ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather

Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Pattern recognition tasks such as classification, object detection, and segmentation (i.e., pixel-level classification) have remained cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoscientific Model Development Jg. 14; H. 1; S. 107 - 124
Hauptverfasser: Kashinath, Karthik, Mudigonda, Mayur, Kim, Sol, Kapp-Schwoerer, Lukas, Graubner, Andre, Karaismailoglu, Ege, von Kleist, Leo, Kurth, Thorsten, Greiner, Annette, Mahesh, Ankur, Yang, Kevin, Lewis, Colby, Chen, Jiayi, Lou, Andrew, Chandran, Sathyavat, Toms, Ben, Chapman, Will, Dagon, Katherine, Shields, Christine A., O'Brien, Travis, Wehner, Michael, Collins, William
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 08.01.2021
Copernicus Publications, EGU
Copernicus Publications
Schlagworte:
ISSN:1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Pattern recognition tasks such as classification, object detection, and segmentation (i.e., pixel-level classification) have remained challenging problems in the weather and climate sciences. While there exist many empirical heuristics for detecting extreme events, the disparities between the output of these different methods even for a single event are large and often difficult to reconcile. Given the success of deep learning (DL) in tackling similar problems in computer vision, we advocate a DL-based approach. DL, however, works best in the context of supervised learning – when labeled datasets are readily available. Reliable labeled training data for extreme weather and climate events is scarce. We create “ClimateNet” – an open, community-sourced human-expert-labeled curated dataset that captures tropical cyclones (TCs) and atmospheric rivers (ARs) in high-resolution climate model output from a simulation of a recent historical period. We use the curated ClimateNet dataset to train a state-of-the-art DL model for pixel-level identification – i.e., segmentation – of TCs and ARs. We then apply the trained DL model to historical and climate change scenarios simulated by the Community Atmospheric Model (CAM5.1) and show that the DL model accurately segments the data into TCs, ARs, or “the background” at a pixel level. Further, we show how the segmentation results can be used to conduct spatially and temporally precise analytics by quantifying distributions of extreme precipitation conditioned on event types (TC or AR) at regional scales. The key contribution of this work is that it paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data using a curated expert-labeled dataset – ClimateNet. ClimateNet and the DL-based segmentation method provide several unique capabilities: (i) they can be used to calculate a variety of TC and AR statistics at a fine-grained level; (ii) they can be applied to different climate scenarios and different datasets without tuning as they do not rely on threshold conditions; and (iii) the proposed DL method is suitable for rapidly analyzing large amounts of climate model output. While our study has been conducted for two important extreme weather patterns (TCs and ARs) in simulation datasets, we believe that this methodology can be applied to a much broader class of patterns and applied to observational and reanalysis data products via transfer learning.
AbstractList Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Pattern recognition tasks such as classification, object detection, and segmentation (i.e., pixel-level classification) have remained challenging problems in the weather and climate sciences. While there exist many empirical heuristics for detecting extreme events, the disparities between the output of these different methods even for a single event are large and often difficult to reconcile. Given the success of deep learning (DL) in tackling similar problems in computer vision, we advocate a DL-based approach. DL, however, works best in the context of supervised learning - when labeled datasets are readily available. Reliable labeled training data for extreme weather and climate events is scarce.
Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Pattern recognition tasks such as classification, object detection, and segmentation (i.e., pixel-level classification) have remained challenging problems in the weather and climate sciences. While there exist many empirical heuristics for detecting extreme events, the disparities between the output of these different methods even for a single event are large and often difficult to reconcile. Given the success of deep learning (DL) in tackling similar problems in computer vision, we advocate a DL-based approach. DL, however, works best in the context of supervised learning – when labeled datasets are readily available. Reliable labeled training data for extreme weather and climate events is scarce. We create “ClimateNet” – an open, community-sourced human-expert-labeled curated dataset that captures tropical cyclones (TCs) and atmospheric rivers (ARs) in high-resolution climate model output from a simulation of a recent historical period. We use the curated ClimateNet dataset to train a state-of-the-art DL model for pixel-level identification – i.e., segmentation – of TCs and ARs. We then apply the trained DL model to historical and climate change scenarios simulated by the Community Atmospheric Model (CAM5.1) and show that the DL model accurately segments the data into TCs, ARs, or “the background” at a pixel level. Further, we show how the segmentation results can be used to conduct spatially and temporally precise analytics by quantifying distributions of extreme precipitation conditioned on event types (TC or AR) at regional scales. The key contribution of this work is that it paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data using a curated expert-labeled dataset – ClimateNet. ClimateNet and the DL-based segmentation method provide several unique capabilities: (i) they can be used to calculate a variety of TC and AR statistics at a fine-grained level; (ii) they can be applied to different climate scenarios and different datasets without tuning as they do not rely on threshold conditions; and (iii) the proposed DL method is suitable for rapidly analyzing large amounts of climate model output. While our study has been conducted for two important extreme weather patterns (TCs and ARs) in simulation datasets, we believe that this methodology can be applied to a much broader class of patterns and applied to observational and reanalysis data products via transfer learning.
Audience Academic
Author Toms, Ben
Dagon, Katherine
Shields, Christine A.
O'Brien, Travis
Chandran, Sathyavat
Mudigonda, Mayur
Mahesh, Ankur
Karaismailoglu, Ege
Kim, Sol
Chapman, Will
von Kleist, Leo
Collins, William
Chen, Jiayi
Lou, Andrew
Kurth, Thorsten
Kashinath, Karthik
Graubner, Andre
Yang, Kevin
Wehner, Michael
Kapp-Schwoerer, Lukas
Greiner, Annette
Lewis, Colby
Author_xml – sequence: 1
  givenname: Karthik
  surname: Kashinath
  fullname: Kashinath, Karthik
– sequence: 2
  givenname: Mayur
  surname: Mudigonda
  fullname: Mudigonda, Mayur
– sequence: 3
  givenname: Sol
  orcidid: 0000-0002-2641-8929
  surname: Kim
  fullname: Kim, Sol
– sequence: 4
  givenname: Lukas
  surname: Kapp-Schwoerer
  fullname: Kapp-Schwoerer, Lukas
– sequence: 5
  givenname: Andre
  surname: Graubner
  fullname: Graubner, Andre
– sequence: 6
  givenname: Ege
  surname: Karaismailoglu
  fullname: Karaismailoglu, Ege
– sequence: 7
  givenname: Leo
  surname: von Kleist
  fullname: von Kleist, Leo
– sequence: 8
  givenname: Thorsten
  orcidid: 0000-0003-0832-6198
  surname: Kurth
  fullname: Kurth, Thorsten
– sequence: 9
  givenname: Annette
  surname: Greiner
  fullname: Greiner, Annette
– sequence: 10
  givenname: Ankur
  surname: Mahesh
  fullname: Mahesh, Ankur
– sequence: 11
  givenname: Kevin
  surname: Yang
  fullname: Yang, Kevin
– sequence: 12
  givenname: Colby
  orcidid: 0000-0001-5765-0352
  surname: Lewis
  fullname: Lewis, Colby
– sequence: 13
  givenname: Jiayi
  surname: Chen
  fullname: Chen, Jiayi
– sequence: 14
  givenname: Andrew
  surname: Lou
  fullname: Lou, Andrew
– sequence: 15
  givenname: Sathyavat
  surname: Chandran
  fullname: Chandran, Sathyavat
– sequence: 16
  givenname: Ben
  surname: Toms
  fullname: Toms, Ben
– sequence: 17
  givenname: Will
  orcidid: 0000-0002-0472-7069
  surname: Chapman
  fullname: Chapman, Will
– sequence: 18
  givenname: Katherine
  orcidid: 0000-0002-4518-8225
  surname: Dagon
  fullname: Dagon, Katherine
– sequence: 19
  givenname: Christine A.
  surname: Shields
  fullname: Shields, Christine A.
– sequence: 20
  givenname: Travis
  orcidid: 0000-0002-6643-1175
  surname: O'Brien
  fullname: O'Brien, Travis
– sequence: 21
  givenname: Michael
  orcidid: 0000-0001-5991-0082
  surname: Wehner
  fullname: Wehner, Michael
– sequence: 22
  givenname: William
  orcidid: 0000-0002-4463-9848
  surname: Collins
  fullname: Collins, William
BackLink https://www.osti.gov/biblio/1756205$$D View this record in Osti.gov
BookMark eNp1Uk1v1DAQjVCRaAtnrhGcOKS1Y8eJuVUrPlaqQOLjbE3sSeJV1g62V6VH_jkOC4JFIFuyPfPePM3zXBRnzjssiqeUXDVU8utxbyrKK0raqiY1fVCcUylpJQVhZ3_cHxUXMe4IEbIV7XnxbTPbPSR8h-llCa7ErwuGVM3Q44ym9Au60kCCiCmnTWkQl3JGCM66sYSgJ5tQp0PAcvChRAf9vGYmO07VElDbaL3LVJjvI8bSD1kiBdxjeYeQJgyPi4cDzBGf_Dwvi8-vX33avK1u37_Zbm5uK90QnqqGCaY5ReSQt5QEpeR9LxlDLlhLGQFJNEHK-1Y0hlHoeikM7yTXjA6aXRbbY13jYaeWkNsO98qDVT8CPowKQrJ6RkVbCpSYzrQouaxR6t5w0zGiUWuQTa717FjLx2RV1KsHk_bOZSsyuxE1WUHPj6Al-C8HjEnt_CFkI6KqeSsooR2vf6NGyMrWDT4F0HsbtboRvO3qVpAVdfUPVF4G9zYL42Bz_ITw4oSQMSkbP8IhRrX9-OEU2xyxOvgYAw4qNwQp_1sWsbOiRK0TpvKEKcrzs1XrhGXe9V-8X67-j_Ed4YLT1w
CitedBy_id crossref_primary_10_1029_2023EF003534
crossref_primary_10_1007_s00376_023_3001_1
crossref_primary_10_1016_j_jhydrol_2024_132586
crossref_primary_10_3389_frsc_2021_786563
crossref_primary_10_1029_2021EA002085
crossref_primary_10_1029_2023GL103979
crossref_primary_10_1029_2021GL093787
crossref_primary_10_1063_5_0267915
crossref_primary_10_1029_2023WR035088
crossref_primary_10_1126_sciadv_adl3242
crossref_primary_10_5194_hess_27_2645_2023
crossref_primary_10_1039_D2NH00377E
crossref_primary_10_1029_2022JD037038
crossref_primary_10_1017_eds_2023_15
crossref_primary_10_1002_wat2_1558
crossref_primary_10_1007_s00704_021_03776_w
crossref_primary_10_1029_2022GL099577
crossref_primary_10_1175_JCLI_D_21_0554_1
crossref_primary_10_1002_wea_4163
crossref_primary_10_3390_rs15143493
crossref_primary_10_1038_s41597_025_04447_5
crossref_primary_10_1017_eds_2023_1
crossref_primary_10_1007_s42514_021_00071_y
crossref_primary_10_1029_2021GL096820
crossref_primary_10_1038_s41558_024_02095_y
crossref_primary_10_1175_AIES_D_21_0011_1
crossref_primary_10_1175_AIES_D_22_0012_1
crossref_primary_10_1016_j_wace_2022_100525
crossref_primary_10_1007_s00376_024_3238_3
crossref_primary_10_1029_2021JD036198
crossref_primary_10_1029_2022JD037041
crossref_primary_10_1109_TAI_2024_3489535
crossref_primary_10_1029_2021JD036155
crossref_primary_10_1038_s41586_024_08238_7
crossref_primary_10_1029_2022MS003495
crossref_primary_10_1029_2020JD033746
crossref_primary_10_1017_exp_2022_3
crossref_primary_10_1007_s12145_024_01281_y
Cites_doi 10.1029/2019GL083662
10.1002/2013MS000276
10.1007/978-3-030-01234-2_49
10.1038/s41598-019-46169-w
10.3390/w3020445
10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2
10.1002/2017GL075888
10.1175/JAS-D-15-0014.1
10.1038/s41586-019-1559-7
10.1038/nature14539
10.1029/2018GL078510
10.1088/1748-9326/aa9ef2
10.1109/SC.2018.00054
10.1007/978-90-481-9510-7_1
10.1175/JHM-D-14-0080.1
10.23919/ICIF.2018.8455276
10.1175/BAMS-D-16-0123.1
10.1016/j.csda.2016.02.014
10.1038/s41586-018-0673-2
10.5194/esd-9-187-2018
10.1029/2019EF001249
10.1007/978-3-319-23117-4_37
10.5194/gmd-2020-55
10.1109/CVPR.2018.00391
10.5194/gmd-10-1069-2017
10.1088/1748-9326/aabb85
10.1038/nature01092
10.1007/978-3-319-67558-9_20
10.1175/BAMS-D-18-0194.1
10.1038/s41558-018-0140-y
10.5194/gmd-2020-152
10.1029/2017GL076968
10.1109/CVPR.2017.195
10.1175/BAMS-D-11-00154.1
10.1007/s00382-006-0180-2
10.1007/s11263-007-0090-8
10.5194/gmd-10-571-2017
10.5194/gmd-11-2455-2018
10.1073/pnas.0907610106
10.1029/2018MS001351
10.1002/2015GL065435
10.1016/j.csda.2014.06.002
ContentType Journal Article
Copyright COPYRIGHT 2021 Copernicus GmbH
2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2021 Copernicus GmbH
– notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Prabhat
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Prabhat
– name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
OTOTI
DOA
DOI 10.5194/gmd-14-107-2021
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList


Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Architecture
Environmental Sciences
EISSN 1991-9603
1991-962X
EndPage 124
ExternalDocumentID oai_doaj_org_article_171a10d8d7e9492e9cbd4d830cecca95
1756205
A647827602
10_5194_gmd_14_107_2021
GroupedDBID 5VS
8R4
8R5
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AENEX
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
ESX
GROUPED_DOAJ
H13
IAO
IEA
IEP
ISR
ITC
KQ8
OK1
P2P
Q2X
RKB
RNS
TR2
TUS
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
LK5
M7R
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
PTHSS
3V.
BBORY
M~E
OTOTI
RIG
ID FETCH-LOGICAL-c504t-5363c41ee4ae4a990e994bb933e4637130a90c0e14b765d31a8b96d4894c31fc3
IEDL.DBID RKB
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608796300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1991-9603
1991-959X
1991-962X
IngestDate Fri Oct 03 12:41:34 EDT 2025
Mon Apr 01 04:55:05 EDT 2024
Fri Jul 25 19:02:37 EDT 2025
Mon Oct 20 21:49:16 EDT 2025
Mon Oct 20 16:12:07 EDT 2025
Thu Oct 16 14:48:10 EDT 2025
Tue Nov 18 19:49:09 EST 2025
Sat Nov 29 05:37:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c504t-5363c41ee4ae4a990e994bb933e4637130a90c0e14b765d31a8b96d4894c31fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-05CH11231; 1852977
National Science Foundation (NSF)
USDOE Office of Science (SC), Biological and Environmental Research (BER)
ORCID 0000-0002-6643-1175
0000-0002-2641-8929
0000-0002-0472-7069
0000-0002-4518-8225
0000-0001-5765-0352
0000-0002-4463-9848
0000-0003-0832-6198
0000-0001-5991-0082
0000000245188225
0000000266431175
0000000157650352
0000000159910082
0000000308326198
0000000244639848
OpenAccessLink https://doaj.org/article/171a10d8d7e9492e9cbd4d830cecca95
PQID 2476101842
PQPubID 105726
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_171a10d8d7e9492e9cbd4d830cecca95
osti_scitechconnect_1756205
proquest_journals_2476101842
gale_infotracmisc_A647827602
gale_infotracacademiconefile_A647827602
gale_incontextgauss_ISR_A647827602
crossref_citationtrail_10_5194_gmd_14_107_2021
crossref_primary_10_5194_gmd_14_107_2021
PublicationCentury 2000
PublicationDate 2021-01-08
PublicationDateYYYYMMDD 2021-01-08
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-08
  day: 08
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
– name: Germany
PublicationTitle Geoscientific Model Development
PublicationYear 2021
Publisher Copernicus GmbH
Copernicus Publications, EGU
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications, EGU
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref5
  doi: 10.1029/2019GL083662
– ident: ref50
  doi: 10.1002/2013MS000276
– ident: ref7
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref12
  doi: 10.1038/s41598-019-46169-w
– ident: ref9
  doi: 10.3390/w3020445
– ident: ref24
– ident: ref14
  doi: 10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2
– ident: ref40
  doi: 10.1002/2017GL075888
– ident: ref6
  doi: 10.1175/JAS-D-15-0014.1
– ident: ref17
– ident: ref13
  doi: 10.1038/s41586-019-1559-7
– ident: ref30
– ident: ref20
  doi: 10.1038/nature14539
– ident: ref2
– ident: ref4
  doi: 10.1029/2018GL078510
– ident: ref46
  doi: 10.1088/1748-9326/aa9ef2
– ident: ref19
  doi: 10.1109/SC.2018.00054
– ident: ref47
  doi: 10.1007/978-90-481-9510-7_1
– ident: ref49
  doi: 10.1175/JHM-D-14-0080.1
– ident: ref3
  doi: 10.23919/ICIF.2018.8455276
– ident: ref27
  doi: 10.1175/BAMS-D-16-0123.1
– ident: ref35
  doi: 10.1016/j.csda.2016.02.014
– ident: ref37
  doi: 10.1038/s41586-018-0673-2
– ident: ref16
– ident: ref51
  doi: 10.5194/esd-9-187-2018
– ident: ref26
  doi: 10.1029/2019EF001249
– ident: ref38
  doi: 10.1007/978-3-319-23117-4_37
– ident: ref39
– ident: ref31
  doi: 10.5194/gmd-2020-55
– ident: ref53
  doi: 10.1109/CVPR.2018.00391
– ident: ref45
  doi: 10.5194/gmd-10-1069-2017
– ident: ref48
  doi: 10.1088/1748-9326/aabb85
– ident: ref1
  doi: 10.1038/nature01092
– ident: ref22
– ident: ref25
– ident: ref23
  doi: 10.1007/978-3-319-67558-9_20
– ident: ref18
  doi: 10.1175/BAMS-D-18-0194.1
– ident: ref43
  doi: 10.1038/s41558-018-0140-y
– ident: ref44
  doi: 10.5194/gmd-2020-152
– ident: ref10
  doi: 10.1029/2017GL076968
– ident: ref15
– ident: ref8
  doi: 10.1109/CVPR.2017.195
– ident: ref29
  doi: 10.1175/BAMS-D-11-00154.1
– ident: ref36
  doi: 10.1007/s00382-006-0180-2
– ident: ref41
  doi: 10.1007/s11263-007-0090-8
– ident: ref28
  doi: 10.5194/gmd-10-571-2017
– ident: ref21
– ident: ref42
  doi: 10.5194/gmd-11-2455-2018
– ident: ref52
– ident: ref33
  doi: 10.1073/pnas.0907610106
– ident: ref32
  doi: 10.1029/2018MS001351
– ident: ref11
  doi: 10.1002/2015GL065435
– ident: ref34
  doi: 10.1016/j.csda.2014.06.002
SSID ssj0069767
ssj0069768
Score 2.5220876
Snippet Identifying, detecting, and localizing extreme weather events is a crucial first step in understanding how they may vary under different climate change...
SourceID doaj
osti
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 107
SubjectTerms Algorithms
Architecture
Atmospheric models
Classification
Climate change
Climate change scenarios
Climate models
Climate science
Climatic data
Climatic extremes
Computer vision
Cyclones
Datasets
Deep learning
El Nino
Empirical analysis
ENVIRONMENTAL SCIENCES
Extreme weather
Global temperature changes
Heuristic
Hurricanes
Informatics
Labeling
Machine learning
Machine vision
Object recognition
open climate campaign
Pattern recognition
Pixels
Problem solving
Scientists
Sea level
Segmentation
Simulation
Statistical methods
Success
Training
Transfer learning
Tropical atmosphere
Tropical climate
Tropical cyclones
Variables
Weather
Weather patterns
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA9SFHwRP7FelSCCvsRLNmk-fDsPT30p4gf0LWSTbDm425bunuKj_7kz2W25IuKL0Jc2s002M5n5ZXfyG0Je8AB2wmVgqq4jUwDfmNXRsGDrRutgeeOaUmzCLBZ2uXSfrpX6wpywgR54mLhjYUQQPNlkslOuyi7WSSX4_4idu8Jeyo3bbaYGH6whyJayKpjX4-ZuOZD6AFpRx6vLxIQC92PAQipxEI8Kbf_eOU_WsMr-8NEl8JzdJXdGxEhPhpHeIzdye5_cel8q8v58QH6dXpwD6syL3L-hoaWFsr9noFwIKIlidSyKaaBd7qE50ZTzho61Ilb0-nsECviVZjxLhS3IY8w227EED1yK5CW5o-sGuujxqSL9McDHh-Tb2buvpx_YWFeBxTlXPZtLLaMSOasAHwhH2TlQlZMyKy1h18qD45FnoWqj50kKUJzTSVmnohRNlI_IpF23-TGhMtqYnYzJhqgMB-wQbGwaUXOAVWIepuT1bnZ9HEnHsfbFhYfNB6rDgzpg-wFfjUd1TMmr_QWbgW_j76JvUV17MSTKLj-A-fjRfPy_zGdKnqOyPVJhtJhrswpXXec_fvnsT_AYbmU0r6bk5SjUrGH0MYxHF2AOkD3rQHJ2IAlrNR40H6FNeUA3SNEbMZcp9jBIQKEcxjLbmZofPUnnK2U0sqqp6sn_uN8jchvnrjxEsjMy6bdX-Sm5Gb_35932WVlEvwHSnR-w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaggMSFN6JsQRZCgotZO3aTmAtaVixwqRAL0t4sZ-xUKy1NabIgjvxzZly3bIXggtRL6onqZh7-xhl_w9hT6dFOpPbCNA0Ig_BN1CVUwtdNW5a-lq1tU7OJajarT07sh7zh1ueyyk1MTIE6dEB75PuFwYRbYj5SvFp-FdQ1it6u5hYal9kVYklQqXTveBOJS1xqq4sX6VwclfrYsjhZ8_wggDH78y9BKIMRqUKjKdTOEpWY_LfxetSh4_0RttNadHTzf__FLXYjo1B-sDab2-xSXNxh196mLr8_7rKfh2eniGTjLA4vuV_w1AZgEGgwuEgFTh23OJWW9nHA4cBDjEue-0_M-cV3ExwxMY90PotGiBtZLFe5rQ_eSoQoseddiz8x0E4l_76GpPfY56M3nw7fidyrQcBUmkFMdanBqBiNxw8ucdFaVL_VOppSYyYsvZUgozJNVU6DVmgMtgymtga0akHfZ6NFt4gPGNdQQ7QaQu3BVBLxiK-hbVUjEaqpqR-zFxv1OMhE5tRP48xhQkP6dKhPTGnwsnKkzzF7vr1huebw-Lvoa9L3VozIt9MX3Wrusi87VSmvZKhDFa2xRbTQBBPQ5IH8wU7H7AlZiyN6jQXV78z9ed-798cf3QEd7S2qUhZj9iwLtR3OHnw-DoHPgBi5diQnO5Lo_7AzvEdG6RAxEe0vUH0UDDhJRLYS5zLZGKLL0al3v63w4b-H99h1eippy6mesNGwOo-P2FX4Npz2q8fJ2X4BgGcvnQ
  priority: 102
  providerName: ProQuest
Title ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
URI https://www.proquest.com/docview/2476101842
https://www.osti.gov/biblio/1756205
https://doaj.org/article/171a10d8d7e9492e9cbd4d830cecca95
Volume 14
WOSCitedRecordID wos000608796300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: RKB
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BFMQW
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PCBAR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZQAYkLv9HKSmUhJLiY2bHrxNy2aYMdqKoOpHKyHNupJo20ajIQR_5z3nOyahVCHEDqJfFz4_g9-z07z99HyCvuwE64dEyVpWcKwjdWaJ8zV5SV1q7glakS2UQ-nRaLhZndoPrCnLAOHrjruAORCyd4KEIejTJZNL4MKsD_e3y4wePlYIY4JOfI4dbNwRqcbKJVwbweMzGLDtQHohV1sPwamFAw_eRgIZnY8UcJtn87OQ9WMMp-m6OT4zl98A9Nfkju99EmPeyqPCK3Yv2Y3H2f2Hx_PCE_jy8vIGKN09i-o66mCe6_ZWAY4IwCRWYtiimkTWyhONAQ45r2PBNLevMbBIXYl0Y8h4UliIHM1puevgeqIvBJbOiqgke0uCNJv3eh51Py-fTk0_EH1nMyMD_hqmUTqaVXIkbl4AeuLBoDajZSRqUlrHi5M9zzKFSZ60mQApRudFCFUV6KystnZFCv6rhHqPSFj0b6UDivcg5xhyt8VYmSQ0gmJm5I3l5rxvoesBx5My4tLFxQlRZUCUsXuMwtqnJI3mwrrDusjj-LHqHatmIIsp1ugB5tr0f7Nz0OyUs0FIswGjXm6SzdVdPYs_O5PcQjvFmueTYkr3uhagWt964_9gB9gMhbO5KjHUkY536neB_t0UJkhPC-HvOgfAuNhAiWQ1tG12Zq-1mosZnKNSKyqez5_3jffXIP-y5tQBUjMmg3V_EFueO_tRfNZkxuH51MZ_Nx2tUYYw7tOdybnX2cfRmnwfkL7bA3gg
linkProvider Copernicus Gesellschaft
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGBxov3CfKClgIBC9mduJcjITQGIxV26oKNqk8Gcd2qkmjKU3GtEf-EL-Rc9KkrELwtgekvqR2Wtf9zs0553yEPOUGcMJDw2SWWSbBfWNpbBNm0iyPY5PyXOU12UQyGKSjkRqukJ9tLQymVbY6sVbUrrB4Rr4ZSAi4OcQjwZvpN4asUfh0taXQmMNiz5-fQchWvu6_g__3WRDsvD_c3mUNqwCzEZcVi8I4tFJ4Lw28QBl7pWChENh7GYcQs3GjuOVeyCyJIxcKWLaKnUyVtKHIbQife4WsSgR7h6wO-wfDz63uj8G4Jxcv6ko8TC5ScTCadxYCl0lujr86JiTowARgGoglo1hzBywsRKcAUf_DUNTWb-fm_7Zvt8iNxs-mW3PBuE1W_OQOufah5jE-v0t-bJ8cg6_uB756Rc2E1kQHFQORADPsKHKKUUyeLX0Fw44676e0YdgY04tPXyh4_dRjBRqOYPdnNp01xEVwK7Z88SUtcviKCs9i6dnc6b5Hji7l96-TzqSY-PuEhja1XoXWpcbKhIPHZVKb5yLj4IyKyHTJyxYO2jat2pEx5ERDyIb40YAfCNrgMtGIny55sbhhOu9S8vepbxFfi2nYXrx-o5iNdaOttEiEEdylLvFKqsArmznpQKgtSryKuuQJolNjA5EJZiiNzWlZ6v6nj3oLi5eDJOZBlzxvJuUFrN6apuAD9gB7ji3N7C3NBA1nl4Y3UAg0-ITY2NhiBpitYJHgu3NYS68Fvm70b6l_o_7Bv4cfk7Xdw4N9vd8f7G2Q67hD9QFb2iOdanbqH5Kr9nt1XM4eNaJOyZfLlpJfDC6MCQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLiAuvBFlC1gIBBdTJ3EdGwmhfVBYLVTLS_RmHNupVlqa0mRZ7ZG_xa9jJk3KVghue0DqJfUkcZx5OjPzEfKQW-ATnlgmsswxAe4bU9KlzKosl9Iqnuu8BptIRyM1Huv9NfKzrYXBtMpWJ9aK2hcO98j7sYCAm0M8EvfzJi1if2f4YvaNIYIUfmlt4TQWLLIXTo4hfCuf7-7Au34Ux8OXH7dfswZhgLkBFxUbJDJxIgpBWPiBYg5aw6QhyA9CJhC_cau54yESWSoHPongEbT0Qmnhkih3CVz3HFlXUireIetbw7fvPrd2QIKhT08f1FV5mGikZTxedBkC90n0J189iwTowxRYNo5WDGSNI7C0Fp0CxP4Po1FbwuGV_3kNr5LLjf9NNxcCc42shel1cuFVjW98coP82D48AB8-jEL1jNoprQEQKgaiAubZU8Qao5hUW4YKhj31Icxog7wxoae_ylCIBmjAyjQcwa7QbDZvAI3gVGwFE0pa5HCLCvdo6fHCGb9JPp3J898inWkxDbcJTZxyQSfOK-tEysETs8rleZRxcFKjge2Spy1rGNe0cEckkUMDoRzykgFegmAODlODvNQlT5YnzBbdS_5OuoW8tiTDtuP1H8V8YhotZqI0shH3yqdBCx0H7TIvPAi7Q02gB13yADnVYGORKbLXxB6Vpdn98N5sYlFznEoed8njhigvYPbONoUgsAbYi2yFsrdCCZrPrQxvoEAY8BWx4bHDzDBXwSTBp-cwl14rBKbRy6X5LQF3_j18n1wE0TBvdkd7G-QSLlC976Z6pFPNj8Jdct59rw7K-b1G6in5ctZC8gv71ZSp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ClimateNet%3A+an+expert-labeled+open+dataset+and+deep+learning+architecture+for+enabling+high-precision+analyses+of+extreme+weather&rft.jtitle=Geoscientific+model+development&rft.au=Prabhat&rft.au=Kashinath%2C+Karthik&rft.au=Mudigonda%2C+Mayur&rft.au=Kim%2C+Sol&rft.date=2021-01-08&rft.pub=Copernicus+GmbH&rft.issn=1991-959X&rft.volume=14&rft.issue=1&rft.spage=107&rft_id=info:doi/10.5194%2Fgmd-14-107-2021&rft.externalDBID=ISR&rft.externalDocID=A647827602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon