVahtrY%3D10.1038/nbt.3423
– reference: InnissMCSilverPABuilding synthetic memoryCurr. Biol.201323R812R8161:CAS:528:DC%2BC3sXhsVWjtLfM10.1016/j.cub.2013.06.047
– reference: BurrillDRSilverPAMaking cellular memoriesCell201014013181:CAS:528:DC%2BC3cXkvVWitbs%3D10.1016/j.cell.2009.12.034
– reference: Rashtchian, C. et al. Clustering billions of reads for DNA data storage. NIPShttps://papers.nips.cc/paper/6928-clustering-billions-of-reads-for-dna-data-storage.pdf (2017).
– reference: FriedlandAESynthetic gene networks that countScience2009324119912021:CAS:528:DC%2BD1MXmsVGisLw%3D10.1126/science.1172005
– reference: PrakadanSMShalekAKWeitzDAScaling by shrinking: empowering single-cell’omics’ with microfluidic devicesNat. Rev. Genet.2017183453611:CAS:528:DC%2BC2sXlvVKhtLY%3D10.1038/nrg.2017.15
– reference: DoudnaJACharpentierEThe new frontier of genome engineering with CRISPR-Cas9Science2014346125809610.1126/science.1258096
– reference: GlaserJIStatistical analysis of molecular signal recordingPLOS Comput. Biol.201391:CAS:528:DC%2BC3sXht1ygu7nI10.1371/journal.pcbi.1003145
– reference: Anavy, L., Vaknin, I., Atar, O., Amit, R. & Yakhini, Z. Improved DNA based storage capacity and fidelity using composite DNA letters. Preprint at bioRxivhttps://www.biorxiv.org/content/10.1101/433524v1 (2018).
– reference: ZhirnovVZadeganRMSandhuGSChurchGMHughesWLNucleic acid memoryNat. Mater.2016153663701:CAS:528:DC%2BC28XkvVCitb0%3D10.1038/nmat4594This paper presents a detailed analysis of properties of DNA as a data storage medium and compares it with other media
– reference: ClellandCTRiscaVBancroftCHiding messages in DNA microdotsNature19993995335341:CAS:528:DyaK1MXjvFeitrs%3D10.1038/21092
– reference: Reisel, D., Gantz, J. & Rydning, J. Data age 2025: the digitization of the world from edge to core. Seagate https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf (2018).
– reference: Takahashi, C. N., Nguyen, B. H., Strauss, K. & Ceze, L. H. Demonstration of end-to-end automation of DNA data storage. Preprint at bioRxivhttps://www.biorxiv.org/content/10.1101/439521v1 (2018).
– reference: Newman, S. et al. High density DNA data storage library via dehydration with digital microfluidic retrieval. Nat. Commun.10, 1706 (2019).
– reference: AllentoftMEThe half-life of DNA in bone: measuring decay kinetics in 158 dated fossilsProc. Biol. Sci.2012279472447331:CAS:528:DC%2BC38XhvVyms7rI10.1098/rspb.2012.1745
– reference: ShannonCThe mathematical theory of communicationBell Syst. Tech. J.19482737942310.1002/j.1538-7305.1948.tb01338.x
– reference: ShendureJDNA sequencing at 40: past, present and futureNature20175503453531:CAS:528:DC%2BC2sXhs1eksrvL10.1038/nature24286
– reference: YazdiSMHTGabrysRMilenkovicOPortable and error-free DNA-based data storageSci. Rep.2017710.1038/s41598-017-05188-1
– reference: Carlson, R. Guesstimating the size of the global array synthesis market. Synthesishttp://www.synthesis.cc/synthesis/2017/8/guesstimating-the-size-of-the-global-array-synthesis-market (2017).
– reference: RuttenMGTAVaandragerFWElemansJAAWNolteRJMEncoding information into polymersNat. Rev. Chem.2018236538110.1038/s41570-018-0051-5
– reference: GoodwinSMcPhersonJDMcCombieWRComing of age: ten years of next-generation sequencing technologiesNat. Rev. Genet.2016173333511:CAS:528:DC%2BC28XnvFOksL8%3D10.1038/nrg.2016.49
– reference: HowlettSECastilloHSGioeniLJRobertsonJMDonfackJEvaluation of DNAstableTM for DNA storage at ambient temperatureForens. Sci. Int. Genet.201481701781:CAS:528:DC%2BC3sXitVWntrjN10.1016/j.fsigen.2013.09.003
– reference: ShethRUWangHHDNA-based memory devices for recording cellular eventsNat. Rev. Genet.2018197187321:CAS:528:DC%2BC1cXhslKjt7nM10.1038/s41576-018-0052-8
– reference: BonnetJSubsoontornPEndyDRewritable digital data storage in live cells via engineered control of recombination directionalityProc. Natl Acad. Sci. USA2012109888488891:CAS:528:DC%2BC38XovF2gt70%3D10.1073/pnas.1202344109
– reference: WienerNInterview: machines smarter than men?US News World Rep.1964568486
– reference: ChoiKNgAHFobelRWheelerARDigital microfluidicsAnnu. Rev. Anal. Chem.201254134401:CAS:528:DC%2BC38Xht1GmtLnF10.1146/annurev-anchem-062011-143028
– reference: Heckel, R., Shomorony, I., Ramchandran, K. & Tse, D. N. Fundamental limits of DNA storage systems. Presented at the 2017 IEEE International Symposium on Information Theory (ISIT) (2017).
– reference: Stewart, K. et al. in DNA Computing and Molecular Programming (eds Doty, D. & Dietz, H.) 55–70 (Springer International Publishing, Cham, 2018).
– reference: Bornholt, J. et al. A DNA-based archival storage system. Presented at the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ‘16) (2016).
– reference: Heckel, R., Mikutis, G. & Grass, R. N. A characterization of the DNA data storage channel. Preprint at arXivhttps://arxiv.org/abs/1803.03322 (2018).
– reference: YachieNSekiyamaKSugaharaJOhashiYTomitaMAlignment-based approach for durable data storage into living organismsBiotechnol. Prog.2007235015051:CAS:528:DC%2BD2sXot1aisg%3D%3D10.1021/bp060261y
– reference: IvanovaNVKuzminaMLProtocols for dry DNA storage and shipment at room temperatureMol. Ecol. Resour.2013138908981:CAS:528:DC%2BC3sXht1OqtrnJ10.1111/1755-0998.12134
– reference: ReedISSolomonGPolynomial codes over certain finite fieldsJ. Soc. Ind. Appl. Math.1960830030410.1137/0108018
– reference: BlawatMForward error correction for DNA data storageProcedia Comput. Sci.2016801011102210.1016/j.procs.2016.05.398
– reference: Tavella, F. et al. DNA molecular storage system: transferring digitally encoded information through bacterial nanonetworks. Preprint at arXivhttps://arxiv.org/abs/1801.04774 (2018).
– reference: PerliSDCuiCHLuTKContinuous genetic recording with self-targeting CRISPR-Cas in human cellsScience2016353aag051110.1126/science.aag0511
– reference: Choi, Y. et al. Addition of degenerate bases to DNA-based data storage for increased information capacity. Preprint at bioRxivhttps://www.biorxiv.org/content/10.1101/367052v1 (2018).
– reference: AilenbergMRotsteinODAn improved Huffman coding method for archiving text, images, and music characters in DNABiotechniques2009477477541:CAS:528:DC%2BD1MXhtFKmurjK10.2144/000113218
– reference: PortneyNGWuYQuezadaLKLonardiSOzkanMLength-based encoding of binary data in DNALangmuir200824161316161:CAS:528:DC%2BD1cXhtFCht70%3D10.1021/la703235y
– reference: ChurchGMGaoYKosuriSNext-generation digital information storage in DNAScience2012337162816281:CAS:528:DC%2BC38Xhtl2ntrrL10.1126/science.1226355
– reference: AlbrechtTRBit-patterned magnetic recording: theory, media fabrication, and recording performanceIEEE Trans. Magn.201551080034210.1109/TMAG.2015.2397880
– reference: HamTSLeeSKKeaslingJDArkinAPDesign and construction of a double inversion recombination switch for heritable sequential genetic memoryPLOS ONE2008310.1371/journal.pone.0002815
– reference: YazdiSMHTYuanYMaJZhaoHMilenkovicOARewritable, random-access DNA-based storage systemSci. Rep.2015510.1038/srep14138This paper proposes PCR-based random access
– reference: BancroftCLong-term storage of information in DNAScience2001293176317651:CAS:528:DC%2BD3MXmvVSmsbc%3D10.1126/science.293.5536.1763c
– reference: JensenMADavisRWTemplate-independent enzymatic oligonucleotide synthesis (TiEOS): its history, prospects, and challengesBiochemistry201857182118321:CAS:528:DC%2BC1cXktlKhsr8%3D10.1021/acs.biochem.7b00937
– reference: GoldmanNTowards practical, high-capacity, low-maintenance information storage in synthesized DNANature201349477801:CAS:528:DC%2BC3sXhsVygsLg%3D10.1038/nature11875Church et al. (2012) and Goldman et al. (2013) feature key work on the modern reincarnation and demonstration of DNA data storage ideas
– reference: BonnetJChain and conformation stability of solid-state DNA: implications for room temperature storageNucleic Acids Res.2009381531154610.1093/nar/gkp1060
– reference: AritaMOhashiYSecret signatures inside genomic DNABiotechnol. Prog.200420160516071:CAS:528:DC%2BD2cXlsFaht7o%3D10.1021/bp049917i
– reference: TangWLiuDRRewritable multi-event analog recording in bacterial and mammalian cellsScience201836010.1126/science.aap8992
– reference: YangLPermanent genetic memory with>1-byte capacityNat. Methods201411126112661:CAS:528:DC%2BC2cXhvVSqsbnE10.1038/nmeth.3147
– reference: ShipmanSLNivalaJMacklisJDChurchGMMolecular recordings by directed CRISPR spacer acquisitionScience2016353aaf117510.1126/science.aaf1175This paper describes the first demonstration that the CRISPR–Cas adaptation system can be used to store DNA oligonucleotides of arbitrary sequence within the genome
– reference: WongPCWongK-kFooteHOrganic data memory using the DNA approachCommun. ACM200346959810.1145/602421.602426
– reference: CaruthersMHThe chemical synthesis of DNA/RNA: our gift to scienceJ. Biol. Chem.2013288142014271:CAS:528:DC%2BC3sXosFOksw%3D%3D10.1074/jbc.X112.442855
– volume: 27
  start-page: 379
  year: 1948
  ident: 125_CR36
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 109
  start-page: 8884
  year: 2012
  ident: 125_CR62
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1202344109
– volume: 9
  year: 2013
  ident: 125_CR27
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003145
– volume: 5
  year: 2015
  ident: 125_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/srep14138
– ident: 125_CR71
– volume: 353
  start-page: aaf1175
  year: 2016
  ident: 125_CR24
  publication-title: Science
  doi: 10.1126/science.aaf1175
– ident: 125_CR40
  doi: 10.1101/433524
– volume: 34
  start-page: 518
  year: 2016
  ident: 125_CR46
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3423
– ident: 125_CR10
– volume: 23
  start-page: 501
  year: 2007
  ident: 125_CR16
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp060261y
– volume: 11
  start-page: 1261
  year: 2014
  ident: 125_CR65
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3147
– volume: 337
  start-page: 1628
  year: 2012
  ident: 125_CR19
  publication-title: Science
  doi: 10.1126/science.1226355
– volume: 399
  start-page: 533
  year: 1999
  ident: 125_CR12
  publication-title: Nature
  doi: 10.1038/21092
– volume: 80
  start-page: 1011
  year: 2016
  ident: 125_CR72
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.05.398
– volume: 55
  start-page: 70
  year: 1996
  ident: 125_CR11
  publication-title: Art J.
  doi: 10.1080/00043249.1996.10791743
– volume: 329
  start-page: 52
  year: 2010
  ident: 125_CR22
  publication-title: Science
  doi: 10.1126/science.1190719
– volume: 38
  start-page: 1531
  year: 2009
  ident: 125_CR51
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp1060
– ident: 125_CR54
  doi: 10.1101/439521
– volume: 46
  start-page: 95
  year: 2003
  ident: 125_CR14
  publication-title: Commun. ACM
  doi: 10.1145/602421.602426
– volume: 18
  start-page: 345
  year: 2017
  ident: 125_CR56
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2017.15
– volume: 268
  start-page: 583
  year: 1995
  ident: 125_CR47
  publication-title: Science
  doi: 10.1126/science.7725109
– ident: 125_CR49
– volume: 13
  start-page: 890
  year: 2013
  ident: 125_CR52
  publication-title: Mol. Ecol. Resour.
  doi: 10.1111/1755-0998.12134
– ident: 125_CR5
– ident: 125_CR28
  doi: 10.1145/2872362.2872397
– volume: 15
  start-page: 366
  year: 2016
  ident: 125_CR4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4594
– ident: 125_CR34
– volume: 279
  start-page: 4724
  year: 2012
  ident: 125_CR50
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.2012.1745
– volume: 8
  start-page: 170
  year: 2014
  ident: 125_CR53
  publication-title: Forens. Sci. Int. Genet.
  doi: 10.1016/j.fsigen.2013.09.003
– volume: 54
  start-page: 2552
  year: 2015
  ident: 125_CR6
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201411378
– ident: 125_CR1
– volume: 7
  year: 2017
  ident: 125_CR43
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05188-1
– volume: 2
  start-page: 365
  year: 2018
  ident: 125_CR2
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0051-5
– ident: 125_CR38
– volume: 355
  start-page: 950
  year: 2017
  ident: 125_CR32
  publication-title: Science
  doi: 10.1126/science.aaj2038
– volume: 23
  start-page: R812
  year: 2013
  ident: 125_CR59
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.06.047
– volume: 288
  start-page: 1420
  year: 2013
  ident: 125_CR33
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.X112.442855
– volume: 5
  start-page: 413
  year: 2012
  ident: 125_CR55
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-062011-143028
– volume: 47
  start-page: 747
  year: 2009
  ident: 125_CR18
  publication-title: Biotechniques
  doi: 10.2144/000113218
– volume: 51
  start-page: 0800342
  year: 2015
  ident: 125_CR35
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2015.2397880
– volume: 17
  start-page: 333
  year: 2016
  ident: 125_CR44
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.49
– volume: 550
  start-page: 345
  year: 2017
  ident: 125_CR45
  publication-title: Nature
  doi: 10.1038/nature24286
– volume: 36
  start-page: 242
  year: 2018
  ident: 125_CR3
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4079
– volume: 36
  start-page: 645
  year: 2018
  ident: 125_CR42
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4173
– volume: 8
  start-page: 300
  year: 1960
  ident: 125_CR37
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0108018
– volume: 57
  start-page: 1821
  year: 2018
  ident: 125_CR41
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b00937
– ident: 125_CR58
– volume: 353
  start-page: aad8559
  year: 2016
  ident: 125_CR64
  publication-title: Science
  doi: 10.1126/science.aad8559
– volume: 346
  start-page: 1258096
  year: 2014
  ident: 125_CR68
  publication-title: Science
  doi: 10.1126/science.1258096
– volume: 353
  start-page: aag0511
  year: 2016
  ident: 125_CR23
  publication-title: Science
  doi: 10.1126/science.aag0511
– volume: 14
  start-page: 195
  year: 2017
  ident: 125_CR69
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4108
– volume: 20
  start-page: 1605
  year: 2004
  ident: 125_CR15
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp049917i
– volume: 346
  start-page: 1256272
  year: 2014
  ident: 125_CR66
  publication-title: Science
  doi: 10.1126/science.1256272
– volume: 56
  start-page: 84
  year: 1964
  ident: 125_CR8
  publication-title: US News World Rep.
– volume: 140
  start-page: 13
  year: 2010
  ident: 125_CR60
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.034
– ident: 125_CR21
  doi: 10.1101/348987
– volume: 360
  year: 2018
  ident: 125_CR26
  publication-title: Science
  doi: 10.1126/science.aap8992
– volume: 11
  start-page: 499
  year: 2014
  ident: 125_CR30
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2918
– ident: 125_CR29
  doi: 10.1109/ISIT.2017.8007106
– volume: 324
  start-page: 1199
  year: 2009
  ident: 125_CR63
  publication-title: Science
  doi: 10.1126/science.1172005
– volume: 6
  start-page: 1
  year: 1965
  ident: 125_CR9
  publication-title: Radiotekhnika
– volume: 358
  start-page: 1457
  year: 2017
  ident: 125_CR25
  publication-title: Science
  doi: 10.1126/science.aao0958
– ident: 125_CR57
– volume: 526
  start-page: 55
  year: 2015
  ident: 125_CR67
  publication-title: Nature
  doi: 10.1038/nature15386
– volume: 19
  start-page: 718
  year: 2018
  ident: 125_CR7
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0052-8
– volume: 8
  start-page: 056506
  year: 2018
  ident: 125_CR48
  publication-title: AIP Adv.
  doi: 10.1063/1.5007621
– volume: 24
  start-page: 1613
  year: 2008
  ident: 125_CR17
  publication-title: Langmuir
  doi: 10.1021/la703235y
– volume: 494
  start-page: 77
  year: 2013
  ident: 125_CR20
  publication-title: Nature
  doi: 10.1038/nature11875
– volume: 293
  start-page: 1763
  year: 2001
  ident: 125_CR13
  publication-title: Science
  doi: 10.1126/science.293.5536.1763c
– ident: 125_CR39
  doi: 10.1101/367052
– volume: 3
  year: 2008
  ident: 125_CR61
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0002815
– volume: 547
  start-page: 345
  year: 2017
  ident: 125_CR70
  publication-title: Nature
  doi: 10.1038/nature23017
SSID ssj0016173
Score 2.7000313
SecondaryResourceType review_article
Snippet Molecular data storage is an attractive alternative for dense and durable information storage, which is sorely needed to deal with the growing gap between...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 456
SubjectTerms 631/208/514/1948
631/337/151/1431
631/553/2720
631/92/147
639/301/1005/1008
639/925/926/1047
Agriculture
Analysis
Animal Genetics and Genomics
Animals
Biomedical and Life Sciences
Biomedicine
Biotechnology
Biotechnology - methods
Cancer Research
Deoxyribonucleic acid
DNA
DNA - genetics
DNA sequencing
Gene expression
Gene Function
Human Genetics
Humans
Information storage
Information storage and retrieval
Information Storage and Retrieval - methods
Nucleotide sequencing
Review Article
Title Molecular digital data storage using DNA
URI https://link.springer.com/article/10.1038/s41576-019-0125-3
https://www.ncbi.nlm.nih.gov/pubmed/31068682
https://www.proquest.com/docview/2259351168
https://www.proquest.com/docview/2231953205
Volume 20
WOSCitedRecordID wos000475969100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1471-0064
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016173
  issn: 1471-0056
  databaseCode: 7RV
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB-BsgSEBCqyGjsv54SW0goOrFbLQ3uzHMdeVULZ0uwi8e-ZSZyUVKIXLr5kEsUz43lkJvMBvOJORNKUCUNXggmKKxwrS1uxVMsydYUWedqBTeSzmVwui7n_4Nb4tsreJraGulob-kZ-iHpXUNErk-_OfjJCjaLqqofQ2IE9mpIg2ta9-VBFyLoKM0cDzGjmZV_VjOVhg44rp1yauoVEyuKRX7psnf9yT5fqpa0bOrn9vxu4A7d8ABpOO425C9dsfQ9udJCUv-_Dm889Xm5Yna4IUSSkJtKQmijR9ITUJ78KP8ymD-DbyfHXo4_Moykwk0bJhpUuMU7KIrUZrzAtFBYzpSLVlluMIhISTOQMl0WVu0QXVULBQJnFPJY6QpHGD2G3Xtf2MYQUhUWpc4k0GL6UojDaiarUOufccp4HEPW8VMaPGifEix-qLXnHUnXsV8h-RexXcQAHwy1n3ZyNq4ifk4BU96vocEbVtIUnxAwOKV62FDThoqYWmpXeNo369GUxInrtidwaX89o_0cCbpKGYo0o90eUeATN-HIvcuVNQKMu5B3Ai-Ey3UltbbVdb4kmpjKmiNIAHnUaNuwe4-5MZlIE8LZXuYuH_5M1T65-ladwU7Q6Tx2M-7C7Od_aZ3Dd_NqcNucT2MkX32ld5u0qcZVHfAJ7749n88WkPV1_AP0VHok
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILzwKBQgMCgUBWEydOnANCq5aqq7YrBK3Um-s49qoSypZmF9Q_xW9kJq-SSvTWA-dMLDsznvFkPs8H8Dp0PJAmjxmGEkxQXOZYntuCCS1z4TLNU9GQTaSTiTw8zL4swe_uLgzBKjufWDvqYmboH_k62l1GRa9Efjr5wYg1iqqrHYVGYxY79uwXpmzVx_Em6vcN51uf9ze2WcsqwIwI4jnLXWyclJmwSVhgesQtZgyZ0Da0GE1jmmDgTCizInWxzoqYgmKeRGEkdYBLi3Dca3CdOtnRjpIbPaSEUoUa0I8On1GPza6KGsn1CgNlSrk7oZO4YNEgDl6MBn-Fwwv12Trsbd393z7YPbjTHrD9UbMj7sOSLR_AzYZy8-whvNvr-ID94nhKjCk-gWR9Aomia_XpHsDU35yMVuDgSqb5CJbLWWmfgE-nzEA4F0uDx7OcZ0Y7XuRap2FowzD1IOh0p0zbSp0YPb6ruqQfSdWoW6G6FalbRR687185afqIXCa8RgahmquwvQ9So5p-ETNUlHhVS1AHj5IgQlO9qCo1_vZ1IPS2FXIznJ7R7Y0LXCQ1_RpIrg4k0cWY4ePOxFTr4ip1bl8evOwf05sE2yvtbEEyEZVpeSA8eNxYdL96zCsSmUjuwYfOxM8H_-eneXr5VNbg1vb-3q7aHU92nsFtXu83QmuuwvL8dGGfww3zc35cnb6od64PR1dt-X8AJcd0Aw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BQgMCgUDRxs7LOSC0sF2xKqxWLUi9GcexV5VQtjS7oP41fh0zeZVUorceOGdi2ZnPM57MeD6A58xyX-gs9NCVYIBiU-tlmcm9SIkssqniSVSTTSSzmTg4SOcb8Lu9C0Nlla1NrAx1vtT0j3yIuEsp6RWLoW3KIubjybujHx4xSFGmtaXTqCGya05-YfhWvp2OUdcvOJ_sfPnw0WsYBjwd-eHKy2yorRBpZGKWY6jEDUYPaaQMM-hZQ5qsbzUTaZ7YUKV5SA4yiwMWCOXjMgMc9xJsJnjICAew-X5nNt_rchhxnd9maP496rjZ5lQDMSzRbSYUyVOtEo-8oOcVz_qGv5zjmWxt5QQnN_7nz3cTrjdHb3dU75VbsGGK23ClJuM8uQOvPrdMwW5-uCAuFZfKZ10qH0Wj69INgYU7no3uwtcLmeY9GBTLwjwAl86ffmRtKDQe3DKeamV5nimVMGYYSxzwWz1K3TRZJ66P77JK9gdC1qqXqHpJqpeBA6-7V47qDiPnCW8TOGR9SbazTnJUETNi7IoSzyoJ6u1RkJoXal2Wcrq_1xN62QjZJU5Pq-YuBi6S2oH1JLd6kmh8dP9xCzfZGL9SnmLNgafdY3qTCvoKs1yTTEAJXO5HDtyv0d2tHiOOWMSCO_Cmhfvp4P_8NA_Pn8o2XEXAy0_T2e4juMarrUdlnFswWB2vzWO4rH-uDsvjJ802duHbRUP_D8erfmE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+digital+data+storage+using+DNA&rft.jtitle=Nature+reviews.+Genetics&rft.au=Ceze%2C+Luis&rft.au=Nivala%2C+Jeff&rft.au=Strauss%2C+Karin&rft.date=2019-08-01&rft.issn=1471-0064&rft.eissn=1471-0064&rft.volume=20&rft.issue=8&rft.spage=456&rft_id=info:doi/10.1038%2Fs41576-019-0125-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon