OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units

The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a databas...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:mSphere Ročník 2; číslo 2
Hlavní autoři: Westcott, Sarah L., Schloss, Patrick D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Society for Microbiology 01.03.2017
Témata:
ISSN:2379-5042, 2379-5042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications. IMPORTANCE The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. Podcast : A podcast concerning this article is available.
AbstractList The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications. IMPORTANCE The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. Podcast: A podcast concerning this article is available.
The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications. IMPORTANCE The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. Podcast : A podcast concerning this article is available.
Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications. The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them.
ABSTRACT Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications. IMPORTANCE The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them. Podcast: A podcast concerning this article is available.
Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities. Although this has been an active area of research, it has been difficult to overcome the time and memory demands while improving the quality of the OTU assignments. Here, we developed a new OTU assignment algorithm that iteratively reassigns sequences to new OTUs to optimize the Matthews correlation coefficient (MCC), a measure of the quality of OTU assignments. To assess the new algorithm, OptiClust, we compared it to 10 other algorithms using 16S rRNA gene sequences from two simulated and four natural communities. Using the OptiClust algorithm, the MCC values averaged 15.2 and 16.5% higher than the OTUs generated when we used the average neighbor and distance-based greedy clustering with VSEARCH, respectively. Furthermore, on average, OptiClust was 94.6 times faster than the average neighbor algorithm and just as fast as distance-based greedy clustering with VSEARCH. An empirical analysis of the efficiency of the algorithms showed that the time and memory required to perform the algorithm scaled quadratically with the number of unique sequences in the data set. The significant improvement in the quality of the OTU assignments over previously existing methods will significantly enhance downstream analysis by limiting the splitting of similar sequences into separate OTUs and merging of dissimilar sequences into the same OTU. The development of the OptiClust algorithm represents a significant advance that is likely to have numerous other applications. IMPORTANCE The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of microorganisms. An important step in this analysis is the assignment of sequences into taxonomic groups based on their similarity to sequences in a database or based on their similarity to each other, irrespective of a database. In this study, we present a new algorithm for the latter approach. The algorithm, OptiClust, seeks to optimize a metric of assignment quality by shuffling sequences between taxonomic groups. We found that OptiClust produces more robust assignments and does so in a rapid and memory-efficient manner. This advance will allow for a more robust analysis of microbial communities and the factors that shape them.
Author Westcott, Sarah L.
Schloss, Patrick D.
Author_xml – sequence: 1
  givenname: Sarah L.
  surname: Westcott
  fullname: Westcott, Sarah L.
  organization: Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
– sequence: 2
  givenname: Patrick D.
  orcidid: 0000-0002-6935-4275
  surname: Schloss
  fullname: Schloss, Patrick D.
  organization: Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28289728$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9r3DAQxU1JadI0XyEYeumhTiVZtmwohc2mfxZS9pDkLGal8a4WW3IlObTfvspuUrK59CQh_d6bx8y8zY6ss5hl55RcUMqaT8PNuEGPV8ajiheEEFEWVLzKTlgp2qIinB09ux9nZyFsE0VrVteifpMds4Y1rWDNSbZejtHM-ynEjznYfDGM3t2jzn9i3Didd87nsxDM2hq7zmfD2BvlbHEJITE3-GtCqzC_ggh5dPlyRA_ROAt9fgu_nXWDUfmdNTG8y1530Ac8ezxPs7tvX2_nP4rr5ffFfHZdqBQ1FnXd8A7oSgGFblXV0LQKmaLQakYbpTWnLXTIiNZ1VdYgSmwpL5uarhgXgpSn2WLvqx1s5ejNAP6PdGDk7sH5tQQfjepRcmyYqkqhUSlOdNMSBMWRdSuEDnSbvL7svcZpNaBWaKOH_sD08MeajVy7e1mVvKSCJ4MPjwbepVaFKAcTFPY9WHRTkLQRomK8rR5yv3-Bbt3kUyMT1VYlqwgjLFHnzxP9i_I0zwR83gPKuxA8dlKZuBtJCmh6SYl82CB5sEFyt0GSiiSvX8ifKvxH-BezMdEA
CitedBy_id crossref_primary_10_1128_mSphere_00528_18
crossref_primary_10_1016_j_ijfoodmicro_2021_109086
crossref_primary_10_1371_journal_pone_0324042
crossref_primary_10_3389_fmicb_2020_01110
crossref_primary_10_1128_mSphere_00191_21
crossref_primary_10_1128_AEM_00305_19
crossref_primary_10_1183_23120541_00578_2020
crossref_primary_10_1016_j_bcdf_2023_100384
crossref_primary_10_1016_j_funeco_2023_101248
crossref_primary_10_1093_jimb_kuad004
crossref_primary_10_1111_mec_15354
crossref_primary_10_1093_jmammal_gyac098
crossref_primary_10_1158_1940_6207_CAPR_19_0325
crossref_primary_10_3390_antiox9100911
crossref_primary_10_1016_j_ibiod_2020_104933
crossref_primary_10_1371_journal_pone_0232742
crossref_primary_10_1111_2041_210X_13316
crossref_primary_10_3389_fmars_2020_573635
crossref_primary_10_1128_jvi_02065_21
crossref_primary_10_3389_fmicb_2021_581124
crossref_primary_10_1016_j_ecolind_2019_105775
crossref_primary_10_1002_jctb_6385
crossref_primary_10_1186_s13765_020_00572_4
crossref_primary_10_3390_app14010226
crossref_primary_10_1016_j_soilbio_2020_107951
crossref_primary_10_1128_msphere_00354_23
crossref_primary_10_1080_02648725_2023_2197717
crossref_primary_10_1111_1758_2229_12840
crossref_primary_10_3389_fmicb_2021_703785
crossref_primary_10_1128_mSphere_00648_21
crossref_primary_10_3389_fmicb_2021_627595
crossref_primary_10_3839_jabc_2020_011
crossref_primary_10_1111_1365_2664_14293
crossref_primary_10_1186_s42523_020_00053_5
crossref_primary_10_1128_msphere_00916_21
crossref_primary_10_3389_fmicb_2021_644012
crossref_primary_10_1186_s13071_019_3582_9
crossref_primary_10_1016_j_geoderma_2022_116138
crossref_primary_10_1186_s12864_025_11917_y
crossref_primary_10_3389_fevo_2022_1055382
crossref_primary_10_3390_f15081284
crossref_primary_10_1016_j_bej_2020_107875
crossref_primary_10_1371_journal_pone_0244381
crossref_primary_10_1016_j_envint_2021_106811
crossref_primary_10_1007_s10533_021_00817_4
crossref_primary_10_1007_s00248_021_01785_w
crossref_primary_10_3389_fcimb_2021_770668
crossref_primary_10_1128_AEM_01086_21
crossref_primary_10_1146_annurev_biodatasci_020722_043017
crossref_primary_10_1007_s00248_020_01611_9
crossref_primary_10_1016_j_jclepro_2020_119973
crossref_primary_10_1016_j_tjnut_2023_09_002
crossref_primary_10_1111_ejss_13306
crossref_primary_10_3389_fmicb_2019_02094
crossref_primary_10_3390_min10030208
crossref_primary_10_1128_mSystems_00296_20
crossref_primary_10_1128_mSphere_00126_19
crossref_primary_10_3389_fmicb_2020_00613
crossref_primary_10_1016_j_cryobiol_2024_104960
crossref_primary_10_3389_fcimb_2021_720637
crossref_primary_10_1007_s00248_021_01927_0
crossref_primary_10_1002_mbo3_768
crossref_primary_10_1038_s41591_023_02549_4
crossref_primary_10_3390_biology11121819
crossref_primary_10_1016_j_jff_2021_104903
crossref_primary_10_1186_s40168_018_0477_5
crossref_primary_10_1128_msphere_00336_23
crossref_primary_10_1186_s12859_020_03829_3
crossref_primary_10_1371_journal_pone_0277303
crossref_primary_10_1038_s41598_020_59849_9
crossref_primary_10_1016_j_scitotenv_2022_157735
crossref_primary_10_3390_microorganisms10061242
crossref_primary_10_1186_s13765_024_00915_5
crossref_primary_10_1016_j_watres_2023_120363
crossref_primary_10_1016_j_hal_2024_102580
crossref_primary_10_3390_metabo9100226
crossref_primary_10_3390_foods11162490
crossref_primary_10_1128_msystems_00294_24
crossref_primary_10_1038_s41396_019_0427_7
crossref_primary_10_1016_j_scitotenv_2020_142755
crossref_primary_10_1111_1751_7915_14005
crossref_primary_10_1016_j_pedsph_2022_09_004
crossref_primary_10_1016_j_scitotenv_2021_146719
crossref_primary_10_3389_fmicb_2018_00084
crossref_primary_10_1093_ecco_jcc_jjae142
crossref_primary_10_1128_mSphere_00506_21
crossref_primary_10_1371_journal_pntd_0007411
crossref_primary_10_1038_s41598_023_30338_z
crossref_primary_10_1128_AEM_01408_18
crossref_primary_10_1007_s10493_022_00714_x
crossref_primary_10_1111_1365_2745_12966
crossref_primary_10_1111_1758_2229_13215
crossref_primary_10_1007_s00572_020_00963_x
crossref_primary_10_3389_fvets_2023_1118302
crossref_primary_10_1038_s41396_019_0487_8
crossref_primary_10_1038_s41598_019_50952_0
crossref_primary_10_1038_s41598_020_75306_z
crossref_primary_10_3389_fpls_2023_1266218
crossref_primary_10_1371_journal_pone_0233189
crossref_primary_10_1007_s00343_021_0427_0
crossref_primary_10_3390_vetsci8050081
crossref_primary_10_21597_jist_1265800
crossref_primary_10_1093_femsec_fiaa007
crossref_primary_10_1016_j_scitotenv_2024_176119
crossref_primary_10_1038_s41598_025_94542_9
crossref_primary_10_1016_j_jenvman_2022_116245
crossref_primary_10_3390_life14111391
crossref_primary_10_1371_journal_ppat_1009537
crossref_primary_10_3354_meps13539
crossref_primary_10_1038_s41598_024_83981_5
crossref_primary_10_1080_01647954_2024_2323549
crossref_primary_10_1038_s41598_023_46062_7
crossref_primary_10_1186_s40168_021_01190_y
crossref_primary_10_3389_fmicb_2022_730340
crossref_primary_10_1016_j_jenvman_2025_126138
crossref_primary_10_1016_j_csbj_2020_11_049
crossref_primary_10_1111_1462_2920_15514
crossref_primary_10_1186_s12859_019_2965_4
crossref_primary_10_3390_antibiotics14090881
crossref_primary_10_1186_s13765_022_00680_3
crossref_primary_10_3390_nu12061848
crossref_primary_10_1109_JBHI_2021_3102186
crossref_primary_10_1186_s40168_023_01677_w
crossref_primary_10_1371_journal_pone_0235225
crossref_primary_10_1016_j_jglr_2025_102667
crossref_primary_10_1038_s41467_019_09419_z
crossref_primary_10_1016_j_vetmic_2022_109428
crossref_primary_10_1128_mSphereDirect_00698_18
crossref_primary_10_3389_fmicb_2022_764566
crossref_primary_10_1016_j_dsr2_2022_105224
crossref_primary_10_1002_mbo3_719
crossref_primary_10_1016_j_chom_2017_07_021
crossref_primary_10_1093_infdis_jiae162
crossref_primary_10_3390_life12111849
crossref_primary_10_1371_journal_pone_0220770
crossref_primary_10_1128_msystems_00827_19
crossref_primary_10_1038_s41598_017_13601_y
crossref_primary_10_1016_j_foreco_2019_117520
crossref_primary_10_1128_mSphere_00869_20
crossref_primary_10_3389_fmicb_2022_791079
crossref_primary_10_1128_mSphere_00463_19
crossref_primary_10_1186_s40793_025_00664_y
crossref_primary_10_3389_fmicb_2019_02397
crossref_primary_10_1186_s40168_020_00812_1
crossref_primary_10_1016_j_xpro_2025_103917
crossref_primary_10_1194_jlr_RA120000652
crossref_primary_10_3389_fmicb_2021_625324
crossref_primary_10_3389_fmicb_2022_796758
crossref_primary_10_1128_AEM_01394_18
crossref_primary_10_1371_journal_pone_0227434
crossref_primary_10_1016_j_ttbdis_2020_101535
crossref_primary_10_1016_j_anbehav_2023_02_009
crossref_primary_10_1128_AEM_01044_21
crossref_primary_10_3390_microorganisms8091308
crossref_primary_10_1016_j_envpol_2019_113293
crossref_primary_10_1016_j_apsoil_2025_106323
crossref_primary_10_1371_journal_pone_0208917
crossref_primary_10_1038_s41598_020_77587_w
crossref_primary_10_1371_journal_pone_0230148
crossref_primary_10_1080_00275514_2023_2206930
crossref_primary_10_3389_fmicb_2025_1504241
crossref_primary_10_1371_journal_pone_0278699
crossref_primary_10_1111_1462_2920_14933
crossref_primary_10_1002_ame2_12520
crossref_primary_10_3390_microorganisms8010093
crossref_primary_10_1016_j_jglr_2022_08_002
crossref_primary_10_1007_s12029_023_00925_4
crossref_primary_10_1128_mra_01238_24
crossref_primary_10_1002_ece3_4258
crossref_primary_10_1128_AEM_02513_19
crossref_primary_10_3389_fevo_2019_00409
crossref_primary_10_5056_jnm25024
crossref_primary_10_1186_s42523_021_00112_5
crossref_primary_10_3389_fmicb_2021_569791
crossref_primary_10_3389_fmicb_2020_531404
crossref_primary_10_1128_spectrum_01566_21
crossref_primary_10_3389_fclim_2024_1345085
crossref_primary_10_1111_jam_15350
crossref_primary_10_1128_msphere_00104_22
crossref_primary_10_1128_JVI_00826_18
crossref_primary_10_1016_j_foreco_2024_122320
crossref_primary_10_1186_s12864_024_11001_x
crossref_primary_10_1186_s13765_019_0467_8
crossref_primary_10_3168_jds_2020_19096
crossref_primary_10_1186_s42523_019_0018_y
crossref_primary_10_3389_frmbi_2025_1614472
crossref_primary_10_3390_antiox9100988
crossref_primary_10_1016_j_soilbio_2021_108285
crossref_primary_10_3390_fermentation11030118
crossref_primary_10_1128_msystems_00129_22
crossref_primary_10_3389_fmicb_2019_02389
crossref_primary_10_1038_s41467_017_02209_5
crossref_primary_10_1128_mbio_01108_25
crossref_primary_10_3897_BDJ_11_e106947
crossref_primary_10_1186_s40168_018_0458_8
crossref_primary_10_1053_j_gastro_2018_12_001
crossref_primary_10_1097_PRS_0000000000007621
crossref_primary_10_1029_2019JG005185
crossref_primary_10_1186_s42523_020_00035_7
crossref_primary_10_1039_C8FO01272E
crossref_primary_10_1111_mec_15713
crossref_primary_10_3168_jds_2018_16105
crossref_primary_10_1093_femsec_fiz166
crossref_primary_10_1371_journal_pone_0272556
crossref_primary_10_1093_femsec_fiac048
crossref_primary_10_1002_mbo3_1405
crossref_primary_10_1186_s12866_019_1602_8
crossref_primary_10_1016_j_polar_2024_101128
crossref_primary_10_3390_atmos11080802
crossref_primary_10_1007_s11596_025_00077_5
crossref_primary_10_1111_jpi_12696
crossref_primary_10_3389_ffgc_2022_738568
crossref_primary_10_1016_j_ecoenv_2020_110576
crossref_primary_10_1111_1462_2920_14607
crossref_primary_10_1038_s41598_022_13914_7
crossref_primary_10_5812_jjm_121119
crossref_primary_10_1016_j_funeco_2019_03_005
crossref_primary_10_1093_femsle_fny046
crossref_primary_10_1111_mec_14855
crossref_primary_10_1038_s41598_021_87167_1
crossref_primary_10_1111_iej_70015
crossref_primary_10_1186_s12866_019_1494_7
crossref_primary_10_3390_microorganisms12061162
crossref_primary_10_1186_s42523_021_00105_4
crossref_primary_10_3839_jabc_2021_012
crossref_primary_10_1002_ecy_2968
crossref_primary_10_1016_j_jaci_2020_09_042
crossref_primary_10_1038_s43247_023_01020_z
crossref_primary_10_1093_bib_bbx154
crossref_primary_10_1128_msystems_00786_24
crossref_primary_10_1371_journal_pone_0225842
crossref_primary_10_1111_mec_15932
crossref_primary_10_1016_j_ibiod_2019_05_008
crossref_primary_10_1016_j_copbio_2019_05_009
crossref_primary_10_1111_gbi_12365
crossref_primary_10_3390_atmos13081212
crossref_primary_10_3389_fmars_2020_00173
crossref_primary_10_1016_j_ibiod_2023_105729
crossref_primary_10_1002_wer_1198
crossref_primary_10_1007_s00442_020_04767_w
crossref_primary_10_1016_j_chom_2019_03_003
crossref_primary_10_1093_femsec_fiz147
crossref_primary_10_3389_fmicb_2019_00428
crossref_primary_10_3390_w11050888
crossref_primary_10_1186_s40104_021_00635_6
crossref_primary_10_1513_AnnalsATS_201903_270OC
crossref_primary_10_1002_mma_7748
crossref_primary_10_1371_journal_pone_0231150
crossref_primary_10_1186_s40104_020_0433_7
crossref_primary_10_3389_fmicb_2023_1250806
crossref_primary_10_1007_s00394_021_02668_z
crossref_primary_10_3390_microorganisms13081760
crossref_primary_10_5187_jast_2023_e45
crossref_primary_10_1371_journal_pone_0243241
crossref_primary_10_1371_journal_pone_0291742
crossref_primary_10_3390_life11121374
crossref_primary_10_1371_journal_pone_0276920
crossref_primary_10_1007_s00248_018_01314_2
crossref_primary_10_1186_s13075_021_02711_8
crossref_primary_10_1128_mSphere_00537_20
crossref_primary_10_1038_s41467_022_33176_1
crossref_primary_10_1002_ece3_9753
crossref_primary_10_1186_s40168_018_0498_0
crossref_primary_10_1038_s41396_020_00784_y
crossref_primary_10_1007_s42995_020_00067_7
crossref_primary_10_3389_fcimb_2023_1117673
crossref_primary_10_1186_s40104_021_00597_9
crossref_primary_10_1371_journal_pone_0230170
crossref_primary_10_1016_j_envpol_2021_116764
crossref_primary_10_1128_spectrum_01823_24
crossref_primary_10_1371_journal_pone_0313263
crossref_primary_10_1007_s00248_019_01373_z
crossref_primary_10_1016_j_scitotenv_2020_137900
Cites_doi 10.1016/0005-2795(75)90109-9
10.1128/aem.00062-07
10.1128/AEM.71.3.1501-1506.2005
10.1038/nmeth.2604
10.1093/bioinformatics/btu085
10.1038/srep09743
10.32614/CRAN.package.cowplot
10.1073/pnas.1521291113
10.1371/journal.pone.0008230
10.1111/j.1462-2920.2010.02193.x
10.1128/aem.01043-13
10.1093/nar/gkm864
10.1128/aem.00410-08
10.7717/peerj.593
10.1038/nmeth.f.303
10.7717/peerj.545
10.1128/aem.01541-09
10.1093/nar/gkr349
10.1128/mBio.00201-16
10.1371/journal.pcbi.1004658
10.1186/s13073-016-0290-3
10.1126/science.1110591
10.1128/aem.02810-10
10.1186/1471-2105-11-152
10.1128/msphere.00028-16
10.1007/978-0-387-98141-3
10.7717/peerj.2584
10.1371/journal.pone.0070837
10.1111/1462-2920.12610
10.1093/bioinformatics/btr381
10.1093/nar/gkp285
10.1128/msystems.00027-16
10.1016/B978-0-12-407863-5.00019-8
10.32614/CRAN.package.wesanderson
10.7717/peerj.1420
10.1093/bioinformatics/btq461
10.1186/1471-2105-12-473
10.1038/nature11234
10.1371/journal.pcbi.1000844
10.7717/peerj.1487
10.1093/bib/bbr009
10.4161/gmic.21008
10.3389/fmicb.2016.00579
10.1128/msystems.00003-15
10.1093/bioinformatics/bts552
10.1186/s40168-015-0081-x
ContentType Journal Article
Contributor Watson, Mick
Pollard, Katherine
Contributor_xml – sequence: 1
  givenname: Mick
  surname: Watson
  fullname: Watson, Mick
– sequence: 2
  givenname: Katherine
  surname: Pollard
  fullname: Pollard, Katherine
Copyright Copyright © 2017 Westcott and Schloss. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2017 Westcott and Schloss. 2017 Westcott and Schloss
Copyright_xml – notice: Copyright © 2017 Westcott and Schloss. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2017 Westcott and Schloss. 2017 Westcott and Schloss
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1128/mSphereDirect.00073-17
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate OptiClust, Optimized Clustering
EISSN 2379-5042
ExternalDocumentID oai_doaj_org_article_4e82c537decc40d890eac4e2fbeafad9
PMC5343174
28289728
10_1128_mSphereDirect_00073_17
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK034933
– fundername: HHS | National Institutes of Health (NIH)
  grantid: P30DK034933
GroupedDBID 0R~
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAGFI
AAUOK
AAYXX
ABUWG
ADBBV
ADRAZ
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
EBS
EJD
FRP
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
KQ8
LK8
M48
M7P
M~E
O9-
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
R9-
RHI
RPM
RSF
UKHRP
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c504t-6684fa1bca1afb56a89ce2c1a9d218cdd419afe20dd6536a73e9143861b247703
IEDL.DBID DOA
ISICitedReferencesCount 326
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399174700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2379-5042
IngestDate Mon Nov 17 00:45:58 EST 2025
Tue Nov 04 01:57:59 EST 2025
Fri Sep 05 13:19:02 EDT 2025
Tue Oct 07 06:47:42 EDT 2025
Thu Apr 03 07:03:04 EDT 2025
Sat Nov 29 03:33:38 EST 2025
Tue Nov 18 19:58:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords microbial ecology
microbiome
bioinformatics
16S rRNA gene
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-6684fa1bca1afb56a89ce2c1a9d218cdd419afe20dd6536a73e9143861b247703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Citation Westcott SL, Schloss PD. 2017. OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. mSphere 2:e00073-17. https://doi.org/10.1128/mSphereDirect.00073-17.
ORCID 0000-0002-6935-4275
OpenAccessLink https://doaj.org/article/4e82c537decc40d890eac4e2fbeafad9
PMID 28289728
PQID 1953250202
PQPubID 2045592
ParticipantIDs doaj_primary_oai_doaj_org_article_4e82c537decc40d890eac4e2fbeafad9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5343174
proquest_miscellaneous_1877524950
proquest_journals_1953250202
pubmed_primary_28289728
crossref_citationtrail_10_1128_mSphereDirect_00073_17
crossref_primary_10_1128_mSphereDirect_00073_17
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mSphere
PublicationTitleAlternate mSphere
PublicationYear 2017
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
R Core Team (e_1_3_3_45_2) 2015
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_38_2
  doi: 10.1016/0005-2795(75)90109-9
– ident: e_1_3_3_11_2
  doi: 10.1128/aem.00062-07
– ident: e_1_3_3_17_2
  doi: 10.1128/AEM.71.3.1501-1506.2005
– ident: e_1_3_3_24_2
  doi: 10.1038/nmeth.2604
– ident: e_1_3_3_30_2
  doi: 10.1093/bioinformatics/btu085
– ident: e_1_3_3_20_2
  doi: 10.1038/srep09743
– ident: e_1_3_3_49_2
  doi: 10.32614/CRAN.package.cowplot
– ident: e_1_3_3_3_2
  doi: 10.1073/pnas.1521291113
– ident: e_1_3_3_9_2
  doi: 10.1371/journal.pone.0008230
– ident: e_1_3_3_29_2
  doi: 10.1111/j.1462-2920.2010.02193.x
– ident: e_1_3_3_8_2
  doi: 10.1128/aem.01043-13
– ident: e_1_3_3_39_2
  doi: 10.1093/nar/gkm864
– ident: e_1_3_3_7_2
  doi: 10.1128/aem.00410-08
– ident: e_1_3_3_21_2
  doi: 10.7717/peerj.593
– ident: e_1_3_3_13_2
  doi: 10.1038/nmeth.f.303
– ident: e_1_3_3_4_2
  doi: 10.7717/peerj.545
– ident: e_1_3_3_12_2
  doi: 10.1128/aem.01541-09
– ident: e_1_3_3_23_2
  doi: 10.1093/nar/gkr349
– ident: e_1_3_3_2_2
  doi: 10.1128/mBio.00201-16
– ident: e_1_3_3_33_2
  doi: 10.1371/journal.pcbi.1004658
– ident: e_1_3_3_40_2
  doi: 10.1186/s13073-016-0290-3
– ident: e_1_3_3_6_2
  doi: 10.1126/science.1110591
– ident: e_1_3_3_14_2
  doi: 10.1128/aem.02810-10
– ident: e_1_3_3_32_2
  doi: 10.1186/1471-2105-11-152
– ident: e_1_3_3_43_2
  doi: 10.1128/msphere.00028-16
– ident: e_1_3_3_50_2
  doi: 10.1007/978-0-387-98141-3
– ident: e_1_3_3_19_2
  doi: 10.7717/peerj.2584
– ident: e_1_3_3_28_2
  doi: 10.1371/journal.pone.0070837
– ident: e_1_3_3_36_2
  doi: 10.1111/1462-2920.12610
– ident: e_1_3_3_10_2
  doi: 10.1093/bioinformatics/btr381
– ident: e_1_3_3_22_2
  doi: 10.1093/nar/gkp285
– ident: e_1_3_3_37_2
  doi: 10.1128/msystems.00027-16
– ident: e_1_3_3_15_2
  doi: 10.1016/B978-0-12-407863-5.00019-8
– ident: e_1_3_3_46_2
  doi: 10.32614/CRAN.package.wesanderson
– ident: e_1_3_3_25_2
  doi: 10.7717/peerj.1420
– ident: e_1_3_3_48_2
– ident: e_1_3_3_47_2
– ident: e_1_3_3_18_2
  doi: 10.1093/bioinformatics/btq461
– ident: e_1_3_3_26_2
  doi: 10.1186/1471-2105-12-473
– ident: e_1_3_3_5_2
  doi: 10.1038/nature11234
– ident: e_1_3_3_44_2
  doi: 10.1371/journal.pcbi.1000844
– volume-title: R: a language and environment for statistical computing
  year: 2015
  ident: e_1_3_3_45_2
– ident: e_1_3_3_16_2
  doi: 10.7717/peerj.1487
– ident: e_1_3_3_31_2
  doi: 10.1093/bib/bbr009
– ident: e_1_3_3_41_2
  doi: 10.4161/gmic.21008
– ident: e_1_3_3_42_2
  doi: 10.3389/fmicb.2016.00579
– ident: e_1_3_3_35_2
  doi: 10.1128/msystems.00003-15
– ident: e_1_3_3_27_2
  doi: 10.1093/bioinformatics/bts552
– ident: e_1_3_3_34_2
  doi: 10.1186/s40168-015-0081-x
SSID ssj0001626676
Score 2.5114307
Snippet The analysis of microbial communities from diverse environments using 16S rRNA gene sequencing has expanded our knowledge of the biogeography of...
Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial communities....
ABSTRACT Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) is a computational bottleneck in the process of analyzing microbial...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms 16S rRNA gene
bioinformatics
Editor's Pick
microbial ecology
microbiome
Podcasts
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BFyQuvB-BBRmJI6F5OLF9QttlVxygu2IXtLfIr5RKS1KaFMG_x-O4LUUIDlzjWHLyjWfGM-P5AF4kXFHNpIh1weqY5lbFTkrqGK1dKutalb6a8NM7Np3yiwtxGgJuXSirXOtEr6hNqzFGPsZ0jzPX7qz-evE1RtYozK4GCo2rsIedyugI9iZH09MP2yiL89dLVoarwU4Xj7-c4XV9OyiUVz5TFXu2sq1V8s37_-Rx_l44-YslOr71v99wG24GH5QcDEJzB67Y5i5cH1gpf9yD2YlTI4eXq65_SWRDhrCDNeS9J5smzsslDtT5DCMq5MBXpLdNPHHm0JCzUJlN3shekr4lJwu7DPFGci6_D7egCXq63X34eHx0fvg2DnwMDsiE9nFZclrLVGnpUFRFKbnQNtOpFMY5CtoYmgpZ2ywxpizyUrLcCmRXL1OVUeZUywMYNW1jHwEx2GMm5UYlKqfWCmGKXBiESnG8tBhBscaj0qFZOXJmXFb-0JLxagfHyuNYpSyC8WbeYmjX8c8ZE4R78za22_YP2uWsCru3opZnusiZcQJPE8NF4uwVtVmtrKylERHsrwGvgg7oqi3aETzfDLvdiykZ2dh25d7hjBVI_51E8HCQrc1K_GGYZe5fsB2p21nq7kgz_-w7hBc5-oX08d-X9QRuZOik-Iq6fRj1y5V9Ctf0t37eLZ-FrfQTBLEtMA
  priority: 102
  providerName: ProQuest
Title OptiClust, an Improved Method for Assigning Amplicon-Based Sequence Data to Operational Taxonomic Units
URI https://www.ncbi.nlm.nih.gov/pubmed/28289728
https://www.proquest.com/docview/1953250202
https://www.proquest.com/docview/1877524950
https://pubmed.ncbi.nlm.nih.gov/PMC5343174
https://doaj.org/article/4e82c537decc40d890eac4e2fbeafad9
Volume 2
WOSCitedRecordID wos000399174700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BAakXVJ5NKSsjcSRs4jixfez2IZDoNqIFLafIr5SV2my1m0Xw7xk76bKLkHrhkoNjK87M2PN5PA-At4nQzHAlY5PzOmaZ0zFKSR17bZequtZF8Cb8-omPx2IykeVaqS_vE9alB-4IN2ROUJNn3OK3WGKFTHCrYI7W2qla2RC6h6hn7TAVrCuI0wte9CHBuAcPr899mL7rNpL34YYqDlXK_mijkLT_X0jzb4fJNQ10sgOPe-hIDropP4F7rnkKj7pikr-eweUZrv7Dq-WifUdUQzprgbPkNNSIJghOCfJieukNIeQgOJLPmniEWsyS896hmhypVpF2Rs5u3Lw3E5IL9bMLXiYeoC6ew5eT44vDD3FfRgHpn7A2LgrBapVqo5D4Oi-UkMZRkyppUb8ba1kqVe1oYm2RZ4XimZO-KHqRaso47ggvYKuZNW4XiPWpYVJhdaIz5pyUNs-k9ZTWwscaRpDfkrMyfY5xX-riqgpnDSqqDTZUgQ1VyiMYrsbddFk27hwx8txa9fZZskMDyk7Vy051l-xEsH_L66pfuovK3ysiLqQJjeDN6jUuOn-Toho3W2IfwXnuq3YnEbzsRGM1k3CG5RRpwTeEZmOqm2-a6feQ2DvPPJxje__j317BNvUIJLjL7cNWO1-61_DQ_Gini_kA7vMJD08xgAej43H5eRBW0MA7v5bYVn48Lb_9BpeaJlk
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAioX3o9AgUWCGyZ-rL3eA0J9ULVqmiI1VLmZtXedRip2iB2gf4rfyMzaSQhCcOqBq18a2988d3Y-gJdunPJMKOlkocgdHpjUQZTkDnk7T-V5GtluwtOe6Pfj4VB-WIMf870w1FY5t4nWUOsyoxp5l5Z70F1jrv5u8sUh1ihaXZ1TaDSwODQX3zBlq94e7OL_feX7e-8HO_tOyyqA4ri8dqIo5rny0kyhLGkYqVhmxs88JTW6u0xr7kmVG9_VOgqDSInASOIIj7zU5wIVBJ97Ba6iHRfUQiaGYlnTwewgElG7ERktf_fzCQ0HMI35emPXxRzLjbb0gZYq4E_x7e9tmr_4vb1b_9sXuw032wibbTUqcQfWTHEXrjecmxf3YHSMRnLnfFbVr5kqWFNUMZodWSpthjE8Q8iOR1QvYlu2374snG109pqdtH3nbFfVitUlO56YaVtNZQP1vdnjzSiOr-7Dx0t5ywewXpSFeQRM0wQdL9apmwbcGCl1GEhN0Ehj2pLZgXD-_5OsHcVOjCDniU3J_DhZwU1icZN4ogPdxX2TZhjJP-_YJngtrqZh4vZAOR0lrW1KuIn9LAyERnXmro6li96YGz9PjcqVlh3YnAMsaS1clSzR1YEXi9Nom2jBSRWmnOE1sRAhkZu7HXjYYHkhiU31hY_fQqygfEXU1TPF-MzOPw8Dinr547-L9Rw29gdHvaR30D98Ajd8Csds7-AmrNfTmXkK17Kv9biaPrNKzODTZevATyJNiN8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aG0y8cB8EBhgJ3gjNxYnjB4TWdRXTRlexDe3NOLFTKo2ktCmwv8av49hJWooQPO2B19iJTpLvXHx8fD6A516S0oxJ7mYRy10a6tRFlOSu8Xa-zPM0ttWEHw7ZYJCcnfHhGvxoz8KYssrWJlpDrcrM5Mg7ZrsH3TWu1Tt5UxYx7PXfTL64hkHK7LS2dBo1RA70xTdcvs1e7_fwX78Igv7eye5bt2EYQNE8WrlxnNBc-mkmUa40imXCMx1kvuQKXV-mFPW5zHXgKRVHYSxZqLnhC4_9NKAMlQWfewU2GAYZqF0b3b3B8P0yw4NrhZjFzbFk9AOdz8emVYCujdkru0vmWqa0pUe0xAF_inZ_L9r8xQv2b_7P3-8W3Ghib7JTK8ttWNPFHbhWs3Fe3IXREZrP3fP5rHpJZEHqdItW5J0l2SYY3RME83hkMklkx1bil4XbxTBAkeOmIp30ZCVJVZKjiZ42eVZyIr_Xp7-JifBn9-D0Ut5yC9aLstAPgCjTW8dPVOqlIdWacxWFXBmYpIk5rOlA1GJBZE2TdsMVci7sYi1IxAqGhMWQ8JkDncV9k7pNyT_v6BqoLWabNuP2QjkdicZqCaqTIItCplDRqacS7qGfpjrIUy1zqbgD2y3YRGP7ZmKJNAeeLYbRapmtKFnoco5zEsYiQ3vuOXC_xvVCEpsEYAF-C7aC-BVRV0eK8SfbGT0KTTxMH_5drKewidAXh_uDg0dwPTBxmi0q3Ib1ajrXj-Fq9rUaz6ZPGo0m8PGyleAn2nKTAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OptiClust%2C+an+Improved+Method+for+Assigning+Amplicon-Based+Sequence+Data+to+Operational+Taxonomic+Units&rft.jtitle=mSphere&rft.au=Westcott%2C+Sarah+L.&rft.au=Schloss%2C+Patrick+D.&rft.date=2017-03-01&rft.issn=2379-5042&rft.eissn=2379-5042&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1128%2FmSphereDirect.00073-17&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mSphereDirect_00073_17
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5042&client=summon