ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather

Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Pattern recognition tasks such as classification, object detection, and segmentation (i.e., pixel-level classification) have remained cha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Geoscientific Model Development Ročník 14; číslo 1; s. 107 - 124
Hlavní autori: Kashinath, Karthik, Mudigonda, Mayur, Kim, Sol, Kapp-Schwoerer, Lukas, Graubner, Andre, Karaismailoglu, Ege, von Kleist, Leo, Kurth, Thorsten, Greiner, Annette, Mahesh, Ankur, Yang, Kevin, Lewis, Colby, Chen, Jiayi, Lou, Andrew, Chandran, Sathyavat, Toms, Ben, Chapman, Will, Dagon, Katherine, Shields, Christine A., O'Brien, Travis, Wehner, Michael, Collins, William
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Katlenburg-Lindau Copernicus GmbH 08.01.2021
Copernicus Publications, EGU
Copernicus Publications
Predmet:
ISSN:1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.