Machine learning algorithms for predicting undernutrition among under-five children in Ethiopia

Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms. This study draws on data from the Ethiopian Demographic and Health Survey o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Public health nutrition Ročník 25; číslo 2; s. 269 - 280
Hlavní autori: Bitew, Fikrewold H, Sparks, Corey S, Nyarko, Samuel H
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 01.02.2022
Predmet:
ISSN:1368-9800, 1475-2727, 1475-2727
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms. This study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia. Households in Ethiopia. A total of 9471 children below 5 years of age participated in this study. The descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others. The xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia.
AbstractList Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms.OBJECTIVEChild undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms.This study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia.DESIGNThis study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia.Households in Ethiopia.SETTINGHouseholds in Ethiopia.A total of 9471 children below 5 years of age participated in this study.PARTICIPANTSA total of 9471 children below 5 years of age participated in this study.The descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others.RESULTSThe descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others.The xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia.CONCLUSIONSThe xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia.
Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms. This study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia. Households in Ethiopia. A total of 9471 children below 5 years of age participated in this study. The descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others. The xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia.
Objective:Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms.Design:This study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia.Setting:Households in Ethiopia.Participants:A total of 9471 children below 5 years of age participated in this study.Results:The descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others.Conclusions:The xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia.
Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of childhood stunting by using various machine learning (ML) algorithms. This study draws on data from the Ethiopian Demographic and Health Survey of 2016. Five ML algorithms including eXtreme gradient boosting, k-nearest neighbours (k-NN), random forest, neural network and the generalised linear models were considered to predict the socio-demographic risk factors for undernutrition in Ethiopia. Households in Ethiopia. A total of 9471 children below 5 years of age participated in this study. The descriptive results show substantial regional variations in child stunting, wasting and underweight in Ethiopia. Also, among the five ML algorithms, xgbTree algorithm shows a better prediction ability than the generalised linear mixed algorithm. The best predicting algorithm (xgbTree) shows diverse important predictors of undernutrition across the three outcomes which include time to water source, anaemia history, child age greater than 30 months, small birth size and maternal underweight, among others. The xgbTree algorithm was a reasonably superior ML algorithm for predicting childhood undernutrition in Ethiopia compared to other ML algorithms considered in this study. The findings support improvement in access to water supply, food security and fertility regulation, among others, in the quest to considerably improve childhood nutrition in Ethiopia.
Author Sparks, Corey S
Bitew, Fikrewold H
Nyarko, Samuel H
AuthorAffiliation Department of Demography, College for Health, Community and Policy, The University of Texas at San Antonio , 9947 Bricewood Hill, San Antonio , TX 78254 , USA
AuthorAffiliation_xml – name: Department of Demography, College for Health, Community and Policy, The University of Texas at San Antonio , 9947 Bricewood Hill, San Antonio , TX 78254 , USA
Author_xml – sequence: 1
  givenname: Fikrewold H
  surname: Bitew
  fullname: Bitew, Fikrewold H
  email: fikre.wold@gmail.com
  organization: Department of Demography, College for Health, Community and Policy, The University of Texas at San Antonio, 9947 Bricewood Hill, San Antonio, TX 78254, USA
– sequence: 2
  givenname: Corey S
  surname: Sparks
  fullname: Sparks, Corey S
  organization: Department of Demography, College for Health, Community and Policy, The University of Texas at San Antonio, 9947 Bricewood Hill, San Antonio, TX 78254, USA
– sequence: 3
  givenname: Samuel H
  surname: Nyarko
  fullname: Nyarko, Samuel H
  organization: Department of Demography, College for Health, Community and Policy, The University of Texas at San Antonio, 9947 Bricewood Hill, San Antonio, TX 78254, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34620263$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1TAQhS1URB_wA9igSGzYBMZ2_MgGCVXlIRWxANaW64zvdZXYFzup1H-Po97LowhY2fI559N4Zk7JUUwRCXlK4SUFql59plzqXgMwCtAxyR6QE9op0TLF1FG9V7ld9WNyWso1AAil1CNyzDvJgEl-QsxH67YhYjOizTHETWPHTcph3k6l8Sk3u4xDcPOqLHHAHJe5qiHFxk7p8Nj6cINNBY1DxtiE2FzM25B2wT4mD70dCz7Zn2fk69uLL-fv28tP7z6cv7lsnYBubrW1gwA5aCelHEBpxpCh81RKp23vUAhKu763rpN-QCl9xz1o672QggrOz8jrO-5uuZpwcBjnbEezy2Gy-dYkG8zvSgxbs0k3RmvNlZIV8GIPyOnbgmU2UygOx9FGTEsxTEq69rjv_m8VGhRAL1m1Pr9nvU5LjrUTFcip1qrXfXU9-7X4H1UfxlQN6s7gciolozcuzHadQv1LGA0Fsy6E-WMhapLeSx7g_8rwfcZOVzkMG_xZ9d9T3wGtIcbr
CitedBy_id crossref_primary_10_1007_s10651_025_00674_6
crossref_primary_10_1111_mcn_70039
crossref_primary_10_1186_s12967_024_05935_9
crossref_primary_10_1038_s41598_024_62641_8
crossref_primary_10_1007_s13198_022_01765_4
crossref_primary_10_3389_fnut_2023_1277048
crossref_primary_10_37306_9v7sth43
crossref_primary_10_12688_f1000research_156316_1
crossref_primary_10_3389_fpubh_2025_1549210
Cites_doi 10.1155/2014/618976
10.6339/JDS.201901_17(1).0009
10.1093/ije/dyl157
10.1371/journal.pone.0133542
10.2307/2529310
10.1093/jn/133.4.1064
10.1007/s10462-020-09896-5
10.1016/S0140-6736(13)60937-X
10.1371/journal.pone.0175445
10.35188/UNU-WIDER/2016/191-8
10.1136/bmjopen-2020-037860
10.1016/j.socscimed.2015.11.036
10.1093/intqhc/mzx129
10.1371/journal.pone.0170785
10.1186/s12939-016-0480-z
10.1503/cmaj.170914
10.1371/journal.pone.0179805
10.1111/ppe.12222
10.1145/2939672.2939785
10.1371/journal.pone.0174866
10.1016/j.ssmph.2021.100836
10.1080/23742917.2017.1321891
10.1146/annurev-publhealth-040119-094437
10.1016/j.socscimed.2019.112486
10.1017/S1368980016000276
10.1371/journal.pone.0142301
10.1016/S0140-6736(07)61690-0
10.1371/journal.pone.0219665
10.1017/S1368980018002434
10.1371/journal.pone.0208937
10.3390/ijerph9103506
10.1093/ije/26.1.160
10.1016/j.surg.2010.03.023
10.2196/22400
10.1007/978-0-387-84858-7
10.5751/ES-03895-160118
10.3329/jhpn.v29i4.8449
10.4103/jfmpc.jfmpc_73_17
10.1186/1472-6947-10-16
10.1016/j.nut.2020.110861
10.1371/journal.pone.0177338
10.1016/j.procs.2017.09.087
ContentType Journal Article
Copyright The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society
The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content
The Authors 2021 2021 The Authors
Copyright_xml – notice: The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society
– notice: The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content
– notice: The Authors 2021 2021 The Authors
DBID IKXGN
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7RQ
7RV
7T2
7X2
7X7
7XB
88E
8C1
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
HCIFZ
K9.
KB0
M0K
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
7S9
L.6
5PM
DOI 10.1017/S1368980021004262
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Career & Technical Education Database
Nursing & Allied Health Database
Health and Safety Science Abstracts (Full archive)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
SciTech Premium Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Health & Safety Science Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Career and Technical Education
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
Agricultural Science Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: IKXGN
  name: Cambridge University Press Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 3
  dbid: 7RV
  name: Nursing & allied health premium.
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Diet & Clinical Nutrition
EISSN 1475-2727
EndPage 280
ExternalDocumentID PMC8883776
34620263
10_1017_S1368980021004262
Genre Journal Article
GeographicLocations Ethiopia
Africa
GeographicLocations_xml – name: Ethiopia
– name: Africa
GroupedDBID ---
-1D
-1F
-2P
-2V
-E.
-~6
-~N
.FH
09C
09E
0E1
0R~
123
29P
2WC
3V.
4.4
53G
5VS
6~7
74X
74Y
7RQ
7RV
7X2
7X7
7~V
88E
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAIKC
AAKTX
AAMNQ
AAMNW
AANRG
AARAB
AASVR
AATID
AAUIS
AAUKB
AAWTL
ABBXD
ABBZL
ABFBI
ABJNI
ABKKG
ABKMT
ABMWE
ABMYL
ABOCM
ABQTM
ABROB
ABUWG
ABVFV
ABWCF
ABXAU
ABZCX
ACBEK
ACBMC
ACCHT
ACETC
ACGFS
ACIMK
ACPRK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADAZD
ADBBV
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYHU
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFRIC
AFUTZ
AGABE
AGJUD
AGLWM
AGOOT
AHIPN
AHLTW
AHMBA
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
ANPSP
AQJOH
ARABE
ARZZG
ATCPS
ATUCA
AUXHV
AYIQA
AZGZS
BAWUL
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BHPHI
BJBOZ
BKEYQ
BLZWO
BMAJL
BPHCQ
BQFHP
BRIRG
BVXVI
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DIK
DOHLZ
DU5
DWQXO
E3Z
EBS
EGQIC
EJD
EX3
F5P
FYUFA
GROUPED_DOAJ
HCIFZ
HG-
HMCUK
HST
HZ~
I.6
I.7
I.9
IH6
IKXGN
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JVRFK
KAFGG
KC5
KCGVB
KFECR
L98
LHUNA
LW7
M-V
M0K
M1P
M7~
M8.
NAPCQ
NIKVX
NMFBF
NZEOI
O9-
OK1
OVD
P2P
PCD
PQQKQ
PROAC
PSQYO
Q2X
RAMDC
RCA
ROL
RPM
RR0
S6-
S6U
SAAAG
SJN
SY4
T9M
TEORI
TR2
UCJ
UKHRP
UT1
UU6
WFFJZ
WOW
WQ3
WXU
WXY
WYP
YHZ
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~KM
~V1
AAFWJ
AAHBH
AAYXX
ABGDZ
ABVKB
ABVZP
ABXHF
ACAJB
ACDLN
AEMTJ
AEUYN
AFFHD
AFPKN
AFZFC
AKMAY
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
AATMM
ACRPL
ADNMO
AEMFK
ALIPV
CGR
CUY
CVF
ECM
EIF
M48
NPM
7QP
7T2
7XB
8FK
C1K
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
7S9
L.6
5PM
ID FETCH-LOGICAL-c504t-8aad506d8c666d07822e2ecf166c8a9ce5511499ac46fde66f43f08aff5651533
IEDL.DBID IKXGN
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732611200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1368-9800
1475-2727
IngestDate Tue Nov 04 01:59:54 EST 2025
Thu Oct 02 11:06:04 EDT 2025
Thu Oct 02 11:49:46 EDT 2025
Sat Nov 29 14:24:30 EST 2025
Wed Feb 19 02:27:30 EST 2025
Tue Nov 18 21:20:31 EST 2025
Sat Nov 29 05:54:50 EST 2025
Wed Mar 13 05:54:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Determinants
Predictive algorithms
Child undernutrition
Spatial variations
Ethiopia
Machine learning
Language English
License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-8aad506d8c666d07822e2ecf166c8a9ce5511499ac46fde66f43f08aff5651533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.cambridge.org/core/product/identifier/S1368980021004262/type/journal_article
PMID 34620263
PQID 2631887989
PQPubID 26856
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8883776
proquest_miscellaneous_2661042694
proquest_miscellaneous_2580700962
proquest_journals_2631887989
pubmed_primary_34620263
crossref_citationtrail_10_1017_S1368980021004262
crossref_primary_10_1017_S1368980021004262
cambridge_journals_10_1017_S1368980021004262
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: England
– name: Cambridge
PublicationTitle Public health nutrition
PublicationTitleAlternate Public Health Nutr
PublicationYear 2022
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2010; 10
2019; 9
2017; 1
2013; 69
2016; 19
2006; 35
2020; 41
1997; 26
2015; 10
2019; 14
2019; 17
2016; 30
2006; 450
2013; 382
2016; 149
2014; 2014
2020; 78
2017; 29
2020; 10
2011; 16
2015; 9
2016; 15
2018; 190
2003; 133
2017; 115
2011; 149
2018; 7
2010; 87
2015; 26
2020; 6
2021; 15
2021; 54
2019; 22
2017; 12
1977; 33
2019; 238
2011; 29
2008; 371
2012; 9
S1368980021004262_ref60
S1368980021004262_ref61
S1368980021004262_ref62
Sulaiman (S1368980021004262_ref57) 2018; 7
Clark (S1368980021004262_ref37) 2013
S1368980021004262_ref16
S1368980021004262_ref17
S1368980021004262_ref19
S1368980021004262_ref54
S1368980021004262_ref10
S1368980021004262_ref56
Endalew (S1368980021004262_ref12) 2015; 9
S1368980021004262_ref13
S1368980021004262_ref58
S1368980021004262_ref14
S1368980021004262_ref59
Brownlee (S1368980021004262_ref39) 2016
S1368980021004262_ref27
S1368980021004262_ref29
Negash (S1368980021004262_ref43) 2019; 9
S1368980021004262_ref63
Mulugeta (S1368980021004262_ref15) 2010; 87
(S1368980021004262_ref11) 2016
S1368980021004262_ref20
S1368980021004262_ref21
S1368980021004262_ref22
S1368980021004262_ref23
S1368980021004262_ref24
S1368980021004262_ref25
Masibo (S1368980021004262_ref52) 2013
S1368980021004262_ref26
(S1368980021004262_ref42) 2019
S1368980021004262_ref40
Gurmu (S1368980021004262_ref18) 2013; 69
(S1368980021004262_ref28) 2006; 450
S1368980021004262_ref2
S1368980021004262_ref1
S1368980021004262_ref4
S1368980021004262_ref38
S1368980021004262_ref3
S1368980021004262_ref5
S1368980021004262_ref8
S1368980021004262_ref9
S1368980021004262_ref30
S1368980021004262_ref31
S1368980021004262_ref32
S1368980021004262_ref33
S1368980021004262_ref34
Gurung (S1368980021004262_ref55) 2010; 10
S1368980021004262_ref35
S1368980021004262_ref36
(S1368980021004262_ref6) 2016
S1368980021004262_ref50
S1368980021004262_ref51
Habyarimana (S1368980021004262_ref48) 2016; 30
S1368980021004262_ref49
van den Bold (S1368980021004262_ref53) 2013
Headey (S1368980021004262_ref7) 2014
S1368980021004262_ref41
S1368980021004262_ref44
S1368980021004262_ref45
S1368980021004262_ref46
S1368980021004262_ref47
References_xml – volume: 115
  start-page: 338
  year: 2017
  end-page: 349
  article-title: Investigation of nutritional status of children based on machine learning techniques using Indian demographic and health survey data
  publication-title: Procedia Comput Sci
– volume: 12
  start-page: e0177338
  year: 2017
  article-title: Child malnutrition in sub-Saharan Africa: a meta-analysis of demographic and health surveys (2006–2016)
  publication-title: PLoS One
– volume: 133
  start-page: 1064
  year: 2003
  end-page: 1069
  article-title: Factors associated with stunting in infants aged 5–11 months in the Dodota-Sire district, rural Ethiopia
  publication-title: J Nutr
– volume: 12
  start-page: e0175445
  year: 2017
  article-title: Small area estimation of child undernutrition in Ethiopian woredas
  publication-title: PLoS One
– volume: 26
  start-page: 160
  year: 1997
  end-page: 165
  article-title: Intra-household correlations of nutritional status in rural Ethiopia
  publication-title: Int J Epidemiol
– volume: 78
  start-page: 110861
  year: 2020
  article-title: Machine learning algorithms for predicting malnutrition among under-five children in Bangladesh
  publication-title: Nutrition
– volume: 29
  start-page: 339
  year: 2011
  end-page: 348
  article-title: Socioeconomic determinants of nutritional status of children in Lao PDR: effects of household and community factors
  publication-title: J Health Popul Nutr
– volume: 15
  start-page: 100836
  year: 2021
  article-title: A scoping review on the use of machine learning in research on social determinants of health: trends and research prospects
  publication-title: SSM Popul Health
– volume: 54
  start-page: 1937
  year: 2021
  end-page: 1967
  article-title: A comparative analysis of gradient boosting algorithms
  publication-title: Artif Intell Rev
– volume: 190
  start-page: E871
  year: 2018
  end-page: E882
  article-title: Development and validation of a cardiovascular disease risk-prediction model using population health surveys: the cardiovascular disease population risk tool (CVDPoRT)
  publication-title: CMAJ
– volume: 41
  start-page: 21
  year: 2020
  end-page: 36
  article-title: Machine learning in epidemiology and health outcomes research
  publication-title: Ann Rev Public Health
– volume: 22
  start-page: 175
  year: 2019
  end-page: 179
  article-title: Prevalence thresholds for wasting, overweight and stunting in children under 5 years
  publication-title: Public Health Nutr
– volume: 2014
  start-page: 618976
  year: 2014
  article-title: Screening for prediabetes using machine learning algorithms
  publication-title: Comput Math Method Med
– volume: 26
  start-page: 552
  year: 2015
  end-page: 561
  article-title: Childhood malnutrition and its determinants among under-five children in Ghana
  publication-title: Paediatr Perinat Epidemiol
– volume: 87
  start-page: 248
  year: 2010
  end-page: 254
  article-title: Child malnutrition in Tigray, northern Ethiopia
  publication-title: East Afr Med J
– volume: 9
  start-page: 3506
  year: 2012
  end-page: 3518
  article-title: Prevalence, and risk factors for poor nutritional status among children in the Kilimanjaro region of Tanzania
  publication-title: Int J Environ Res Public Health
– volume: 6
  start-page: e22400
  year: 2020
  article-title: A racially unbiased, machine learning approach to prediction of mortality: algorithm development study
  publication-title: JMIR Public Health Surveill
– volume: 12
  start-page: e0174866
  year: 2017
  article-title: Exploration of machine learning techniques in predicting multiple sclerosis disease course
  publication-title: PLoS One
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 149
  start-page: 87
  year: 2011
  end-page: 93
  article-title: Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks
  publication-title: Surgery
– volume: 17
  start-page: 195
  year: 2019
  end-page: 218
  article-title: Machine learning algorithms to predict the childhood anemia in Bangladesh
  publication-title: J Data Sci
– volume: 10
  start-page: e0133542
  year: 2015
  article-title: Stunting is associated with food diversity while wasting with food insecurity among under-five children in east and west Gojjam zones of Amhara region, Ethiopia
  publication-title: PLoS One
– volume: 10
  start-page: 1352
  year: 2010
  article-title: Investing in mother’s education for better maternal and child health outcomes
  publication-title: Rural Rem Health
– volume: 29
  start-page: 901
  year: 2017
  end-page: 908
  article-title: Factors associated with malnutrition among children < 5 years old in Burkina Faso: evidence from the demographic and health surveys IV 2010
  publication-title: Int J Qual Health Care
– volume: 15
  start-page: 198
  year: 2016
  article-title: Nonrandom distribution of child undernutrition in Ethiopia: spatial analysis from the 2011 Ethiopia demographic and health survey
  publication-title: Int J Equity Health
– volume: 12
  start-page: e0170785
  year: 2017
  article-title: Spatial heterogeneity and risk factors for stunting among children under age five in Ethiopia: a Bayesian geo-statistical algorithm
  publication-title: PLoS One
– volume: 1
  start-page: 108
  year: 2017
  end-page: 126
  article-title: Comparison of machine-learning algorithms for classification of VPN network traffic flow using time-related features
  publication-title: J Cyber Secur Technol
– volume: 12
  start-page: e0179805
  year: 2017
  article-title: Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: the Henry ford exercise testing (FIT) project
  publication-title: PLoS One
– volume: 10
  start-page: e0142301
  year: 2015
  article-title: Association between maternal and child nutritional status in Hula, rural Southern Ethiopia: a cross sectional study
  publication-title: PLoS One
– volume: 238
  start-page: 112486
  year: 2019
  article-title: Predicting women’s height from their socioeconomic status: a machine learning approach
  publication-title: Soc Sci Med
– volume: 9
  start-page: 55
  year: 2015
  end-page: 68
  article-title: Assessment of food security situation in Ethiopia: a review
  publication-title: Asian J Agric Res
– volume: 35
  start-page: 1336
  year: 2006
  end-page: 1346
  article-title: Declining child malnutrition: a reassessment
  publication-title: Int J Epidemiol
– volume: 16
  start-page: 18
  year: 2011
  article-title: Effect of policy interventions on food security in Tigray, Northern Ethiopia
  publication-title: Ecol Soc
– volume: 30
  start-page: 2328
  year: 2016
  end-page: 2340
  article-title: Key determinants of malnutrition of children under 5 years of age in Rwanda: simultaneous measurement of three anthropometric indices
  publication-title: Afr Popul Stud
– volume: 382
  start-page: 427
  year: 2013
  end-page: 451
  article-title: Maternal and child undernutrition and overweight in low-income and middle-income countries
  publication-title: Lancet
– volume: 10
  start-page: 16
  year: 2010
  article-title: Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes
  publication-title: BMC Med Inform Decis Mak
– volume: 450
  start-page: 76
  year: 2006
  end-page: 85
  article-title: WHO child growth standards based on length/height, weight, and age
  publication-title: Acta Paediatr Suppl
– volume: 10
  start-page: e037860
  year: 2020
  article-title: Predicting population health with machine learning: a scoping review
  publication-title: BMJ Open
– volume: 9
  start-page: 39
  year: 2019
  end-page: 46
  article-title: Pictures of food insecurity in Amhara region
  publication-title: Res J Soc Sci Manag
– volume: 149
  start-page: 153
  year: 2016
  end-page: 163
  article-title: Examining the changing profile of undernutrition in the context of food price rises and greater inequality
  publication-title: Soc Sci Med
– volume: 14
  start-page: e0219665
  year: 2019
  article-title: The epidemiology of undernutrition and its determinants in children under 5 years in Ghana
  publication-title: PLoS One
– volume: 69
  start-page: 113
  year: 2013
  end-page: 130
  article-title: Household structure and children’s nutritional status in Ethiopia
  publication-title: Genus
– volume: 7
  start-page: 104
  year: 2018
  article-title: Prevalence and determinants of undernutrition among children under 5-year-old in rural areas: a cross-sectional survey in North Sudan
  publication-title: J Fam Med Prim Care
– volume: 371
  start-page: 243
  year: 2008
  end-page: 260
  article-title: Maternal and child undernutrition: global and regional exposures and health consequences
  publication-title: Lancet
– volume: 19
  start-page: 1375
  year: 2016
  end-page: 1388
  article-title: Prevalence and trends in the childhood dual burden of malnutrition in low-and middle-income countries, 1990–2012
  publication-title: Public Health Nutr
– volume: 14
  start-page: e0208937
  year: 2019
  article-title: The influence of maternal agency on severe child undernutrition in conflict-ridden Nigeria: modeling heterogeneous treatment effects with machine learning
  publication-title: PLoS One
– ident: S1368980021004262_ref21
  doi: 10.1155/2014/618976
– volume: 10
  start-page: 1352
  year: 2010
  ident: S1368980021004262_ref55
  article-title: Investing in mother’s education for better maternal and child health outcomes
  publication-title: Rural Rem Health
– ident: S1368980021004262_ref44
  doi: 10.6339/JDS.201901_17(1).0009
– volume: 450
  start-page: 76
  year: 2006
  ident: S1368980021004262_ref28
  article-title: WHO child growth standards based on length/height, weight, and age
  publication-title: Acta Paediatr Suppl
– ident: S1368980021004262_ref3
  doi: 10.1093/ije/dyl157
– ident: S1368980021004262_ref41
  doi: 10.1371/journal.pone.0133542
– ident: S1368980021004262_ref32
– ident: S1368980021004262_ref40
  doi: 10.2307/2529310
– ident: S1368980021004262_ref16
  doi: 10.1093/jn/133.4.1064
– ident: S1368980021004262_ref34
  doi: 10.1007/s10462-020-09896-5
– volume-title: An Introduction to Machine Learning with Applications in R
  year: 2013
  ident: S1368980021004262_ref37
– volume-title: Trends and Determinants of Malnutrition among Children Ages 0–59 Months in Kenya (KDHS 1993, 1998, 2003, and 2008–09)
  year: 2013
  ident: S1368980021004262_ref52
– volume-title: Ethiopia Demographic and Health Survey 2016
  year: 2016
  ident: S1368980021004262_ref6
– ident: S1368980021004262_ref1
  doi: 10.1016/S0140-6736(13)60937-X
– ident: S1368980021004262_ref19
  doi: 10.1371/journal.pone.0175445
– ident: S1368980021004262_ref46
  doi: 10.35188/UNU-WIDER/2016/191-8
– ident: S1368980021004262_ref62
  doi: 10.1136/bmjopen-2020-037860
– ident: S1368980021004262_ref13
  doi: 10.1016/j.socscimed.2015.11.036
– ident: S1368980021004262_ref49
  doi: 10.1093/intqhc/mzx129
– ident: S1368980021004262_ref17
  doi: 10.1371/journal.pone.0170785
– ident: S1368980021004262_ref5
– ident: S1368980021004262_ref14
  doi: 10.1186/s12939-016-0480-z
– ident: S1368980021004262_ref59
  doi: 10.1503/cmaj.170914
– ident: S1368980021004262_ref20
  doi: 10.1371/journal.pone.0179805
– volume-title: Implementation Plan (2016–2030) Seqota Declaration
  year: 2016
  ident: S1368980021004262_ref11
– ident: S1368980021004262_ref33
– ident: S1368980021004262_ref51
  doi: 10.1111/ppe.12222
– ident: S1368980021004262_ref36
  doi: 10.1145/2939672.2939785
– ident: S1368980021004262_ref24
  doi: 10.1371/journal.pone.0174866
– ident: S1368980021004262_ref27
  doi: 10.1016/j.ssmph.2021.100836
– ident: S1368980021004262_ref63
  doi: 10.1080/23742917.2017.1321891
– ident: S1368980021004262_ref61
  doi: 10.1146/annurev-publhealth-040119-094437
– volume-title: Ethiopia Mini Demographic and Health Survey 2019: Key Indicators
  year: 2019
  ident: S1368980021004262_ref42
– ident: S1368980021004262_ref58
  doi: 10.1016/j.socscimed.2019.112486
– ident: S1368980021004262_ref4
  doi: 10.1017/S1368980016000276
– ident: S1368980021004262_ref9
  doi: 10.1371/journal.pone.0142301
– volume-title: Women’s Empowerment and Nutrition: An Evidence Review. IFPRI Discussion Paper 1294
  year: 2013
  ident: S1368980021004262_ref53
– ident: S1368980021004262_ref2
  doi: 10.1016/S0140-6736(07)61690-0
– ident: S1368980021004262_ref54
  doi: 10.1371/journal.pone.0219665
– ident: S1368980021004262_ref30
– ident: S1368980021004262_ref29
  doi: 10.1017/S1368980018002434
– volume: 9
  start-page: 55
  year: 2015
  ident: S1368980021004262_ref12
  article-title: Assessment of food security situation in Ethiopia: a review
  publication-title: Asian J Agric Res
– volume: 30
  start-page: 2328
  year: 2016
  ident: S1368980021004262_ref48
  article-title: Key determinants of malnutrition of children under 5 years of age in Rwanda: simultaneous measurement of three anthropometric indices
  publication-title: Afr Popul Stud
– ident: S1368980021004262_ref26
  doi: 10.1371/journal.pone.0208937
– volume-title: Machine Learning Mastery with R. Get Started, Build Accurate Models, and Work through Projects Step-by-Step
  year: 2016
  ident: S1368980021004262_ref39
– ident: S1368980021004262_ref56
  doi: 10.3390/ijerph9103506
– ident: S1368980021004262_ref8
  doi: 10.1093/ije/26.1.160
– ident: S1368980021004262_ref23
  doi: 10.1016/j.surg.2010.03.023
– ident: S1368980021004262_ref60
  doi: 10.2196/22400
– volume: 9
  start-page: 39
  year: 2019
  ident: S1368980021004262_ref43
  article-title: Pictures of food insecurity in Amhara region
  publication-title: Res J Soc Sci Manag
– ident: S1368980021004262_ref35
– ident: S1368980021004262_ref38
  doi: 10.1007/978-0-387-84858-7
– ident: S1368980021004262_ref10
  doi: 10.5751/ES-03895-160118
– volume-title: An Analysis of Trends and Determinants of Child Undernutrition in Ethiopia, 2000–2011. ESSP II Working Paper 70
  year: 2014
  ident: S1368980021004262_ref7
– ident: S1368980021004262_ref31
– ident: S1368980021004262_ref47
  doi: 10.3329/jhpn.v29i4.8449
– volume: 7
  start-page: 104
  year: 2018
  ident: S1368980021004262_ref57
  article-title: Prevalence and determinants of undernutrition among children under 5-year-old in rural areas: a cross-sectional survey in North Sudan
  publication-title: J Fam Med Prim Care
  doi: 10.4103/jfmpc.jfmpc_73_17
– volume: 87
  start-page: 248
  year: 2010
  ident: S1368980021004262_ref15
  article-title: Child malnutrition in Tigray, northern Ethiopia
  publication-title: East Afr Med J
– ident: S1368980021004262_ref22
  doi: 10.1186/1472-6947-10-16
– ident: S1368980021004262_ref25
  doi: 10.1016/j.nut.2020.110861
– ident: S1368980021004262_ref50
  doi: 10.1371/journal.pone.0177338
– ident: S1368980021004262_ref45
  doi: 10.1016/j.procs.2017.09.087
– volume: 69
  start-page: 113
  year: 2013
  ident: S1368980021004262_ref18
  article-title: Household structure and children’s nutritional status in Ethiopia
  publication-title: Genus
SSID ssj0005777
Score 2.5148916
Snippet Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the determinants of...
Objective:Child undernutrition is a global public health problem with serious implications. In this study, we estimate predictive algorithms for the...
SourceID pubmedcentral
proquest
pubmed
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 269
SubjectTerms Age
Algorithms
Anemia
Artificial intelligence
birth weight
Child
Child, Preschool
childhood
Children
Children & youth
Classification
Demographics
Discriminant analysis
Ethiopia
Ethiopia - epidemiology
Fertility
Food security
Growth Disorders - etiology
Health surveys
Households
Humans
Infant
Learning algorithms
Machine Learning
Malnutrition
Malnutrition - complications
Malnutrition - diagnosis
Malnutrition - epidemiology
Maternal & child health
Neural networks
Nutrition
Nutritional status
Nutritional Status and Body Composition
prediction
Predictions
Prevalence
Public health
Research Paper
Risk analysis
Risk factors
Thinness - epidemiology
Thinness - etiology
Undernutrition
Underweight
Variables
Water supply
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgNSxaNACRRkJMQBYZHYju2cUAutOMCqQoB6ixzHbiNts9vdlN-P7TjZLpX2wtWPxNHMOJ89M98AvDU204ViGSZK5JiRSuMqVzVOU1UYklpSBVKf39_EdCrPzorTeOG2imGVw54YNup6rv0d-UfCnfZJUcji0-IK-6pR3rsaS2jchR3PVMYmsHN0PD39sQ7yEKH2Yka5M2uHjQa_pieN9o2-jWQ9L_tNdoXNv9Qt6PlvBOWNX9LJw__9mEfwIIJRdNhrz2O4Y9o9SL40pkPvUGQMnaHpQNi_B7v9LR_qk5eeQPk9xGIaFItPnCM1O3cv6i4uV8jBYbRYekeQD61GPltt2Q7PQqHKUd-Irdty0ZBWjpoW-Sj8-aJRT-HXyfHPz19xLNmAdZ6yDkul6jzltdTuWFQH-GGI0TbjXEtVaOMAmjuTFUozbmvDuWXUplJZm_ua7JQ-g0k7b81zQAVNDTMOYRhaMSZExWxOlEMrFdOZyqsEPoziKqPhrco-aE2Ut6SbQDpItNSR_txX4Zhtm_J-nLLouT-2DT4YRL1ezVrOCbwZu50Be6-Mas382o3Jpdt23UmSbBnjUFQako4T2O81b1wRZZy4gzRNQGzo5DjAE4hv9rTNRSASl1JSIfiL7Ut_CfeJz_kIoeoHMOmW1-YV3NN_uma1fB0t7i-gIjE8
  priority: 102
  providerName: ProQuest
Title Machine learning algorithms for predicting undernutrition among under-five children in Ethiopia
URI https://www.cambridge.org/core/product/identifier/S1368980021004262/type/journal_article
https://www.ncbi.nlm.nih.gov/pubmed/34620263
https://www.proquest.com/docview/2631887989
https://www.proquest.com/docview/2580700962
https://www.proquest.com/docview/2661042694
https://pubmed.ncbi.nlm.nih.gov/PMC8883776
Volume 25
WOSCitedRecordID wos000732611200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAEN
  databaseName: Cambridge University Press Open Access Journals
  customDbUrl:
  eissn: 1475-2727
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005777
  issn: 1368-9800
  databaseCode: IKXGN
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: http://journals.cambridge.org/action/login
  providerName: Cambridge University Press
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-2727
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005777
  issn: 1368-9800
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1475-2727
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005777
  issn: 1368-9800
  databaseCode: M0K
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Career & Technical Education Database
  customDbUrl:
  eissn: 1475-2727
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005777
  issn: 1368-9800
  databaseCode: 7RQ
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/career
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1475-2727
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005777
  issn: 1368-9800
  databaseCode: 7X7
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & allied health premium.
  customDbUrl:
  eissn: 1475-2727
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005777
  issn: 1368-9800
  databaseCode: 7RV
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1475-2727
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005777
  issn: 1368-9800
  databaseCode: BENPR
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1475-2727
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005777
  issn: 1368-9800
  databaseCode: 8C1
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL3aWh6Q0IDxscCojIR4QER1HCd2HmFsgMaiMWDKW-Q49happFXa8fuxnY-tm1SJB14sNbmx0hvHOdc-91yAN0oHMhE08IlgkU9JIf0iEqWPsUgUwZoUTtTn_BtLU55lyekWZH0ujKVVDhoHbiff1UdbtPKn06psOTSqmf4Iwpgn3AUtTld9ahctp90jyDvHb8PYIBhCRjD-epx9Tq_pH8xVZbSd-LaXfsfTyknf7vmm7sL69-sOKL3NrbzxsTp6-P_-5iPY6QAs-tAeeQxbqt4F71OlVugt6lRGZyjtRf534UG7MojahKcnkJ84_qZCXcGKCyRmF3Njffl7iQyERovGbh5ZOjayGW5N3feFXGWk9qCvzTSN-lR0VNXIMvfni0o8hV9Hhz8PvvhdmQdfRpiufC5EGeG45NKEUqWDLIooqYM4llwkUhlQZ-K4REga61LFsaahxlxoHdk67mH4DEb1vFZ7gJIQK6oMKlFhQSljBdUREQbhFFQGIio8eD94Pe9cuMxbohvL77jaA9w_61x2kum2csds0yXvhksWrV7IJuP9fgBd3w2JzTTLWcITD14Pp81Lb3dyRK3mV8Ym4maqNtEn2WBjkBd2icoePG_H5HBHIY2JCb5DD9jaaB0MrOj4-pm6unTi45zzkLH4xb958iXcJzZvxNHd92G0aq7UK7gn_6yqZTOBbXb23bXnts2Ya7lp-UEwgfHHw_T0bOKWSybde2x-neDjv_T7Tjc
linkProvider Cambridge University Press
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQkkxEf5aKCAkYADIsJxHNs5IIQoVatuVwiVqrfgOE4baZtddlMQf4rfyNhJdrtU2lsPXB1n10nGM8_2zHsAL20ZmVTzKGRaJiFnuQnzRBchpTq1jJYs96Q-RwM5HKrj4_TLGvzpa2FcWmXvE72jLsbG7ZG_YwKtT8lUpR8mP0KnGuVOV3sJjdYs9u3vX7hkm73f28bv-4qxnc-Hn3bDTlUgNAnlTai0LhIqCmUQuRc-QlpmTRkJYZROjUUMgcuGVBsuysIKUfK4pEqXZeJkw90GKLr8a-jHI5dCJr8eLVJKpFd6jGKBTgSRWH-K6iiqXaNrY1HLAn-Ry2E5Jl4Cuv_ma14IgDt3_rdXdxdud1CbfGznxj1Ys_UGBNuVbchr0vGhjsiwlyPYgFvtHiZpS7PuQ3bgM00t6aQ1TogeneCDNadnM4Jgn0ym7pjLJY4TV4s3rfvfIl7DqW0MSwwopC-aJ1VNXI3BeFLpB_DtSp7_IazX49puAkljarlF_GTjnHMpc14mTCMWy7mJdJIH8HZuHlnnVmZZm5Ins0vWFADtLSgzHbm70xgZrbrlzfyWSctssqrzVm9ai9Es7CqAF_PL6J7cmZOu7fgc-yQKgwquk9mKPogRqS-pDuBRa-nzEcVcMIp_FIBcmgPzDo4efflKXZ16mnSlVCyleLx66M_hxu7hwSAb7A33n8BN5qpbfFL-Fqw303P7FK6bn001mz7zc53A96ueIX8B58mM5A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBSEkxKM8GihgJOCAiOo4ju0cEEJdVlQtqx4A9RYcx24jLdntbgrir_HrGOex3aXS3nrg6jiJnXzzsD3zDcBL6yKTah6FTMsk5Cw3YZ7oIqRUp5ZRx_KG1OfboRyN1PFxerQBf_pcGB9W2evERlEXE-P3yHeZQPQpmap013VhEUeD4fvpWegrSPmT1r6cRguRA_v7Fy7f5u_2B_ivXzE2_Phl71PYVRgITUJ5HSqti4SKQhn04ovGWlpmjYuEMEqnxqI_gUuIVBsuXGGFcDx2VGnnEl9C3G-Govq_JmNEsc9S31sKL5FN1ccoFqhQ0CvrT1Q9XbVv9G0sahnhl3kdVu3jJaf339jNJWM4vPM_f8a7cLtzwcmHVmbuwYattiAYlLYmr0nHkzomo75MwRbcavc2SZuydR-yz00EqiVdyY0ToscnOLH69Mec4CKATGf--MsHlBOfozer-meRprZT2xg6NDSkT6YnZUV87sFkWuoH8PVK5v8QNqtJZbeBpDG13KJfZeOccylz7hKm0UfLuYl0kgfwdgGVrFM386wN1ZPZJWQFQHs0ZaYjffe1R8brbnmzuGXaMp6s67zTw-xiNBcYC-DF4jKqLX8WpSs7Occ-iUJjg-tntqYP-o60SbUO4FGL-sWIYi4YxRcFIFfkYdHB06avXqnK04Y-XSkVSykerx_6c7iBgpEd7o8OnsBN5pNemlj9HdisZ-f2KVw3P-tyPnvWiD2B71ctIH8BS2WVPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+for+predicting+undernutrition+among+under-five+children+in+Ethiopia&rft.jtitle=Public+health+nutrition&rft.au=Bitew%2C+Fikrewold+H&rft.au=Sparks%2C+Corey+S&rft.au=Nyarko%2C+Samuel+H&rft.date=2022-02-01&rft.issn=1475-2727&rft.volume=25&rft.issue=2+p.269-280&rft.spage=269&rft.epage=280&rft_id=info:doi/10.1017%2FS1368980021004262&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1368-9800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1368-9800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1368-9800&client=summon