Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents, flavonoid aglycones contents and bio-activities of guava leaves tea

[Display omitted] •Fermentation and enzymes hydrolysis (FE) increased total phenolic content of GLT.•Soluble and insoluble-bound forms of phenolics were analyzed by HPLC.•FE processing gave the greatest yields of quercetin and kaempferol from GLT.•FE processing upgraded the antioxidant and α-glucosi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry Jg. 264; S. 189 - 198
Hauptverfasser: Wang, Lu, Luo, You, Wu, Yanan, Liu, Yan, Wu, Zhenqiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 30.10.2018
Schlagworte:
ISSN:0308-8146, 1873-7072, 1873-7072
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •Fermentation and enzymes hydrolysis (FE) increased total phenolic content of GLT.•Soluble and insoluble-bound forms of phenolics were analyzed by HPLC.•FE processing gave the greatest yields of quercetin and kaempferol from GLT.•FE processing upgraded the antioxidant and α-glucosidase inhibition activity of GLT. There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits.
AbstractList There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits.There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits.
There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits.
[Display omitted] •Fermentation and enzymes hydrolysis (FE) increased total phenolic content of GLT.•Soluble and insoluble-bound forms of phenolics were analyzed by HPLC.•FE processing gave the greatest yields of quercetin and kaempferol from GLT.•FE processing upgraded the antioxidant and α-glucosidase inhibition activity of GLT. There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits.
Author Liu, Yan
Wu, Zhenqiang
Luo, You
Wu, Yanan
Wang, Lu
Author_xml – sequence: 1
  givenname: Lu
  surname: Wang
  fullname: Wang, Lu
  organization: School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
– sequence: 2
  givenname: You
  surname: Luo
  fullname: Luo, You
  organization: School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
– sequence: 3
  givenname: Yanan
  surname: Wu
  fullname: Wu, Yanan
  organization: School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
– sequence: 4
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
  organization: School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
– sequence: 5
  givenname: Zhenqiang
  surname: Wu
  fullname: Wu, Zhenqiang
  email: btzhqwu@scut.edu.cn
  organization: School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29853365$$D View this record in MEDLINE/PubMed
BookMark eNqFkc-OFCEQxolZ486uvsKGowe7habpP4kHzcZVk0286JnQUMwwoWEEpuP4Nr6pjLPjwcucKlX1fV8FfjfoygcPCN1RUlNCu7fb2oSg1QbmuiF0qAmvCePP0IoOPat60jdXaEUYGaqBtt01uklpSwg5al-g62YcOGMdX6HfDxBn8FlmGzyWXmMV5p2Dnxj8r8MMeHPQMbhDsgmbELGddzEs1q9x3gDOIUuHU3D7yQHebcAHZ1WJ8LlkpjfYOLkEH6zGcu0OZQ7p3_bvtcmGSqpsF5tt2QWD13u5SOxALqXPIF-i50a6BK-e6i36_vDx2_3n6vHrpy_3Hx4rxUmbq46RptemGbiCzjBmSlFATNtROo1DB9PUjERzNk6koZMaR6VNr5SWVMpupOwWvT7llgf-2EPKYrZJgXPSQ9gn0TSs583YtcNlKWlHztuB9kV69yTdTzNosYt2lvEgzgSK4N1JoGJIKYIRyp5o5CitE5SII3CxFWfg4ghREC4K8GLv_rOfL1w0vj8ZofzpYiGKpCx4BdpGUFnoYC9F_AF_lc4V
CitedBy_id crossref_primary_10_1016_j_foodchem_2022_132122
crossref_primary_10_1016_j_fbio_2022_102287
crossref_primary_10_1016_j_fbio_2021_101351
crossref_primary_10_1016_j_jff_2024_106016
crossref_primary_10_3390_molecules30040961
crossref_primary_10_1080_10408398_2022_2129582
crossref_primary_10_3390_fermentation11060342
crossref_primary_10_1016_j_seppur_2020_117014
crossref_primary_10_3389_fnut_2022_865991
crossref_primary_10_1016_j_procbio_2019_04_003
crossref_primary_10_1016_j_tifs_2024_104652
crossref_primary_10_36899_JAPS_2024_4_0771
crossref_primary_10_3390_foods12173315
crossref_primary_10_3390_molecules28217447
crossref_primary_10_1016_j_fufo_2025_100764
crossref_primary_10_1111_1750_3841_70406
crossref_primary_10_1016_j_fbio_2025_106413
crossref_primary_10_1007_s11947_023_03249_0
crossref_primary_10_1080_10408398_2023_2227261
crossref_primary_10_1016_j_indcrop_2020_112287
crossref_primary_10_1016_j_chmed_2021_09_003
crossref_primary_10_1016_j_fbio_2023_102550
crossref_primary_10_1016_j_fbio_2023_103326
crossref_primary_10_1016_j_lwt_2022_114046
crossref_primary_10_3390_foods14152573
crossref_primary_10_1016_j_lwt_2024_115931
crossref_primary_10_3390_fermentation9040377
crossref_primary_10_1016_j_fbio_2023_103441
crossref_primary_10_1111_ijfs_14819
crossref_primary_10_3390_foods14152731
crossref_primary_10_1016_j_foodcont_2024_110361
crossref_primary_10_1016_j_foodchem_2023_136770
crossref_primary_10_3390_foods13071070
crossref_primary_10_3389_fbioe_2022_995238
crossref_primary_10_1007_s10068_019_00634_4
crossref_primary_10_1016_j_microc_2024_110676
crossref_primary_10_3390_foods13020206
crossref_primary_10_1016_j_foodres_2022_112180
crossref_primary_10_1016_j_fbio_2022_101997
crossref_primary_10_1016_j_foodchem_2025_143264
crossref_primary_10_1016_j_foodres_2025_115752
crossref_primary_10_1007_s00394_021_02679_w
crossref_primary_10_1016_j_indcrop_2019_04_003
crossref_primary_10_1016_j_lwt_2020_110087
crossref_primary_10_1016_j_jarmap_2021_100336
crossref_primary_10_1016_j_foodcont_2022_109002
crossref_primary_10_1016_j_lwt_2021_112234
crossref_primary_10_3390_molecules26102983
crossref_primary_10_3390_foods14050878
crossref_primary_10_1016_j_ijbiomac_2023_127915
crossref_primary_10_1016_j_heliyon_2024_e28937
crossref_primary_10_1002_jsf2_70007
crossref_primary_10_3390_foods12183344
crossref_primary_10_1016_j_lwt_2023_115706
crossref_primary_10_3390_foods12091872
crossref_primary_10_1016_j_indcrop_2023_117559
crossref_primary_10_1186_s40538_024_00674_x
crossref_primary_10_1186_s43014_021_00054_0
crossref_primary_10_1002_cjoc_202000640
crossref_primary_10_3390_antiox10122004
crossref_primary_10_1016_j_foodchem_2024_141733
crossref_primary_10_1016_j_indcrop_2023_116422
crossref_primary_10_1016_j_jff_2019_103549
crossref_primary_10_1111_1750_3841_16217
crossref_primary_10_3390_foods10081939
crossref_primary_10_1016_j_ijfoodmicro_2024_110974
crossref_primary_10_3390_beverages9010014
crossref_primary_10_1016_j_fbio_2024_103842
crossref_primary_10_1016_j_porgcoat_2023_107772
crossref_primary_10_3390_foods9111656
crossref_primary_10_1016_j_foodres_2020_109999
crossref_primary_10_3389_fnut_2022_1052730
crossref_primary_10_1016_j_psj_2023_102569
crossref_primary_10_1016_j_fbio_2024_105781
crossref_primary_10_1016_j_lwt_2021_111932
crossref_primary_10_1016_j_foodchem_2024_139521
crossref_primary_10_1016_j_lwt_2023_114925
crossref_primary_10_1016_j_jbiosc_2020_06_008
crossref_primary_10_1016_j_seppur_2021_118339
crossref_primary_10_3390_horticulturae7100386
crossref_primary_10_1016_j_indcrop_2022_115424
crossref_primary_10_1080_07388551_2024_2423152
crossref_primary_10_1016_j_foodchem_2021_130855
crossref_primary_10_1016_j_foodchem_2022_135172
crossref_primary_10_1111_jfpp_16989
crossref_primary_10_3390_antiox8080274
crossref_primary_10_1007_s11694_025_03171_3
crossref_primary_10_3390_molecules27207016
Cites_doi 10.1016/j.jff.2015.01.047
10.3109/21691401.2014.926456
10.1016/j.jff.2016.12.010
10.1016/j.foodchem.2008.08.013
10.1016/j.indcrop.2016.08.043
10.1016/j.jfda.2015.11.008
10.1016/j.foodchem.2016.11.126
10.1016/j.foodchem.2007.05.077
10.1016/j.foodchem.2016.06.100
10.1016/j.jff.2017.03.022
10.1016/j.foodchem.2013.02.127
10.1016/S0308-8146(02)00476-4
10.1016/j.biortech.2010.01.093
10.4162/nrp.2016.10.3.282
10.1016/j.jfca.2011.01.008
10.1016/j.foodchem.2016.05.047
10.1021/jf1007665
10.1016/j.foodchem.2005.11.043
10.1080/10408398.2012.708909
10.1016/j.jff.2017.02.029
10.1021/jf980788t
10.1016/j.jff.2016.01.040
10.1016/j.jff.2017.02.028
10.1016/j.jff.2017.05.047
10.1016/S2095-4964(15)60183-2
10.1016/S0076-6879(99)99017-1
10.1021/jf204163a
10.1016/j.foodchem.2016.04.016
10.1016/j.tifs.2016.04.007
10.1016/j.jff.2013.02.005
10.1021/acs.jafc.6b02847
10.1016/S0014-5793(97)00467-5
10.1080/07388550490491467
10.1016/j.jff.2015.05.018
10.1021/acs.jafc.5b00520
10.2174/0929867323666160909153707
10.1016/S0014-5793(98)01101-6
10.1016/j.foodchem.2009.12.021
10.1016/j.foodres.2015.07.032
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.foodchem.2018.05.035
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
EndPage 198
ExternalDocumentID 29853365
10_1016_j_foodchem_2018_05_035
S0308814618308264
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
SCB
SEW
VH1
WUQ
Y6R
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c504t-63027df285ce6f33fce6ce0f4611b986ebb290d539b021bc99cdf7ccda1aa6913
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433335900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0308-8146
1873-7072
IngestDate Thu Oct 02 07:00:01 EDT 2025
Sat Sep 27 18:41:31 EDT 2025
Wed Feb 19 02:43:58 EST 2025
Tue Nov 18 21:49:27 EST 2025
Sat Nov 29 06:45:24 EST 2025
Fri Feb 23 02:23:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords p-Hydroxybenzoic acid (Pubchem CID: 315)
F
Enzymatic hydrolysis
SPUF
SPF
DM
Chlorogenic acid (Pubchem CID: 1794427)
IBPUF
Vc
GLT
UF
Guava leaves tea
Quercitrin (Pubchem CID: 5280459)
α-Glucosidase inhibition activity
Syringic acid (Pubchem CID: 10742)
Rutin (Pubchem CID: 5280805)
Isoquercitrin (Pubchem CID: 5280804)
Gallic acid (Pubchem CID: 370)
DPPH
Caffeic acid (Pubchem CID: 689043)
Antioxidant activity
SSF
Quercetin-3-O-α-l-arabinoside (Pubchem CID: 5481224)
Coumaric acid (Pubchem CID: 637542)
Fermentation
IBPF
Avicularin (Pubchem CID: 5490064)
Phenolics compositions
IBPFE
Quercetin (Pubchem CID: 5280343)
Quercetin-3-O-β-d-xylopyranoside (Pubchem CID: 5320861)
SPFE
Ferulic acid (Pubchem CID: 445858)
Kaempferol (Pubchem CID: 5280863)
ABTS
FE
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c504t-63027df285ce6f33fce6ce0f4611b986ebb290d539b021bc99cdf7ccda1aa6913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29853365
PQID 2049554817
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2237529648
proquest_miscellaneous_2049554817
pubmed_primary_29853365
crossref_citationtrail_10_1016_j_foodchem_2018_05_035
crossref_primary_10_1016_j_foodchem_2018_05_035
elsevier_sciencedirect_doi_10_1016_j_foodchem_2018_05_035
PublicationCentury 2000
PublicationDate 2018-10-30
PublicationDateYYYYMMDD 2018-10-30
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-30
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References de Araújo, Franco, Alberto, Sobreiro, Conrado, Priolli, de Oliveira Carvalho (b0030) 2013; 141
Day, DuPont, Ridley, Rhodes, Rhodes, Morgan, Williamson (b0040) 1998; 436
Dikshit, Tallapragada (b0055) 2016; 24
Oki, Matsui, Osajima (b0110) 1999; 47
Rezaei-Sadabady, Eidi, Zarghami, Barzegar (b0125) 2016; 44
Wang, Bei, Wu, Liao, Wu (b0175) 2017; 32
Ferreira, Baptista, Vilas-Boas, Barros (b0075) 2007; 100
Singleton, Orthofer, Lamuela-Raventos (b0140) 1999; 299
Ti, Zhang, Li, Wei, Zhang (b0165) 2015; 76
Shahidi, Zhong (b0130) 2015; 18
Van Hung (b0170) 2016; 56
Cai, Wang, Wu, Zhu, Zhou, Ji, Cheng (b0025) 2011; 60
Yeo, Shahidi (b0195) 2017; 38
Singh, Sharma, Sharma (b0135) 2015; 13
Tabart, Kevers, Pincemail, Defraigne, Dommes (b0145) 2009; 113
Bei, Liu, Wang, Chen, Wu (b0015) 2017; 32
Qiu, Liu, Beta (b0115) 2010; 121
Hu, Li, Jia, Liu, Wang, Li, Hua (b0085) 2017; 35
Wang, Hwang, Lee, Lim (b0190) 2016; 10
Ranilla, Kwon, Apostolidis, Shetty (b0120) 2010; 101
Wang, Wei, Tian, Shi, Wu (b0180) 2016; 94
Mathew, Abraham (b0100) 2004; 24
Díaz-de-Cerio, Gómez-Caravaca, Verardo, Fernández-Gutiérrez, Segura-Carretero (b0050) 2016; 22
Jessica, Claire, Joël, Jeanolivier, Jacques (b0150) 2009; 113
Liu, Zhang, Deng, Zhang, Xiao, Huang, Zhang (b0090) 2017; 221
Dulf, Vodnar, Socaciu (b0065) 2016; 209
Zhang, Zhang, Zhang, Liu (b0200) 2010; 58
Alshikh, de Camargo, Shahidi (b0010) 2015; 18
Floegel, Kim, Chung, Koo, Chun (b0080) 2011; 24
de Camargo, Regitano-d’Arce, Biasoto, Shahidi (b0035) 2016; 212
Tan, Chang, Zhang (b0160) 2017; 214
Nuutila, Puupponen-Pimiä, Aarni, Oksman-Caldentey (b0105) 2003; 81
Eid, Haddad (b0070) 2017; 24
Dey, Chakraborty, Jain, Sharma, Kuhad (b0045) 2016; 53
Manach, Morand, Demigné, Texier, Régérat, Rémésy (b0095) 1997; 409
Bhandari, Jong-Anurakkun, Hong, Kawabata (b0020) 2008; 106
Zhang, Chen, Li, Yi, Ye, Liu, Wang (b0205) 2017; 32
Albishi, John, Al-Khalifa, Shahidi (b0005) 2013; 5
Dulf, Vodnar, Dulf, Tosa (b0060) 2015; 63
Tai, Ohno, Ito (b0155) 2016; 64
Cai (10.1016/j.foodchem.2018.05.035_b0025) 2011; 60
Liu (10.1016/j.foodchem.2018.05.035_b0090) 2017; 221
Dey (10.1016/j.foodchem.2018.05.035_b0045) 2016; 53
Dulf (10.1016/j.foodchem.2018.05.035_b0065) 2016; 209
Oki (10.1016/j.foodchem.2018.05.035_b0110) 1999; 47
Manach (10.1016/j.foodchem.2018.05.035_b0095) 1997; 409
Albishi (10.1016/j.foodchem.2018.05.035_b0005) 2013; 5
Dikshit (10.1016/j.foodchem.2018.05.035_b0055) 2016; 24
de Araújo (10.1016/j.foodchem.2018.05.035_b0030) 2013; 141
Eid (10.1016/j.foodchem.2018.05.035_b0070) 2017; 24
Hu (10.1016/j.foodchem.2018.05.035_b0085) 2017; 35
Bhandari (10.1016/j.foodchem.2018.05.035_b0020) 2008; 106
Rezaei-Sadabady (10.1016/j.foodchem.2018.05.035_b0125) 2016; 44
Zhang (10.1016/j.foodchem.2018.05.035_b0200) 2010; 58
Ranilla (10.1016/j.foodchem.2018.05.035_b0120) 2010; 101
Jessica (10.1016/j.foodchem.2018.05.035_b0150) 2009; 113
Yeo (10.1016/j.foodchem.2018.05.035_b0195) 2017; 38
Dulf (10.1016/j.foodchem.2018.05.035_b0060) 2015; 63
Mathew (10.1016/j.foodchem.2018.05.035_b0100) 2004; 24
Singh (10.1016/j.foodchem.2018.05.035_b0135) 2015; 13
Zhang (10.1016/j.foodchem.2018.05.035_b0205) 2017; 32
Singleton (10.1016/j.foodchem.2018.05.035_b0140) 1999; 299
Tabart (10.1016/j.foodchem.2018.05.035_b0145) 2009; 113
Qiu (10.1016/j.foodchem.2018.05.035_b0115) 2010; 121
Tai (10.1016/j.foodchem.2018.05.035_b0155) 2016; 64
Alshikh (10.1016/j.foodchem.2018.05.035_b0010) 2015; 18
Nuutila (10.1016/j.foodchem.2018.05.035_b0105) 2003; 81
Wang (10.1016/j.foodchem.2018.05.035_b0190) 2016; 10
de Camargo (10.1016/j.foodchem.2018.05.035_b0035) 2016; 212
Day (10.1016/j.foodchem.2018.05.035_b0040) 1998; 436
Floegel (10.1016/j.foodchem.2018.05.035_b0080) 2011; 24
Díaz-de-Cerio (10.1016/j.foodchem.2018.05.035_b0050) 2016; 22
Ti (10.1016/j.foodchem.2018.05.035_b0165) 2015; 76
Van Hung (10.1016/j.foodchem.2018.05.035_b0170) 2016; 56
Bei (10.1016/j.foodchem.2018.05.035_b0015) 2017; 32
Ferreira (10.1016/j.foodchem.2018.05.035_b0075) 2007; 100
Tan (10.1016/j.foodchem.2018.05.035_b0160) 2017; 214
Shahidi (10.1016/j.foodchem.2018.05.035_b0130) 2015; 18
Wang (10.1016/j.foodchem.2018.05.035_b0175) 2017; 32
Wang (10.1016/j.foodchem.2018.05.035_b0180) 2016; 94
References_xml – volume: 212
  start-page: 395
  year: 2016
  end-page: 402
  ident: b0035
  article-title: Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities
  publication-title: Food Chemistry
– volume: 35
  start-page: 236
  year: 2017
  end-page: 244
  ident: b0085
  article-title: Bioactive constituents from
  publication-title: Journal of Functional Foods
– volume: 101
  start-page: 4676
  year: 2010
  end-page: 4689
  ident: b0120
  article-title: Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America
  publication-title: Bioresource Technology
– volume: 24
  start-page: 355
  year: 2017
  end-page: 364
  ident: b0070
  article-title: The antidiabetic potential of quercetin: Underlying mechanisms
  publication-title: Current Medicinal Chemistry
– volume: 24
  start-page: 59
  year: 2004
  end-page: 83
  ident: b0100
  article-title: Ferulic acid: An antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications
  publication-title: Critical Reviews in Biotechnology
– volume: 10
  start-page: 282
  year: 2016
  end-page: 287
  ident: b0190
  article-title: Fermentation of purple Jerusalem artichoke extract to improve the
  publication-title: Nutrition Research and Practice
– volume: 32
  start-page: 375
  year: 2017
  end-page: 381
  ident: b0205
  article-title: Dynamic changes in antioxidant activity and biochemical composition of tartary buckwheat leaves during
  publication-title: Journal of Functional Foods
– volume: 60
  start-page: 507
  year: 2011
  end-page: 513
  ident: b0025
  article-title: Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 13
  start-page: 269
  year: 2015
  end-page: 278
  ident: b0135
  article-title: Comparative and quantitative analysis of antioxidant and scavenging potential of
  publication-title: Journal of Integrative Medicine
– volume: 58
  start-page: 7580
  year: 2010
  end-page: 7587
  ident: b0200
  article-title: Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 44
  start-page: 128
  year: 2016
  end-page: 134
  ident: b0125
  article-title: Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes
  publication-title: Artificial Cells, Nanomedicine, and Biotechnology
– volume: 209
  start-page: 27
  year: 2016
  end-page: 36
  ident: b0065
  article-title: Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (
  publication-title: Food Chemistry
– volume: 141
  start-page: 266
  year: 2013
  end-page: 273
  ident: b0030
  article-title: Enzymatic de-glycosylation of rutin improves its antioxidant and antiproliferative activities
  publication-title: Food Chemistry
– volume: 81
  start-page: 485
  year: 2003
  end-page: 493
  ident: b0105
  article-title: Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity
  publication-title: Food Chemistry
– volume: 5
  start-page: 930
  year: 2013
  end-page: 939
  ident: b0005
  article-title: Antioxidant, anti-inflammatory and DNA scission inhibitory activities of phenolic compounds in selected onion and potato varieties
  publication-title: Journal of Functional Foods
– volume: 47
  start-page: 550
  year: 1999
  end-page: 553
  ident: b0110
  article-title: Inhibitory effect of
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 56
  start-page: 25
  year: 2016
  end-page: 35
  ident: b0170
  article-title: Phenolic compounds of cereals and their antioxidant capacity
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 436
  start-page: 71
  year: 1998
  end-page: 75
  ident: b0040
  article-title: Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver
  publication-title: FEBS Letters
– volume: 63
  start-page: 3489
  year: 2015
  end-page: 3500
  ident: b0060
  article-title: Total phenolic contents, antioxidant activities, and lipid fractions from berry pomaces obtained by solid-state fermentation of two Sambucus species with
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 18
  start-page: 1022
  year: 2015
  end-page: 1038
  ident: b0010
  article-title: Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage
  publication-title: Journal of Functional Foods
– volume: 64
  start-page: 7285
  year: 2016
  end-page: 7290
  ident: b0155
  article-title: Isolation and characterization of the 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging reaction products of arbutin
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 22
  start-page: 376
  year: 2016
  end-page: 388
  ident: b0050
  article-title: Determination of guava (
  publication-title: Journal of Functional Foods
– volume: 53
  start-page: 60
  year: 2016
  end-page: 74
  ident: b0045
  article-title: Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review
  publication-title: Trends in Food Science & Technology
– volume: 94
  start-page: 206
  year: 2016
  end-page: 215
  ident: b0180
  article-title: Improving bioactivities of polyphenol extracts from
  publication-title: Industrial Crops and Products
– volume: 409
  start-page: 12
  year: 1997
  end-page: 16
  ident: b0095
  article-title: Bioavailability of rutin and quercetin in rats
  publication-title: FEBS Letters
– volume: 214
  start-page: 259
  year: 2017
  end-page: 268
  ident: b0160
  article-title: Comparison of
  publication-title: Food Chemistry
– volume: 18
  start-page: 757
  year: 2015
  end-page: 781
  ident: b0130
  article-title: Measurement of antioxidant activity
  publication-title: Journal of Functional Foods
– volume: 32
  start-page: 185
  year: 2017
  end-page: 194
  ident: b0015
  article-title: Improving free, conjugated, and bound phenolic fractions in fermented oats (
  publication-title: Journal of Functional Foods
– volume: 100
  start-page: 1511
  year: 2007
  end-page: 1516
  ident: b0075
  article-title: Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity
  publication-title: Food Chemistry
– volume: 113
  start-page: 1226
  year: 2009
  end-page: 1233
  ident: b0145
  article-title: Comparative antioxidant capacities of phenolic compounds measured by various tests
  publication-title: Food Chemistry
– volume: 32
  start-page: 149
  year: 2017
  end-page: 159
  ident: b0175
  article-title: Characterization of soluble and insoluble-bound polyphenols from
  publication-title: Journal of Functional Foods
– volume: 24
  start-page: 433
  year: 2016
  end-page: 440
  ident: b0055
  article-title: Statistical optimization of lovastatin and confirmation of nonexistence of citrinin under solid-state fermentation by
  publication-title: Journal of Food and Drug Analysis
– volume: 24
  start-page: 1043
  year: 2011
  end-page: 1048
  ident: b0080
  article-title: Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods
  publication-title: Journal of Food Composition and Analysis
– volume: 106
  start-page: 247
  year: 2008
  end-page: 252
  ident: b0020
  article-title: -Glucosidase and
  publication-title: Food Chemistry
– volume: 121
  start-page: 140
  year: 2010
  end-page: 147
  ident: b0115
  article-title: Antioxidant properties of commercial wild rice andanalysis of soluble and insoluble phenolic acids
  publication-title: Food Chemistry
– volume: 299
  start-page: 152
  year: 1999
  end-page: 178
  ident: b0140
  article-title: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteu reagent
  publication-title: Methods in Enzymology
– volume: 76
  start-page: 813
  year: 2015
  end-page: 820
  ident: b0165
  article-title: Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity
  publication-title: Food Research International
– volume: 38
  start-page: 716
  year: 2017
  end-page: 722
  ident: b0195
  article-title: Effect of hydrothermal processing on changes of insoluble-bound phenolics of lentils
  publication-title: Journal of Functional Foods
– volume: 221
  start-page: 636
  year: 2017
  end-page: 643
  ident: b0090
  article-title: Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with
  publication-title: Food Chemistry
– volume: 113
  start-page: 1226
  year: 2009
  end-page: 1233
  ident: b0150
  article-title: Comparative antioxidant capacities of phenolic compounds measured by various tests
  publication-title: Food Chemistry
– volume: 18
  start-page: 757
  year: 2015
  ident: 10.1016/j.foodchem.2018.05.035_b0130
  article-title: Measurement of antioxidant activity
  publication-title: Journal of Functional Foods
  doi: 10.1016/j.jff.2015.01.047
– volume: 44
  start-page: 128
  issue: 1
  year: 2016
  ident: 10.1016/j.foodchem.2018.05.035_b0125
  article-title: Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes
  publication-title: Artificial Cells, Nanomedicine, and Biotechnology
  doi: 10.3109/21691401.2014.926456
– volume: 38
  start-page: 716
  year: 2017
  ident: 10.1016/j.foodchem.2018.05.035_b0195
  article-title: Effect of hydrothermal processing on changes of insoluble-bound phenolics of lentils
  publication-title: Journal of Functional Foods
  doi: 10.1016/j.jff.2016.12.010
– volume: 113
  start-page: 1226
  issue: 4
  year: 2009
  ident: 10.1016/j.foodchem.2018.05.035_b0145
  article-title: Comparative antioxidant capacities of phenolic compounds measured by various tests
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2008.08.013
– volume: 94
  start-page: 206
  year: 2016
  ident: 10.1016/j.foodchem.2018.05.035_b0180
  article-title: Improving bioactivities of polyphenol extracts from Psidium guajava L. leaves through co-fermentation of Monascus anka GIM 3.592 and Saccharomyces cerevisiae GIM 2.139
  publication-title: Industrial Crops and Products
  doi: 10.1016/j.indcrop.2016.08.043
– volume: 24
  start-page: 433
  issue: 2
  year: 2016
  ident: 10.1016/j.foodchem.2018.05.035_b0055
  article-title: Statistical optimization of lovastatin and confirmation of nonexistence of citrinin under solid-state fermentation by Monascus sanguineus
  publication-title: Journal of Food and Drug Analysis
  doi: 10.1016/j.jfda.2015.11.008
– volume: 221
  start-page: 636
  year: 2017
  ident: 10.1016/j.foodchem.2018.05.035_b0090
  article-title: Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.11.126
– volume: 106
  start-page: 247
  issue: 1
  year: 2008
  ident: 10.1016/j.foodchem.2018.05.035_b0020
  article-title: α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.)
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2007.05.077
– volume: 214
  start-page: 259
  year: 2017
  ident: 10.1016/j.foodchem.2018.05.035_b0160
  article-title: Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.06.100
– volume: 32
  start-page: 375
  year: 2017
  ident: 10.1016/j.foodchem.2018.05.035_b0205
  article-title: Dynamic changes in antioxidant activity and biochemical composition of tartary buckwheat leaves during Aspergillus niger fermentation
  publication-title: Journal of Functional Foods
  doi: 10.1016/j.jff.2017.03.022
– volume: 141
  start-page: 266
  issue: 1
  year: 2013
  ident: 10.1016/j.foodchem.2018.05.035_b0030
  article-title: Enzymatic de-glycosylation of rutin improves its antioxidant and antiproliferative activities
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2013.02.127
– volume: 81
  start-page: 485
  issue: 4
  year: 2003
  ident: 10.1016/j.foodchem.2018.05.035_b0105
  article-title: Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity
  publication-title: Food Chemistry
  doi: 10.1016/S0308-8146(02)00476-4
– volume: 101
  start-page: 4676
  issue: 12
  year: 2010
  ident: 10.1016/j.foodchem.2018.05.035_b0120
  article-title: Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2010.01.093
– volume: 10
  start-page: 282
  issue: 3
  year: 2016
  ident: 10.1016/j.foodchem.2018.05.035_b0190
  article-title: Fermentation of purple Jerusalem artichoke extract to improve the α-glucosidase inhibitory effect in vitro and ameliorate blood glucose in db/db mice
  publication-title: Nutrition Research and Practice
  doi: 10.4162/nrp.2016.10.3.282
– volume: 24
  start-page: 1043
  issue: 7
  year: 2011
  ident: 10.1016/j.foodchem.2018.05.035_b0080
  article-title: Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods
  publication-title: Journal of Food Composition and Analysis
  doi: 10.1016/j.jfca.2011.01.008
– volume: 212
  start-page: 395
  year: 2016
  ident: 10.1016/j.foodchem.2018.05.035_b0035
  article-title: Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.05.047
– volume: 113
  start-page: 1226
  issue: 4
  year: 2009
  ident: 10.1016/j.foodchem.2018.05.035_b0150
  article-title: Comparative antioxidant capacities of phenolic compounds measured by various tests
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2008.08.013
– volume: 58
  start-page: 7580
  year: 2010
  ident: 10.1016/j.foodchem.2018.05.035_b0200
  article-title: Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf1007665
– volume: 100
  start-page: 1511
  issue: 4
  year: 2007
  ident: 10.1016/j.foodchem.2018.05.035_b0075
  article-title: Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2005.11.043
– volume: 56
  start-page: 25
  issue: 1
  year: 2016
  ident: 10.1016/j.foodchem.2018.05.035_b0170
  article-title: Phenolic compounds of cereals and their antioxidant capacity
  publication-title: Critical Reviews in Food Science and Nutrition
  doi: 10.1080/10408398.2012.708909
– volume: 32
  start-page: 149
  year: 2017
  ident: 10.1016/j.foodchem.2018.05.035_b0175
  article-title: Characterization of soluble and insoluble-bound polyphenols from Psidium guajava L. leaves co-fermented with Monascus anka and Bacillus sp. and their bio-activities
  publication-title: Journal of Functional Foods
  doi: 10.1016/j.jff.2017.02.029
– volume: 47
  start-page: 550
  issue: 2
  year: 1999
  ident: 10.1016/j.foodchem.2018.05.035_b0110
  article-title: Inhibitory effect of α-glucosidase inhibitors varies according to its origin
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf980788t
– volume: 22
  start-page: 376
  year: 2016
  ident: 10.1016/j.foodchem.2018.05.035_b0050
  article-title: Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS
  publication-title: Journal of Functional Foods
  doi: 10.1016/j.jff.2016.01.040
– volume: 32
  start-page: 185
  year: 2017
  ident: 10.1016/j.foodchem.2018.05.035_b0015
  article-title: Improving free, conjugated, and bound phenolic fractions in fermented oats (Avena sativa L.) with Monascus anka and their antioxidant activity
  publication-title: Journal of Functional Foods
  doi: 10.1016/j.jff.2017.02.028
– volume: 35
  start-page: 236
  year: 2017
  ident: 10.1016/j.foodchem.2018.05.035_b0085
  article-title: Bioactive constituents from Vitex negundo var. heterophylla and their antioxidant and α-glucosidase inhibitory activities
  publication-title: Journal of Functional Foods
  doi: 10.1016/j.jff.2017.05.047
– volume: 13
  start-page: 269
  issue: 4
  year: 2015
  ident: 10.1016/j.foodchem.2018.05.035_b0135
  article-title: Comparative and quantitative analysis of antioxidant and scavenging potential of Indigofera tinctoria Linn. extracts
  publication-title: Journal of Integrative Medicine
  doi: 10.1016/S2095-4964(15)60183-2
– volume: 299
  start-page: 152
  year: 1999
  ident: 10.1016/j.foodchem.2018.05.035_b0140
  article-title: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteu reagent
  publication-title: Methods in Enzymology
  doi: 10.1016/S0076-6879(99)99017-1
– volume: 60
  start-page: 507
  issue: 1
  year: 2011
  ident: 10.1016/j.foodchem.2018.05.035_b0025
  article-title: Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L.)
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf204163a
– volume: 209
  start-page: 27
  year: 2016
  ident: 10.1016/j.foodchem.2018.05.035_b0065
  article-title: Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.04.016
– volume: 53
  start-page: 60
  year: 2016
  ident: 10.1016/j.foodchem.2018.05.035_b0045
  article-title: Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2016.04.007
– volume: 5
  start-page: 930
  issue: 2
  year: 2013
  ident: 10.1016/j.foodchem.2018.05.035_b0005
  article-title: Antioxidant, anti-inflammatory and DNA scission inhibitory activities of phenolic compounds in selected onion and potato varieties
  publication-title: Journal of Functional Foods
  doi: 10.1016/j.jff.2013.02.005
– volume: 64
  start-page: 7285
  issue: 38
  year: 2016
  ident: 10.1016/j.foodchem.2018.05.035_b0155
  article-title: Isolation and characterization of the 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging reaction products of arbutin
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/acs.jafc.6b02847
– volume: 409
  start-page: 12
  issue: 1
  year: 1997
  ident: 10.1016/j.foodchem.2018.05.035_b0095
  article-title: Bioavailability of rutin and quercetin in rats
  publication-title: FEBS Letters
  doi: 10.1016/S0014-5793(97)00467-5
– volume: 24
  start-page: 59
  issue: 2–3
  year: 2004
  ident: 10.1016/j.foodchem.2018.05.035_b0100
  article-title: Ferulic acid: An antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications
  publication-title: Critical Reviews in Biotechnology
  doi: 10.1080/07388550490491467
– volume: 18
  start-page: 1022
  year: 2015
  ident: 10.1016/j.foodchem.2018.05.035_b0010
  article-title: Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage
  publication-title: Journal of Functional Foods
  doi: 10.1016/j.jff.2015.05.018
– volume: 63
  start-page: 3489
  issue: 13
  year: 2015
  ident: 10.1016/j.foodchem.2018.05.035_b0060
  article-title: Total phenolic contents, antioxidant activities, and lipid fractions from berry pomaces obtained by solid-state fermentation of two Sambucus species with Aspergillus niger
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/acs.jafc.5b00520
– volume: 24
  start-page: 355
  issue: 4
  year: 2017
  ident: 10.1016/j.foodchem.2018.05.035_b0070
  article-title: The antidiabetic potential of quercetin: Underlying mechanisms
  publication-title: Current Medicinal Chemistry
  doi: 10.2174/0929867323666160909153707
– volume: 436
  start-page: 71
  issue: 1
  year: 1998
  ident: 10.1016/j.foodchem.2018.05.035_b0040
  article-title: Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity
  publication-title: FEBS Letters
  doi: 10.1016/S0014-5793(98)01101-6
– volume: 121
  start-page: 140
  issue: 1
  year: 2010
  ident: 10.1016/j.foodchem.2018.05.035_b0115
  article-title: Antioxidant properties of commercial wild rice andanalysis of soluble and insoluble phenolic acids
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2009.12.021
– volume: 76
  start-page: 813
  year: 2015
  ident: 10.1016/j.foodchem.2018.05.035_b0165
  article-title: Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2015.07.032
SSID ssj0002018
Score 2.5832608
Snippet [Display omitted] •Fermentation and enzymes hydrolysis (FE) increased total phenolic content of GLT.•Soluble and insoluble-bound forms of phenolics were...
There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 189
SubjectTerms alpha-glucosidase
Antioxidant activity
Antioxidants - analysis
Antioxidants - metabolism
Antioxidants - pharmacology
Enzymatic hydrolysis
Fermentation
Flavonoids - analysis
Flavonoids - metabolism
Food Handling - methods
Glycoside Hydrolase Inhibitors - metabolism
Glycoside Hydrolase Inhibitors - pharmacology
Guava leaves tea
guavas
high-value products
Hydrolysis
kaempferol
leaves
Monascus purpureus
phenolic compounds
Phenolics compositions
Phenols - analysis
Phenols - metabolism
Plant Leaves - chemistry
Plant Leaves - metabolism
Psidium - chemistry
Psidium - metabolism
quercetin
Quercetin - analysis
Quercetin - metabolism
Saccharomyces cerevisiae
Solubility
tea
Teas, Herbal - analysis
α-Glucosidase inhibition activity
Title Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents, flavonoid aglycones contents and bio-activities of guava leaves tea
URI https://dx.doi.org/10.1016/j.foodchem.2018.05.035
https://www.ncbi.nlm.nih.gov/pubmed/29853365
https://www.proquest.com/docview/2049554817
https://www.proquest.com/docview/2237529648
Volume 264
WOSCitedRecordID wos000433335900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-7072
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002018
  issn: 0308-8146
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6u0hwQbC8ymNlJMSlBPK2fVyVrQChFYdF6i1KHHvJKptUbVO1_BOO_FPGdpxmgbJw4JJUtpNY-r5Mx87MNwi9SJnHchJGDk1z6SjJcyfLQuaApxzFMvJFTrguNkFOT-l0yj4NBt9sLsyqJFVF12s2-69QQxuArVJn_wHu7qbQAL8BdDgC7HD8K-AnYGvbhKLKZq3NSrEeierr5lKMvmzyeW2ESFSIYdHtKigXdFmr5Eg1QZVRpeK_lG6wDmg3ERfjkSzTVV3VRT5Kz8sNV1r_Xb9-XlbUjkqXWGmxVuWNnjfpKlUFKpTELbCq7xFPlKwyt2Xntvv7xgZ9bLqIoUZv6oJ16sY0uiGtemFFhW3r72Z4Wlq2_TAjjAWmJHCIS66YaD8Oe0bWM0WHfjH-Zh_i4rWEiat5q8A9qnVZjSJKD_zZpUbfZ-CtBKZYxU-y27ZrDx34JGJgMA-O359MP3R_8-rmvZTz3z9WaU23N9rl-Oxa2GgH5-wOut2uTPCxYdRdNBDVIbo5tsgcouHbQizxS9xKyZb41FZygHE2wX1xD33vMxADI3DLQGwYiLcMxMBA3DEQAwOxZiBuGYgtA7Fl2Cvc8Q93_Ot69dOu8g_XEmv-YcM_DPy7jz5PTs7G75y2EojDIzdcOrH6up5Ln0ZcxDIIJJy4cGUYe17GaCyyzGduHgUsA58144zxXBLO89RL05h5wQO0X8F8HiFMs4BmbsAiVzJYrNOMCS-SjMdMBpwTOUSRhSnhrUy-qtZSJjYe8iKxSCcK6cSNEkB6iN50182MUMy1VzDLgqR1d40bmwChr732uaVNAixQH_nSStTNAgaFDJYI1CN_GOMHRMdb0CF6aDjXzdnS9fHOnifo1vbNfYr2l_NGPEM3-GpZLOZHaI9M6VH7svwAEYLxIw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fermentation+and+complex+enzyme+hydrolysis+for+improving+the+total+soluble+phenolic+contents%2C+flavonoid+aglycones+contents+and+bio-activities+of+guava+leaves+tea&rft.jtitle=Food+chemistry&rft.au=Wang%2C+Lu&rft.au=Luo%2C+You&rft.au=Wu%2C+Yanan&rft.au=Liu%2C+Yan&rft.date=2018-10-30&rft.eissn=1873-7072&rft.volume=264&rft.spage=189&rft_id=info:doi/10.1016%2Fj.foodchem.2018.05.035&rft_id=info%3Apmid%2F29853365&rft.externalDocID=29853365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon