Machine learning algorithms for predicting undernutrition among under-five children in Ethiopia
Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms. This study draws on data from the Ethiopian Demographic and Health Survey o...
Uložené v:
| Vydané v: | Public health nutrition Ročník 25; číslo 2; s. 269 - 280 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cambridge, UK
Cambridge University Press
01.02.2022
|
| Predmet: | |
| ISSN: | 1368-9800, 1475-2727, 1475-2727 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms.
This study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia.
Households in Ethiopia.
A total of 9471 children below 5 years of age participated in this study.
The descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others.
The xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia. |
|---|---|
| AbstractList | Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms.OBJECTIVEChild undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms.This study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia.DESIGNThis study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia.Households in Ethiopia.SETTINGHouseholds in Ethiopia.A total of 9471 children below 5 years of age participated in this study.PARTICIPANTSA total of 9471 children below 5 years of age participated in this study.The descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others.RESULTSThe descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others.The xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia.CONCLUSIONSThe xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia. Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms. This study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia. Households in Ethiopia. A total of 9471 children below 5 years of age participated in this study. The descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others. The xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia. Objective:Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms.Design:This study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia.Setting:Households in Ethiopia.Participants:A total of 9471 children below 5 years of age participated in this study.Results:The descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others.Conclusions:The xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia. Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms. This study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia. Households in Ethiopia. A total of 9471 children below 5 years of age participated in this study. The descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others. The xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia. |
| Author | Sparks, Corey S Bitew, Fikrewold H Nyarko, Samuel H |
| AuthorAffiliation | Department of Demography, College for Health, Community and Policy, The University of Texas at San Antonio , 9947 Bricewood Hill, San Antonio , TX 78254 , USA |
| AuthorAffiliation_xml | – name: Department of Demography, College for Health, Community and Policy, The University of Texas at San Antonio , 9947 Bricewood Hill, San Antonio , TX 78254 , USA |
| Author_xml | – sequence: 1 givenname: Fikrewold H surname: Bitew fullname: Bitew, Fikrewold H email: fikre.wold@gmail.com organization: Department of Demography, College for Health, Community and Policy, The University of Texas at San Antonio, 9947 Bricewood Hill, San Antonio, TX 78254, USA – sequence: 2 givenname: Corey S surname: Sparks fullname: Sparks, Corey S organization: Department of Demography, College for Health, Community and Policy, The University of Texas at San Antonio, 9947 Bricewood Hill, San Antonio, TX 78254, USA – sequence: 3 givenname: Samuel H surname: Nyarko fullname: Nyarko, Samuel H organization: Department of Demography, College for Health, Community and Policy, The University of Texas at San Antonio, 9947 Bricewood Hill, San Antonio, TX 78254, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34620263$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktv1TAQhS1URB_wA9igSGzYBMZ2_MgGCVXlIRWxANaW64zvdZXYFzup1H-Po97LowhY2fI559N4Zk7JUUwRCXlK4SUFql59plzqXgMwCtAxyR6QE9op0TLF1FG9V7ld9WNyWso1AAil1CNyzDvJgEl-QsxH67YhYjOizTHETWPHTcph3k6l8Sk3u4xDcPOqLHHAHJe5qiHFxk7p8Nj6cINNBY1DxtiE2FzM25B2wT4mD70dCz7Zn2fk69uLL-fv28tP7z6cv7lsnYBubrW1gwA5aCelHEBpxpCh81RKp23vUAhKu763rpN-QCl9xz1o672QggrOz8jrO-5uuZpwcBjnbEezy2Gy-dYkG8zvSgxbs0k3RmvNlZIV8GIPyOnbgmU2UygOx9FGTEsxTEq69rjv_m8VGhRAL1m1Pr9nvU5LjrUTFcip1qrXfXU9-7X4H1UfxlQN6s7gciolozcuzHadQv1LGA0Fsy6E-WMhapLeSx7g_8rwfcZOVzkMG_xZ9d9T3wGtIcbr |
| CitedBy_id | crossref_primary_10_1007_s10651_025_00674_6 crossref_primary_10_1111_mcn_70039 crossref_primary_10_1186_s12967_024_05935_9 crossref_primary_10_1038_s41598_024_62641_8 crossref_primary_10_1007_s13198_022_01765_4 crossref_primary_10_3389_fnut_2023_1277048 crossref_primary_10_37306_9v7sth43 crossref_primary_10_12688_f1000research_156316_1 crossref_primary_10_3389_fpubh_2025_1549210 |
| Cites_doi | 10.1155/2014/618976 10.6339/JDS.201901_17(1).0009 10.1093/ije/dyl157 10.1371/journal.pone.0133542 10.2307/2529310 10.1093/jn/133.4.1064 10.1007/s10462-020-09896-5 10.1016/S0140-6736(13)60937-X 10.1371/journal.pone.0175445 10.35188/UNU-WIDER/2016/191-8 10.1136/bmjopen-2020-037860 10.1016/j.socscimed.2015.11.036 10.1093/intqhc/mzx129 10.1371/journal.pone.0170785 10.1186/s12939-016-0480-z 10.1503/cmaj.170914 10.1371/journal.pone.0179805 10.1111/ppe.12222 10.1145/2939672.2939785 10.1371/journal.pone.0174866 10.1016/j.ssmph.2021.100836 10.1080/23742917.2017.1321891 10.1146/annurev-publhealth-040119-094437 10.1016/j.socscimed.2019.112486 10.1017/S1368980016000276 10.1371/journal.pone.0142301 10.1016/S0140-6736(07)61690-0 10.1371/journal.pone.0219665 10.1017/S1368980018002434 10.1371/journal.pone.0208937 10.3390/ijerph9103506 10.1093/ije/26.1.160 10.1016/j.surg.2010.03.023 10.2196/22400 10.1007/978-0-387-84858-7 10.5751/ES-03895-160118 10.3329/jhpn.v29i4.8449 10.4103/jfmpc.jfmpc_73_17 10.1186/1472-6947-10-16 10.1016/j.nut.2020.110861 10.1371/journal.pone.0177338 10.1016/j.procs.2017.09.087 |
| ContentType | Journal Article |
| Copyright | The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content The Authors 2021 2021 The Authors |
| Copyright_xml | – notice: The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society – notice: The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content – notice: The Authors 2021 2021 The Authors |
| DBID | IKXGN AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7RQ 7RV 7T2 7X2 7X7 7XB 88E 8C1 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH HCIFZ K9. KB0 M0K M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 7S9 L.6 5PM |
| DOI | 10.1017/S1368980021004262 |
| DatabaseName | Cambridge University Press Wholly Gold Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Career & Technical Education Database Nursing & Allied Health Database Health and Safety Science Abstracts (Full archive) Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) SciTech Premium Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Agriculture Science Database ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection Health & Safety Science Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Central Basic ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Career and Technical Education ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: IKXGN name: Cambridge University Press Open Access Journals url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 3 dbid: 7RV name: Nursing & allied health premium. url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Diet & Clinical Nutrition |
| EISSN | 1475-2727 |
| EndPage | 280 |
| ExternalDocumentID | PMC8883776 34620263 10_1017_S1368980021004262 |
| Genre | Journal Article |
| GeographicLocations | Ethiopia Africa |
| GeographicLocations_xml | – name: Ethiopia – name: Africa |
| GroupedDBID | --- -1D -1F -2P -2V -E. -~6 -~N .FH 09C 09E 0E1 0R~ 123 29P 2WC 3V. 4.4 53G 5VS 6~7 74X 74Y 7RQ 7RV 7X2 7X7 7~V 88E 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAIKC AAKTX AAMNQ AAMNW AANRG AARAB AASVR AATID AAUIS AAUKB AAWTL ABBXD ABBZL ABFBI ABJNI ABKKG ABKMT ABMWE ABMYL ABOCM ABQTM ABROB ABUWG ABVFV ABWCF ABXAU ABZCX ACBEK ACBMC ACCHT ACETC ACGFS ACIMK ACPRK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADAZD ADBBV ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYHU AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFRAH AFRIC AFUTZ AGABE AGJUD AGLWM AGOOT AHIPN AHLTW AHMBA AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO ANPSP AQJOH ARABE ARZZG ATCPS ATUCA AUXHV AYIQA AZGZS BAWUL BBLKV BCGOX BENPR BESQT BGHMG BHPHI BJBOZ BKEYQ BLZWO BMAJL BPHCQ BQFHP BRIRG BVXVI C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DIK DOHLZ DU5 DWQXO E3Z EBS EGQIC EJD EX3 F5P FYUFA GROUPED_DOAJ HCIFZ HG- HMCUK HST HZ~ I.6 I.7 I.9 IH6 IKXGN IOEEP IOO IPYYG IS6 I~P J36 J38 J3A JHPGK JKPOH JQKCU JVRFK KAFGG KC5 KCGVB KFECR L98 LHUNA LW7 M-V M0K M1P M7~ M8. NAPCQ NIKVX NMFBF NZEOI O9- OK1 OVD P2P PCD PQQKQ PROAC PSQYO Q2X RAMDC RCA ROL RPM RR0 S6- S6U SAAAG SJN SY4 T9M TEORI TR2 UCJ UKHRP UT1 UU6 WFFJZ WOW WQ3 WXU WXY WYP YHZ ZDLDU ZJOSE ZMEZD ZYDXJ ~KM ~V1 AAFWJ AAHBH AAYXX ABGDZ ABVKB ABVZP ABXHF ACAJB ACDLN AEMTJ AEUYN AFFHD AFPKN AFZFC AKMAY CITATION PHGZM PHGZT PJZUB PPXIY AATMM ACRPL ADNMO AEMFK ALIPV CGR CUY CVF ECM EIF M48 NPM 7QP 7T2 7XB 8FK C1K K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c504t-8aad506d8c666d07822e2ecf166c8a9ce5511499ac46fde66f43f08aff5651533 |
| IEDL.DBID | IKXGN |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732611200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1368-9800 1475-2727 |
| IngestDate | Tue Nov 04 01:59:54 EST 2025 Thu Oct 02 11:06:04 EDT 2025 Thu Oct 02 11:49:46 EDT 2025 Sat Nov 29 14:24:30 EST 2025 Wed Feb 19 02:27:30 EST 2025 Tue Nov 18 21:20:31 EST 2025 Sat Nov 29 05:54:50 EST 2025 Wed Mar 13 05:54:06 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Determinants Predictive algorithms Child undernutrition Spatial variations Ethiopia Machine learning |
| Language | English |
| License | This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c504t-8aad506d8c666d07822e2ecf166c8a9ce5511499ac46fde66f43f08aff5651533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.cambridge.org/core/product/identifier/S1368980021004262/type/journal_article |
| PMID | 34620263 |
| PQID | 2631887989 |
| PQPubID | 26856 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8883776 proquest_miscellaneous_2661042694 proquest_miscellaneous_2580700962 proquest_journals_2631887989 pubmed_primary_34620263 crossref_citationtrail_10_1017_S1368980021004262 crossref_primary_10_1017_S1368980021004262 cambridge_journals_10_1017_S1368980021004262 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: England – name: Cambridge |
| PublicationTitle | Public health nutrition |
| PublicationTitleAlternate | Public Health Nutr |
| PublicationYear | 2022 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | 2010; 10 2019; 9 2017; 1 2013; 69 2016; 19 2006; 35 2020; 41 1997; 26 2015; 10 2019; 14 2019; 17 2016; 30 2006; 450 2013; 382 2016; 149 2014; 2014 2020; 78 2017; 29 2020; 10 2011; 16 2015; 9 2016; 15 2018; 190 2003; 133 2017; 115 2011; 149 2018; 7 2010; 87 2015; 26 2020; 6 2021; 15 2021; 54 2019; 22 2017; 12 1977; 33 2019; 238 2011; 29 2008; 371 2012; 9 S1368980021004262_ref60 S1368980021004262_ref61 S1368980021004262_ref62 Sulaiman (S1368980021004262_ref57) 2018; 7 Clark (S1368980021004262_ref37) 2013 S1368980021004262_ref16 S1368980021004262_ref17 S1368980021004262_ref19 S1368980021004262_ref54 S1368980021004262_ref10 S1368980021004262_ref56 Endalew (S1368980021004262_ref12) 2015; 9 S1368980021004262_ref13 S1368980021004262_ref58 S1368980021004262_ref14 S1368980021004262_ref59 Brownlee (S1368980021004262_ref39) 2016 S1368980021004262_ref27 S1368980021004262_ref29 Negash (S1368980021004262_ref43) 2019; 9 S1368980021004262_ref63 Mulugeta (S1368980021004262_ref15) 2010; 87 (S1368980021004262_ref11) 2016 S1368980021004262_ref20 S1368980021004262_ref21 S1368980021004262_ref22 S1368980021004262_ref23 S1368980021004262_ref24 S1368980021004262_ref25 Masibo (S1368980021004262_ref52) 2013 S1368980021004262_ref26 (S1368980021004262_ref42) 2019 S1368980021004262_ref40 Gurmu (S1368980021004262_ref18) 2013; 69 (S1368980021004262_ref28) 2006; 450 S1368980021004262_ref2 S1368980021004262_ref1 S1368980021004262_ref4 S1368980021004262_ref38 S1368980021004262_ref3 S1368980021004262_ref5 S1368980021004262_ref8 S1368980021004262_ref9 S1368980021004262_ref30 S1368980021004262_ref31 S1368980021004262_ref32 S1368980021004262_ref33 S1368980021004262_ref34 Gurung (S1368980021004262_ref55) 2010; 10 S1368980021004262_ref35 S1368980021004262_ref36 (S1368980021004262_ref6) 2016 S1368980021004262_ref50 S1368980021004262_ref51 Habyarimana (S1368980021004262_ref48) 2016; 30 S1368980021004262_ref49 van den Bold (S1368980021004262_ref53) 2013 Headey (S1368980021004262_ref7) 2014 S1368980021004262_ref41 S1368980021004262_ref44 S1368980021004262_ref45 S1368980021004262_ref46 S1368980021004262_ref47 |
| References_xml | – volume: 115 start-page: 338 year: 2017 end-page: 349 article-title: Investigation of nutritional status of children based on machine learning techniques using Indian demographic and health survey data publication-title: Procedia Comput Sci – volume: 12 start-page: e0177338 year: 2017 article-title: Child malnutrition in sub-Saharan Africa: a meta-analysis of demographic and health surveys (2006–2016) publication-title: PLoS One – volume: 133 start-page: 1064 year: 2003 end-page: 1069 article-title: Factors associated with stunting in infants aged 5–11 months in the Dodota-Sire district, rural Ethiopia publication-title: J Nutr – volume: 12 start-page: e0175445 year: 2017 article-title: Small area estimation of child undernutrition in Ethiopian woredas publication-title: PLoS One – volume: 26 start-page: 160 year: 1997 end-page: 165 article-title: Intra-household correlations of nutritional status in rural Ethiopia publication-title: Int J Epidemiol – volume: 78 start-page: 110861 year: 2020 article-title: Machine learning algorithms for predicting malnutrition among under-five children in Bangladesh publication-title: Nutrition – volume: 29 start-page: 339 year: 2011 end-page: 348 article-title: Socioeconomic determinants of nutritional status of children in Lao PDR: effects of household and community factors publication-title: J Health Popul Nutr – volume: 15 start-page: 100836 year: 2021 article-title: A scoping review on the use of machine learning in research on social determinants of health: trends and research prospects publication-title: SSM Popul Health – volume: 54 start-page: 1937 year: 2021 end-page: 1967 article-title: A comparative analysis of gradient boosting algorithms publication-title: Artif Intell Rev – volume: 190 start-page: E871 year: 2018 end-page: E882 article-title: Development and validation of a cardiovascular disease risk-prediction model using population health surveys: the cardiovascular disease population risk tool (CVDPoRT) publication-title: CMAJ – volume: 41 start-page: 21 year: 2020 end-page: 36 article-title: Machine learning in epidemiology and health outcomes research publication-title: Ann Rev Public Health – volume: 22 start-page: 175 year: 2019 end-page: 179 article-title: Prevalence thresholds for wasting, overweight and stunting in children under 5 years publication-title: Public Health Nutr – volume: 2014 start-page: 618976 year: 2014 article-title: Screening for prediabetes using machine learning algorithms publication-title: Comput Math Method Med – volume: 26 start-page: 552 year: 2015 end-page: 561 article-title: Childhood malnutrition and its determinants among under-five children in Ghana publication-title: Paediatr Perinat Epidemiol – volume: 87 start-page: 248 year: 2010 end-page: 254 article-title: Child malnutrition in Tigray, northern Ethiopia publication-title: East Afr Med J – volume: 9 start-page: 3506 year: 2012 end-page: 3518 article-title: Prevalence, and risk factors for poor nutritional status among children in the Kilimanjaro region of Tanzania publication-title: Int J Environ Res Public Health – volume: 6 start-page: e22400 year: 2020 article-title: A racially unbiased, machine learning approach to prediction of mortality: algorithm development study publication-title: JMIR Public Health Surveill – volume: 12 start-page: e0174866 year: 2017 article-title: Exploration of machine learning techniques in predicting multiple sclerosis disease course publication-title: PLoS One – volume: 33 start-page: 159 year: 1977 end-page: 174 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics – volume: 149 start-page: 87 year: 2011 end-page: 93 article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks publication-title: Surgery – volume: 17 start-page: 195 year: 2019 end-page: 218 article-title: Machine learning algorithms to predict the childhood anemia in Bangladesh publication-title: J Data Sci – volume: 10 start-page: e0133542 year: 2015 article-title: Stunting is associated with food diversity while wasting with food insecurity among under-five children in east and west Gojjam zones of Amhara region, Ethiopia publication-title: PLoS One – volume: 10 start-page: 1352 year: 2010 article-title: Investing in mother’s education for better maternal and child health outcomes publication-title: Rural Rem Health – volume: 29 start-page: 901 year: 2017 end-page: 908 article-title: Factors associated with malnutrition among children < 5 years old in Burkina Faso: evidence from the demographic and health surveys IV 2010 publication-title: Int J Qual Health Care – volume: 15 start-page: 198 year: 2016 article-title: Nonrandom distribution of child undernutrition in Ethiopia: spatial analysis from the 2011 Ethiopia demographic and health survey publication-title: Int J Equity Health – volume: 12 start-page: e0170785 year: 2017 article-title: Spatial heterogeneity and risk factors for stunting among children under age five in Ethiopia: a Bayesian geo-statistical algorithm publication-title: PLoS One – volume: 1 start-page: 108 year: 2017 end-page: 126 article-title: Comparison of machine-learning algorithms for classification of VPN network traffic flow using time-related features publication-title: J Cyber Secur Technol – volume: 12 start-page: e0179805 year: 2017 article-title: Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: the Henry ford exercise testing (FIT) project publication-title: PLoS One – volume: 10 start-page: e0142301 year: 2015 article-title: Association between maternal and child nutritional status in Hula, rural Southern Ethiopia: a cross sectional study publication-title: PLoS One – volume: 238 start-page: 112486 year: 2019 article-title: Predicting women’s height from their socioeconomic status: a machine learning approach publication-title: Soc Sci Med – volume: 9 start-page: 55 year: 2015 end-page: 68 article-title: Assessment of food security situation in Ethiopia: a review publication-title: Asian J Agric Res – volume: 35 start-page: 1336 year: 2006 end-page: 1346 article-title: Declining child malnutrition: a reassessment publication-title: Int J Epidemiol – volume: 16 start-page: 18 year: 2011 article-title: Effect of policy interventions on food security in Tigray, Northern Ethiopia publication-title: Ecol Soc – volume: 30 start-page: 2328 year: 2016 end-page: 2340 article-title: Key determinants of malnutrition of children under 5 years of age in Rwanda: simultaneous measurement of three anthropometric indices publication-title: Afr Popul Stud – volume: 382 start-page: 427 year: 2013 end-page: 451 article-title: Maternal and child undernutrition and overweight in low-income and middle-income countries publication-title: Lancet – volume: 10 start-page: 16 year: 2010 article-title: Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes publication-title: BMC Med Inform Decis Mak – volume: 450 start-page: 76 year: 2006 end-page: 85 article-title: WHO child growth standards based on length/height, weight, and age publication-title: Acta Paediatr Suppl – volume: 10 start-page: e037860 year: 2020 article-title: Predicting population health with machine learning: a scoping review publication-title: BMJ Open – volume: 9 start-page: 39 year: 2019 end-page: 46 article-title: Pictures of food insecurity in Amhara region publication-title: Res J Soc Sci Manag – volume: 149 start-page: 153 year: 2016 end-page: 163 article-title: Examining the changing profile of undernutrition in the context of food price rises and greater inequality publication-title: Soc Sci Med – volume: 14 start-page: e0219665 year: 2019 article-title: The epidemiology of undernutrition and its determinants in children under 5 years in Ghana publication-title: PLoS One – volume: 69 start-page: 113 year: 2013 end-page: 130 article-title: Household structure and children’s nutritional status in Ethiopia publication-title: Genus – volume: 7 start-page: 104 year: 2018 article-title: Prevalence and determinants of undernutrition among children under 5-year-old in rural areas: a cross-sectional survey in North Sudan publication-title: J Fam Med Prim Care – volume: 371 start-page: 243 year: 2008 end-page: 260 article-title: Maternal and child undernutrition: global and regional exposures and health consequences publication-title: Lancet – volume: 19 start-page: 1375 year: 2016 end-page: 1388 article-title: Prevalence and trends in the childhood dual burden of malnutrition in low-and middle-income countries, 1990–2012 publication-title: Public Health Nutr – volume: 14 start-page: e0208937 year: 2019 article-title: The influence of maternal agency on severe child undernutrition in conflict-ridden Nigeria: modeling heterogeneous treatment effects with machine learning publication-title: PLoS One – ident: S1368980021004262_ref21 doi: 10.1155/2014/618976 – volume: 10 start-page: 1352 year: 2010 ident: S1368980021004262_ref55 article-title: Investing in mother’s education for better maternal and child health outcomes publication-title: Rural Rem Health – ident: S1368980021004262_ref44 doi: 10.6339/JDS.201901_17(1).0009 – volume: 450 start-page: 76 year: 2006 ident: S1368980021004262_ref28 article-title: WHO child growth standards based on length/height, weight, and age publication-title: Acta Paediatr Suppl – ident: S1368980021004262_ref3 doi: 10.1093/ije/dyl157 – ident: S1368980021004262_ref41 doi: 10.1371/journal.pone.0133542 – ident: S1368980021004262_ref32 – ident: S1368980021004262_ref40 doi: 10.2307/2529310 – ident: S1368980021004262_ref16 doi: 10.1093/jn/133.4.1064 – ident: S1368980021004262_ref34 doi: 10.1007/s10462-020-09896-5 – volume-title: An Introduction to Machine Learning with Applications in R year: 2013 ident: S1368980021004262_ref37 – volume-title: Trends and Determinants of Malnutrition among Children Ages 0–59 Months in Kenya (KDHS 1993, 1998, 2003, and 2008–09) year: 2013 ident: S1368980021004262_ref52 – volume-title: Ethiopia Demographic and Health Survey 2016 year: 2016 ident: S1368980021004262_ref6 – ident: S1368980021004262_ref1 doi: 10.1016/S0140-6736(13)60937-X – ident: S1368980021004262_ref19 doi: 10.1371/journal.pone.0175445 – ident: S1368980021004262_ref46 doi: 10.35188/UNU-WIDER/2016/191-8 – ident: S1368980021004262_ref62 doi: 10.1136/bmjopen-2020-037860 – ident: S1368980021004262_ref13 doi: 10.1016/j.socscimed.2015.11.036 – ident: S1368980021004262_ref49 doi: 10.1093/intqhc/mzx129 – ident: S1368980021004262_ref17 doi: 10.1371/journal.pone.0170785 – ident: S1368980021004262_ref5 – ident: S1368980021004262_ref14 doi: 10.1186/s12939-016-0480-z – ident: S1368980021004262_ref59 doi: 10.1503/cmaj.170914 – ident: S1368980021004262_ref20 doi: 10.1371/journal.pone.0179805 – volume-title: Implementation Plan (2016–2030) Seqota Declaration year: 2016 ident: S1368980021004262_ref11 – ident: S1368980021004262_ref33 – ident: S1368980021004262_ref51 doi: 10.1111/ppe.12222 – ident: S1368980021004262_ref36 doi: 10.1145/2939672.2939785 – ident: S1368980021004262_ref24 doi: 10.1371/journal.pone.0174866 – ident: S1368980021004262_ref27 doi: 10.1016/j.ssmph.2021.100836 – ident: S1368980021004262_ref63 doi: 10.1080/23742917.2017.1321891 – ident: S1368980021004262_ref61 doi: 10.1146/annurev-publhealth-040119-094437 – volume-title: Ethiopia Mini Demographic and Health Survey 2019: Key Indicators year: 2019 ident: S1368980021004262_ref42 – ident: S1368980021004262_ref58 doi: 10.1016/j.socscimed.2019.112486 – ident: S1368980021004262_ref4 doi: 10.1017/S1368980016000276 – ident: S1368980021004262_ref9 doi: 10.1371/journal.pone.0142301 – volume-title: Women’s Empowerment and Nutrition: An Evidence Review. IFPRI Discussion Paper 1294 year: 2013 ident: S1368980021004262_ref53 – ident: S1368980021004262_ref2 doi: 10.1016/S0140-6736(07)61690-0 – ident: S1368980021004262_ref54 doi: 10.1371/journal.pone.0219665 – ident: S1368980021004262_ref30 – ident: S1368980021004262_ref29 doi: 10.1017/S1368980018002434 – volume: 9 start-page: 55 year: 2015 ident: S1368980021004262_ref12 article-title: Assessment of food security situation in Ethiopia: a review publication-title: Asian J Agric Res – volume: 30 start-page: 2328 year: 2016 ident: S1368980021004262_ref48 article-title: Key determinants of malnutrition of children under 5 years of age in Rwanda: simultaneous measurement of three anthropometric indices publication-title: Afr Popul Stud – ident: S1368980021004262_ref26 doi: 10.1371/journal.pone.0208937 – volume-title: Machine Learning Mastery with R. Get Started, Build Accurate Models, and Work through Projects Step-by-Step year: 2016 ident: S1368980021004262_ref39 – ident: S1368980021004262_ref56 doi: 10.3390/ijerph9103506 – ident: S1368980021004262_ref8 doi: 10.1093/ije/26.1.160 – ident: S1368980021004262_ref23 doi: 10.1016/j.surg.2010.03.023 – ident: S1368980021004262_ref60 doi: 10.2196/22400 – volume: 9 start-page: 39 year: 2019 ident: S1368980021004262_ref43 article-title: Pictures of food insecurity in Amhara region publication-title: Res J Soc Sci Manag – ident: S1368980021004262_ref35 – ident: S1368980021004262_ref38 doi: 10.1007/978-0-387-84858-7 – ident: S1368980021004262_ref10 doi: 10.5751/ES-03895-160118 – volume-title: An Analysis of Trends and Determinants of Child Undernutrition in Ethiopia, 2000–2011. ESSP II Working Paper 70 year: 2014 ident: S1368980021004262_ref7 – ident: S1368980021004262_ref31 – ident: S1368980021004262_ref47 doi: 10.3329/jhpn.v29i4.8449 – volume: 7 start-page: 104 year: 2018 ident: S1368980021004262_ref57 article-title: Prevalence and determinants of undernutrition among children under 5-year-old in rural areas: a cross-sectional survey in North Sudan publication-title: J Fam Med Prim Care doi: 10.4103/jfmpc.jfmpc_73_17 – volume: 87 start-page: 248 year: 2010 ident: S1368980021004262_ref15 article-title: Child malnutrition in Tigray, northern Ethiopia publication-title: East Afr Med J – ident: S1368980021004262_ref22 doi: 10.1186/1472-6947-10-16 – ident: S1368980021004262_ref25 doi: 10.1016/j.nut.2020.110861 – ident: S1368980021004262_ref50 doi: 10.1371/journal.pone.0177338 – ident: S1368980021004262_ref45 doi: 10.1016/j.procs.2017.09.087 – volume: 69 start-page: 113 year: 2013 ident: S1368980021004262_ref18 article-title: Household structure and children’s nutritional status in Ethiopia publication-title: Genus |
| SSID | ssj0005777 |
| Score | 2.5148916 |
| Snippet | Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of... Objective:Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the... |
| SourceID | pubmedcentral proquest pubmed crossref cambridge |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 269 |
| SubjectTerms | Age Algorithms Anemia Artificial intelligence birth weight Child Child, Preschool childhood Children Children & youth Classification Demographics Discriminant analysis Ethiopia Ethiopia - epidemiology Fertility Food security Growth Disorders - etiology Health surveys Households Humans Infant Learning algorithms Machine Learning Malnutrition Malnutrition - complications Malnutrition - diagnosis Malnutrition - epidemiology Maternal & child health Neural networks Nutrition Nutritional status Nutritional Status and Body Composition prediction Predictions Prevalence Public health Research Paper Risk analysis Risk factors Thinness - epidemiology Thinness - etiology Undernutrition Underweight Variables Water supply |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgNSxaNACRRkJMQBYZHYju2cUAutOMCqQoB6ixzHbiNts9vdlN-P7TjZLpX2wtWPxNHMOJ89M98AvDU204ViGSZK5JiRSuMqVzVOU1UYklpSBVKf39_EdCrPzorTeOG2imGVw54YNup6rv0d-UfCnfZJUcji0-IK-6pR3rsaS2jchR3PVMYmsHN0PD39sQ7yEKH2Yka5M2uHjQa_pieN9o2-jWQ9L_tNdoXNv9Qt6PlvBOWNX9LJw__9mEfwIIJRdNhrz2O4Y9o9SL40pkPvUGQMnaHpQNi_B7v9LR_qk5eeQPk9xGIaFItPnCM1O3cv6i4uV8jBYbRYekeQD61GPltt2Q7PQqHKUd-Irdty0ZBWjpoW-Sj8-aJRT-HXyfHPz19xLNmAdZ6yDkul6jzltdTuWFQH-GGI0TbjXEtVaOMAmjuTFUozbmvDuWXUplJZm_ua7JQ-g0k7b81zQAVNDTMOYRhaMSZExWxOlEMrFdOZyqsEPoziKqPhrco-aE2Ut6SbQDpItNSR_txX4Zhtm_J-nLLouT-2DT4YRL1ezVrOCbwZu50Be6-Mas382o3Jpdt23UmSbBnjUFQako4T2O81b1wRZZy4gzRNQGzo5DjAE4hv9rTNRSASl1JSIfiL7Ut_CfeJz_kIoeoHMOmW1-YV3NN_uma1fB0t7i-gIjE8 priority: 102 providerName: ProQuest |
| Title | Machine learning algorithms for predicting undernutrition among under-five children in Ethiopia |
| URI | https://www.cambridge.org/core/product/identifier/S1368980021004262/type/journal_article https://www.ncbi.nlm.nih.gov/pubmed/34620263 https://www.proquest.com/docview/2631887989 https://www.proquest.com/docview/2580700962 https://www.proquest.com/docview/2661042694 https://pubmed.ncbi.nlm.nih.gov/PMC8883776 |
| Volume | 25 |
| WOSCitedRecordID | wos000732611200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAEN databaseName: Cambridge University Press Open Access Journals customDbUrl: eissn: 1475-2727 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005777 issn: 1368-9800 databaseCode: IKXGN dateStart: 19980301 isFulltext: true titleUrlDefault: http://journals.cambridge.org/action/login providerName: Cambridge University Press – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1475-2727 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005777 issn: 1368-9800 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1475-2727 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005777 issn: 1368-9800 databaseCode: M0K dateStart: 20010201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Career & Technical Education Database customDbUrl: eissn: 1475-2727 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005777 issn: 1368-9800 databaseCode: 7RQ dateStart: 20010201 isFulltext: true titleUrlDefault: https://search.proquest.com/career providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1475-2727 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005777 issn: 1368-9800 databaseCode: 7X7 dateStart: 20010201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & allied health premium. customDbUrl: eissn: 1475-2727 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005777 issn: 1368-9800 databaseCode: 7RV dateStart: 20010201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1475-2727 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005777 issn: 1368-9800 databaseCode: BENPR dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1475-2727 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005777 issn: 1368-9800 databaseCode: 8C1 dateStart: 20010201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL3aWh6Q0IDxscCojIR4QER1HCd2HmFsgMaiMWDKW-Q49happFXa8fuxnY-tm1SJB14sNbmx0hvHOdc-91yAN0oHMhE08IlgkU9JIf0iEqWPsUgUwZoUTtTn_BtLU55lyekWZH0ujKVVDhoHbiff1UdbtPKn06psOTSqmf4Iwpgn3AUtTld9ahctp90jyDvHb8PYIBhCRjD-epx9Tq_pH8xVZbSd-LaXfsfTyknf7vmm7sL69-sOKL3NrbzxsTp6-P_-5iPY6QAs-tAeeQxbqt4F71OlVugt6lRGZyjtRf534UG7MojahKcnkJ84_qZCXcGKCyRmF3Njffl7iQyERovGbh5ZOjayGW5N3feFXGWk9qCvzTSN-lR0VNXIMvfni0o8hV9Hhz8PvvhdmQdfRpiufC5EGeG45NKEUqWDLIooqYM4llwkUhlQZ-K4REga61LFsaahxlxoHdk67mH4DEb1vFZ7gJIQK6oMKlFhQSljBdUREQbhFFQGIio8eD94Pe9cuMxbohvL77jaA9w_61x2kum2csds0yXvhksWrV7IJuP9fgBd3w2JzTTLWcITD14Pp81Lb3dyRK3mV8Ym4maqNtEn2WBjkBd2icoePG_H5HBHIY2JCb5DD9jaaB0MrOj4-pm6unTi45zzkLH4xb958iXcJzZvxNHd92G0aq7UK7gn_6yqZTOBbXb23bXnts2Ya7lp-UEwgfHHw_T0bOKWSybde2x-neDjv_T7Tjc |
| linkProvider | Cambridge University Press |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQkkxEf5aKCAkYADIsJxHNs5IIQoVatuVwiVqrfgOE4baZtddlMQf4rfyNhJdrtU2lsPXB1n10nGM8_2zHsAL20ZmVTzKGRaJiFnuQnzRBchpTq1jJYs96Q-RwM5HKrj4_TLGvzpa2FcWmXvE72jLsbG7ZG_YwKtT8lUpR8mP0KnGuVOV3sJjdYs9u3vX7hkm73f28bv-4qxnc-Hn3bDTlUgNAnlTai0LhIqCmUQuRc-QlpmTRkJYZROjUUMgcuGVBsuysIKUfK4pEqXZeJkw90GKLr8a-jHI5dCJr8eLVJKpFd6jGKBTgSRWH-K6iiqXaNrY1HLAn-Ry2E5Jl4Cuv_ma14IgDt3_rdXdxdud1CbfGznxj1Ys_UGBNuVbchr0vGhjsiwlyPYgFvtHiZpS7PuQ3bgM00t6aQ1TogeneCDNadnM4Jgn0ym7pjLJY4TV4s3rfvfIl7DqW0MSwwopC-aJ1VNXI3BeFLpB_DtSp7_IazX49puAkljarlF_GTjnHMpc14mTCMWy7mJdJIH8HZuHlnnVmZZm5Ins0vWFADtLSgzHbm70xgZrbrlzfyWSctssqrzVm9ai9Es7CqAF_PL6J7cmZOu7fgc-yQKgwquk9mKPogRqS-pDuBRa-nzEcVcMIp_FIBcmgPzDo4efflKXZ16mnSlVCyleLx66M_hxu7hwSAb7A33n8BN5qpbfFL-Fqw303P7FK6bn001mz7zc53A96ueIX8B58mM5A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBSEkxKM8GihgJOCAiOo4ju0cEEJdVlQtqx4A9RYcx24jLdntbgrir_HrGOex3aXS3nrg6jiJnXzzsD3zDcBL6yKTah6FTMsk5Cw3YZ7oIqRUp5ZRx_KG1OfboRyN1PFxerQBf_pcGB9W2evERlEXE-P3yHeZQPQpmap013VhEUeD4fvpWegrSPmT1r6cRguRA_v7Fy7f5u_2B_ivXzE2_Phl71PYVRgITUJ5HSqti4SKQhn04ovGWlpmjYuEMEqnxqI_gUuIVBsuXGGFcDx2VGnnEl9C3G-Govq_JmNEsc9S31sKL5FN1ccoFqhQ0CvrT1Q9XbVv9G0sahnhl3kdVu3jJaf339jNJWM4vPM_f8a7cLtzwcmHVmbuwYattiAYlLYmr0nHkzomo75MwRbcavc2SZuydR-yz00EqiVdyY0ToscnOLH69Mec4CKATGf--MsHlBOfozer-meRprZT2xg6NDSkT6YnZUV87sFkWuoH8PVK5v8QNqtJZbeBpDG13KJfZeOccylz7hKm0UfLuYl0kgfwdgGVrFM386wN1ZPZJWQFQHs0ZaYjffe1R8brbnmzuGXaMp6s67zTw-xiNBcYC-DF4jKqLX8WpSs7Occ-iUJjg-tntqYP-o60SbUO4FGL-sWIYi4YxRcFIFfkYdHB06avXqnK04Y-XSkVSykerx_6c7iBgpEd7o8OnsBN5pNemlj9HdisZ-f2KVw3P-tyPnvWiD2B71ctIH8BS2WVPw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+for+predicting+undernutrition+among+under-five+children+in+Ethiopia&rft.jtitle=Public+health+nutrition&rft.au=Bitew%2C+Fikrewold+H&rft.au=Sparks%2C+Corey+S&rft.au=Nyarko%2C+Samuel+H&rft.date=2022-02-01&rft.issn=1475-2727&rft.volume=25&rft.issue=2+p.269-280&rft.spage=269&rft.epage=280&rft_id=info:doi/10.1017%2FS1368980021004262&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1368-9800&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1368-9800&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1368-9800&client=summon |