A greedy feature selection algorithm for Big Data of high dimensionality
We present the Parallel, Forward–Backward with Pruning (PFBP) algorithm for feature selection (FS) for Big Data of high dimensionality. PFBP partitions the data matrix both in terms of rows as well as columns. By employing the concepts of p -values of conditional independence tests and meta-analysis...
Gespeichert in:
| Veröffentlicht in: | Machine learning Jg. 108; H. 2; S. 149 - 202 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.02.2019
Springer Nature B.V Springer Verlag |
| Schlagworte: | |
| ISSN: | 0885-6125, 1573-0565 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!