OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units
The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a databas...
Uloženo v:
| Vydáno v: | mSphere Ročník 2; číslo 2 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Society for Microbiology
01.03.2017
|
| Témata: | |
| ISSN: | 2379-5042, 2379-5042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them.
Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications.
IMPORTANCE
The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them.
Podcast
: A
podcast
concerning this article is available. |
|---|---|
| AbstractList | The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications. IMPORTANCE The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. Podcast: A podcast concerning this article is available. The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications. IMPORTANCE The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. Podcast : A podcast concerning this article is available. Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications. The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. ABSTRACT Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications. IMPORTANCE The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. Podcast: A podcast concerning this article is available. Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications. IMPORTANCE The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. |
| Author | Westcott, Sarah L. Schloss, Patrick D. |
| Author_xml | – sequence: 1 givenname: Sarah L. surname: Westcott fullname: Westcott, Sarah L. organization: Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA – sequence: 2 givenname: Patrick D. orcidid: 0000-0002-6935-4275 surname: Schloss fullname: Schloss, Patrick D. organization: Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28289728$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk9r3DAQxU1JadI0XyEYeumhTiVZtmwohc2mfxZS9pDkLGal8a4WW3IlObTfvspuUrK59CQh_d6bx8y8zY6ss5hl55RcUMqaT8PNuEGPV8ajiheEEFEWVLzKTlgp2qIinB09ux9nZyFsE0VrVteifpMds4Y1rWDNSbZejtHM-ynEjznYfDGM3t2jzn9i3Didd87nsxDM2hq7zmfD2BvlbHEJITE3-GtCqzC_ggh5dPlyRA_ROAt9fgu_nXWDUfmdNTG8y1530Ac8ezxPs7tvX2_nP4rr5ffFfHZdqBQ1FnXd8A7oSgGFblXV0LQKmaLQakYbpTWnLXTIiNZ1VdYgSmwpL5uarhgXgpSn2WLvqx1s5ejNAP6PdGDk7sH5tQQfjepRcmyYqkqhUSlOdNMSBMWRdSuEDnSbvL7svcZpNaBWaKOH_sD08MeajVy7e1mVvKSCJ4MPjwbepVaFKAcTFPY9WHRTkLQRomK8rR5yv3-Bbt3kUyMT1VYlqwgjLFHnzxP9i_I0zwR83gPKuxA8dlKZuBtJCmh6SYl82CB5sEFyt0GSiiSvX8ifKvxH-BezMdEA |
| CitedBy_id | crossref_primary_10_1128_mSphere_00528_18 crossref_primary_10_1016_j_ijfoodmicro_2021_109086 crossref_primary_10_1371_journal_pone_0324042 crossref_primary_10_3389_fmicb_2020_01110 crossref_primary_10_1128_mSphere_00191_21 crossref_primary_10_1128_AEM_00305_19 crossref_primary_10_1183_23120541_00578_2020 crossref_primary_10_1016_j_bcdf_2023_100384 crossref_primary_10_1016_j_funeco_2023_101248 crossref_primary_10_1093_jimb_kuad004 crossref_primary_10_1111_mec_15354 crossref_primary_10_1093_jmammal_gyac098 crossref_primary_10_1158_1940_6207_CAPR_19_0325 crossref_primary_10_3390_antiox9100911 crossref_primary_10_1016_j_ibiod_2020_104933 crossref_primary_10_1371_journal_pone_0232742 crossref_primary_10_1111_2041_210X_13316 crossref_primary_10_3389_fmars_2020_573635 crossref_primary_10_1128_jvi_02065_21 crossref_primary_10_3389_fmicb_2021_581124 crossref_primary_10_1016_j_ecolind_2019_105775 crossref_primary_10_1002_jctb_6385 crossref_primary_10_1186_s13765_020_00572_4 crossref_primary_10_3390_app14010226 crossref_primary_10_1016_j_soilbio_2020_107951 crossref_primary_10_1128_msphere_00354_23 crossref_primary_10_1080_02648725_2023_2197717 crossref_primary_10_1111_1758_2229_12840 crossref_primary_10_3389_fmicb_2021_703785 crossref_primary_10_1128_mSphere_00648_21 crossref_primary_10_3389_fmicb_2021_627595 crossref_primary_10_3839_jabc_2020_011 crossref_primary_10_1111_1365_2664_14293 crossref_primary_10_1186_s42523_020_00053_5 crossref_primary_10_1128_msphere_00916_21 crossref_primary_10_3389_fmicb_2021_644012 crossref_primary_10_1186_s13071_019_3582_9 crossref_primary_10_1016_j_geoderma_2022_116138 crossref_primary_10_1186_s12864_025_11917_y crossref_primary_10_3389_fevo_2022_1055382 crossref_primary_10_3390_f15081284 crossref_primary_10_1016_j_bej_2020_107875 crossref_primary_10_1371_journal_pone_0244381 crossref_primary_10_1016_j_envint_2021_106811 crossref_primary_10_1007_s10533_021_00817_4 crossref_primary_10_1007_s00248_021_01785_w crossref_primary_10_3389_fcimb_2021_770668 crossref_primary_10_1128_AEM_01086_21 crossref_primary_10_1146_annurev_biodatasci_020722_043017 crossref_primary_10_1007_s00248_020_01611_9 crossref_primary_10_1016_j_jclepro_2020_119973 crossref_primary_10_1016_j_tjnut_2023_09_002 crossref_primary_10_1111_ejss_13306 crossref_primary_10_3389_fmicb_2019_02094 crossref_primary_10_3390_min10030208 crossref_primary_10_1128_mSystems_00296_20 crossref_primary_10_1128_mSphere_00126_19 crossref_primary_10_3389_fmicb_2020_00613 crossref_primary_10_1016_j_cryobiol_2024_104960 crossref_primary_10_3389_fcimb_2021_720637 crossref_primary_10_1007_s00248_021_01927_0 crossref_primary_10_1002_mbo3_768 crossref_primary_10_1038_s41591_023_02549_4 crossref_primary_10_3390_biology11121819 crossref_primary_10_1016_j_jff_2021_104903 crossref_primary_10_1186_s40168_018_0477_5 crossref_primary_10_1128_msphere_00336_23 crossref_primary_10_1186_s12859_020_03829_3 crossref_primary_10_1371_journal_pone_0277303 crossref_primary_10_1038_s41598_020_59849_9 crossref_primary_10_1016_j_scitotenv_2022_157735 crossref_primary_10_3390_microorganisms10061242 crossref_primary_10_1186_s13765_024_00915_5 crossref_primary_10_1016_j_watres_2023_120363 crossref_primary_10_1016_j_hal_2024_102580 crossref_primary_10_3390_metabo9100226 crossref_primary_10_3390_foods11162490 crossref_primary_10_1128_msystems_00294_24 crossref_primary_10_1038_s41396_019_0427_7 crossref_primary_10_1016_j_scitotenv_2020_142755 crossref_primary_10_1111_1751_7915_14005 crossref_primary_10_1016_j_pedsph_2022_09_004 crossref_primary_10_1016_j_scitotenv_2021_146719 crossref_primary_10_3389_fmicb_2018_00084 crossref_primary_10_1093_ecco_jcc_jjae142 crossref_primary_10_1128_mSphere_00506_21 crossref_primary_10_1371_journal_pntd_0007411 crossref_primary_10_1038_s41598_023_30338_z crossref_primary_10_1128_AEM_01408_18 crossref_primary_10_1007_s10493_022_00714_x crossref_primary_10_1111_1365_2745_12966 crossref_primary_10_1111_1758_2229_13215 crossref_primary_10_1007_s00572_020_00963_x crossref_primary_10_3389_fvets_2023_1118302 crossref_primary_10_1038_s41396_019_0487_8 crossref_primary_10_1038_s41598_019_50952_0 crossref_primary_10_1038_s41598_020_75306_z crossref_primary_10_3389_fpls_2023_1266218 crossref_primary_10_1371_journal_pone_0233189 crossref_primary_10_1007_s00343_021_0427_0 crossref_primary_10_3390_vetsci8050081 crossref_primary_10_21597_jist_1265800 crossref_primary_10_1093_femsec_fiaa007 crossref_primary_10_1016_j_scitotenv_2024_176119 crossref_primary_10_1038_s41598_025_94542_9 crossref_primary_10_1016_j_jenvman_2022_116245 crossref_primary_10_3390_life14111391 crossref_primary_10_1371_journal_ppat_1009537 crossref_primary_10_3354_meps13539 crossref_primary_10_1038_s41598_024_83981_5 crossref_primary_10_1080_01647954_2024_2323549 crossref_primary_10_1038_s41598_023_46062_7 crossref_primary_10_1186_s40168_021_01190_y crossref_primary_10_3389_fmicb_2022_730340 crossref_primary_10_1016_j_jenvman_2025_126138 crossref_primary_10_1016_j_csbj_2020_11_049 crossref_primary_10_1111_1462_2920_15514 crossref_primary_10_1186_s12859_019_2965_4 crossref_primary_10_3390_antibiotics14090881 crossref_primary_10_1186_s13765_022_00680_3 crossref_primary_10_3390_nu12061848 crossref_primary_10_1109_JBHI_2021_3102186 crossref_primary_10_1186_s40168_023_01677_w crossref_primary_10_1371_journal_pone_0235225 crossref_primary_10_1016_j_jglr_2025_102667 crossref_primary_10_1038_s41467_019_09419_z crossref_primary_10_1016_j_vetmic_2022_109428 crossref_primary_10_1128_mSphereDirect_00698_18 crossref_primary_10_3389_fmicb_2022_764566 crossref_primary_10_1016_j_dsr2_2022_105224 crossref_primary_10_1002_mbo3_719 crossref_primary_10_1016_j_chom_2017_07_021 crossref_primary_10_1093_infdis_jiae162 crossref_primary_10_3390_life12111849 crossref_primary_10_1371_journal_pone_0220770 crossref_primary_10_1128_msystems_00827_19 crossref_primary_10_1038_s41598_017_13601_y crossref_primary_10_1016_j_foreco_2019_117520 crossref_primary_10_1128_mSphere_00869_20 crossref_primary_10_3389_fmicb_2022_791079 crossref_primary_10_1128_mSphere_00463_19 crossref_primary_10_1186_s40793_025_00664_y crossref_primary_10_3389_fmicb_2019_02397 crossref_primary_10_1186_s40168_020_00812_1 crossref_primary_10_1016_j_xpro_2025_103917 crossref_primary_10_1194_jlr_RA120000652 crossref_primary_10_3389_fmicb_2021_625324 crossref_primary_10_3389_fmicb_2022_796758 crossref_primary_10_1128_AEM_01394_18 crossref_primary_10_1371_journal_pone_0227434 crossref_primary_10_1016_j_ttbdis_2020_101535 crossref_primary_10_1016_j_anbehav_2023_02_009 crossref_primary_10_1128_AEM_01044_21 crossref_primary_10_3390_microorganisms8091308 crossref_primary_10_1016_j_envpol_2019_113293 crossref_primary_10_1016_j_apsoil_2025_106323 crossref_primary_10_1371_journal_pone_0208917 crossref_primary_10_1038_s41598_020_77587_w crossref_primary_10_1371_journal_pone_0230148 crossref_primary_10_1080_00275514_2023_2206930 crossref_primary_10_3389_fmicb_2025_1504241 crossref_primary_10_1371_journal_pone_0278699 crossref_primary_10_1111_1462_2920_14933 crossref_primary_10_1002_ame2_12520 crossref_primary_10_3390_microorganisms8010093 crossref_primary_10_1016_j_jglr_2022_08_002 crossref_primary_10_1007_s12029_023_00925_4 crossref_primary_10_1128_mra_01238_24 crossref_primary_10_1002_ece3_4258 crossref_primary_10_1128_AEM_02513_19 crossref_primary_10_3389_fevo_2019_00409 crossref_primary_10_5056_jnm25024 crossref_primary_10_1186_s42523_021_00112_5 crossref_primary_10_3389_fmicb_2021_569791 crossref_primary_10_3389_fmicb_2020_531404 crossref_primary_10_1128_spectrum_01566_21 crossref_primary_10_3389_fclim_2024_1345085 crossref_primary_10_1111_jam_15350 crossref_primary_10_1128_msphere_00104_22 crossref_primary_10_1128_JVI_00826_18 crossref_primary_10_1016_j_foreco_2024_122320 crossref_primary_10_1186_s12864_024_11001_x crossref_primary_10_1186_s13765_019_0467_8 crossref_primary_10_3168_jds_2020_19096 crossref_primary_10_1186_s42523_019_0018_y crossref_primary_10_3389_frmbi_2025_1614472 crossref_primary_10_3390_antiox9100988 crossref_primary_10_1016_j_soilbio_2021_108285 crossref_primary_10_3390_fermentation11030118 crossref_primary_10_1128_msystems_00129_22 crossref_primary_10_3389_fmicb_2019_02389 crossref_primary_10_1038_s41467_017_02209_5 crossref_primary_10_1128_mbio_01108_25 crossref_primary_10_3897_BDJ_11_e106947 crossref_primary_10_1186_s40168_018_0458_8 crossref_primary_10_1053_j_gastro_2018_12_001 crossref_primary_10_1097_PRS_0000000000007621 crossref_primary_10_1029_2019JG005185 crossref_primary_10_1186_s42523_020_00035_7 crossref_primary_10_1039_C8FO01272E crossref_primary_10_1111_mec_15713 crossref_primary_10_3168_jds_2018_16105 crossref_primary_10_1093_femsec_fiz166 crossref_primary_10_1371_journal_pone_0272556 crossref_primary_10_1093_femsec_fiac048 crossref_primary_10_1002_mbo3_1405 crossref_primary_10_1186_s12866_019_1602_8 crossref_primary_10_1016_j_polar_2024_101128 crossref_primary_10_3390_atmos11080802 crossref_primary_10_1007_s11596_025_00077_5 crossref_primary_10_1111_jpi_12696 crossref_primary_10_3389_ffgc_2022_738568 crossref_primary_10_1016_j_ecoenv_2020_110576 crossref_primary_10_1111_1462_2920_14607 crossref_primary_10_1038_s41598_022_13914_7 crossref_primary_10_5812_jjm_121119 crossref_primary_10_1016_j_funeco_2019_03_005 crossref_primary_10_1093_femsle_fny046 crossref_primary_10_1111_mec_14855 crossref_primary_10_1038_s41598_021_87167_1 crossref_primary_10_1111_iej_70015 crossref_primary_10_1186_s12866_019_1494_7 crossref_primary_10_3390_microorganisms12061162 crossref_primary_10_1186_s42523_021_00105_4 crossref_primary_10_3839_jabc_2021_012 crossref_primary_10_1002_ecy_2968 crossref_primary_10_1016_j_jaci_2020_09_042 crossref_primary_10_1038_s43247_023_01020_z crossref_primary_10_1093_bib_bbx154 crossref_primary_10_1128_msystems_00786_24 crossref_primary_10_1371_journal_pone_0225842 crossref_primary_10_1111_mec_15932 crossref_primary_10_1016_j_ibiod_2019_05_008 crossref_primary_10_1016_j_copbio_2019_05_009 crossref_primary_10_1111_gbi_12365 crossref_primary_10_3390_atmos13081212 crossref_primary_10_3389_fmars_2020_00173 crossref_primary_10_1016_j_ibiod_2023_105729 crossref_primary_10_1002_wer_1198 crossref_primary_10_1007_s00442_020_04767_w crossref_primary_10_1016_j_chom_2019_03_003 crossref_primary_10_1093_femsec_fiz147 crossref_primary_10_3389_fmicb_2019_00428 crossref_primary_10_3390_w11050888 crossref_primary_10_1186_s40104_021_00635_6 crossref_primary_10_1513_AnnalsATS_201903_270OC crossref_primary_10_1002_mma_7748 crossref_primary_10_1371_journal_pone_0231150 crossref_primary_10_1186_s40104_020_0433_7 crossref_primary_10_3389_fmicb_2023_1250806 crossref_primary_10_1007_s00394_021_02668_z crossref_primary_10_3390_microorganisms13081760 crossref_primary_10_5187_jast_2023_e45 crossref_primary_10_1371_journal_pone_0243241 crossref_primary_10_1371_journal_pone_0291742 crossref_primary_10_3390_life11121374 crossref_primary_10_1371_journal_pone_0276920 crossref_primary_10_1007_s00248_018_01314_2 crossref_primary_10_1186_s13075_021_02711_8 crossref_primary_10_1128_mSphere_00537_20 crossref_primary_10_1038_s41467_022_33176_1 crossref_primary_10_1002_ece3_9753 crossref_primary_10_1186_s40168_018_0498_0 crossref_primary_10_1038_s41396_020_00784_y crossref_primary_10_1007_s42995_020_00067_7 crossref_primary_10_3389_fcimb_2023_1117673 crossref_primary_10_1186_s40104_021_00597_9 crossref_primary_10_1371_journal_pone_0230170 crossref_primary_10_1016_j_envpol_2021_116764 crossref_primary_10_1128_spectrum_01823_24 crossref_primary_10_1371_journal_pone_0313263 crossref_primary_10_1007_s00248_019_01373_z crossref_primary_10_1016_j_scitotenv_2020_137900 |
| Cites_doi | 10.1016/0005-2795(75)90109-9 10.1128/aem.00062-07 10.1128/AEM.71.3.1501-1506.2005 10.1038/nmeth.2604 10.1093/bioinformatics/btu085 10.1038/srep09743 10.32614/CRAN.package.cowplot 10.1073/pnas.1521291113 10.1371/journal.pone.0008230 10.1111/j.1462-2920.2010.02193.x 10.1128/aem.01043-13 10.1093/nar/gkm864 10.1128/aem.00410-08 10.7717/peerj.593 10.1038/nmeth.f.303 10.7717/peerj.545 10.1128/aem.01541-09 10.1093/nar/gkr349 10.1128/mBio.00201-16 10.1371/journal.pcbi.1004658 10.1186/s13073-016-0290-3 10.1126/science.1110591 10.1128/aem.02810-10 10.1186/1471-2105-11-152 10.1128/msphere.00028-16 10.1007/978-0-387-98141-3 10.7717/peerj.2584 10.1371/journal.pone.0070837 10.1111/1462-2920.12610 10.1093/bioinformatics/btr381 10.1093/nar/gkp285 10.1128/msystems.00027-16 10.1016/B978-0-12-407863-5.00019-8 10.32614/CRAN.package.wesanderson 10.7717/peerj.1420 10.1093/bioinformatics/btq461 10.1186/1471-2105-12-473 10.1038/nature11234 10.1371/journal.pcbi.1000844 10.7717/peerj.1487 10.1093/bib/bbr009 10.4161/gmic.21008 10.3389/fmicb.2016.00579 10.1128/msystems.00003-15 10.1093/bioinformatics/bts552 10.1186/s40168-015-0081-x |
| ContentType | Journal Article |
| Contributor | Watson, Mick Pollard, Katherine |
| Contributor_xml | – sequence: 1 givenname: Mick surname: Watson fullname: Watson, Mick – sequence: 2 givenname: Katherine surname: Pollard fullname: Pollard, Katherine |
| Copyright | Copyright © 2017 Westcott and Schloss. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2017 Westcott and Schloss. 2017 Westcott and Schloss |
| Copyright_xml | – notice: Copyright © 2017 Westcott and Schloss. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2017 Westcott and Schloss. 2017 Westcott and Schloss |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1128/mSphereDirect.00073-17 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | OptiClust, Optimized Clustering |
| EISSN | 2379-5042 |
| ExternalDocumentID | oai_doaj_org_article_4e82c537decc40d890eac4e2fbeafad9 PMC5343174 28289728 10_1128_mSphereDirect_00073_17 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK034933 – fundername: HHS | National Institutes of Health (NIH) grantid: P30DK034933 |
| GroupedDBID | 0R~ 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAGFI AAUOK AAYXX ABUWG ADBBV ADRAZ AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK EBS EJD FRP FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE KQ8 LK8 M48 M7P M~E O9- OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC R9- RHI RPM RSF UKHRP ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c504t-6684fa1bca1afb56a89ce2c1a9d218cdd419afe20dd6536a73e9143861b247703 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 326 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399174700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2379-5042 |
| IngestDate | Mon Nov 17 00:45:58 EST 2025 Tue Nov 04 01:57:59 EST 2025 Fri Sep 05 13:19:02 EDT 2025 Tue Oct 07 06:47:42 EDT 2025 Thu Apr 03 07:03:04 EDT 2025 Sat Nov 29 03:33:38 EST 2025 Tue Nov 18 19:58:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | microbial ecology microbiome bioinformatics 16S rRNA gene |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c504t-6684fa1bca1afb56a89ce2c1a9d218cdd419afe20dd6536a73e9143861b247703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Citation Westcott SL, Schloss PD. 2017. OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. mSphere 2:e00073-17. https://doi.org/10.1128/mSphereDirect.00073-17. |
| ORCID | 0000-0002-6935-4275 |
| OpenAccessLink | https://doaj.org/article/4e82c537decc40d890eac4e2fbeafad9 |
| PMID | 28289728 |
| PQID | 1953250202 |
| PQPubID | 2045592 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4e82c537decc40d890eac4e2fbeafad9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5343174 proquest_miscellaneous_1877524950 proquest_journals_1953250202 pubmed_primary_28289728 crossref_citationtrail_10_1128_mSphereDirect_00073_17 crossref_primary_10_1128_mSphereDirect_00073_17 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-01 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
| PublicationTitle | mSphere |
| PublicationTitleAlternate | mSphere |
| PublicationYear | 2017 |
| Publisher | American Society for Microbiology |
| Publisher_xml | – name: American Society for Microbiology |
| References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 R Core Team (e_1_3_3_45_2) 2015 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
| References_xml | – ident: e_1_3_3_38_2 doi: 10.1016/0005-2795(75)90109-9 – ident: e_1_3_3_11_2 doi: 10.1128/aem.00062-07 – ident: e_1_3_3_17_2 doi: 10.1128/AEM.71.3.1501-1506.2005 – ident: e_1_3_3_24_2 doi: 10.1038/nmeth.2604 – ident: e_1_3_3_30_2 doi: 10.1093/bioinformatics/btu085 – ident: e_1_3_3_20_2 doi: 10.1038/srep09743 – ident: e_1_3_3_49_2 doi: 10.32614/CRAN.package.cowplot – ident: e_1_3_3_3_2 doi: 10.1073/pnas.1521291113 – ident: e_1_3_3_9_2 doi: 10.1371/journal.pone.0008230 – ident: e_1_3_3_29_2 doi: 10.1111/j.1462-2920.2010.02193.x – ident: e_1_3_3_8_2 doi: 10.1128/aem.01043-13 – ident: e_1_3_3_39_2 doi: 10.1093/nar/gkm864 – ident: e_1_3_3_7_2 doi: 10.1128/aem.00410-08 – ident: e_1_3_3_21_2 doi: 10.7717/peerj.593 – ident: e_1_3_3_13_2 doi: 10.1038/nmeth.f.303 – ident: e_1_3_3_4_2 doi: 10.7717/peerj.545 – ident: e_1_3_3_12_2 doi: 10.1128/aem.01541-09 – ident: e_1_3_3_23_2 doi: 10.1093/nar/gkr349 – ident: e_1_3_3_2_2 doi: 10.1128/mBio.00201-16 – ident: e_1_3_3_33_2 doi: 10.1371/journal.pcbi.1004658 – ident: e_1_3_3_40_2 doi: 10.1186/s13073-016-0290-3 – ident: e_1_3_3_6_2 doi: 10.1126/science.1110591 – ident: e_1_3_3_14_2 doi: 10.1128/aem.02810-10 – ident: e_1_3_3_32_2 doi: 10.1186/1471-2105-11-152 – ident: e_1_3_3_43_2 doi: 10.1128/msphere.00028-16 – ident: e_1_3_3_50_2 doi: 10.1007/978-0-387-98141-3 – ident: e_1_3_3_19_2 doi: 10.7717/peerj.2584 – ident: e_1_3_3_28_2 doi: 10.1371/journal.pone.0070837 – ident: e_1_3_3_36_2 doi: 10.1111/1462-2920.12610 – ident: e_1_3_3_10_2 doi: 10.1093/bioinformatics/btr381 – ident: e_1_3_3_22_2 doi: 10.1093/nar/gkp285 – ident: e_1_3_3_37_2 doi: 10.1128/msystems.00027-16 – ident: e_1_3_3_15_2 doi: 10.1016/B978-0-12-407863-5.00019-8 – ident: e_1_3_3_46_2 doi: 10.32614/CRAN.package.wesanderson – ident: e_1_3_3_25_2 doi: 10.7717/peerj.1420 – ident: e_1_3_3_48_2 – ident: e_1_3_3_47_2 – ident: e_1_3_3_18_2 doi: 10.1093/bioinformatics/btq461 – ident: e_1_3_3_26_2 doi: 10.1186/1471-2105-12-473 – ident: e_1_3_3_5_2 doi: 10.1038/nature11234 – ident: e_1_3_3_44_2 doi: 10.1371/journal.pcbi.1000844 – volume-title: R: a language and environment for statistical computing year: 2015 ident: e_1_3_3_45_2 – ident: e_1_3_3_16_2 doi: 10.7717/peerj.1487 – ident: e_1_3_3_31_2 doi: 10.1093/bib/bbr009 – ident: e_1_3_3_41_2 doi: 10.4161/gmic.21008 – ident: e_1_3_3_42_2 doi: 10.3389/fmicb.2016.00579 – ident: e_1_3_3_35_2 doi: 10.1128/msystems.00003-15 – ident: e_1_3_3_27_2 doi: 10.1093/bioinformatics/bts552 – ident: e_1_3_3_34_2 doi: 10.1186/s40168-015-0081-x |
| SSID | ssj0001626676 |
| Score | 2.5114307 |
| Snippet | The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of... Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities.... ABSTRACT Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | 16S rRNA gene bioinformatics Editor's Pick microbial ecology microbiome Podcasts |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BFyQuvB-BBRmJI6F5OLF9QttlVxygu2IXtLfIr5RKS1KaFMG_x-O4LUUIDlzjWHLyjWfGM-P5AF4kXFHNpIh1weqY5lbFTkrqGK1dKutalb6a8NM7Np3yiwtxGgJuXSirXOtEr6hNqzFGPsZ0jzPX7qz-evE1RtYozK4GCo2rsIedyugI9iZH09MP2yiL89dLVoarwU4Xj7-c4XV9OyiUVz5TFXu2sq1V8s37_-Rx_l44-YslOr71v99wG24GH5QcDEJzB67Y5i5cH1gpf9yD2YlTI4eXq65_SWRDhrCDNeS9J5smzsslDtT5DCMq5MBXpLdNPHHm0JCzUJlN3shekr4lJwu7DPFGci6_D7egCXq63X34eHx0fvg2DnwMDsiE9nFZclrLVGnpUFRFKbnQNtOpFMY5CtoYmgpZ2ywxpizyUrLcCmRXL1OVUeZUywMYNW1jHwEx2GMm5UYlKqfWCmGKXBiESnG8tBhBscaj0qFZOXJmXFb-0JLxagfHyuNYpSyC8WbeYmjX8c8ZE4R78za22_YP2uWsCru3opZnusiZcQJPE8NF4uwVtVmtrKylERHsrwGvgg7oqi3aETzfDLvdiykZ2dh25d7hjBVI_51E8HCQrc1K_GGYZe5fsB2p21nq7kgz_-w7hBc5-oX08d-X9QRuZOik-Iq6fRj1y5V9Ctf0t37eLZ-FrfQTBLEtMA priority: 102 providerName: ProQuest |
| Title | OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28289728 https://www.proquest.com/docview/1953250202 https://www.proquest.com/docview/1877524950 https://pubmed.ncbi.nlm.nih.gov/PMC5343174 https://doaj.org/article/4e82c537decc40d890eac4e2fbeafad9 |
| Volume | 2 |
| WOSCitedRecordID | wos000399174700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: M7P dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BAakXVJ5NKSsjcSRs4jixfez2IZDoNqIFLafIr5SV2my1m0Xw7xk76bKLkHrhkoNjK87M2PN5PA-At4nQzHAlY5PzOmaZ0zFKSR17bZequtZF8Cb8-omPx2IykeVaqS_vE9alB-4IN2ROUJNn3OK3WGKFTHCrYI7W2qla2RC6h6hn7TAVrCuI0wte9CHBuAcPr899mL7rNpL34YYqDlXK_mijkLT_X0jzb4fJNQ10sgOPe-hIDropP4F7rnkKj7pikr-eweUZrv7Dq-WifUdUQzprgbPkNNSIJghOCfJieukNIeQgOJLPmniEWsyS896hmhypVpF2Rs5u3Lw3E5IL9bMLXiYeoC6ew5eT44vDD3FfRgHpn7A2LgrBapVqo5D4Oi-UkMZRkyppUb8ba1kqVe1oYm2RZ4XimZO-KHqRaso47ggvYKuZNW4XiPWpYVJhdaIz5pyUNs-k9ZTWwscaRpDfkrMyfY5xX-riqgpnDSqqDTZUgQ1VyiMYrsbddFk27hwx8txa9fZZskMDyk7Vy051l-xEsH_L66pfuovK3ysiLqQJjeDN6jUuOn-Toho3W2IfwXnuq3YnEbzsRGM1k3CG5RRpwTeEZmOqm2-a6feQ2DvPPJxje__j317BNvUIJLjL7cNWO1-61_DQ_Gini_kA7vMJD08xgAej43H5eRBW0MA7v5bYVn48Lb_9BpeaJlk |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAioX3o9AgUWCGyZ-rL3eA0J9ULVqmiI1VLmZtXedRip2iB2gf4rfyMzaSQhCcOqBq18a2988d3Y-gJdunPJMKOlkocgdHpjUQZTkDnk7T-V5GtluwtOe6Pfj4VB-WIMf870w1FY5t4nWUOsyoxp5l5Z70F1jrv5u8sUh1ihaXZ1TaDSwODQX3zBlq94e7OL_feX7e-8HO_tOyyqA4ri8dqIo5rny0kyhLGkYqVhmxs88JTW6u0xr7kmVG9_VOgqDSInASOIIj7zU5wIVBJ97Ba6iHRfUQiaGYlnTwewgElG7ERktf_fzCQ0HMI35emPXxRzLjbb0gZYq4E_x7e9tmr_4vb1b_9sXuw032wibbTUqcQfWTHEXrjecmxf3YHSMRnLnfFbVr5kqWFNUMZodWSpthjE8Q8iOR1QvYlu2374snG109pqdtH3nbFfVitUlO56YaVtNZQP1vdnjzSiOr-7Dx0t5ywewXpSFeQRM0wQdL9apmwbcGCl1GEhN0Ehj2pLZgXD-_5OsHcVOjCDniU3J_DhZwU1icZN4ogPdxX2TZhjJP-_YJngtrqZh4vZAOR0lrW1KuIn9LAyERnXmro6li96YGz9PjcqVlh3YnAMsaS1clSzR1YEXi9Nom2jBSRWmnOE1sRAhkZu7HXjYYHkhiU31hY_fQqygfEXU1TPF-MzOPw8Dinr547-L9Rw29gdHvaR30D98Ajd8Csds7-AmrNfTmXkK17Kv9biaPrNKzODTZevATyJNiN8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aG0y8cB8EBhgJ3gjNxYnjB4TWdRXTRlexDe3NOLFTKo2ktCmwv8av49hJWooQPO2B19iJTpLvXHx8fD6A516S0oxJ7mYRy10a6tRFlOSu8Xa-zPM0ttWEHw7ZYJCcnfHhGvxoz8KYssrWJlpDrcrM5Mg7ZrsH3TWu1Tt5UxYx7PXfTL64hkHK7LS2dBo1RA70xTdcvs1e7_fwX78Igv7eye5bt2EYQNE8WrlxnNBc-mkmUa40imXCMx1kvuQKXV-mFPW5zHXgKRVHYSxZqLnhC4_9NKAMlQWfewU2GAYZqF0b3b3B8P0yw4NrhZjFzbFk9AOdz8emVYCujdkru0vmWqa0pUe0xAF_inZ_L9r8xQv2b_7P3-8W3Ghib7JTK8ttWNPFHbhWs3Fe3IXREZrP3fP5rHpJZEHqdItW5J0l2SYY3RME83hkMklkx1bil4XbxTBAkeOmIp30ZCVJVZKjiZ42eVZyIr_Xp7-JifBn9-D0Ut5yC9aLstAPgCjTW8dPVOqlIdWacxWFXBmYpIk5rOlA1GJBZE2TdsMVci7sYi1IxAqGhMWQ8JkDncV9k7pNyT_v6BqoLWabNuP2QjkdicZqCaqTIItCplDRqacS7qGfpjrIUy1zqbgD2y3YRGP7ZmKJNAeeLYbRapmtKFnoco5zEsYiQ3vuOXC_xvVCEpsEYAF-C7aC-BVRV0eK8SfbGT0KTTxMH_5drKewidAXh_uDg0dwPTBxmi0q3Ib1ajrXj-Fq9rUaz6ZPGo0m8PGyleAn2nKTAA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OptiClust%2C+an+Improved+Method+for+Assigning+Amplicon-Based+Sequence+Data+to+Operational+Taxonomic+Units&rft.jtitle=mSphere&rft.au=Westcott%2C+Sarah+L.&rft.au=Schloss%2C+Patrick+D.&rft.date=2017-03-01&rft.issn=2379-5042&rft.eissn=2379-5042&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1128%2FmSphereDirect.00073-17&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mSphereDirect_00073_17 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5042&client=summon |