Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents, flavonoid aglycones contents and bio-activities of guava leaves tea
[Display omitted] •Fermentation and enzymes hydrolysis (FE) increased total phenolic content of GLT.•Soluble and insoluble-bound forms of phenolics were analyzed by HPLC.•FE processing gave the greatest yields of quercetin and kaempferol from GLT.•FE processing upgraded the antioxidant and α-glucosi...
Gespeichert in:
| Veröffentlicht in: | Food chemistry Jg. 264; S. 189 - 198 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
30.10.2018
|
| Schlagworte: | |
| ISSN: | 0308-8146, 1873-7072, 1873-7072 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | [Display omitted]
•Fermentation and enzymes hydrolysis (FE) increased total phenolic content of GLT.•Soluble and insoluble-bound forms of phenolics were analyzed by HPLC.•FE processing gave the greatest yields of quercetin and kaempferol from GLT.•FE processing upgraded the antioxidant and α-glucosidase inhibition activity of GLT.
There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits. |
|---|---|
| AbstractList | There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits.There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits. There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits. [Display omitted] •Fermentation and enzymes hydrolysis (FE) increased total phenolic content of GLT.•Soluble and insoluble-bound forms of phenolics were analyzed by HPLC.•FE processing gave the greatest yields of quercetin and kaempferol from GLT.•FE processing upgraded the antioxidant and α-glucosidase inhibition activity of GLT. There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits. |
| Author | Liu, Yan Wu, Zhenqiang Luo, You Wu, Yanan Wang, Lu |
| Author_xml | – sequence: 1 givenname: Lu surname: Wang fullname: Wang, Lu organization: School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China – sequence: 2 givenname: You surname: Luo fullname: Luo, You organization: School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China – sequence: 3 givenname: Yanan surname: Wu fullname: Wu, Yanan organization: School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China – sequence: 4 givenname: Yan surname: Liu fullname: Liu, Yan organization: School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China – sequence: 5 givenname: Zhenqiang surname: Wu fullname: Wu, Zhenqiang email: btzhqwu@scut.edu.cn organization: School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29853365$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc-OFCEQxolZ486uvsKGowe7habpP4kHzcZVk0286JnQUMwwoWEEpuP4Nr6pjLPjwcucKlX1fV8FfjfoygcPCN1RUlNCu7fb2oSg1QbmuiF0qAmvCePP0IoOPat60jdXaEUYGaqBtt01uklpSwg5al-g62YcOGMdX6HfDxBn8FlmGzyWXmMV5p2Dnxj8r8MMeHPQMbhDsgmbELGddzEs1q9x3gDOIUuHU3D7yQHebcAHZ1WJ8LlkpjfYOLkEH6zGcu0OZQ7p3_bvtcmGSqpsF5tt2QWD13u5SOxALqXPIF-i50a6BK-e6i36_vDx2_3n6vHrpy_3Hx4rxUmbq46RptemGbiCzjBmSlFATNtROo1DB9PUjERzNk6koZMaR6VNr5SWVMpupOwWvT7llgf-2EPKYrZJgXPSQ9gn0TSs583YtcNlKWlHztuB9kV69yTdTzNosYt2lvEgzgSK4N1JoGJIKYIRyp5o5CitE5SII3CxFWfg4ghREC4K8GLv_rOfL1w0vj8ZofzpYiGKpCx4BdpGUFnoYC9F_AF_lc4V |
| CitedBy_id | crossref_primary_10_1016_j_foodchem_2022_132122 crossref_primary_10_1016_j_fbio_2022_102287 crossref_primary_10_1016_j_fbio_2021_101351 crossref_primary_10_1016_j_jff_2024_106016 crossref_primary_10_3390_molecules30040961 crossref_primary_10_1080_10408398_2022_2129582 crossref_primary_10_3390_fermentation11060342 crossref_primary_10_1016_j_seppur_2020_117014 crossref_primary_10_3389_fnut_2022_865991 crossref_primary_10_1016_j_procbio_2019_04_003 crossref_primary_10_1016_j_tifs_2024_104652 crossref_primary_10_36899_JAPS_2024_4_0771 crossref_primary_10_3390_foods12173315 crossref_primary_10_3390_molecules28217447 crossref_primary_10_1016_j_fufo_2025_100764 crossref_primary_10_1111_1750_3841_70406 crossref_primary_10_1016_j_fbio_2025_106413 crossref_primary_10_1007_s11947_023_03249_0 crossref_primary_10_1080_10408398_2023_2227261 crossref_primary_10_1016_j_indcrop_2020_112287 crossref_primary_10_1016_j_chmed_2021_09_003 crossref_primary_10_1016_j_fbio_2023_102550 crossref_primary_10_1016_j_fbio_2023_103326 crossref_primary_10_1016_j_lwt_2022_114046 crossref_primary_10_3390_foods14152573 crossref_primary_10_1016_j_lwt_2024_115931 crossref_primary_10_3390_fermentation9040377 crossref_primary_10_1016_j_fbio_2023_103441 crossref_primary_10_1111_ijfs_14819 crossref_primary_10_3390_foods14152731 crossref_primary_10_1016_j_foodcont_2024_110361 crossref_primary_10_1016_j_foodchem_2023_136770 crossref_primary_10_3390_foods13071070 crossref_primary_10_3389_fbioe_2022_995238 crossref_primary_10_1007_s10068_019_00634_4 crossref_primary_10_1016_j_microc_2024_110676 crossref_primary_10_3390_foods13020206 crossref_primary_10_1016_j_foodres_2022_112180 crossref_primary_10_1016_j_fbio_2022_101997 crossref_primary_10_1016_j_foodchem_2025_143264 crossref_primary_10_1016_j_foodres_2025_115752 crossref_primary_10_1007_s00394_021_02679_w crossref_primary_10_1016_j_indcrop_2019_04_003 crossref_primary_10_1016_j_lwt_2020_110087 crossref_primary_10_1016_j_jarmap_2021_100336 crossref_primary_10_1016_j_foodcont_2022_109002 crossref_primary_10_1016_j_lwt_2021_112234 crossref_primary_10_3390_molecules26102983 crossref_primary_10_3390_foods14050878 crossref_primary_10_1016_j_ijbiomac_2023_127915 crossref_primary_10_1016_j_heliyon_2024_e28937 crossref_primary_10_1002_jsf2_70007 crossref_primary_10_3390_foods12183344 crossref_primary_10_1016_j_lwt_2023_115706 crossref_primary_10_3390_foods12091872 crossref_primary_10_1016_j_indcrop_2023_117559 crossref_primary_10_1186_s40538_024_00674_x crossref_primary_10_1186_s43014_021_00054_0 crossref_primary_10_1002_cjoc_202000640 crossref_primary_10_3390_antiox10122004 crossref_primary_10_1016_j_foodchem_2024_141733 crossref_primary_10_1016_j_indcrop_2023_116422 crossref_primary_10_1016_j_jff_2019_103549 crossref_primary_10_1111_1750_3841_16217 crossref_primary_10_3390_foods10081939 crossref_primary_10_1016_j_ijfoodmicro_2024_110974 crossref_primary_10_3390_beverages9010014 crossref_primary_10_1016_j_fbio_2024_103842 crossref_primary_10_1016_j_porgcoat_2023_107772 crossref_primary_10_3390_foods9111656 crossref_primary_10_1016_j_foodres_2020_109999 crossref_primary_10_3389_fnut_2022_1052730 crossref_primary_10_1016_j_psj_2023_102569 crossref_primary_10_1016_j_fbio_2024_105781 crossref_primary_10_1016_j_lwt_2021_111932 crossref_primary_10_1016_j_foodchem_2024_139521 crossref_primary_10_1016_j_lwt_2023_114925 crossref_primary_10_1016_j_jbiosc_2020_06_008 crossref_primary_10_1016_j_seppur_2021_118339 crossref_primary_10_3390_horticulturae7100386 crossref_primary_10_1016_j_indcrop_2022_115424 crossref_primary_10_1080_07388551_2024_2423152 crossref_primary_10_1016_j_foodchem_2021_130855 crossref_primary_10_1016_j_foodchem_2022_135172 crossref_primary_10_1111_jfpp_16989 crossref_primary_10_3390_antiox8080274 crossref_primary_10_1007_s11694_025_03171_3 crossref_primary_10_3390_molecules27207016 |
| Cites_doi | 10.1016/j.jff.2015.01.047 10.3109/21691401.2014.926456 10.1016/j.jff.2016.12.010 10.1016/j.foodchem.2008.08.013 10.1016/j.indcrop.2016.08.043 10.1016/j.jfda.2015.11.008 10.1016/j.foodchem.2016.11.126 10.1016/j.foodchem.2007.05.077 10.1016/j.foodchem.2016.06.100 10.1016/j.jff.2017.03.022 10.1016/j.foodchem.2013.02.127 10.1016/S0308-8146(02)00476-4 10.1016/j.biortech.2010.01.093 10.4162/nrp.2016.10.3.282 10.1016/j.jfca.2011.01.008 10.1016/j.foodchem.2016.05.047 10.1021/jf1007665 10.1016/j.foodchem.2005.11.043 10.1080/10408398.2012.708909 10.1016/j.jff.2017.02.029 10.1021/jf980788t 10.1016/j.jff.2016.01.040 10.1016/j.jff.2017.02.028 10.1016/j.jff.2017.05.047 10.1016/S2095-4964(15)60183-2 10.1016/S0076-6879(99)99017-1 10.1021/jf204163a 10.1016/j.foodchem.2016.04.016 10.1016/j.tifs.2016.04.007 10.1016/j.jff.2013.02.005 10.1021/acs.jafc.6b02847 10.1016/S0014-5793(97)00467-5 10.1080/07388550490491467 10.1016/j.jff.2015.05.018 10.1021/acs.jafc.5b00520 10.2174/0929867323666160909153707 10.1016/S0014-5793(98)01101-6 10.1016/j.foodchem.2009.12.021 10.1016/j.foodres.2015.07.032 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.foodchem.2018.05.035 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Chemistry Diet & Clinical Nutrition |
| EISSN | 1873-7072 |
| EndPage | 198 |
| ExternalDocumentID | 29853365 10_1016_j_foodchem_2018_05_035 S0308814618308264 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM KZ1 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SCC SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K WH7 ~G- ~KM 29H 53G 9DU AAHBH AALCJ AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AGRDE AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLV HVGLF HZ~ R2- SCB SEW VH1 WUQ Y6R ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c504t-63027df285ce6f33fce6ce0f4611b986ebb290d539b021bc99cdf7ccda1aa6913 |
| ISICitedReferencesCount | 97 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433335900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0308-8146 1873-7072 |
| IngestDate | Thu Oct 02 07:00:01 EDT 2025 Sat Sep 27 18:41:31 EDT 2025 Wed Feb 19 02:43:58 EST 2025 Tue Nov 18 21:49:27 EST 2025 Sat Nov 29 06:45:24 EST 2025 Fri Feb 23 02:23:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | p-Hydroxybenzoic acid (Pubchem CID: 315) F Enzymatic hydrolysis SPUF SPF DM Chlorogenic acid (Pubchem CID: 1794427) IBPUF Vc GLT UF Guava leaves tea Quercitrin (Pubchem CID: 5280459) α-Glucosidase inhibition activity Syringic acid (Pubchem CID: 10742) Rutin (Pubchem CID: 5280805) Isoquercitrin (Pubchem CID: 5280804) Gallic acid (Pubchem CID: 370) DPPH Caffeic acid (Pubchem CID: 689043) Antioxidant activity SSF Quercetin-3-O-α-l-arabinoside (Pubchem CID: 5481224) Coumaric acid (Pubchem CID: 637542) Fermentation IBPF Avicularin (Pubchem CID: 5490064) Phenolics compositions IBPFE Quercetin (Pubchem CID: 5280343) Quercetin-3-O-β-d-xylopyranoside (Pubchem CID: 5320861) SPFE Ferulic acid (Pubchem CID: 445858) Kaempferol (Pubchem CID: 5280863) ABTS FE |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c504t-63027df285ce6f33fce6ce0f4611b986ebb290d539b021bc99cdf7ccda1aa6913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 29853365 |
| PQID | 2049554817 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2237529648 proquest_miscellaneous_2049554817 pubmed_primary_29853365 crossref_citationtrail_10_1016_j_foodchem_2018_05_035 crossref_primary_10_1016_j_foodchem_2018_05_035 elsevier_sciencedirect_doi_10_1016_j_foodchem_2018_05_035 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-30 |
| PublicationDateYYYYMMDD | 2018-10-30 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Food chemistry |
| PublicationTitleAlternate | Food Chem |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | de Araújo, Franco, Alberto, Sobreiro, Conrado, Priolli, de Oliveira Carvalho (b0030) 2013; 141 Day, DuPont, Ridley, Rhodes, Rhodes, Morgan, Williamson (b0040) 1998; 436 Dikshit, Tallapragada (b0055) 2016; 24 Oki, Matsui, Osajima (b0110) 1999; 47 Rezaei-Sadabady, Eidi, Zarghami, Barzegar (b0125) 2016; 44 Wang, Bei, Wu, Liao, Wu (b0175) 2017; 32 Ferreira, Baptista, Vilas-Boas, Barros (b0075) 2007; 100 Singleton, Orthofer, Lamuela-Raventos (b0140) 1999; 299 Ti, Zhang, Li, Wei, Zhang (b0165) 2015; 76 Shahidi, Zhong (b0130) 2015; 18 Van Hung (b0170) 2016; 56 Cai, Wang, Wu, Zhu, Zhou, Ji, Cheng (b0025) 2011; 60 Yeo, Shahidi (b0195) 2017; 38 Singh, Sharma, Sharma (b0135) 2015; 13 Tabart, Kevers, Pincemail, Defraigne, Dommes (b0145) 2009; 113 Bei, Liu, Wang, Chen, Wu (b0015) 2017; 32 Qiu, Liu, Beta (b0115) 2010; 121 Hu, Li, Jia, Liu, Wang, Li, Hua (b0085) 2017; 35 Wang, Hwang, Lee, Lim (b0190) 2016; 10 Ranilla, Kwon, Apostolidis, Shetty (b0120) 2010; 101 Wang, Wei, Tian, Shi, Wu (b0180) 2016; 94 Mathew, Abraham (b0100) 2004; 24 Díaz-de-Cerio, Gómez-Caravaca, Verardo, Fernández-Gutiérrez, Segura-Carretero (b0050) 2016; 22 Jessica, Claire, Joël, Jeanolivier, Jacques (b0150) 2009; 113 Liu, Zhang, Deng, Zhang, Xiao, Huang, Zhang (b0090) 2017; 221 Dulf, Vodnar, Socaciu (b0065) 2016; 209 Zhang, Zhang, Zhang, Liu (b0200) 2010; 58 Alshikh, de Camargo, Shahidi (b0010) 2015; 18 Floegel, Kim, Chung, Koo, Chun (b0080) 2011; 24 de Camargo, Regitano-d’Arce, Biasoto, Shahidi (b0035) 2016; 212 Tan, Chang, Zhang (b0160) 2017; 214 Nuutila, Puupponen-Pimiä, Aarni, Oksman-Caldentey (b0105) 2003; 81 Eid, Haddad (b0070) 2017; 24 Dey, Chakraborty, Jain, Sharma, Kuhad (b0045) 2016; 53 Manach, Morand, Demigné, Texier, Régérat, Rémésy (b0095) 1997; 409 Bhandari, Jong-Anurakkun, Hong, Kawabata (b0020) 2008; 106 Zhang, Chen, Li, Yi, Ye, Liu, Wang (b0205) 2017; 32 Albishi, John, Al-Khalifa, Shahidi (b0005) 2013; 5 Dulf, Vodnar, Dulf, Tosa (b0060) 2015; 63 Tai, Ohno, Ito (b0155) 2016; 64 Cai (10.1016/j.foodchem.2018.05.035_b0025) 2011; 60 Liu (10.1016/j.foodchem.2018.05.035_b0090) 2017; 221 Dey (10.1016/j.foodchem.2018.05.035_b0045) 2016; 53 Dulf (10.1016/j.foodchem.2018.05.035_b0065) 2016; 209 Oki (10.1016/j.foodchem.2018.05.035_b0110) 1999; 47 Manach (10.1016/j.foodchem.2018.05.035_b0095) 1997; 409 Albishi (10.1016/j.foodchem.2018.05.035_b0005) 2013; 5 Dikshit (10.1016/j.foodchem.2018.05.035_b0055) 2016; 24 de Araújo (10.1016/j.foodchem.2018.05.035_b0030) 2013; 141 Eid (10.1016/j.foodchem.2018.05.035_b0070) 2017; 24 Hu (10.1016/j.foodchem.2018.05.035_b0085) 2017; 35 Bhandari (10.1016/j.foodchem.2018.05.035_b0020) 2008; 106 Rezaei-Sadabady (10.1016/j.foodchem.2018.05.035_b0125) 2016; 44 Zhang (10.1016/j.foodchem.2018.05.035_b0200) 2010; 58 Ranilla (10.1016/j.foodchem.2018.05.035_b0120) 2010; 101 Jessica (10.1016/j.foodchem.2018.05.035_b0150) 2009; 113 Yeo (10.1016/j.foodchem.2018.05.035_b0195) 2017; 38 Dulf (10.1016/j.foodchem.2018.05.035_b0060) 2015; 63 Mathew (10.1016/j.foodchem.2018.05.035_b0100) 2004; 24 Singh (10.1016/j.foodchem.2018.05.035_b0135) 2015; 13 Zhang (10.1016/j.foodchem.2018.05.035_b0205) 2017; 32 Singleton (10.1016/j.foodchem.2018.05.035_b0140) 1999; 299 Tabart (10.1016/j.foodchem.2018.05.035_b0145) 2009; 113 Qiu (10.1016/j.foodchem.2018.05.035_b0115) 2010; 121 Tai (10.1016/j.foodchem.2018.05.035_b0155) 2016; 64 Alshikh (10.1016/j.foodchem.2018.05.035_b0010) 2015; 18 Nuutila (10.1016/j.foodchem.2018.05.035_b0105) 2003; 81 Wang (10.1016/j.foodchem.2018.05.035_b0190) 2016; 10 de Camargo (10.1016/j.foodchem.2018.05.035_b0035) 2016; 212 Day (10.1016/j.foodchem.2018.05.035_b0040) 1998; 436 Floegel (10.1016/j.foodchem.2018.05.035_b0080) 2011; 24 Díaz-de-Cerio (10.1016/j.foodchem.2018.05.035_b0050) 2016; 22 Ti (10.1016/j.foodchem.2018.05.035_b0165) 2015; 76 Van Hung (10.1016/j.foodchem.2018.05.035_b0170) 2016; 56 Bei (10.1016/j.foodchem.2018.05.035_b0015) 2017; 32 Ferreira (10.1016/j.foodchem.2018.05.035_b0075) 2007; 100 Tan (10.1016/j.foodchem.2018.05.035_b0160) 2017; 214 Shahidi (10.1016/j.foodchem.2018.05.035_b0130) 2015; 18 Wang (10.1016/j.foodchem.2018.05.035_b0175) 2017; 32 Wang (10.1016/j.foodchem.2018.05.035_b0180) 2016; 94 |
| References_xml | – volume: 212 start-page: 395 year: 2016 end-page: 402 ident: b0035 article-title: Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities publication-title: Food Chemistry – volume: 35 start-page: 236 year: 2017 end-page: 244 ident: b0085 article-title: Bioactive constituents from publication-title: Journal of Functional Foods – volume: 101 start-page: 4676 year: 2010 end-page: 4689 ident: b0120 article-title: Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America publication-title: Bioresource Technology – volume: 24 start-page: 355 year: 2017 end-page: 364 ident: b0070 article-title: The antidiabetic potential of quercetin: Underlying mechanisms publication-title: Current Medicinal Chemistry – volume: 24 start-page: 59 year: 2004 end-page: 83 ident: b0100 article-title: Ferulic acid: An antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications publication-title: Critical Reviews in Biotechnology – volume: 10 start-page: 282 year: 2016 end-page: 287 ident: b0190 article-title: Fermentation of purple Jerusalem artichoke extract to improve the publication-title: Nutrition Research and Practice – volume: 32 start-page: 375 year: 2017 end-page: 381 ident: b0205 article-title: Dynamic changes in antioxidant activity and biochemical composition of tartary buckwheat leaves during publication-title: Journal of Functional Foods – volume: 60 start-page: 507 year: 2011 end-page: 513 ident: b0025 article-title: Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats ( publication-title: Journal of Agricultural and Food Chemistry – volume: 13 start-page: 269 year: 2015 end-page: 278 ident: b0135 article-title: Comparative and quantitative analysis of antioxidant and scavenging potential of publication-title: Journal of Integrative Medicine – volume: 58 start-page: 7580 year: 2010 end-page: 7587 ident: b0200 article-title: Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties publication-title: Journal of Agricultural and Food Chemistry – volume: 44 start-page: 128 year: 2016 end-page: 134 ident: b0125 article-title: Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes publication-title: Artificial Cells, Nanomedicine, and Biotechnology – volume: 209 start-page: 27 year: 2016 end-page: 36 ident: b0065 article-title: Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit ( publication-title: Food Chemistry – volume: 141 start-page: 266 year: 2013 end-page: 273 ident: b0030 article-title: Enzymatic de-glycosylation of rutin improves its antioxidant and antiproliferative activities publication-title: Food Chemistry – volume: 81 start-page: 485 year: 2003 end-page: 493 ident: b0105 article-title: Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity publication-title: Food Chemistry – volume: 5 start-page: 930 year: 2013 end-page: 939 ident: b0005 article-title: Antioxidant, anti-inflammatory and DNA scission inhibitory activities of phenolic compounds in selected onion and potato varieties publication-title: Journal of Functional Foods – volume: 47 start-page: 550 year: 1999 end-page: 553 ident: b0110 article-title: Inhibitory effect of publication-title: Journal of Agricultural and Food Chemistry – volume: 56 start-page: 25 year: 2016 end-page: 35 ident: b0170 article-title: Phenolic compounds of cereals and their antioxidant capacity publication-title: Critical Reviews in Food Science and Nutrition – volume: 436 start-page: 71 year: 1998 end-page: 75 ident: b0040 article-title: Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver publication-title: FEBS Letters – volume: 63 start-page: 3489 year: 2015 end-page: 3500 ident: b0060 article-title: Total phenolic contents, antioxidant activities, and lipid fractions from berry pomaces obtained by solid-state fermentation of two Sambucus species with publication-title: Journal of Agricultural and Food Chemistry – volume: 18 start-page: 1022 year: 2015 end-page: 1038 ident: b0010 article-title: Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage publication-title: Journal of Functional Foods – volume: 64 start-page: 7285 year: 2016 end-page: 7290 ident: b0155 article-title: Isolation and characterization of the 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging reaction products of arbutin publication-title: Journal of Agricultural and Food Chemistry – volume: 22 start-page: 376 year: 2016 end-page: 388 ident: b0050 article-title: Determination of guava ( publication-title: Journal of Functional Foods – volume: 53 start-page: 60 year: 2016 end-page: 74 ident: b0045 article-title: Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review publication-title: Trends in Food Science & Technology – volume: 94 start-page: 206 year: 2016 end-page: 215 ident: b0180 article-title: Improving bioactivities of polyphenol extracts from publication-title: Industrial Crops and Products – volume: 409 start-page: 12 year: 1997 end-page: 16 ident: b0095 article-title: Bioavailability of rutin and quercetin in rats publication-title: FEBS Letters – volume: 214 start-page: 259 year: 2017 end-page: 268 ident: b0160 article-title: Comparison of publication-title: Food Chemistry – volume: 18 start-page: 757 year: 2015 end-page: 781 ident: b0130 article-title: Measurement of antioxidant activity publication-title: Journal of Functional Foods – volume: 32 start-page: 185 year: 2017 end-page: 194 ident: b0015 article-title: Improving free, conjugated, and bound phenolic fractions in fermented oats ( publication-title: Journal of Functional Foods – volume: 100 start-page: 1511 year: 2007 end-page: 1516 ident: b0075 article-title: Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity publication-title: Food Chemistry – volume: 113 start-page: 1226 year: 2009 end-page: 1233 ident: b0145 article-title: Comparative antioxidant capacities of phenolic compounds measured by various tests publication-title: Food Chemistry – volume: 32 start-page: 149 year: 2017 end-page: 159 ident: b0175 article-title: Characterization of soluble and insoluble-bound polyphenols from publication-title: Journal of Functional Foods – volume: 24 start-page: 433 year: 2016 end-page: 440 ident: b0055 article-title: Statistical optimization of lovastatin and confirmation of nonexistence of citrinin under solid-state fermentation by publication-title: Journal of Food and Drug Analysis – volume: 24 start-page: 1043 year: 2011 end-page: 1048 ident: b0080 article-title: Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods publication-title: Journal of Food Composition and Analysis – volume: 106 start-page: 247 year: 2008 end-page: 252 ident: b0020 article-title: -Glucosidase and publication-title: Food Chemistry – volume: 121 start-page: 140 year: 2010 end-page: 147 ident: b0115 article-title: Antioxidant properties of commercial wild rice andanalysis of soluble and insoluble phenolic acids publication-title: Food Chemistry – volume: 299 start-page: 152 year: 1999 end-page: 178 ident: b0140 article-title: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteu reagent publication-title: Methods in Enzymology – volume: 76 start-page: 813 year: 2015 end-page: 820 ident: b0165 article-title: Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity publication-title: Food Research International – volume: 38 start-page: 716 year: 2017 end-page: 722 ident: b0195 article-title: Effect of hydrothermal processing on changes of insoluble-bound phenolics of lentils publication-title: Journal of Functional Foods – volume: 221 start-page: 636 year: 2017 end-page: 643 ident: b0090 article-title: Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with publication-title: Food Chemistry – volume: 113 start-page: 1226 year: 2009 end-page: 1233 ident: b0150 article-title: Comparative antioxidant capacities of phenolic compounds measured by various tests publication-title: Food Chemistry – volume: 18 start-page: 757 year: 2015 ident: 10.1016/j.foodchem.2018.05.035_b0130 article-title: Measurement of antioxidant activity publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2015.01.047 – volume: 44 start-page: 128 issue: 1 year: 2016 ident: 10.1016/j.foodchem.2018.05.035_b0125 article-title: Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes publication-title: Artificial Cells, Nanomedicine, and Biotechnology doi: 10.3109/21691401.2014.926456 – volume: 38 start-page: 716 year: 2017 ident: 10.1016/j.foodchem.2018.05.035_b0195 article-title: Effect of hydrothermal processing on changes of insoluble-bound phenolics of lentils publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2016.12.010 – volume: 113 start-page: 1226 issue: 4 year: 2009 ident: 10.1016/j.foodchem.2018.05.035_b0145 article-title: Comparative antioxidant capacities of phenolic compounds measured by various tests publication-title: Food Chemistry doi: 10.1016/j.foodchem.2008.08.013 – volume: 94 start-page: 206 year: 2016 ident: 10.1016/j.foodchem.2018.05.035_b0180 article-title: Improving bioactivities of polyphenol extracts from Psidium guajava L. leaves through co-fermentation of Monascus anka GIM 3.592 and Saccharomyces cerevisiae GIM 2.139 publication-title: Industrial Crops and Products doi: 10.1016/j.indcrop.2016.08.043 – volume: 24 start-page: 433 issue: 2 year: 2016 ident: 10.1016/j.foodchem.2018.05.035_b0055 article-title: Statistical optimization of lovastatin and confirmation of nonexistence of citrinin under solid-state fermentation by Monascus sanguineus publication-title: Journal of Food and Drug Analysis doi: 10.1016/j.jfda.2015.11.008 – volume: 221 start-page: 636 year: 2017 ident: 10.1016/j.foodchem.2018.05.035_b0090 article-title: Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase publication-title: Food Chemistry doi: 10.1016/j.foodchem.2016.11.126 – volume: 106 start-page: 247 issue: 1 year: 2008 ident: 10.1016/j.foodchem.2018.05.035_b0020 article-title: α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.) publication-title: Food Chemistry doi: 10.1016/j.foodchem.2007.05.077 – volume: 214 start-page: 259 year: 2017 ident: 10.1016/j.foodchem.2018.05.035_b0160 article-title: Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera publication-title: Food Chemistry doi: 10.1016/j.foodchem.2016.06.100 – volume: 32 start-page: 375 year: 2017 ident: 10.1016/j.foodchem.2018.05.035_b0205 article-title: Dynamic changes in antioxidant activity and biochemical composition of tartary buckwheat leaves during Aspergillus niger fermentation publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2017.03.022 – volume: 141 start-page: 266 issue: 1 year: 2013 ident: 10.1016/j.foodchem.2018.05.035_b0030 article-title: Enzymatic de-glycosylation of rutin improves its antioxidant and antiproliferative activities publication-title: Food Chemistry doi: 10.1016/j.foodchem.2013.02.127 – volume: 81 start-page: 485 issue: 4 year: 2003 ident: 10.1016/j.foodchem.2018.05.035_b0105 article-title: Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity publication-title: Food Chemistry doi: 10.1016/S0308-8146(02)00476-4 – volume: 101 start-page: 4676 issue: 12 year: 2010 ident: 10.1016/j.foodchem.2018.05.035_b0120 article-title: Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America publication-title: Bioresource Technology doi: 10.1016/j.biortech.2010.01.093 – volume: 10 start-page: 282 issue: 3 year: 2016 ident: 10.1016/j.foodchem.2018.05.035_b0190 article-title: Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice publication-title: Nutrition Research and Practice doi: 10.4162/nrp.2016.10.3.282 – volume: 24 start-page: 1043 issue: 7 year: 2011 ident: 10.1016/j.foodchem.2018.05.035_b0080 article-title: Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods publication-title: Journal of Food Composition and Analysis doi: 10.1016/j.jfca.2011.01.008 – volume: 212 start-page: 395 year: 2016 ident: 10.1016/j.foodchem.2018.05.035_b0035 article-title: Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities publication-title: Food Chemistry doi: 10.1016/j.foodchem.2016.05.047 – volume: 113 start-page: 1226 issue: 4 year: 2009 ident: 10.1016/j.foodchem.2018.05.035_b0150 article-title: Comparative antioxidant capacities of phenolic compounds measured by various tests publication-title: Food Chemistry doi: 10.1016/j.foodchem.2008.08.013 – volume: 58 start-page: 7580 year: 2010 ident: 10.1016/j.foodchem.2018.05.035_b0200 article-title: Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf1007665 – volume: 100 start-page: 1511 issue: 4 year: 2007 ident: 10.1016/j.foodchem.2018.05.035_b0075 article-title: Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity publication-title: Food Chemistry doi: 10.1016/j.foodchem.2005.11.043 – volume: 56 start-page: 25 issue: 1 year: 2016 ident: 10.1016/j.foodchem.2018.05.035_b0170 article-title: Phenolic compounds of cereals and their antioxidant capacity publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2012.708909 – volume: 32 start-page: 149 year: 2017 ident: 10.1016/j.foodchem.2018.05.035_b0175 article-title: Characterization of soluble and insoluble-bound polyphenols from Psidium guajava L. leaves co-fermented with Monascus anka and Bacillus sp. and their bio-activities publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2017.02.029 – volume: 47 start-page: 550 issue: 2 year: 1999 ident: 10.1016/j.foodchem.2018.05.035_b0110 article-title: Inhibitory effect of α-glucosidase inhibitors varies according to its origin publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf980788t – volume: 22 start-page: 376 year: 2016 ident: 10.1016/j.foodchem.2018.05.035_b0050 article-title: Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2016.01.040 – volume: 32 start-page: 185 year: 2017 ident: 10.1016/j.foodchem.2018.05.035_b0015 article-title: Improving free, conjugated, and bound phenolic fractions in fermented oats (Avena sativa L.) with Monascus anka and their antioxidant activity publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2017.02.028 – volume: 35 start-page: 236 year: 2017 ident: 10.1016/j.foodchem.2018.05.035_b0085 article-title: Bioactive constituents from Vitex negundo var. heterophylla and their antioxidant and α-glucosidase inhibitory activities publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2017.05.047 – volume: 13 start-page: 269 issue: 4 year: 2015 ident: 10.1016/j.foodchem.2018.05.035_b0135 article-title: Comparative and quantitative analysis of antioxidant and scavenging potential of Indigofera tinctoria Linn. extracts publication-title: Journal of Integrative Medicine doi: 10.1016/S2095-4964(15)60183-2 – volume: 299 start-page: 152 year: 1999 ident: 10.1016/j.foodchem.2018.05.035_b0140 article-title: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteu reagent publication-title: Methods in Enzymology doi: 10.1016/S0076-6879(99)99017-1 – volume: 60 start-page: 507 issue: 1 year: 2011 ident: 10.1016/j.foodchem.2018.05.035_b0025 article-title: Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L.) publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf204163a – volume: 209 start-page: 27 year: 2016 ident: 10.1016/j.foodchem.2018.05.035_b0065 article-title: Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products publication-title: Food Chemistry doi: 10.1016/j.foodchem.2016.04.016 – volume: 53 start-page: 60 year: 2016 ident: 10.1016/j.foodchem.2018.05.035_b0045 article-title: Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2016.04.007 – volume: 5 start-page: 930 issue: 2 year: 2013 ident: 10.1016/j.foodchem.2018.05.035_b0005 article-title: Antioxidant, anti-inflammatory and DNA scission inhibitory activities of phenolic compounds in selected onion and potato varieties publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2013.02.005 – volume: 64 start-page: 7285 issue: 38 year: 2016 ident: 10.1016/j.foodchem.2018.05.035_b0155 article-title: Isolation and characterization of the 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging reaction products of arbutin publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.6b02847 – volume: 409 start-page: 12 issue: 1 year: 1997 ident: 10.1016/j.foodchem.2018.05.035_b0095 article-title: Bioavailability of rutin and quercetin in rats publication-title: FEBS Letters doi: 10.1016/S0014-5793(97)00467-5 – volume: 24 start-page: 59 issue: 2–3 year: 2004 ident: 10.1016/j.foodchem.2018.05.035_b0100 article-title: Ferulic acid: An antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications publication-title: Critical Reviews in Biotechnology doi: 10.1080/07388550490491467 – volume: 18 start-page: 1022 year: 2015 ident: 10.1016/j.foodchem.2018.05.035_b0010 article-title: Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2015.05.018 – volume: 63 start-page: 3489 issue: 13 year: 2015 ident: 10.1016/j.foodchem.2018.05.035_b0060 article-title: Total phenolic contents, antioxidant activities, and lipid fractions from berry pomaces obtained by solid-state fermentation of two Sambucus species with Aspergillus niger publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.5b00520 – volume: 24 start-page: 355 issue: 4 year: 2017 ident: 10.1016/j.foodchem.2018.05.035_b0070 article-title: The antidiabetic potential of quercetin: Underlying mechanisms publication-title: Current Medicinal Chemistry doi: 10.2174/0929867323666160909153707 – volume: 436 start-page: 71 issue: 1 year: 1998 ident: 10.1016/j.foodchem.2018.05.035_b0040 article-title: Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity publication-title: FEBS Letters doi: 10.1016/S0014-5793(98)01101-6 – volume: 121 start-page: 140 issue: 1 year: 2010 ident: 10.1016/j.foodchem.2018.05.035_b0115 article-title: Antioxidant properties of commercial wild rice andanalysis of soluble and insoluble phenolic acids publication-title: Food Chemistry doi: 10.1016/j.foodchem.2009.12.021 – volume: 76 start-page: 813 year: 2015 ident: 10.1016/j.foodchem.2018.05.035_b0165 article-title: Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity publication-title: Food Research International doi: 10.1016/j.foodres.2015.07.032 |
| SSID | ssj0002018 |
| Score | 2.5832608 |
| Snippet | [Display omitted]
•Fermentation and enzymes hydrolysis (FE) increased total phenolic content of GLT.•Soluble and insoluble-bound forms of phenolics were... There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 189 |
| SubjectTerms | alpha-glucosidase Antioxidant activity Antioxidants - analysis Antioxidants - metabolism Antioxidants - pharmacology Enzymatic hydrolysis Fermentation Flavonoids - analysis Flavonoids - metabolism Food Handling - methods Glycoside Hydrolase Inhibitors - metabolism Glycoside Hydrolase Inhibitors - pharmacology Guava leaves tea guavas high-value products Hydrolysis kaempferol leaves Monascus purpureus phenolic compounds Phenolics compositions Phenols - analysis Phenols - metabolism Plant Leaves - chemistry Plant Leaves - metabolism Psidium - chemistry Psidium - metabolism quercetin Quercetin - analysis Quercetin - metabolism Saccharomyces cerevisiae Solubility tea Teas, Herbal - analysis α-Glucosidase inhibition activity |
| Title | Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents, flavonoid aglycones contents and bio-activities of guava leaves tea |
| URI | https://dx.doi.org/10.1016/j.foodchem.2018.05.035 https://www.ncbi.nlm.nih.gov/pubmed/29853365 https://www.proquest.com/docview/2049554817 https://www.proquest.com/docview/2237529648 |
| Volume | 264 |
| WOSCitedRecordID | wos000433335900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-7072 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002018 issn: 0308-8146 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6u0hwQbC8ymNlJMSlBPK2fVyVrQChFYdF6i1KHHvJKptUbVO1_BOO_FPGdpxmgbJw4JJUtpNY-r5Mx87MNwi9SJnHchJGDk1z6SjJcyfLQuaApxzFMvJFTrguNkFOT-l0yj4NBt9sLsyqJFVF12s2-69QQxuArVJn_wHu7qbQAL8BdDgC7HD8K-AnYGvbhKLKZq3NSrEeierr5lKMvmzyeW2ESFSIYdHtKigXdFmr5Eg1QZVRpeK_lG6wDmg3ERfjkSzTVV3VRT5Kz8sNV1r_Xb9-XlbUjkqXWGmxVuWNnjfpKlUFKpTELbCq7xFPlKwyt2Xntvv7xgZ9bLqIoUZv6oJ16sY0uiGtemFFhW3r72Z4Wlq2_TAjjAWmJHCIS66YaD8Oe0bWM0WHfjH-Zh_i4rWEiat5q8A9qnVZjSJKD_zZpUbfZ-CtBKZYxU-y27ZrDx34JGJgMA-O359MP3R_8-rmvZTz3z9WaU23N9rl-Oxa2GgH5-wOut2uTPCxYdRdNBDVIbo5tsgcouHbQizxS9xKyZb41FZygHE2wX1xD33vMxADI3DLQGwYiLcMxMBA3DEQAwOxZiBuGYgtA7Fl2Cvc8Q93_Ot69dOu8g_XEmv-YcM_DPy7jz5PTs7G75y2EojDIzdcOrH6up5Ln0ZcxDIIJJy4cGUYe17GaCyyzGduHgUsA58144zxXBLO89RL05h5wQO0X8F8HiFMs4BmbsAiVzJYrNOMCS-SjMdMBpwTOUSRhSnhrUy-qtZSJjYe8iKxSCcK6cSNEkB6iN50182MUMy1VzDLgqR1d40bmwChr732uaVNAixQH_nSStTNAgaFDJYI1CN_GOMHRMdb0CF6aDjXzdnS9fHOnifo1vbNfYr2l_NGPEM3-GpZLOZHaI9M6VH7svwAEYLxIw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fermentation+and+complex+enzyme+hydrolysis+for+improving+the+total+soluble+phenolic+contents%2C+flavonoid+aglycones+contents+and+bio-activities+of+guava+leaves+tea&rft.jtitle=Food+chemistry&rft.au=Wang%2C+Lu&rft.au=Luo%2C+You&rft.au=Wu%2C+Yanan&rft.au=Liu%2C+Yan&rft.date=2018-10-30&rft.eissn=1873-7072&rft.volume=264&rft.spage=189&rft_id=info:doi/10.1016%2Fj.foodchem.2018.05.035&rft_id=info%3Apmid%2F29853365&rft.externalDocID=29853365 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon |