ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Pattern recognition tasks such as classification, object detection, and segmentation (i.e., pixel-level classification) have remained cha...
Gespeichert in:
| Veröffentlicht in: | Geoscientific Model Development Jg. 14; H. 1; S. 107 - 124 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Katlenburg-Lindau
Copernicus GmbH
08.01.2021
Copernicus Publications, EGU Copernicus Publications |
| Schlagworte: | |
| ISSN: | 1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Pattern recognition tasks such as classification, object detection, and segmentation (i.e., pixel-level classification) have remained challenging problems in the weather and climate sciences. While there exist many empirical heuristics for detecting extreme events, the disparities between the output of these different methods even for a single event are large and often difficult to reconcile. Given the success of deep learning (DL) in tackling similar problems in computer vision, we advocate a DL-based approach. DL, however, works best in the context of supervised learning – when labeled datasets are readily available. Reliable labeled training data for extreme weather and climate events is scarce. We create “ClimateNet” – an open, community-sourced human-expert-labeled curated dataset that captures tropical cyclones (TCs) and atmospheric rivers (ARs) in high-resolution climate model output from a simulation of a recent historical period. We use the curated ClimateNet dataset to train a state-of-the-art DL model for pixel-level identification – i.e., segmentation – of TCs and ARs. We then apply the trained DL model to historical and climate change scenarios simulated by the Community Atmospheric Model (CAM5.1) and show that the DL model accurately segments the data into TCs, ARs, or “the background” at a pixel level. Further, we show how the segmentation results can be used to conduct spatially and temporally precise analytics by quantifying distributions of extreme precipitation conditioned on event types (TC or AR) at regional scales. The key contribution of this work is that it paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data using a curated expert-labeled dataset – ClimateNet. ClimateNet and the DL-based segmentation method provide several unique capabilities: (i) they can be used to calculate a variety of TC and AR statistics at a fine-grained level; (ii) they can be applied to different climate scenarios and different datasets without tuning as they do not rely on threshold conditions; and (iii) the proposed DL method is suitable for rapidly analyzing large amounts of climate model output. While our study has been conducted for two important extreme weather patterns (TCs and ARs) in simulation datasets, we believe that this methodology can be applied to a much broader class of patterns and applied to observational and reanalysis data products via transfer learning. |
|---|---|
| AbstractList | Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Pattern recognition tasks such as classification, object detection, and segmentation (i.e., pixel-level classification) have remained challenging problems in the weather and climate sciences. While there exist many empirical heuristics for detecting extreme events, the disparities between the output of these different methods even for a single event are large and often difficult to reconcile. Given the success of deep learning (DL) in tackling similar problems in computer vision, we advocate a DL-based approach. DL, however, works best in the context of supervised learning - when labeled datasets are readily available. Reliable labeled training data for extreme weather and climate events is scarce. Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Pattern recognition tasks such as classification, object detection, and segmentation (i.e., pixel-level classification) have remained challenging problems in the weather and climate sciences. While there exist many empirical heuristics for detecting extreme events, the disparities between the output of these different methods even for a single event are large and often difficult to reconcile. Given the success of deep learning (DL) in tackling similar problems in computer vision, we advocate a DL-based approach. DL, however, works best in the context of supervised learning – when labeled datasets are readily available. Reliable labeled training data for extreme weather and climate events is scarce. We create “ClimateNet” – an open, community-sourced human-expert-labeled curated dataset that captures tropical cyclones (TCs) and atmospheric rivers (ARs) in high-resolution climate model output from a simulation of a recent historical period. We use the curated ClimateNet dataset to train a state-of-the-art DL model for pixel-level identification – i.e., segmentation – of TCs and ARs. We then apply the trained DL model to historical and climate change scenarios simulated by the Community Atmospheric Model (CAM5.1) and show that the DL model accurately segments the data into TCs, ARs, or “the background” at a pixel level. Further, we show how the segmentation results can be used to conduct spatially and temporally precise analytics by quantifying distributions of extreme precipitation conditioned on event types (TC or AR) at regional scales. The key contribution of this work is that it paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data using a curated expert-labeled dataset – ClimateNet. ClimateNet and the DL-based segmentation method provide several unique capabilities: (i) they can be used to calculate a variety of TC and AR statistics at a fine-grained level; (ii) they can be applied to different climate scenarios and different datasets without tuning as they do not rely on threshold conditions; and (iii) the proposed DL method is suitable for rapidly analyzing large amounts of climate model output. While our study has been conducted for two important extreme weather patterns (TCs and ARs) in simulation datasets, we believe that this methodology can be applied to a much broader class of patterns and applied to observational and reanalysis data products via transfer learning. |
| Audience | Academic |
| Author | Toms, Ben Dagon, Katherine Shields, Christine A. O'Brien, Travis Chandran, Sathyavat Mudigonda, Mayur Mahesh, Ankur Karaismailoglu, Ege Kim, Sol Chapman, Will von Kleist, Leo Collins, William Chen, Jiayi Lou, Andrew Kurth, Thorsten Kashinath, Karthik Graubner, Andre Yang, Kevin Wehner, Michael Kapp-Schwoerer, Lukas Greiner, Annette Lewis, Colby |
| Author_xml | – sequence: 1 givenname: Karthik surname: Kashinath fullname: Kashinath, Karthik – sequence: 2 givenname: Mayur surname: Mudigonda fullname: Mudigonda, Mayur – sequence: 3 givenname: Sol orcidid: 0000-0002-2641-8929 surname: Kim fullname: Kim, Sol – sequence: 4 givenname: Lukas surname: Kapp-Schwoerer fullname: Kapp-Schwoerer, Lukas – sequence: 5 givenname: Andre surname: Graubner fullname: Graubner, Andre – sequence: 6 givenname: Ege surname: Karaismailoglu fullname: Karaismailoglu, Ege – sequence: 7 givenname: Leo surname: von Kleist fullname: von Kleist, Leo – sequence: 8 givenname: Thorsten orcidid: 0000-0003-0832-6198 surname: Kurth fullname: Kurth, Thorsten – sequence: 9 givenname: Annette surname: Greiner fullname: Greiner, Annette – sequence: 10 givenname: Ankur surname: Mahesh fullname: Mahesh, Ankur – sequence: 11 givenname: Kevin surname: Yang fullname: Yang, Kevin – sequence: 12 givenname: Colby orcidid: 0000-0001-5765-0352 surname: Lewis fullname: Lewis, Colby – sequence: 13 givenname: Jiayi surname: Chen fullname: Chen, Jiayi – sequence: 14 givenname: Andrew surname: Lou fullname: Lou, Andrew – sequence: 15 givenname: Sathyavat surname: Chandran fullname: Chandran, Sathyavat – sequence: 16 givenname: Ben surname: Toms fullname: Toms, Ben – sequence: 17 givenname: Will orcidid: 0000-0002-0472-7069 surname: Chapman fullname: Chapman, Will – sequence: 18 givenname: Katherine orcidid: 0000-0002-4518-8225 surname: Dagon fullname: Dagon, Katherine – sequence: 19 givenname: Christine A. surname: Shields fullname: Shields, Christine A. – sequence: 20 givenname: Travis orcidid: 0000-0002-6643-1175 surname: O'Brien fullname: O'Brien, Travis – sequence: 21 givenname: Michael orcidid: 0000-0001-5991-0082 surname: Wehner fullname: Wehner, Michael – sequence: 22 givenname: William orcidid: 0000-0002-4463-9848 surname: Collins fullname: Collins, William |
| BackLink | https://www.osti.gov/biblio/1756205$$D View this record in Osti.gov |
| BookMark | eNp1Uk1v1DAQjVCRaAtnrhGcOKS1Y8eJuVUrPlaqQOLjbE3sSeJV1g62V6VH_jkOC4JFIFuyPfPePM3zXBRnzjssiqeUXDVU8utxbyrKK0raqiY1fVCcUylpJQVhZ3_cHxUXMe4IEbIV7XnxbTPbPSR8h-llCa7ErwuGVM3Q44ym9Au60kCCiCmnTWkQl3JGCM66sYSgJ5tQp0PAcvChRAf9vGYmO07VElDbaL3LVJjvI8bSD1kiBdxjeYeQJgyPi4cDzBGf_Dwvi8-vX33avK1u37_Zbm5uK90QnqqGCaY5ReSQt5QEpeR9LxlDLlhLGQFJNEHK-1Y0hlHoeikM7yTXjA6aXRbbY13jYaeWkNsO98qDVT8CPowKQrJ6RkVbCpSYzrQouaxR6t5w0zGiUWuQTa717FjLx2RV1KsHk_bOZSsyuxE1WUHPj6Al-C8HjEnt_CFkI6KqeSsooR2vf6NGyMrWDT4F0HsbtboRvO3qVpAVdfUPVF4G9zYL42Bz_ITw4oSQMSkbP8IhRrX9-OEU2xyxOvgYAw4qNwQp_1sWsbOiRK0TpvKEKcrzs1XrhGXe9V-8X67-j_Ed4YLT1w |
| CitedBy_id | crossref_primary_10_1029_2023EF003534 crossref_primary_10_1007_s00376_023_3001_1 crossref_primary_10_1016_j_jhydrol_2024_132586 crossref_primary_10_3389_frsc_2021_786563 crossref_primary_10_1029_2021EA002085 crossref_primary_10_1029_2023GL103979 crossref_primary_10_1029_2021GL093787 crossref_primary_10_1063_5_0267915 crossref_primary_10_1029_2023WR035088 crossref_primary_10_1126_sciadv_adl3242 crossref_primary_10_5194_hess_27_2645_2023 crossref_primary_10_1039_D2NH00377E crossref_primary_10_1029_2022JD037038 crossref_primary_10_1017_eds_2023_15 crossref_primary_10_1002_wat2_1558 crossref_primary_10_1007_s00704_021_03776_w crossref_primary_10_1029_2022GL099577 crossref_primary_10_1175_JCLI_D_21_0554_1 crossref_primary_10_1002_wea_4163 crossref_primary_10_3390_rs15143493 crossref_primary_10_1038_s41597_025_04447_5 crossref_primary_10_1017_eds_2023_1 crossref_primary_10_1007_s42514_021_00071_y crossref_primary_10_1029_2021GL096820 crossref_primary_10_1038_s41558_024_02095_y crossref_primary_10_1175_AIES_D_21_0011_1 crossref_primary_10_1175_AIES_D_22_0012_1 crossref_primary_10_1016_j_wace_2022_100525 crossref_primary_10_1007_s00376_024_3238_3 crossref_primary_10_1029_2021JD036198 crossref_primary_10_1029_2022JD037041 crossref_primary_10_1109_TAI_2024_3489535 crossref_primary_10_1029_2021JD036155 crossref_primary_10_1038_s41586_024_08238_7 crossref_primary_10_1029_2022MS003495 crossref_primary_10_1029_2020JD033746 crossref_primary_10_1017_exp_2022_3 crossref_primary_10_1007_s12145_024_01281_y |
| Cites_doi | 10.1029/2019GL083662 10.1002/2013MS000276 10.1007/978-3-030-01234-2_49 10.1038/s41598-019-46169-w 10.3390/w3020445 10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2 10.1002/2017GL075888 10.1175/JAS-D-15-0014.1 10.1038/s41586-019-1559-7 10.1038/nature14539 10.1029/2018GL078510 10.1088/1748-9326/aa9ef2 10.1109/SC.2018.00054 10.1007/978-90-481-9510-7_1 10.1175/JHM-D-14-0080.1 10.23919/ICIF.2018.8455276 10.1175/BAMS-D-16-0123.1 10.1016/j.csda.2016.02.014 10.1038/s41586-018-0673-2 10.5194/esd-9-187-2018 10.1029/2019EF001249 10.1007/978-3-319-23117-4_37 10.5194/gmd-2020-55 10.1109/CVPR.2018.00391 10.5194/gmd-10-1069-2017 10.1088/1748-9326/aabb85 10.1038/nature01092 10.1007/978-3-319-67558-9_20 10.1175/BAMS-D-18-0194.1 10.1038/s41558-018-0140-y 10.5194/gmd-2020-152 10.1029/2017GL076968 10.1109/CVPR.2017.195 10.1175/BAMS-D-11-00154.1 10.1007/s00382-006-0180-2 10.1007/s11263-007-0090-8 10.5194/gmd-10-571-2017 10.5194/gmd-11-2455-2018 10.1073/pnas.0907610106 10.1029/2018MS001351 10.1002/2015GL065435 10.1016/j.csda.2014.06.002 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2021 Copernicus GmbH 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2021 Copernicus GmbH – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | Prabhat Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| CorporateAuthor_xml | – name: Prabhat – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS OTOTI DOA |
| DOI | 10.5194/gmd-14-107-2021 |
| DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection OSTI.GOV DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Architecture Environmental Sciences |
| EISSN | 1991-9603 1991-962X |
| EndPage | 124 |
| ExternalDocumentID | oai_doaj_org_article_171a10d8d7e9492e9cbd4d830cecca95 1756205 A647827602 10_5194_gmd_14_107_2021 |
| GroupedDBID | 5VS 8R4 8R5 AAFWJ AAYXX ABDBF ACUHS ADBBV AENEX AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION ESX GROUPED_DOAJ H13 IAO IEA IEP ISR ITC KQ8 OK1 P2P Q2X RKB RNS TR2 TUS 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M LK5 M7R M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PROAC PTHSS 3V. BBORY M~E OTOTI RIG |
| ID | FETCH-LOGICAL-c504t-5363c41ee4ae4a990e994bb933e4637130a90c0e14b765d31a8b96d4894c31fc3 |
| IEDL.DBID | RKB |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608796300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1991-9603 1991-959X 1991-962X |
| IngestDate | Fri Oct 03 12:41:34 EDT 2025 Mon Apr 01 04:55:05 EDT 2024 Fri Jul 25 19:02:37 EDT 2025 Mon Oct 20 21:49:16 EDT 2025 Mon Oct 20 16:12:07 EDT 2025 Thu Oct 16 14:48:10 EDT 2025 Tue Nov 18 19:49:09 EST 2025 Sat Nov 29 05:37:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c504t-5363c41ee4ae4a990e994bb933e4637130a90c0e14b765d31a8b96d4894c31fc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-05CH11231; 1852977 National Science Foundation (NSF) USDOE Office of Science (SC), Biological and Environmental Research (BER) |
| ORCID | 0000-0002-6643-1175 0000-0002-2641-8929 0000-0002-0472-7069 0000-0002-4518-8225 0000-0001-5765-0352 0000-0002-4463-9848 0000-0003-0832-6198 0000-0001-5991-0082 0000000245188225 0000000266431175 0000000157650352 0000000159910082 0000000308326198 0000000244639848 |
| OpenAccessLink | https://doaj.org/article/171a10d8d7e9492e9cbd4d830cecca95 |
| PQID | 2476101842 |
| PQPubID | 105726 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_171a10d8d7e9492e9cbd4d830cecca95 osti_scitechconnect_1756205 proquest_journals_2476101842 gale_infotracmisc_A647827602 gale_infotracacademiconefile_A647827602 gale_incontextgauss_ISR_A647827602 crossref_citationtrail_10_5194_gmd_14_107_2021 crossref_primary_10_5194_gmd_14_107_2021 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-08 |
| PublicationDateYYYYMMDD | 2021-01-08 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau – name: Germany |
| PublicationTitle | Geoscientific Model Development |
| PublicationYear | 2021 |
| Publisher | Copernicus GmbH Copernicus Publications, EGU Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications, EGU – name: Copernicus Publications |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref5 doi: 10.1029/2019GL083662 – ident: ref50 doi: 10.1002/2013MS000276 – ident: ref7 doi: 10.1007/978-3-030-01234-2_49 – ident: ref12 doi: 10.1038/s41598-019-46169-w – ident: ref9 doi: 10.3390/w3020445 – ident: ref24 – ident: ref14 doi: 10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2 – ident: ref40 doi: 10.1002/2017GL075888 – ident: ref6 doi: 10.1175/JAS-D-15-0014.1 – ident: ref17 – ident: ref13 doi: 10.1038/s41586-019-1559-7 – ident: ref30 – ident: ref20 doi: 10.1038/nature14539 – ident: ref2 – ident: ref4 doi: 10.1029/2018GL078510 – ident: ref46 doi: 10.1088/1748-9326/aa9ef2 – ident: ref19 doi: 10.1109/SC.2018.00054 – ident: ref47 doi: 10.1007/978-90-481-9510-7_1 – ident: ref49 doi: 10.1175/JHM-D-14-0080.1 – ident: ref3 doi: 10.23919/ICIF.2018.8455276 – ident: ref27 doi: 10.1175/BAMS-D-16-0123.1 – ident: ref35 doi: 10.1016/j.csda.2016.02.014 – ident: ref37 doi: 10.1038/s41586-018-0673-2 – ident: ref16 – ident: ref51 doi: 10.5194/esd-9-187-2018 – ident: ref26 doi: 10.1029/2019EF001249 – ident: ref38 doi: 10.1007/978-3-319-23117-4_37 – ident: ref39 – ident: ref31 doi: 10.5194/gmd-2020-55 – ident: ref53 doi: 10.1109/CVPR.2018.00391 – ident: ref45 doi: 10.5194/gmd-10-1069-2017 – ident: ref48 doi: 10.1088/1748-9326/aabb85 – ident: ref1 doi: 10.1038/nature01092 – ident: ref22 – ident: ref25 – ident: ref23 doi: 10.1007/978-3-319-67558-9_20 – ident: ref18 doi: 10.1175/BAMS-D-18-0194.1 – ident: ref43 doi: 10.1038/s41558-018-0140-y – ident: ref44 doi: 10.5194/gmd-2020-152 – ident: ref10 doi: 10.1029/2017GL076968 – ident: ref15 – ident: ref8 doi: 10.1109/CVPR.2017.195 – ident: ref29 doi: 10.1175/BAMS-D-11-00154.1 – ident: ref36 doi: 10.1007/s00382-006-0180-2 – ident: ref41 doi: 10.1007/s11263-007-0090-8 – ident: ref28 doi: 10.5194/gmd-10-571-2017 – ident: ref21 – ident: ref42 doi: 10.5194/gmd-11-2455-2018 – ident: ref52 – ident: ref33 doi: 10.1073/pnas.0907610106 – ident: ref32 doi: 10.1029/2018MS001351 – ident: ref11 doi: 10.1002/2015GL065435 – ident: ref34 doi: 10.1016/j.csda.2014.06.002 |
| SSID | ssj0069767 ssj0069768 |
| Score | 2.5220876 |
| Snippet | Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change... |
| SourceID | doaj osti proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 107 |
| SubjectTerms | Algorithms Architecture Atmospheric models Classification Climate change Climate change scenarios Climate models Climate science Climatic data Climatic extremes Computer vision Cyclones Datasets Deep learning El Nino Empirical analysis ENVIRONMENTAL SCIENCES Extreme weather Global temperature changes Heuristic Hurricanes Informatics Labeling Machine learning Machine vision Object recognition open climate campaign Pattern recognition Pixels Problem solving Scientists Sea level Segmentation Simulation Statistical methods Success Training Transfer learning Tropical atmosphere Tropical climate Tropical cyclones Variables Weather Weather patterns |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA9SFHwRP7FelSCCvsRLNmk-fDsPT30p4gf0LWSTbDm425bunuKj_7kz2W25IuKL0Jc2s002M5n5ZXfyG0Je8AB2wmVgqq4jUwDfmNXRsGDrRutgeeOaUmzCLBZ2uXSfrpX6wpywgR54mLhjYUQQPNlkslOuyi7WSSX4_4idu8Jeyo3bbaYGH6whyJayKpjX4-ZuOZD6AFpRx6vLxIQC92PAQipxEI8Kbf_eOU_WsMr-8NEl8JzdJXdGxEhPhpHeIzdye5_cel8q8v58QH6dXpwD6syL3L-hoaWFsr9noFwIKIlidSyKaaBd7qE50ZTzho61Ilb0-nsECviVZjxLhS3IY8w227EED1yK5CW5o-sGuujxqSL9McDHh-Tb2buvpx_YWFeBxTlXPZtLLaMSOasAHwhH2TlQlZMyKy1h18qD45FnoWqj50kKUJzTSVmnohRNlI_IpF23-TGhMtqYnYzJhqgMB-wQbGwaUXOAVWIepuT1bnZ9HEnHsfbFhYfNB6rDgzpg-wFfjUd1TMmr_QWbgW_j76JvUV17MSTKLj-A-fjRfPy_zGdKnqOyPVJhtJhrswpXXec_fvnsT_AYbmU0r6bk5SjUrGH0MYxHF2AOkD3rQHJ2IAlrNR40H6FNeUA3SNEbMZcp9jBIQKEcxjLbmZofPUnnK2U0sqqp6sn_uN8jchvnrjxEsjMy6bdX-Sm5Gb_35932WVlEvwHSnR-w priority: 102 providerName: Directory of Open Access Journals – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaggMSFN6JsQRZCgotZO3aTmAtaVixwqRAL0t4sZ-xUKy1NabIgjvxzZly3bIXggtRL6onqZh7-xhl_w9hT6dFOpPbCNA0Ig_BN1CVUwtdNW5a-lq1tU7OJajarT07sh7zh1ueyyk1MTIE6dEB75PuFwYRbYj5SvFp-FdQ1it6u5hYal9kVYklQqXTveBOJS1xqq4sX6VwclfrYsjhZ8_wggDH78y9BKIMRqUKjKdTOEpWY_LfxetSh4_0RttNadHTzf__FLXYjo1B-sDab2-xSXNxh196mLr8_7rKfh2eniGTjLA4vuV_w1AZgEGgwuEgFTh23OJWW9nHA4cBDjEue-0_M-cV3ExwxMY90PotGiBtZLFe5rQ_eSoQoseddiz8x0E4l_76GpPfY56M3nw7fidyrQcBUmkFMdanBqBiNxw8ucdFaVL_VOppSYyYsvZUgozJNVU6DVmgMtgymtga0akHfZ6NFt4gPGNdQQ7QaQu3BVBLxiK-hbVUjEaqpqR-zFxv1OMhE5tRP48xhQkP6dKhPTGnwsnKkzzF7vr1huebw-Lvoa9L3VozIt9MX3Wrusi87VSmvZKhDFa2xRbTQBBPQ5IH8wU7H7AlZiyN6jQXV78z9ed-798cf3QEd7S2qUhZj9iwLtR3OHnw-DoHPgBi5diQnO5Lo_7AzvEdG6RAxEe0vUH0UDDhJRLYS5zLZGKLL0al3v63w4b-H99h1eippy6mesNGwOo-P2FX4Npz2q8fJ2X4BgGcvnQ priority: 102 providerName: ProQuest |
| Title | ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather |
| URI | https://www.proquest.com/docview/2476101842 https://www.osti.gov/biblio/1756205 https://doaj.org/article/171a10d8d7e9492e9cbd4d830cecca95 |
| Volume | 14 |
| WOSCitedRecordID | wos000608796300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: RKB dateStart: 20080101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BFMQW dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: PCBAR dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZQAYkLv9HKSmUhJLiY2bHrxNy2aYMdqKoOpHKyHNupJo20ajIQR_5z3nOyahVCHEDqJfFz4_g9-z07z99HyCvuwE64dEyVpWcKwjdWaJ8zV5SV1q7glakS2UQ-nRaLhZndoPrCnLAOHrjruAORCyd4KEIejTJZNL4MKsD_e3y4wePlYIY4JOfI4dbNwRqcbKJVwbweMzGLDtQHohV1sPwamFAw_eRgIZnY8UcJtn87OQ9WMMp-m6OT4zl98A9Nfkju99EmPeyqPCK3Yv2Y3H2f2Hx_PCE_jy8vIGKN09i-o66mCe6_ZWAY4IwCRWYtiimkTWyhONAQ45r2PBNLevMbBIXYl0Y8h4UliIHM1puevgeqIvBJbOiqgke0uCNJv3eh51Py-fTk0_EH1nMyMD_hqmUTqaVXIkbl4AeuLBoDajZSRqUlrHi5M9zzKFSZ60mQApRudFCFUV6KystnZFCv6rhHqPSFj0b6UDivcg5xhyt8VYmSQ0gmJm5I3l5rxvoesBx5My4tLFxQlRZUCUsXuMwtqnJI3mwrrDusjj-LHqHatmIIsp1ugB5tr0f7Nz0OyUs0FIswGjXm6SzdVdPYs_O5PcQjvFmueTYkr3uhagWt964_9gB9gMhbO5KjHUkY536neB_t0UJkhPC-HvOgfAuNhAiWQ1tG12Zq-1mosZnKNSKyqez5_3jffXIP-y5tQBUjMmg3V_EFueO_tRfNZkxuH51MZ_Nx2tUYYw7tOdybnX2cfRmnwfkL7bA3gg |
| linkProvider | Copernicus Gesellschaft |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGBxov3CfKClgIBC9mduJcjITQGIxV26oKNqk8Gcd2qkmjKU3GtEf-EL-Rc9KkrELwtgekvqR2Wtf9zs0553yEPOUGcMJDw2SWWSbBfWNpbBNm0iyPY5PyXOU12UQyGKSjkRqukJ9tLQymVbY6sVbUrrB4Rr4ZSAi4OcQjwZvpN4asUfh0taXQmMNiz5-fQchWvu6_g__3WRDsvD_c3mUNqwCzEZcVi8I4tFJ4Lw28QBl7pWChENh7GYcQs3GjuOVeyCyJIxcKWLaKnUyVtKHIbQife4WsSgR7h6wO-wfDz63uj8G4Jxcv6ko8TC5ScTCadxYCl0lujr86JiTowARgGoglo1hzBywsRKcAUf_DUNTWb-fm_7Zvt8iNxs-mW3PBuE1W_OQOufah5jE-v0t-bJ8cg6_uB756Rc2E1kQHFQORADPsKHKKUUyeLX0Fw44676e0YdgY04tPXyh4_dRjBRqOYPdnNp01xEVwK7Z88SUtcviKCs9i6dnc6b5Hji7l96-TzqSY-PuEhja1XoXWpcbKhIPHZVKb5yLj4IyKyHTJyxYO2jat2pEx5ERDyIb40YAfCNrgMtGIny55sbhhOu9S8vepbxFfi2nYXrx-o5iNdaOttEiEEdylLvFKqsArmznpQKgtSryKuuQJolNjA5EJZiiNzWlZ6v6nj3oLi5eDJOZBlzxvJuUFrN6apuAD9gB7ji3N7C3NBA1nl4Y3UAg0-ITY2NhiBpitYJHgu3NYS68Fvm70b6l_o_7Bv4cfk7Xdw4N9vd8f7G2Q67hD9QFb2iOdanbqH5Kr9nt1XM4eNaJOyZfLlpJfDC6MCQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLiAuvBFlC1gIBBdTJ3EdGwmhfVBYLVTLS_RmHNupVlqa0mRZ7ZG_xa9jJk3KVghue0DqJfUkcZx5OjPzEfKQW-ATnlgmsswxAe4bU9KlzKosl9Iqnuu8BptIRyM1Huv9NfKzrYXBtMpWJ9aK2hcO98j7sYCAm0M8EvfzJi1if2f4YvaNIYIUfmlt4TQWLLIXTo4hfCuf7-7Au34Ux8OXH7dfswZhgLkBFxUbJDJxIgpBWPiBYg5aw6QhyA9CJhC_cau54yESWSoHPongEbT0Qmnhkih3CVz3HFlXUireIetbw7fvPrd2QIKhT08f1FV5mGikZTxedBkC90n0J189iwTowxRYNo5WDGSNI7C0Fp0CxP4Po1FbwuGV_3kNr5LLjf9NNxcCc42shel1cuFVjW98coP82D48AB8-jEL1jNoprQEQKgaiAubZU8Qao5hUW4YKhj31Icxog7wxoae_ylCIBmjAyjQcwa7QbDZvAI3gVGwFE0pa5HCLCvdo6fHCGb9JPp3J898inWkxDbcJTZxyQSfOK-tEysETs8rleZRxcFKjge2Spy1rGNe0cEckkUMDoRzykgFegmAODlODvNQlT5YnzBbdS_5OuoW8tiTDtuP1H8V8YhotZqI0shH3yqdBCx0H7TIvPAi7Q02gB13yADnVYGORKbLXxB6Vpdn98N5sYlFznEoed8njhigvYPbONoUgsAbYi2yFsrdCCZrPrQxvoEAY8BWx4bHDzDBXwSTBp-cwl14rBKbRy6X5LQF3_j18n1wE0TBvdkd7G-QSLlC976Z6pFPNj8Jdct59rw7K-b1G6in5ctZC8gv71ZSp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ClimateNet%3A+an+expert-labeled+open+dataset+and+deep+learning+architecture+for+enabling+high-precision+analyses+of+extreme+weather&rft.jtitle=Geoscientific+model+development&rft.au=Prabhat&rft.au=Kashinath%2C+Karthik&rft.au=Mudigonda%2C+Mayur&rft.au=Kim%2C+Sol&rft.date=2021-01-08&rft.pub=Copernicus+GmbH&rft.issn=1991-959X&rft.volume=14&rft.issue=1&rft.spage=107&rft_id=info:doi/10.5194%2Fgmd-14-107-2021&rft.externalDBID=ISR&rft.externalDocID=A647827602 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon |